Информативные ответы на все вопросы курса «Патологическая физиология» в соответствии с Государственным образовательным стандартом.
Публикуется с разрешения правообладателя: ЛА «Научная книга»
ЧАСТЬ I. ОБЩАЯ ПАТОФИЗИОЛОГИЯ
ЛЕКЦИЯ № 1. ПРОБЛЕМЫ ОБЩЕЙ ПАТОЛОГИИ
Общая этиология и патогенез. Значение реактивности организма в патологии
Важно отметить, что ЭФ не есть сама причина болезни, а только один из элементов причинного взаимодействия, поэтому утверждение, что туберкулезная палочка является причиной туберкулеза, является ошибочным (здесь перепутаны понятия «причина» и «причинный фактор»).
Живой организм активно взаимодействует с этиологическим фактором, изменяя его и изменяясь сам в процессе взаимодействия. Организм обладает фундаментальным свойством – реактивностью, под которой понимают способность организма определенным образом реагировать на воздействие факторов среды.
Реактивность является интегральной характеристикой целого организма, определяющей возможность и характер развития заболевания и претерпевающей изменения в процессе болезни.
Выделяют несколько форм реактивности:
1) возрастную (отражает особенности реакции в различные возрастные периоды);
2) половую (отражает различия в реакции на воздействие на мужчин и женщин);
3) иммунологическую (отражает особенности реакции иммунной системы на антигенное воздействие);
4) групповую (например, предрасположенность к заболеваниям лиц с определенными группами крови);
5) индивидуальную и др.
Можно говорить о местной (локальной) реактивности (например, особенности метаболизма канцерогена в определенной ткани) и общей реактивности, определяющей целостную реакцию организма на воздействие.
Следует различать нормальную реактивность организма (когда реакция адекватна раздражителю) и патологически измененную реактивность (например, формирование повышенной чувствительности к аллергену при сенсибилизации).
Одним из важнейших свойств организма является резистентность, т. е. способность противостоять воздействию патогенных факторов. Различают неспецифическую и специфическую резистентность (иммунитет). Неспецифическая резистентность обеспечивается барьерными системами, защитными белками (интерфероны, пропердин, комплемент, лизоцим, Р-лизины), фагоцитирующими клетками, интегральными сосудисто-тканевыми реакциями (воспаление), системными нейрогуморальными механизмами (общий адаптационный синдром). Системной неспецифической защитной реакцией является лихорадка. Иммунитет как способ специфической защиты внутренней среды организма от веществ и агентов, несущих признаки чужеродной генетической информации, реализуется за счет гуморальных механизмов (выработки защитных антител) и при участии специализированных клеток (Т-лимфоцитов).
Реактивность и резистентность организма определяются множеством взаимодействующих местных и системных факторов и зависят от особенностей метаболизма, митотической активности клеток, стадии клеточного цикла, биоритмической организации системы, перемежающейся активности структур, нейрогуморального контроля и т. п.
Третий элемент причинного взаимодействия – условия среды (внешней и внутренней), которые могут существенно модифицировать процесс взаимодействия этиологического фактора с организмом. Сюда относятся влияние климато-географических факторов (пример – «болезни жарких стран»), характер питания, сезонность, социальные факторы, стрессорные ситуации, температура, влажность, радиационный фон и др.
Участие каждого из элементов причинного взаимодействия является обязательным для возникновения следствия (заболевания), однако их соотносительная роль в развитии болезни может быть различной.
Абсолютизация любого из элементов причины лежит в основе ряда метафизических концепций в проблеме причинности в патологии. Так, попытка свести причину к воздействию одного фактора – суть монокаузализма, абсолютизация свойств макроорганизма ведет к конституционализму, наконец, взгляд на причину как на случайное сочетание равнозначных и равновероятных условий отражает представления сторонников кондиционализма.
В основе любого заболевания лежит повреждение каких-либо структур живого организма, приводящее к нарушению его нормального функционирования. В роли повреждающих (альтерирующих) агентов могут выступать разнообразные экзо– и эндогенные факторы. В ряде случаев клеточно-тканевые изменения, возникающие при альтерации, достаточно очевидны (воспаление, некроз, дистрофия), однако иногда изменения, возникающие в биосистеме, минимальны и затрагивают организацию макромолекул (изменение третичной или четвертичной структуры белка, конформационные изменения в биомембранах и т. п.), что значительно затрудняет обнаружение первичного дефекта. Для врача в данном случае важна принципиальная методологическая посылка: если в организме выявляется какое-либо нарушение функции, то, несомненно, должна быть изменена и структура, ответственная за реализацию данной функции, т. е. являющаяся ее материальным (морфологическим) субстратом (единство структуры и функции).
С другой стороны, при наличии измененной структуры глубокий анализ позволяет выявить и наличие функциональных сдвигов. Это положение легко может быть проиллюстрировано на достаточно простых (модельных) системах – структура фермента и его каталитическая активность, структура рецептора и его сродство к агонисту и т. п.
Значительно сложнее проиллюстрировать это положение при переходе на уровень целого организма, поскольку здесь включается масса дублирующих, резервных, компенсаторных механизмов, позволяющих полноценно осуществлять сложную функцию (например, сохранение кровяного давления, поддержание постоянства рН и др.) при повреждении какого-либо регуляторного звена. И тем не менее, обнаружение измененной функции (симптома заболевания) является для врача ориентиром и сигналом для поиска структурной основы этой аномалии.
Термином «патогенез» обозначается механизм развития заболевания, т. е. динамичный комплекс изменений, происходящих в живой системе при воздействии на нее патогенного фактора.
Изучение патогенеза заболеваний является главной задачей патологической физиологии.
Роль наследственных факторов в патологии человека. Хромосомные и молекулярные болезни
Все наследуемые признаки человека записаны с помощью генетического кода в макромолекулярной структуре ДНК. Двойная спираль ДНК, взаимодействуя со щелочными белками (пистонами), образует сложную надмолекулярную структуру – хромосому. Каждая хромосома содержит одну непрерывную молекулу ДНК, имеет определенный генный состав и может передавать только ей присущую наследственную информацию. Хромосомный набор (кариотип) человека включает 22 пары аутосом и 2 половые – XX или ХУ – хромосомы.
Несмотря на сложившуюся в процессе эволюции значительную стабильность генетического материала и наличие ДНК-репарирующих ферментов (энзимов, исправляющих ошибки репликации ДНК), под влиянием различных физических (ионизирующая радиация, ультрафиолетовые лучи), химических (алкирующие и другие соединения) и биологических (вирусы) факторов возможны изменения структуры ДНК – мутации. Учитывая наличие в геноме эукариот мигрирующих нуклеотидных последовательностей и транспозонов, под мутацией следует понимать изменение структуры ДНК, незапрограммированное в геноме и имеющее фенотипическое выражение.
Мутации в половых клетках фенотипически проявляются в виде наследственного предрасположения или наследственного заболевания.
Реализуется сплайсинг с помощью специализированных ферментов, а также за счет аутокатализа, когда роль фермента (рибозима) выполняет сама про-м-РНК.
Мутации, затрагивающие область промотора или регуляторные участки, приводят к изменению количества синтезируемого белкового продукта, но сам белок остается неизменным. Мутации структурного гена ведут к изменению первичной структуры белка. Мутация в области интрона может остаться без последствий, однако изменение сигнальной последовательности нуклеотидов на границе экзона и интрона может привести к нарушению процесса аутосплайсинга.
При мутации экзонов возможны следующие патологические изменения:
1) при мутации со «сдвигом рамки» может синтезироваться белок с резко измененной структурой и нарушенной функцией;
2) мутация может превращать бессмысленный (терминаторный) триплет в смысловой – синтезируется полипептидная цепь большей длины, чем в норме;
3) мутация может превращать смысловой триплет в терминаторный – происходит синтез укороченной полипептидной цепи;
4) мутация может приводить к изменению смысла кодона, что вызовет замену аминокислоты в полипептидной цепи.
Нарушение работы ферментов сплайсинга и рибозимов фенотипически проявляется также как мутация структурного гена.
Важным этапом в реализации генетической программы является посттранскрипционная модификация м-РНК. К одному концу м-РНК присоединяется отрезок поли-А, состоящий из 50 – 200 идениловых нуклеотидов. Другой конец м-РНК подвергается кэпированию, т. е. соединяется с химической группировкой, содержащей метилгуанозин. Нарушение этих процессов приводит к сокращению времени жизни м-РНК, к ее быстрому разрушению нуклеазами и, следовательно, невозможности трансляции генетической информации.
Вышедшая из ядра м-РНК соединяется с цитоплазматическими белками с образованием нуклеопротеидных частиц – информосом. При патологии информосом нарушается регулируемое поступление м-РНК в белоксинтезирующую систему.
Таким образом, основу молекулярных болезней составляет нарушение синтеза различных белков организма. Патология может касаться структурных, транспортных, рецепторных, антигенных белков, но чаще всего страдают белки-ферменты и большинство молекулярных болезней носит характер энзимопатий. Если в результате мутации изменен активный центр фермента – нарушается его каталитическая активность и сродство к субстрату; если затронут аллостерический центр – нарушается регуляция активности фермента метаболитами и гормонами.
Для диагностики наиболее распространенных энзимопатий используются простые экспресс-методы – так называемые скрининг-тесты (скрининг – просеивание). Скринирование энзимопатий основано на определении активности аномального фермента, изучении количества конечных продуктов реакции и предшественников, а также на выявлении необычных продуктов обмена в биологических жидкостях.
При хромосомных болезнях и синдромах световая микроскопия позволяет выявить изменения хромосомного набора либо в виде анэуплоидий, т. е. изменения числа аутосом (болезнь Дауна, синдромы Эдвардса и Патау) или половых хромосом (синдромы Клайнфельтера, Шерешевского – Тернера, трисомии-Х), либо в виде изменения структуры хромосом (делеции, дупликации, инверсии, транслокации). Причиной анэуплоидий является нерасхождение хромосом в процессе митоза или мейоза. Замечено повышение частоты нерасхождения с увеличением возраста матери.
В настоящее время описано более 100 различных хромосомных синдромов. Около 50 % всех случаев спонтанных абортов связаны с аномалиями хромосом. При этом хромосомные дефекты, унаследованные от предыдущих поколений, составляют лишь 1,3 % среди спонтанных абортов и 5,9 % среди мертворождений. Следовательно, чаще всего хромосомные аберрации являются результатом первичного нарушения гаметогенеза в родительском организме или появляются в процессе развития зародыша.
Для диагностики хромосомных болезней проводят исследование хромосомного набора человека (кариотипа), а также определяют Х– и Y-половой хроматин, что позволяет обнаружить изменение числа половых хромосом в кариотипе. Важным экспресс-методом диагностики хромосомных болезней является исследование дерматоглифического фенотипа – наследственных особенностей кожного рисунка.
ЛЕКЦИЯ № 2. МЕХАНИЗМЫ КАНЦЕРОГЕНЕЗА
Онкологические заболевания занимают второе место как причина смертности населения в экономически развитых странах, уступая только заболеваниям сердечно-сосудистой системы. В разных регионах земного шара число больных опухолями колеблется от 65 до 360 на 100 000 населения.
В патологии встречаются и другие процессы, сопровождающиеся разрастанием ткани, но они существенно отличаются от истинного опухолевого роста. Так, одним из тканевых проявлений воспалительной реакции является пролиферация клеток. Но при воспалении пролиферируют клетки различного генеза: специфические клетки данной ткани, клетки соединительной ткани, сосудов, некоторые клетки крови. Рост же опухоли осуществляется за счет размножения клеток одного типа, являющихся потомками одной клетки, подвергшейся трансформации. Пролиферация клеток при воспалении не беспредельна, она регулируема, сопровождается клеточной дифференцировкой и продолжается до восполнения тканевого дефекта. В основе гиперплазии и регенерации также лежит размножение клеточных элементов одного типа, но и эта пролиферация не беспредельна, как в опухолях, и завершается созреванием клеток.
Таким образом, самой существенной особенностью опухолевой ткани является беспредельная пролиферация клеток с нарушением процесса их дифференцировки.
Классификация опухолей
Различают доброкачественные и злокачественные опухоли.
Это разделение основано на оценке внешних особенностей отдельных опухолевых клеток и опухоли в целом, их поведения, темпа и характера роста, влияния на организм.
Современная международная классификация опухолей является гитогенетической.
В соответствии с этой классификацией различают следующие виды опухолей:
1) эпителиальные опухоли без специфической локализации;
2) опухоли экзо– и эндокринных желез;
3) мезенхимальные опухоли;
4) опухоли меланинобразующей ткани;
5) опухоли нервной ткани и оболочек мозга;
6) опухоли системы крови;
7) тератомы.
В клинической практике принята классификации опухолей по TNM:
Т (от лат. «tumor») – характеризует распространение первичной опухоли;
N (от лат. «nodulus») – отражает состояние регионарных лимфоузлов;
М (от лат. «metastasis») – указывает на наличие или отсутствие метастазов.
Цифры, добавляемые к каждому из символов (1, 2, 3, 4), обозначают: для T – местное распространение первичной опухоли, для N – степень поражения метастазами регионарных лимфоузлов, для М – отсутствие отдаленных метастазов (0) или их наличие (1).
Терминология
Название опухоли часто складывается из названия ткани, из которой она растет, с добавлением суффикса «-ома», указывающего на опухолевую природу процесса. Таковы
Биологические особенности опухолей
Совокупность признаков, отличающих опухолевую ткань и составляющие ее клетки от нормальных предшественников, обозначается термином «атипизм» (нетипичность, необычность). Различают тканевый и клеточный атипизм.
Размеры опухолей весьма разнообразны.
Консистенция опухоли зависит от источника ее развития: новообразования из костной и хрящевой ткани отличаются высокой плотностью, опухоли из жировой ткани мягкие. Однако вне зависимости от природы опухоль – всегда более плотное образование, чем ткань, из которой она растет.
Для злокачественных опухолей характерны как клеточный, так и тканевый атипизм, в то время как для доброкачественных – только тканевый.
Важнейшей особенностью опухолевых клеток является глубокая структурная перестройка их поверхностных и внутриклеточных мембран.
Типичным для раковых клеток является обеднение цитоплазматических мембран рецепторами, воспринимающими регуляторные нейрогуморальные сигналы («рецепторное упрощение»).
Изменяются антигенные свойства мембран опухолевых клеток. Наблюдается так называемое «антигенное упрощение», когда клетка теряет часть антигенов, ранее присутствовавших на ее поверхности; вместе с тем отмечается появление новых, необычных антигенов. Так, на поверхности раковых клеток резко снижается содержание органоспецифических антигенов, антигенов системы HLA, экспрессия которых на наружной клеточной мембране необходима для распознавания клетки Т-лимфоцитами. Уменьшение экспрессии антигенов системы HLA является одним из механизмов, благодаря которым опухолевые клетки способны ускользать от иммунного надзора.
Выраженные морфологические изменения выявлены и в клеточных органеллах опухолевых клеток. Ядра имеют неправильную форму, наблюдается неодинаковая степень их окрашивания.
В ядрах обычно обнаруживаются разнообразные хромосомные мутации. Изменения кариотипа являются одной из характеристик трансформированных клеток.
В раковых клетках заметно уменьшается количество митохондрий, изменяется их структура.
Строго специфичных для опухолевых клеток морфологических изменений (т. е. изменений, которые не были бы свойственны нормальным клеткам на определенных этапах развития) не обнаружено. В настоящее время отсутствует единый морфологический признак злокачественности клетки. Более того, полный набор указанных морфологических признаков не обязателен для всех опухолей. По морфологии одной клетки, как правило, нельзя установить ее опухолевую природу. Но при исследовании группы клеток можно с известной достоверностью поставить диагноз опухоли. На этом построена цитологическая диагностика опухолей. На начальных стадиях заболевания многие признаки злокачественности еще не проявляются, поэтому единственным достоверным методом установления характера опухоли является гистологическое исследование биопсийного материала.
В прогностическом плане обычно обращается внимание на два момента: степень зрелости клеточных элементов опухолевой ткани и локализацию опухоли.
Ключевым ферментом гликолиза является гексокиназа, активность которой в нормальной клетке регулируется гормонами: инсулин – повышает активность фермента, глюкагон и другие контринсулярные гормоны – тормозят. В раковых клетках нередко присутствует особый изофермент гексокиназы, нечувствительный к гормональным влияниям.
1. Важнейшей и принципиальной особенностью раковых клеток является их бессмертие (иммортализация).
2. Неограниченная способность к размножению сочетается у опухолевых клеток (прежде всего злокачественных опухолей) с нарушением их созревания (дифференцировки).
3. Трансформированные клетки, как правило, теряют способность выполнять функцию, присущую исходной ткани. Степень нарушения функции зависит от уровня дедифференцировки: обычно часть опухолевых клеток может сохранять свою тканеспецифическую функцию.
Между опухолевыми клетками ослаблены силы межклеточного сцепления. Этому способствуют высокий отрицательный заряд (дзета-потенциал) раковых клеток, дефицит кальция в межклеточном контакте и уменьшение числа десмосом. Раковые клетки сравнительно легко отделяются друг от друга, что создает условия для метастазирования. Опухолевые клетки весьма неприхотливы в отношении требований к условиям роста.
Размножающиеся раковые клетки способны внедряться (прорастать) в окружающие ткани (например, стенку сосуда) благодаря активной продукции и секреции «факторов инвазивности» – лизосомальных протеаз, гиалуронидазы и др. Это свойство злокачественных опухолей обозначается как способность к инвазивному росту.
4. В опухолевых клетках уменьшается потребность в факторах роста.
Стадии опухолевого процесса
Наконец,
Этиология опухолей (на примере рака молочной железы)
Предшественницей раковой клетки в организме всегда является нормальная клетка какой-либо ткани. Факторы (агенты), способные вызвать превращение (трансформацию) нормальной клетки в опухолевую, называются канцерогенами.
К
Чаще всего под влиянием радиации возникают лейкозы, опухоли легких, кожи и костей, а также эндокриннозависимые опухоли (молочной железы, репродуктивной системы, щитовидной железы). Введение в организм радиоактивных изотопов может вызвать развитие опухолей в различных органах, в первую очередь в тех, где накапливаются радиоактивные вещества.
Имеются наблюдения, свидетельствующие о возможности развития опухолей в местах хронического термического повреждения и длительной механической травматизации тканей под влиянием инородных тел.
1. Полициклические ароматические углеводороды (ПАУ) – гетероциклические соединения, содержащие активные участки, способные взаимодействовать с молекулой ДНК (бензопирен, метилхолантрен и др.). ПАУ находятся в смоле и дыме (в том числе и в табачном), в выхлопных газах автомобилей, в пережаренных и копченых продуктах.
2. Ароматические амины и аминоазосоединения. Классическими представителями этой группы являются бензидиновые красители, а также анилин и его производные, используемые в лакокрасочной промышленности. Эти вещества являются примером канцерогенов резорбтивного действия.
Нитросоединения (НС) используются в народном хозяйстве в качестве консервантов пищевых продуктов, при синтезе красителей, лекарств, полимерных материалов, пестицидов и др.
Нитрозамины входят в группу канцерогенов «одной дозы», поскольку предполагается, что они способны вызывать опухолевую трансформацию клетки даже при однократном воздействии.
Некоторые вещества, используемые в качестве лекарственных средств, обладают канцерогенными свойствами. Это – фенацетин, фенобарбитал, диэтилстилбэстрол, эстрон, циклофосфамид, имуран, гидразид изопикотиновой кислоты и др.
Механизмы канцерогенеза
Разнообразие канцерогенных факторов и вытекающее из этого факта признание несомненной полиэтиологичности опухолей наводят на мысль о множественности путей возникновения этих заболеваний. Причин рака, действительно, много, но все канцерогены должны иметь общий конечный путь реализации своего эффекта – они должны каким-то образом затрагивать молекулу клеточной ДНК.
До настоящего времени было предложено множество концепций, пытающихся объяснить механизмы превращения нормальной клетки в раковую. Большинство из этих теорий имеют лишь исторический интерес или входят как составная часть в принятую в настоящее время большинством патологов универсальную теорию онкогенеза – теорию онкогенов.
Основные положения теории онкогенов были сформулированы в начале 70-х годов XX в. R. Huebner и G. Todaro, которые высказали предположение, что в генетическом аппарате каждой нормальной клетки содержатся гены, при несвоевременной активации или нарушении функции которых нормальная клетка может превратиться в раковую. Эти гены получили название «протоонкогены».
Как известно, общее число генов в геноме человека – около 100 000. Среди них имеется около 100 истинных протоонкогенов, т. е. клеточных генов, нарушение нормальной функции которых может привести к их превращению в онкогены и к опухолевой трансформации клетки. Протоонкогены тканеспецифичны. На сегодняшний день уже выявлено более 50 протоонкогенов, объединенных в 7 основных типов.
Возможны следующие причины трансформации протоонкогена в онкоген: точечная мутация, транслокация или внутрихромосомная перестройка, амплификация, активация генов-энхансеров и/или угнетение сайленсеров, трансдукция протоонкогенов вирусами, активация промотора клеточного онкогена встроившимся геномом вируса.
Для фенотипического проявления дефекта протоонкогена достаточно мутации только одного его аллеля, т. е. мутация, превращающая протоонкоген в онкоген, доминантна.
Превращение протоонкогена в онкоген приводит к синтезу
Ядерные онкобелки (например, myc, fos, myb), работая в ядре, выполняют роль индукторов и репрессоров генома. С их влиянием связан синтез раковой клеткой необычных для данной стадии онтогенеза или для данной ткани белков (эмбриональные и гетероорганные антигены, эктопические гормоны и т. п.). Цитоплазматические онкобелки (fps, mos, fms) являются протеинкиназами, осуществляющими модификацию различных клеточных белков путем фосфорилирования остатков тирозина, серина или треонина. Эти онкобелки ответственны за изменения клеточного метаболизма и приобретение фенотипа, типичного для опухолевой клетки. Онкобелки, локализованные на наружной клеточной мембране (sre, abl, ras), могут выступать в качестве рецепторов для естественных факторов роста или сами выполнять роль факторов роста, побуждающих клетку к делению даже в отсутствие внешнего стимула.
Под влиянием онкобелков нарушается регуляция клеточного роста, пролиферации и дифференцировки, создаются условия для ускоренной репликации ДНК и непрерывного деления клетки.
Это геиы-супрессоры опухолей или антионкогены, являющиеся функциональными антагонистами онкогенов. В настоящее время выявлено более 10 антионкогенов, функция которых состоит в предупреждении трансформации протоонкогенов в активные онкогены, сохранении постоянства генерации клеток, индукции апоптоза в случае нарушения структуры ДНК.
Наиболее изученным из антионкогенов в настоящее время является ген, кодирующий белок р53 (р – «protein», 53 – молекулярная масса 53 КДа). Установлено, что р53 – это ядерный фосфопротеин, присутствующий в небольших количествах во всех клетках. Уровень р53 в нормальных клетках резко возрастает после воздействия агентов, повреждающих ДНК, например, после действия ионизирующей радиации, УФ-лучей, различных химических мутагенов, гипоксии.
Антионкогенную функцию выполняют и синтезируемые клетками разных тканей полиамины – спермин и спермидин, эти вещества участвуют в регуляции клеточной пролиферации и дифференцировки, их уровень увеличивается при росте и регенерации тканей. В то же время полиамины стабилизируют хроматин и ядерные белки за счет образования комплексов с отрицательно заряженными группами белков и ДНК. Снижение уровня полиаминов приводит к индукции апоптоза.
Из вышеизложенного следует, что в основе современных представлений о механизмах канцерогенеза лежит предпосылка, что злокачественная трансформация клетки возникает в результате различных генетических событий, превращающих протоонкогены в онкогены, и/или инактивирующих гены, осуществляющие отбор, уничтожение и ограничение пролиферации мутантных клеток.
В развитии метастазов различают следующие этапы:
1)
2)
3)
4)
Существуют три пути метастазирования:
1) лимфогенный – по лимфатическим сосудам;
2) гематогенный – по кровеносным сосудам;
3) тканевый – по межтканевым пространствам от одной из соприкасающихся тканей к другой.
Так, к примеру, при раке молочной железы наиболее часто метастазирование происходит по лимфатическим путям в регионарные лимфатические узлы. Место метастазирования может зависеть от особенностей кровоснабжения и архитектоники сосудистого русла органа.
Важным фактором, определяющим возможность роста опухоли на «чужом поле», является ее неоваскуляризация. Опухоль, диаметр которой превышает 2 – 4 мм, нуждается в формировании новых капиллярных сосудов, так как ее питание уже не может обеспечиваться только за счет диффузии. Опухолевые клетки способны продуцировать факторы, стимулирующие ангиогенез. Эти вещества обеспечивают врастание сосудов в опухолевый очаг путем миграции в него эндотелиальных клеток, выстилающих предсуществующие мелкие венулы из прилегающей соединительной ткани, и их размножение.
Факторы, способствующие канцерогенезу
Выделяют следующие факторы, способствующие канцерогенезу.
I.
В большинстве случаев наследственная предрасположенность к раку у человека органоспецифична и передается полигенно.
II.
Моноциты и макрофаги осуществляют специфический киллинг раковых клеток после их распознавания Т-лимфоцитами. К-клетки (нулевые лимфоциты и особые клетки моноцитарного ряда) уничтожают опухолевые клетки, нагруженные цитотоксическими антителами (IgM).
Любая иммунодепрессия способствует опухолевому росту. Иммунодефицитные состояния различного генеза (особенно с дефектом Т-системы) предрасполагают к возникновению опухолей. Так, наиболее часто наблюдается развитие рака молочной железы на фоне снижения и клеточного, и гуморального звеньев иммунной защиты.
III.
IV.
V.
Влияние опухоли на организм
Растущая злокачественная опухоль оказывает влияние как на непосредственно окружающие ее ткани, так и на весь организм больного. Важнейшими проявлениями системного действия опухоли являются следующие.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
ЛЕКЦИЯ № 3. ПАТОЛОГИЯ ВОДНО-ЭЛЕКТРОЛИТНОГО ОБМЕНА. НАРУШЕНИЕ КИСЛОТНО-ОСНОВНОГО СОСТОЯНИЯ
Водно-электролитные нарушения сопровождают и утяжеляют течение многих заболеваний. Все разнообразие этих расстройств может быть подразделено на следующие основные формы: гипо– и гиперэлектролитемии, гипогидратация (обезвоживание, эксикоз) и гипергидратация.
Одним из частых проявлений расстройств водно-электролитного обмена являются отеки.
В зависимости от этиологических факторов принято различать следующие отеки: воспалительные, токсические, аллергические, сердечные, цирротические, почечные (нефритические и нефротические), голодные (кахектические), лимфатические, нейрогенные, эндокринные.
Кроме того, отеки могут развиваться в результате применения некоторых гормональных лекарственных препаратов (вазопрессина, эстрогенов), при беременности, у новорожденных, когда ребенок рождается в состоянии физиологической гипергидратации (отек новорожденных). Особенно отеки выражены у недоношенных детей. Физиологическая убыль массы, наблюдающаяся в первые дни жизни, в значительной степени объясняется уменьшением чрезмерно увеличенного содержания внеклеточной жидкости в организме. Помимо физиологической гипергидратации, у новорожденных могут наблюдаться отеки, возникшие внутриутробно вследствие интранатальных заболеваний плода при тяжелых соматических и инфекционных болезнях матери.
Отеки могут быть обусловлены и наследственными факторами. Именно в детском возрасте наиболее часто имеют место проявления наследственного ангионевротического отека, связанного с дефицитом ингибитора С1-эстеразы, регулирующего активность C1-фракции комплемента и калликреина, и появлением в плазме больных особого кинина, отличающегося от брадикинина и способного увеличивать проницаемость сосудов. Наследственный ангионевротический отек чаще всего возникает при физических нагрузках, стрессовых состояниях и локализуется в подкожной клетчатке и коже, во внутренних органах, в слизистой и подслизистой дыхательных путей.
Развитие отеков является результатом действия ряда, как правило, взаимосвязанных патогенетических механизмов, главными из которых являются следующие.
1.
2.
3.
4.
5.
6.
Как известно, решающее значение в регуляции водно-электролитного обмена придается двум гормонам: альдостерону и антидиуретическому. Увеличение продукции этих гормонов или уменьшение их инактивации в печени играет существенную роль в развитии отеков. Наибольшее значение в патогенезе отеков отводится развитию вторичного гиперальдостеронизма – гиперсекреции альдостерона, вызванной рефлекторными влияниями на клубочковую зону коры надпочечников. Вторичный гиперальдостеронизм, вызывающий развитие отеков, часто является следствием неадекватной регуляции водно-электролитного обмена и может наблюдаться при различных формах патологии, сопровождающихся гиповолемией, гипонатриемией и ишемией почек, при которых имеет место возбуждение клеток юкстагломерулярного аппарата и активация ренинангиотензиновой системы. Последняя способна стимулировать повышенную секрецию альдостерона.
При гиперпродукции альдостерона усиливается активная реабсорбция натрия в почечных канальцах. Развивающаяся в этих условиях гиперосмия плазмы крови стимулирует через осморецепторы супраоптические ядра гипоталамуса, в результате чего усиливается секреция антидиуретического гормона, регулирующего проницаемость дистальных канальцев и собирательных трубочек для воды. В отсутствие антидиуретического гормона эти части нефрона практически водонепроницаемы. С увеличением количества АДГ проницаемость дистальных канальцев и собирательных трубочек нефрона для вен возрастает и происходит задержка воды в организме. Таким образом, гиперсекреция альдостерона и АДГ приводит к задержке натрия и воды в тканях и развитию отека.
Следует также отметить, что в ряде случаев патогенетическим фактором развития отеков является дефицит предсердного натрийуретического гормона, возникающий, в частности, при различных формах сердечной недостаточности.
В зависимости от преобладающего значения одного из вышеуказанных факторов можно выделить следующие патогенетические варианты отеков: застойные (гемодинамические), онкотические, осмотические, мембраногенные, лимфогенные.
Последствия отека для организма в значительной степени зависят от особенностей этиологического фактора, степени его выраженности и локализации. Отечная жидкость сдавливает окружающие ткани, вызывает расстройства трофики и функций, что может сказаться на нарушении метаболических процессов в организме в целом.
У детей водно-электролитные расстройства развиваются быстро и протекают тяжело, особенно тяжело детский организм переносит обезвоживание. Чем моложе ребенок, тем легче развиваются водно-электролитные нарушения. Это обусловлено рядом особенностей водно-солевого обмена в детском организме. Во-первых, интенсивность водного обмена, внепочечных потерь воды у детей выше по сравнению с взрослыми. Так, у детей грудного возраста 52 – 76 % воды выделяется через кожу и легкие. Высокая интенсивность водного обмена определяет повышенную потребность в воде у маленьких детей, которая почти втрое превышает таковую у взрослых. Во-вторых, у детей, особенно первого года жизни, еще недостаточно сформированы механизмы, регулирующие постоянство объема и состава водных пространств организма. У них наблюдается физиологическая гипореактивность волюмо– и осморецепторов сосудов и тканей, снижена концентрационная способность почек, затруднено выведение избытка воды и осмотически активных веществ, вследствие чего легко возникают расстройства осмотического гомеостаза при малейшем нарушении водного и пищевого баланса. Так, при введении прикорма, переводе ребенка на искусственное питание, на питание с повышенной калорийностью (особенно за счет белков), ребенку требуется дополнительное количество воды. С другой стороны, у детей (особенно раннего возраста) часто наблюдаются заболевания, сопровождающиеся рвотой, поносами, высокой температурой, что является серьезным фактором, способствующим возникновению водно-электролитных расстройств.
Нарушение кислотно-основного состояния
Одним из необходимых условий существования организма является поддержание постоянства
Расстройства КОС могут быть экзогенного и эндогенного происхождения. По направлению сдвига кислотно-основного баланса различают две формы нарушений КОС – ацидоз и алкалоз. Под ацидозом понимают нарушение КОС, при котором в крови и в тканях появляется абсолютный или относительный избыток кислот и повышается концентрация свободных водородных ионов.
Алкалозом называется такое нарушение КОС, при котором в организме происходит абсолютное или относительное увеличение содержания оснований и понижается концентрация свободных ионов водорода.
Показателями степени компенсации сдвига являются рН крови и соотношение компонентов бикарбонатного буфера (Н2СО3 и NаНСО3).
При
При
Наиболее частой формой нарушения КОС является
В ряде случаев возможно развитие комбинированных форм негазового ацидоза, в частности – сочетание метаболической и выделительной форм.
При негазовом ацидозе могут возникать разнообразные нарушения функций организма. При умеренном снижении рН периферические сосуды, как правило, расширяются, что приводит к снижению артериального и венозного давления, уменьшению венозного возврата крови к сердцу; нарушается работа сердца. Однако при выраженном ацидозе возможно и сужение периферических сосудов. Кровоснабжение мозга в условиях негазового ацидоза резко снижается за счет сужения просвета сосудов, питающих мозг. Понижается сродство гемоглобина к кислороду, в результате чего затрудняются образование в легких оксигемоглобина и отдача гемоглобином кислорода в тканях. Развивается гироксемия и гипоксия. Значительно нарушается водно-электролитный обмен. С мочой теряется больше (чем в норме) натрия, калия, кальция. При снижении рН крови ниже 7,2 развивается коматозное состояние.
Важную роль в компенсации газового ацидоза играют гемоглобиновая и белковая буферные системы. Действие бикарбоната невелико, так как он не способен в полной мере к нейтрализации СО2. Снижение рН крови вследствие увеличения напряжения СО2 стимулирует выведение избытка ионов водорода с мочой и активную реабсорбцию бикарбоната в почечных канальцах.
Тяжесть нарушений в организме при газовом ацидозе зависит от степени накопления углекислого газа и от присоединения метаболического ацидоза. Умеренные компенсированные ацидозы протекают без выраженных клинических симптомов. При выраженной гиперкапнии возникают расстройства, в первую очередь, со стороны сердечно-сосудистой системы.
Негазовый алкалоз характеризуется повышением концентрации буферных оснований в плазме, повышением значения рН. Респираторная компенсация приводит к снижению легочной вентиляции и повышению напряжения СО2. Однако такая компенсация не может быть длительной, так как накапливающаяся углекислота стимулирует дыхание. При негазовом алкалозе максимальное значение рСО2 обычно составляет 60 мм рт. ст. В процессе компенсации участвуют внутриклеточные буферные системы, которые отдают в плазму ионы водорода, связывая катионы натрия. Часть избыточных анионов бикарбоната уходит в эритроциты, обмениваясь на ионы хлора. С мочой выделяется большое количество бикарбоната и двуосновного фосфата.
При негазовом алкалозе в связи с потерей через почки большого количества натрия наступает снижение осмотического давления внеклеточной жидкости и чрезмерное выведение при этом воды, в результате чего происходит обезвоживание организма. Значительная потеря калия сопровождается нарушением функции миокарда и нервной системы. При повышении рН крови уменьшается доля ионизированного кальция, что приводит к повышению нервно-мышечной возбудимости, развитию судорог.
Состояние ацидоза у детей возникает значительно чаще, чем у взрослых. Так, компенсированный метаболический ацидоз уже наблюдается у ребенка в первые дни после рождения даже при нормальном течении беременности и родов у матери. У детей раннего возраста обмен веществ носит ацидотический характер с образованием большого количества недоокисленных продуктов; в то же время щелочной резерв у детей в возрасте до одного года меньше, чем у взрослых.
У детей возможна наследственная форма лактат-ацидоза, патогенез которого связывают с энзиматическим блоком в цикле Кребса. Вследствие этого возникает резкая активация анаэробного гликолиза и накопление его конечного продукта – молочной кислоты, содержание которой может возрастать в 10 – 20 раз.
У детей раннего возраста отмечается предрасположенность к развитию газового ацидоза, что связано с недостаточным структурным и функциональным формированием аппарата дыхания.
Нарушения кислотно-основного баланса ротовой жидкости играют существенную роль в развитии патологических процессов в ротовой полости и прежде всего в развитии множественного кариеса. Минерализующие свойства слюны, обусловленные перенасыщением ее гидроксиапатитом, наиболее выражены при рН слюны 6,5 – 7,5. При подкислении слюны снижается степень насыщения ее гидроксиапатитом. рН 6,0 – 6,2 является критическим, когда слюна из состояния перенасыщенности переходит в ненасыщенное состояние, из минерализующей становится деминералилизирующей жидкостью. Особенно же опасно понижение рН слюны ниже 6,0, так как при этом теряются минерализирующие свойства слюны. С повышением концентрации водородных ионов в ротовой полости повышается проницаемость эмали.
Костная ткань принимает участие в нейтрализации нагрузок кислотами и щелочами. Важное практическое значение имеют случаи хронических нагрузок организма кислотами. Так, например, при хронической почечной недостаточности нейтрализация Н+ костным карбонатом вызывает освобождение кальция из кости во внеклеточную жидкость, что может привести к остеопорозу, в том числе и костей челюстно-лицевого аппарата.
В настоящее время для выявления нарушений КОС используется метод Аструпа, заключающийся в электрометрическом измерении рН при различных насыщениях крови СО с последующим расчетом остальных показателей по номограмме Сиггаард – Андерсена. Основными из них можно считать следующие.
рН крови – величина активной реакции среды – 7,36 – 7,44 (в артериальной крови) и 7,26 – 7,36 (в венозной крови).
Напряжение углекислого газа – рСО2 – отражает концентрацию растворенного в плазме артериальной крови углекислого газа – 36 – 46 мм рт. ст.
Буферные основания – БО (ВВ) – сумма анионов всех буферных систем крови – 45 – 55 ммоль/л.
Стандартный бикарбонат плазмы крови – СБ (SB) – концентрация бикарбоната в плазме крови, приведенная к стандартным условиям – 20 – 27 ммоль/л.
Сдвиг буферных оснований – СБО (BE) – отражает метаболический компонент сдвига. Этот показатель изменяется при метаболических сдвигах или при метаболической компенсации газовых сдвигов; в норме равен + 2,0 ммоль/л.
Таблица № 1. Характер изменений основных показателей кислотно-основного состояния при ацидозах и алкалозах.
Характер изменений основных показателей кислотно-основного состояния при ацидозах и алкалозах
Болезнетворное действие факторов внешней среды
Все многообразие болезнетворных факторов воздействия внешней среды на организм можно разделить на 5 основных групп: механические, физические, химические, биологические и социальные.
К механическим факторам относится, в частности, патогенное действие ускорений. Равномерное прямолинейное и вращательное движения не сопровождаются болезнетворными явлениями, но изменение скорости движения (ускорение) может резко изменить состояние организма. Интерес к вопросу о реакциях организма в ответ на воздействие ускорений в последние годы сильно возрос благодаря широкому использованию в народном хозяйстве новых скоростных средств транспорта. Комплекс расстройств, возникающих при передвижении на различных транспортных средствах, можно объединить под общим названием кинетозы, или болезни движения. Кинетозы возникают при качке судна на море (морская болезнь), при полете на самолете (воздушная болезнь), при вращении на карусели, на качелях и т. п. В этих условиях на организм действуют ускорения порядка 1 – 2 g. Большое значение приобрела проблема кинетозов в связи с развитием космических полетов. Симптомокомплекс кинетозов складывается из четырех видов реакций, которые у разных людей проявляются по разному:
1) двигательные реакции, изменение тонуса поперечнополосатой мускулатуры;
2) вегетативные расстройства, проявляющиеся побледнением, холодным потом, отсутствием аппетита, тошнотой, рвотой, брадикардией;
3) сенсорные реакции, характеризующиеся головокружением, нарушением пространственной ориентации;
4) психические расстройства (депрессивные состояния, сонливость, нарушение внимания, галлюцинации и др.).
Эти изменения имеют, в основном, рефлекторный характер и обусловлены воздействием на различные рецепторы:
1) вестибулярный анализатор (механорецепторы отолитового аппарата, рецепторы полукружных каналов);
2) проприорецепторы мышц, сухожилий;
3) зрительные рецепторы;
4) рецепторы слизистых и серозных оболочек органов брюшной полости.
Лабиринтная гипотеза патогенеза кинетозов является в настоящее время господствующей. Подтверждает эту теорию ряд клинических наблюдений. Так, у глухонемых, например, симптомокомплекс кинетозов не обнаруживается. У детей до 2 лет возбудимость некоторых анализаторов, в том числе и вестибулярного, понижена, поэтому у них также не обнаруживается проявлений кинетозов; напротив, после 40 лет чувствительность к изменению ускорений повышается. Согласно другой точке зрения, кинетозы представляют собой следствие нарушений взаимодействия различных анализаторов. Эта концепция включает внутрилабиринтный конфликт как частный случай.
Среди физических факторов, воздействию которых наиболее часто подвергается организм, можно выделить
Биологическое действие электрического тока определяется его физическими параметрами, а также состоянием организма. Считается, что патогенный эффект зависит главным образом от силы тока. При силе тока 15 – 20 мА возникают сильные судороги мышц («неотпускающий ток»), при 50 – 100 мА – фибрилляция сердца и паралич дыхания. Ток, превышающий 100 мА, для человека считается смертельным. Патогенное воздействие электрического тока тем сильнее, чем выше его напряжение. Переменный ток ниже 40 В считается безвредным, ток до 100 В – условно патогенным, свыше 200 В – абсолютно патогенным. Наиболее опасен переменный ток с частотой 40 – 60 Гц; с увеличением частоты поражающее действие его уменьшается.
Повреждающий эффект зависит также от сопротивления тела и отдельных его тканей электрическому току. Сопротивление колеблется от сотен КОм до нескольких МОм, в зависимости от кровенаполнения органов, степени увлажнения, огрубения и загрязнения кожи, а также от функциональной активности ЦНС. Наибольшим сопротивлением току обладает неповрежденная кожа, наименьшим – кровь и лимфа.
Патогенный эффект электрического тока зависит от направления прохождения («петли» тока). Особенно опасно прохождение тока через область сердца и головной мозг. Опасность возрастает с увеличением времени прохождения тока через организм. Повышение обмена веществ, глубокая гипоксия, утомление, кровопотеря снижают резистентность организма к электрическому току; истощение, сердечно-сосудистые заболевания, status thymico-lymphaticus также увеличивают тяжесть поражения электрическим током. Эмоциональное напряжение, ожидание действия тока, гипероксия повышают устойчивость организма к повреждающему действию электротока.
Повреждения, возникающие в организме при действии электротока, слагаются из местных изменений (электрические знаки, ожоги, электролиз) и общих проявлений реакции организма на травму (потеря сознания, остановка дыхания, фибрилляция желудочков сердца, изменение кровяного давления, ишемия миокарда, сокращение скелетных мышц и т. д.). При воздействии электрического тока, если не развивается фибрилляция и не останавливается дыхание, может возникнуть электрический шок за счет резкого болевого раздражения рецепторов, нервных стволов, болезненных судорог мышц и спазма сосудов.
Электрический ток, проходящий через организм, оказывает электрохимическое, электротермическое и возбуждающее действие. У постоянного тока наиболее выражены электрохимический и тепловой эффекты. Электрохимическое действие проявляется в электролизе, который приводит к поляризации клеточных мембран, изменению функционального состояния клеток, коагуляции белков, газообразованию, накоплению токсических продуктов обмена. Тепловой эффект проявляется ожогами, которые чаще возникают в месте действия. Возбуждающий эффект у постоянного тока наблюдается только в моменты замыкания (на катоде) и размыкания (на аноде).
У низкочастотного переменного тока преобладают тепловое действие и возбуждающий эффект. В результате возбуждающего действия происходят сокращение поперечнополосатых и гладких мышц, активация рецепторов, спазм голосовых связок и т. д. Возбуждающий эффект наблюдается в течение всего времени экспозиции тока. Электрохимическое действие у переменного низкочастотного тока выражено незначительно.
Переменный высокочастотный ток, в частности УВЧ, используемый в медицине, не обладает возбуждающим и электрохимическим эффектом, но оказывает глубокое прогревающее действие. При длительном же воздействии высокочастотных токов наблюдается патогенный их эффект на организм, проявляющийся в утомлении, тахикардии, аритмии сердца, изменениях со стороны ЦНС и др.
Дети нередко подвергаются действию электротока, что связано со слабым контролем со стороны взрослых за детскими играми, недостаточным ограждением бытовых электроприборов. У детей раннего возраста отмечена пониженная резистентность к действию различных факторов внешней среды, в том числе и к электрическому току. Это обусловлено низкой лабильностью нервной системы, что в свою очередь определяет ограниченные возможности приспособления детского организма к колебаниям условий среды.
ЛЕКЦИЯ № 4. ТРАВМАТИЧЕСКИЙ ШОК
В патогенезе травматического шока играют роль три основных фактора – нейрогенный, крово– и плазмопотеря и токсемия.
В динамике травматического шока различают эректильную и торпидную стадии. В случае неблагоприятного течения шока наступает терминальная стадия.
Эректильная фаза шока быстро переходит в
Торпидная фаза травматического шока наиболее типичная и продолжительная, она может длиться от нескольких часов до двух суток. Для нее характерны заторможенность пострадавшего, адинамия, гипорефлексия, диспноэ, олигурия. Во время этой фазы наблюдается торможение активности центральной нервной системы.
В развитии торпидной стадии травматического шока в соответствии с состоянием гемодинамики могут быть выделены две фазы – компенсации и декомпенсации. Фаза компенсации характеризуется стабилизацией артериального давления, нормальным или даже несколько сниженным центральным венозным давлением, тахикардией, отсутствием гипоксических изменений в миокарде (по данным ЭКГ), отсутствием признаков гипоксии мозга, бледностью слизистых оболочек, холодной влажной кожей.
Для фазы декомпенсации характерны прогрессирующее уменьшение МОК, дальнейшее снижение артериального давления, развитие ДВС-синдрома, рефрактерность микрососудов к эндогенным и экзогенным прессорных аминам, анурия, декомпенсированный метаболический ацидоз.
Стадия декомпенсации является прологом
Характерной особенностью травматического шока является развитие патологического депонирования крови. Касаясь механизмов патологического депонирования крови, следует отметить, что они формируются уже в эректильной фазе шока, достигая максимума в торпидной и терминальной стадиях шока. Ведущими факторами патологического депонирования крови являются спазм сосудов, циркуляторная гипоксия, формирование метаболического ацидоза, последующая дегрануляция тучных клеток, активация калликреин-кининовой системы, образование вазодилатирующих биологически активных соединений, расстройство микроциркуляции в органах и тканях, характеризующихся изначально длительным спазмом сосудов. Патологическое депонирование крови приводит к выключению из активной циркуляции значительной части крови, усугубляет несоответствие между объемом циркулирующей крови и емкостью сосудистого русла, становясь важнейшим патогенетическим звеном расстройства кровообращения при шоке.
Важную роль в патогенезе травматического шока играет плазмопотеря, которая обусловливается повышением проницаемости сосудов вследствие действия кислых метаболитов и вазоактивных пептидов, а также возрастанием внутрикапиллярного давления из-за застоя крови. Плазмопотеря приводит не только к дальнейшему дефициту объема циркулирующей крови, но и вызывает изменения реологических свойств крови. При этом развиваются явления агрегации клеток крови, гиперкоагуляция с последующим формированием ДВС-синдрома, образуются капиллярные микротромбы, полностью прерывающие ток крови.
Кризис микроциркуляции, прогрессирующая недостаточность кровообращения и дыхания приводят к развитию тяжелой гипоксии, которая в дальнейшем определяет тяжесть шокового состояния.
В условиях прогрессирующей циркуляторной гипоксии возникают дефицит энергообеспечения клеток, подавление всех энергозависимых процессов, выраженный метаболический ацидоз, повышение проницаемости биологических мембран. Энергии не хватает для обеспечения функций клеток и, прежде всего, таких энергоемких процессов, как работа мембранных насосов. Натрий и вода устремляются в клетку, а калий выделяется из нее. Развитие отека клетки и внутриклеточного ацидоза приводит к повреждению лизосомальных мембран, высвобождению лизосомальных ферментов с их литическим действием на различные внутривнеклеточные структуры. Денатурированные белки и продукты распада нежизнеспособных тканей начинают оказывать токсическое действие. Кроме того, при шоке проявляют токсическое действие многочисленные биологически активные вещества, в избытке поступающие во внутреннюю среду организма (гистамин, серотонин, кинины, свободные радикалы, креатинин, мочевина и др.). Таким образом, по мере прогрессированил шока, вступает в действие еще один ведущий патогенетический фактор – эндотоксемия. Последняя усиливается также за счет поступления токсических продуктов из кишечника, поскольку гипоксия уменьшает барьерную функцию кишечной стенки. Определенное значение в развитии эндотоксемии имеет нарушение антитоксической функции печени.
Эндотоксемия наряду с выраженной клеточной гипоксией, обусловленной кризисом микроциркуляции, перестройкой метаболизма тканей на анаэробный путь и нарушением ресинтеза АТФ, играет важную роль в развитии явлений необратимого шока.
Течение травматического шока в раннем детском возрасте обладает рядом характерных особенностей, определяемых реактивностью детского организма. Чувствительность к механической травме детей раннего возраста выше, чем взрослых, и поэтому одинаковая по тяжести и локализации травма обусловливает у них развитие более тяжелого травматического шока.
Тяжелая механическая травма у детей вызывает более резкие, чем у взрослых, нарушения кислотно-основного состояния.
Одной из особенностей травматического шока у детей является развитие ранней и тяжелой гипотермии. У многих детей температура тела снижается до 34 – 35 °С, что объясняется возрастными особенностями функционирования центра терморегуляции.
ЛЕКЦИЯ № 5. НАРУШЕНИЕ РЕГИОНАРНОГО КРОВОТОКА
К типовым расстройствам регионарного кровообращения относятся:
1) артериальная и венозная гиперемии;
2) ишемия;
3) стаз;
4) тромбоз;
5) эмболия;
6) кровотечение и кровоизлияние.
В зависимости от продолжительности развития расстройства кровотока могут быть:
1) преходящими;
2) стойкими;
3) необратимыми.
По степени распространенности расстройства кровотока могут носить:
1) диффузный;
2) генерализованный;
3) местный локальный характер.
Артериальная гиперемия
Артериальная гиперемия может быть местной и общей.
Артериальная гиперемия может носить острый, преходящий характер, может быть часто повторяющейся, хронической.
Различают физиологические и патологические артериальные гиперемии.
При
По особенностям этиологических факторов и механизмов развития выделяют следующие разновидности патологических артериальных гиперемий:
1) нейропаралитическую;
2) нейротоническую;
3) постишемическую;
4) вакатную;
5) воспалительную;
6) коллатеральную;
7) гипермию вследствие артериовенозного свища.
В основе
1) миопаралитический;
2) нейрогенный (ангионевротический).
Сущность
Гиперемия вследствие
Для артериальной гиперемии характерны следующие изменения микроциркуляции:
1) расширение артериальных сосудов;
2) увеличение линейной и объемной скоростей кровотока в микрососудах;
3) повышение внутрисосудистого гидростатического давления, увеличение количества функционирующих капилляров;
4) усиление лимфообразования и ускорение лимфообращения;
5) уменьшение артериовенозной разницы по кислороду.
К внешним признакам артериальной гиперемии относится покраснение зоны гиперемии, обусловленное расширением кровеносных сосудов, увеличением количества функционирующих капилляров и повышением содержания оксигемоглобина в венозной крови. Артериальная гиперемия сопровождается местным повышением температуры, что объясняется усиленным притоком более теплой артериальной крови и повышением интенсивности обменных процессов. Вследствие возрастания крове– и лимфонаполнения зоны гиперемии происходит увеличение тургора (напряжения) и объема гиперемированной ткани.
Венозная гиперемия
Венозное полнокровие может быть местным и распространенным. Местное венозное полнокровие возникает при затруднении оттока крови по крупным венозным стволам вследствие закупорки их тромбом, эмболом или при сдавлении вены извне опухолью, рубцом, отеком и т. д.
Условием, способствующим венозному застою, является длительное нефизиологическое положение той или иной части тела, неблагоприятное для местного оттока крови. При этом формируется гипостаз – гравитационная венозная гиперемия.
Причинами распространенного венозного полнокровия наиболее часто являются:
1) недостаточность функции сердца при ревматических и врожденных пороках его клапанов, миокардитах, инфаркте миокарда;
2) декомпенсация гипертрофированного сердца;
3) уменьшение присасывающего действия грудной клетки при экссудативном плеврите, гемотораксе и т. д.
По темпу развития и длительности существования данная патология может носить острый и хронический характер. Длительная венозная гиперемия возможна только при недостаточности коллатерального венозного кровообращения.
Микроциркуляторные расстройства при венозной гиперемии характеризуются:
1) расширением капилляров и венул;
2) замедлением кровотока по сосудам микроциркуляторного русла вплоть до стаза;
3) утратой деления кровотока на осевой и плазматический;
4) повышением внутрисосудистого давления;
5) маятникообразным или толчкообразным движением крови в венулах;
6) уменьшением интенсивности кровотока в области гиперемии;
7) нарушением лимфообращения;
8) увеличением артериовенозной разницы по кислороду.
К внешним признакам венозной гиперемии относятся:
1) увеличение, уплотнение органа или ткани;
2) развитие отека;
3) возникновение синюшности, т. е. цианотичной окраски.
При
При
Отек
Отек – типовой патологический процесс, заключающийся в избыточном накоплении внеклеточной тканевой жидкости в интерстициальном пространстве.
По этиологии, патогенезу, распространенности отеки подразделяются на:
1) системные (общие);
2) местные (локальные).
Системные отеки возникают вследствие нарушения ведущих механизмов регуляции водно-солевого обмена, что возможно при заболеваниях сердца, почек, печени, желудочно-кишечного тракта и др.
В зависимости от локализации различают следующие виды отеков:
1) анасарка – в подкожной жировой клетчатке;
2) водянка – в серозных полостях;
3) гидроперикард – накопление отечной жидкости в сердечной сорочке;
4) гидроторакс – в плевральной полости;
5) асцит – в брюшной полости;
6) гидроцеле – в полости влагалищной оболочки яичка;
7) гидроцефалия – в желудочках мозга.
В соответствии с особенностями этиологического фактора и механизмов развития отеки могут быть:
1) воспалительного характера, обусловленные экссудацией;
2) невоспалительного характера, связанные с усилением процесса транссудации и/или нарушением лимфатического дренажа.
В зависимости от ведущего фактора, определяющего развитие отека, выделяют:
1) застойные (механические) отеки, обусловленные нарушением крово– и лимфооттока и повышением гидростатического давления в микрососудах;
2) онкотические – вследствие уменьшения величины коллоидно-осмотического давления плазмы крови;
3) мембраногенные – при повышении проницаемости капиллярной стенки;
4) отеки, связанные с активной задержкой в тканях электролитов, преимущественно натрия, и воды;
5) лимфогенные, возникающие при застое лимфы.
В зависимости от ведущей причины развития местные отеки можно подразделить на:
1) воспалительные;
2) гемодинамические;
3) лимфодинамические.
В основе патогенеза любого местного отека лежит нарушение равновесия Старлинга, которое сводится к возрастанию внутрисосудистого гидростатического давления, снижению онкотического градиента, повышению проницаемости сосудистых стенок, либо комбинации этих механизмов.
Так, воспалительный отек связан с развитием в очаге воспаления экссудации, т. е. выхода жидкой части крови из сосудистого русла в очаг воспаления. Экссудация обусловлена:
1) повышением проницаемости сосудистой стенки под влиянием избыточных концентраций вазоактивных соединений, лизосомальных ферментов, ионов водорода, накапливающихся в зоне альтерации;
2) возрастанием гидростатического давления в сосудах микроциркуляторного русла и увеличением площади фильтрации жидкой части крови в условиях венозного застоя, снижением внутрисосудистого онкотического давления при одновременном повышении онкотического давления в тканях;
3) увеличением коллоидно-осмотического давления в тканях и увеличением гидрофильности тканей;
4) активацией процесса цитопемсиса эндотелием сосудов, т. е. захватом эндотелиальными клетками мельчайших капелек плазмы и переносом их за пределы сосуда в воспаленную ткань.
Лимфодинамический отек возникает при первичном нарушении лимфооттока, что наблюдается при врожденном дефекте развития лимфатических сосудов, удалении регионарных лимфоузлов, при закупорке, формировании лимфоэктазий и воспалительном поражении лимфатических узлов.
Развитию отеков общего характера способствуют следующие факторы.
1.
2.
Как известно, ПНУФ представляет собой комплекс атриопептидов I, II, III, которые синтезируются клетками правого предсердия и его ушка. ПНУФ обладает эффектами, противоположными эффектам альдостерона и антидиуретического гормона, увеличивая выделение с мочой воды и натрия.
3.
4.
5.
6.
Накопление отечной жидкости в рыхлой подкожной соединительной ткани происходит, прежде всего, под глазами, на тыльной поверхности кистей рук, стоп, на лодыжках, а затем постепенно распространяется на все туловище. Кожа становится бледной, натянутой, морщины и складки разглаживаются. Отечная жировая клетчатка становится бледно-желтой, блестящей, слизеподобной.
Клинически начальному отеку с отрицательным тканевым давлением жидкости соответствуег симптом образования ямки при нажатии на отечную ткань. Если ямка от нажатия не образуется – давление в ткани положительное, что соответствует далеко зашедшему, «напряженному» отеку.
Тромбоз
Тромбоз – прижизненное местное пристеночное образование в сосудах или сердце плотного конгломерата из форменных элементов крови и стабилизированного фибрина, т. е. тромба.
Тромбоз – физиологический защитный процесс, направленный на предотвращение кровотечения при травме тканей, на укрепление стенок аневризм, на ускорение стягивания и заживления ран. Однако, если тромбоз избыточен, недостаточен, либо утратил свой обязательно местный ограниченный характер, возможно развитие тяжелой патологии.
Тромбы подразделяются на белые, красные и смешанные.
Тромбоз как естественный способ остановки кровотечения отражает характер взаимодействия механизмов системы гемостаза и фибринолиза.
Принято выделять три основных звена гемостаза:
1)
2)
3)
Все три звена гемостаза включаются одновременно и обеспечивают остановку кровотечения и восстановление целостности сосудистой стенки.
Белый тромб формируется за 2 – 5 мин. Образование богатого фибрином красного тромба требует 4 – 9 мин.
Процесс тромбообразования начинается с постепенного формирования
Кроме того, выделяют
1) септический тромб, образующийся при инфекционных воспалительных поражениях сосудов (флебиты, васкулиты);
2) опухолевый тромб, формирующийся из агглютинированных тромбоцитов и лейкоцитов на клетках проросшей в сосуд опухоли;
3) шаровидный тромб, имеющий смешанный характер и образующийся на основе оторвавшегося пристеночного тромба при нарушениях внутрисердечной гемодинамики вследствие митрального стеноза;
4) вегетации – тромбы, наслаивающиеся на пораженные эндокардитом клапаны сердца;
5) марантический тромб – красный тромб, который формируется при венозном застое на фоне дегидратации и сгущения крови.
Тромб следует отличать от кровяного сгустка. Истинный тромб всегда формируется только прижизненно внутри сосудов и прочно спаян с сосудистой стенкой. Сгустки же могут образовываться не только прижизненно, но и в условиях in vitro (посмертно), не только в просвете сосуда, но также и в полостях и в тканях на месте гематом. Сгустки крови в сосудах лежат свободно или сцеплены с сосудистой стенкой рыхло, не имеют структурированности, свойственной тромбам.
В основе активации тромбообразования при различных патологических процессах лежит триада Вирхова: повреждение эндотелия сосудистой стенки, замедление кровотока, а также активация коагуляционного гемостаза.
Указанный каскад реакций может индуцироваться эндотоксинами грамотрицательных бактерий, экзотоксинами, гипоксией, избыточным накоплением водородных ионов, биогенными аминами, кининами, лейкотриенами, проэтагландинами, свободными радикалами и многими цитокинами, продуцируемыми в избытке нейтрофилами, моноцитами, лимфоцитами.
Последствия тромбоза могут быть разнообразны. С одной стороны, тромбоз является защитным механизмом, направленным на остановку кровотечения при повреждении или разрыве сосуда. С другой стороны, тромбоз, возникающий при различных патологических состояниях, ведет к развитию нарушений местного кровобращения, нередко с тяжелыми последствиями для организма. Характер циркуляторных расстройств и степень нарушения функции opганов при тромбозах могут быть различными и зависят от локализации тромба, скорости его образования, возможностей коллатерального кровообращения в данном месте.
Эмболия
Эмболией называется закупорка кровеносного или лимфатического сосуда частицами, приносимыми с током крови или лимфы, и обычно не встречающимися в крово– и лимфотоке.
По направлению движения эмбола различают:
1) ортоградную;
2) ретроградную;
3) парадоксальную эмболии.
При
Эмболия может быть одиночной и множественной.
В зависимости от локализации различают:
1) эмболии лимфатических и кровеносных сосудов;
2) эмболии малого круга кровообращения;
3) эмболии большого круга кровообращения;
4) эмболии системы воротной вены.
При эмболии большого круга кровообращения источником эмболов являются патологические процессы (тромбоэндокардиты, инфаркт миокарда, изъязвления атеросклеротических бляшек) в легочных венах, левых полостях сердца, аорте, артериях большого круга кровообращения. Эмболии большого круга кровообращения сопровождаются серьезными расстройствами кровообращения вплоть до развития очагов некроза в органе, сосуд которого закупорен тромбом.
Эмболия малого круга кровообращения является результатом заноса эмболов из правой половины сердца и вен большого круга кровообращения. Для эмболии малого круга кровообращения характерны внезапность возникновения, быстрота нарастания чрезвычайно тяжелых клинических проявлений.
По характеру эмбола различают экзогенные и эндогенные эмболии.
К экзогенным эмболиям относятся:
1) воздушная;
2) газовая;
3) микробная;
4) паразитарная.
К эндогенным эмболиям относятся:
1) тромбоэмболии;
2) жировая;
3) тканевая.
Воздушная эмболия возникает вследствие попадания в сосудистую систему воздуха из окружающей среды. Причинами
1) амниотическую;
2) опухолевую;
3) адипоцитарную.
Эмболия околоплодными водами приводит к закупорке легочных сосудов конгломератами клеток, взвешенных в амниотической жидкости, и тромбоэмболами, образующимися под действием содержащихся в ней прокоагулянтов.
Опухолевая эмболия представляет собой сложный процесс гематогенного и лимфогенного метастазирования злокачественных новообразований. Опухолевые клетки образуют в кровотоке конгломераты с тромбоцитами за счет продукции муцинов и адгезивных поверхностных белков.
Тканевая и, в частности, адипоцитарная эмболия может быть результатом травм, когда частички размозженных тканей попадают в просвет поврежденных сосудов.
Эмболия инородными телами встречается довольно редко и возникает при ранениях или медицинских инвазивных процедурах.
Разновидность эндогенной эмболии –
Одной из наиболее тяжелых форм тромбоэмболии является тромбэмболия легочной артерии (ТЭЛА), частота встречаемости которой в клинической практике постоянно увеличивается в последние годы. Причиной ТЭЛА в 83 % случаев является флеботромбоз центральных и периферических сосудов, в частности, подвздошной, бедренной, подключичной вен, глубоких вен голени, вен таза и др.
Характер клинических проявлений и тяжесть последствий ТЭЛА могут зависеть от калибра окклюзированного сосуда, скорости развития процесса и резервов системы фибринолиза.
По характеру течения ТЭЛА различают формы:
1) молниеносную;
2) острую;
3) подострую;
4) рецидивирующую.
Молниеносная форма характеризуется развитием основных симптомов в течение нескольких минут, острая – в течение нескольких часов, подострая – в течение нескольких дней.
По степени поражения легочного сосудистого русла выделяют формы:
1) массивную;
2) субмассивную;
3) форму с поражением мелких ветвей легочной артерии.
Массивная форма возникает при эмболии ствола и главных ветвей легочной артерии, т. е. при поражении более 50 % легочного сосудистого русла.
При субмассивной эмболии происходит перекрытие долевых ветвей легочной артерии, т. е. менее 50 % сосудистого русла легких.
Ишемия
Ишемией (греч. «isho» – задерживаю) называется малокровие тканей, вызванное недостаточным или полным прекращением притока артериальной крови.
По причинам возникновения и механизмам развития различают несколько видов ишемии:
1) ангиоспастическую, возникающую в результате спазма артерий, обусловленного либо повышением тонуса вазоконстрикторов, либо воздействием на стенки сосудов сосудосуживающих веществ;
2) компрессионную, вызывающуюся сдавлением артерий рубцом, опухолью, наложенным жгутом, излившейся кровью и т. д.;
3) обтурационную, развивающуюся при частичном или полном закрытии просвета артерии тромбом, эмболом, атеросклеротической бляшкой и т. д.;
4) перераспределительную, имеющую место при межрегиональном, межорганном перераспределении крови;
5) обструктивную, возникающую в результате механического разрушения сосудов при травме;
6) ишемию, обусловленную значительным увеличением вязкости крови в мелких сосудах в сочетании с вазоконстрикцией.
Перечисленные виды ишемии чаще всего развиваются достаточно быстро и относятся к категории острых.
Хроническая ишемия развивается медленно, при постепенном сужении просвета артерий вследствие утолщения их стенок при атеросклерозе, гипертонической болезни, ревматизме.
Ишемизированный участок отличается бледностью, уменьшением объема и тургора вследствие нарушения кровенаполнения. Происходит снижение температуры участка ишемии из-за нарушения притока теплой артериальной крови и уменьшения интенсивности обменных процессов. Снижается величина пульсации артерий в результате уменьшения их систолического наполнения. Вследствие раздражения тканевых рецепторов недоокисленными продуктами обмена веществ возникают боли, парестезии.
Ишемия характеризуется следующими нарушениями микроциркуляторного кровотока:
1) сужением артериальных сосудов;
2) замедлением тока крови по микрососудам;
3) уменьшением количества функционирующих капилляров;
4) понижением внутрисосудистого гидростатического давления;
5) уменьшением образования тканевой жидкости;
6) понижением напряжения кислорода в ишемизированной ткани.
Вследствие нарушения доставки кислорода и субстратов обмена веществ в ишемизированной ткани развиваются обменные, структурные и функциональные нарушения, выраженность которых зависит от следующих факторов:
1) от скорости развития и продолжительности ишемии;
2) от чувствительности тканей к гипоксии;
3) степени развития коллатерального кровотока;
4) предшествующего функционального состояния органа или ткани.
Ишемические участки испытывают состояние кислородного голодания, снижается интенсивность обменных процессов, развивается дистрофия паренхиматозных клеток вплоть до их гибели, исчезает гликоген. При продолжительной запредельной ишемии может наступить омертвение ткани. Так, клетки коры головного мозга погибают через 5 – 6 мин после прекращения притока артериальной крови, сердечная мышца выдерживает гипоксию продолжительностью 20 – 25 мин.
Инфаркт
Инфаркт (лат.
Непосредственной причиной инфаркта обычно является тромбоз соответствующей артерии, реже – эмболия; допускается также длительный спазм артерий.
Различают следующие разновидности инфарктов в зависимости от различных признаков и механизмов развития:
1) белые и красные;
2) асептические и инфицированные;
3) коагуляционные и колликвационные;
4) пирамидальноконической и неправильной формы.
Инфаркты внутренних органов чаще бывают
Во всех органах инфаркт развивается по типу коагуляционного некроза с исходом в соединительнотканный рубец. Лишь инфаркты мозга протекают по типу коллимационного некроза, с незначительным участием нейтрофильных лейкоцитов, активацией элементов микроглии и исходом в виде кисты.
Форма зоны некроза зависит от характера ветвления кровеносных сосудов. Так, в органах с дихотомическим разветвлением сосудов (селезенка, легкие, почки) зона некроза имеет пирамидально-коническую форму; в сердце, мозге возникает некроз неправильной формы.
Стаз
Стаз (греч. «stasis» – остановка) – это обратимая остановка кровотока в сосудах микроциркуляторного русла. Стаз может быть вызван уменьшением разницы давлений на протяжении микрососуда или увеличением сопротивления в его просвете.
В зависимости от причин и механизмов возникновения различают несколько видов стаза:
1) истинный (капиллярный);
2) ишемический;
3) венозный.
В основе
При стазе кровоток полностью прекращается, эритроциты склеиваются и образуют агрегаты в виде так называемых «монетных столбиков», вплоть до гомогенизации форменных элементов крови, что получило название «сладж-феномен» (англ. sludge – тина, болото).
Исход стаза зависит от его длительности и места возникновения. Кратковременный стаз обратим, при быстром устранении причин стаза движение крови восстанавливается. Длительный стаз приводит к распаду тромбоцитов с последующим выпадением фибрина и образованием тромба, что сопровождается развитием прогрессирующей циркуляторной гипоксии и некроза тканей.
Кровотечение
Кровотечение, геморрагия (греч.
По характеру кровоточащего сосуда кровотечения делятся на:
1) артериальные;
2) венозные;
3) капиллярные;
4) смешанные.
По механизму нарушения целостности сосудистой стенки выделяют следующие виды кровотечений:
1)
2)
3)
По внешнему виду различают несколько видов кровоизлияний:
1)
2)
3)
4)
Диссеминированное внутрисосудистое свертывание крови (ДВС-синдром)
ДВС-синдром осложняет самые разнообразные формы патологии: инфаркт миокарда, кардиогенный шок, различные виды злокачественных новообразований, обширные оперативные вмешательства, тяжелую гипоксию, акушерскую патологию (преждевременная отслойка плаценты, эмболия околоплодными водами, внутриутробная гибель плода), переливание несовместимой крови, системную красную волчанку, иммунокомплексные заболевания, цирроз печени.
Развитие ДВС-синдрома при септической инфекции является в значительной мере цитокинопосредованным процессом.
Диссеминированное внутрисосудистое свертывание крови – динамический патологический процесс, характеризующийся последовательной сменой генерализованной гиперкоагуляции с внутрисосудистым свертыванием крови, агрегацией тромбоцитов, блокадой микроциркуляции и гипокоагуляции с гипофибриногенемией и тромбоцитопенией потребления.
Касаясь патогенеза диссеминированного внутрисосудистого свертывания крови, следует отметить общие закономерности его развития, включающего следующие инициирующие механизмы.
1.
2.
3.
4.
Как известно, клеточные элементы мононуклеарной фагоцитирующей системы играют исключительно важную роль в эндоцитозе, переработке антигенов и представлению их Т-хелперам в комплексе с 1а-антигеном. Однако следует отметить, что антиген-стимулированные мононуклеарные фагоциты могут синтезировать около 100 различных биологически активных соединений – монокинов, причем среди монокинов имеется группа высокоактивных соединений, регулирующих процессы гемостаза и фибринолиза в случае развития неспецифических патологических реакций, процессов, синдрома системного воздействия воспаления на организм. В физиологических условиях эта группа клеток практически не продуцирует факторов гемокоагуляции и фибринолиза.
Таким образом, различные по природе патогенные факторы, вызывающие развитие локального воспалительного процесса и синдром системного воспалительного ответа, вызывают активацию прокоагулянтной системы крови за счет массивного генерализованного повреждения сосудистой стенки, повышения ее адгезивных свойств, активации тромбоцитарного звена системы гемостаза, а в ряде случаев – моноцитарно-макрофагального и эритроцитарного альтернативных путей гемокоагуляции.
Естественно, что в каждом конкретном случае патологии можно выявить определенную специфику инициирующих механизмов активации коагуляционного, тромбоцитарно-сосудистого звеньев системы гемостаза. Однако очень быстро в динамике патологии в связи с каскадом взаимомодулирующих реакций гемостаза теряются специфические особенности расстройств коагуляционного потенциала крови; возникает фаза гиперкоагуляции.
В развитии ДВС-синдрома следует выделять следующие фазы:
I – гиперкоагуляция и агрегация клеток крови;
II – переход гиперкоагуляции в гипокоагуляцию;
III – стадия глубокой гипокоагуляции, вплоть до полной несвертываемости крови, которая обусловлена потреблением, расщеплением и блокадой ряда факторов свертывания крови, накоплением и циркуляцией продуктов их распада, обладающих антикоагулянтной активностью, а также тромбоцитопенией потребления;
IV – восстановительная стадия при благоприятном течении заболевания или формирование полиорганной недостаточности.
ДВС-синдром может носить острый, подострый, хронический и рецидивирующий характер.
Острая форма возникает при септических инфекциях, обширных оперативных вмешательствах, кровопотере, ожогах, переливании, несовместимой крови и т. д. В случае острого течения фаза гиперкоагуляции чрезвычайно кратковременна.
Подострое течение ДВС-синдрома имеет место при почечной недостаточности, злокачественных новообразованиях, лейкозах.
Рецидивирующие и хронические формы могут иметь место при раке, системных воспалительных, аутоиммунных заболеваниях.
ЛЕКЦИЯ № 6. ВОСПАЛЕНИЕ
Сосудистые реакции и эмиграция лейкоцитов в очаге острого воспаления
Основными признаками воспаления являются: боль, отек, краснота, повышение температуры и нарушение функции. В зависимости от реактивности организма, воспаление может быть нормергическим, гиперергическим и гипоэргическим.
Изменения со стороны тканей протекают в виде альтерации, экссудации и пролиферации.
Различают первичную и вторичную альтерацию.
Острое воспаление характеризуется определенной последовательностью сосудистых изменений, проявляющихся развитием спазма сосудов, артериальной и венозной гиперемии, стазом.
В основе развития воспалительной артериальной гиперемии лежит несколько механизмов:
1) рефлекторный – активация аксон-рефлекса;
2) нейропаралитический – в силу пареза вазоконстрикторов в кислой среде происходит инактивация действия катехоламинов;
3) миопаралитический – за счет снижения базального тонуса сосудов; падение базального тонуса обусловлено действием накапливающихся вазоактивных медиаторов воспаления и ионов водорода, которые расслабляют мышечные элементы стенки артериол и прекапилляров;
4) разрушение соединительной ткани вокруг сосудов – жесткость капилляров в значительной мере (до 93 %) определяется окружающей соединительной тканью; распад соединительной ткани под влиянием лизосомальных гидролаз приводит к снижению механического противодействия растягивающему усилию давления крови внутри сосуда; активная артериальная гиперемия может продолжаться в течение нескольких часов и суток.
По мере нарастания воспалительного процесса артериальная гиперемия сменяется венозной.
Развивающийся в процессе венозной гиперемии престаз сменяется
Важнейшим признаком венозной гиперемии является эмиграция лейкоцитов, т. е. выход форменных элементов белой крови за пределы сосудистого русла в зону воспаления. Последовательность выхода лейкоцитов получила название закона Мечникова, согласно которому спустя несколько часов с момента действия альтерирующего фактора интенсивно эмигрируют нейтрофилы, а затем моноциты и лимфоциты. Эмиграции лейкоцитов предшествует их краевое стояние у внутренней поверхности эндотелия капилляров. В механизмах краевого стояния лейкоцитов важная роль отводится замедлению кровотока в капиллярах, когда лейкоциты начинают соприкасаться с фибриновой пленкой эндотелия и удерживаться нитями фибрина. Большое значение в прилипании лейкоцитов к поверхности эндотелия имеют молекулы адгезии, экспрессируемые на поверхности лейкоцитов, люминальной поверхности эндотелия сосудов и макромолекулах межклеточного матрикса. К адгезивным молекулам относятся L-селектины, постоянно присутствующие на мембранной поверхности нейтрофилов, макрофагов и лимфоцитов, Е– и Р-селектины, появляющиеся на поверхности эндотелиоцитов после стимуляции антигеном и лимфокинами, а также интегрины, обеспечивающие как межклеточную адгезию, так и взаимодействие клеток с матриксом.
Важную роль в механизмах адгезии и эмиграции лейкоцитов играет устранение отрицательного заряда эндотелиаяльной клетки и лейкоцита за счет накопления в очаге воспаления ионов водорода и калия, а также катионных белков, выделяемых лейкоцитами. Наиболее значимыми факторами инициации адгезии лейкоцитов к стенке сосудов являются комплемент, фибронектин, иммуноглобулины, гистамин, лейкотриены.
После адгезии к цитомембране эндотелиальной клетки лейкоциты перемещаются через межэндотелиальные щели в подэпительнальное пространство, а оттуда проходят при участии протеиназ и катионных белков через базальную мембрану в зону альтерации.
Направление движения лейкоцитов определяется хемоаттрактантами, в роли которых могут выступать продукты специфических реакций – компоненты комплемента, лимфокины, цитофильные антитела, иммунные комплексы, а также эндогенные или экзогенные неспецифические продукты метаболизма, биологически активные соединения, протеазы, эндотоксины, кинины, коллаген, плазминогенный активатор и др.
В большинстве случаев острого воспаления доминирующее положение в эмиграции в течение первых 6 – 24 ч занимают нейтрофилы, через 24 – 48 ч – моноциты и несколько позднее – лимфоциты. Подобная последовательность эмиграции обусловлена, в частности, выделением нейтрофилами хемотаксических факторов для моноцитов. Однако рассмотренная последовательность эмиграции может быть иной. В частности, в зоне воспалительного процесса, индуцируемого возбудителями туберкулеза, листериоза, хламидиоза, токсоплазмоза и др., первоначально доминирует эмиграция мононуклеаров и воспаление нередко приобретает изначально хронический характер.
Касаясь значимости эмигрировавших в зону воспаления лейкоцитов, следует отметить, что нейтрофилы являются активными фагоцитами, продуцентами эндопирогенов, источником вазоактивных соединений – лейкотриенов, лейкокининов, простагландинов, свободных радикалов, неферментных катионных белков с выраженной бактерицидной активностью, лизоцима, лактоферрина, а также комплекса лизосомальных гидролаз, вызывающих деструктивные процессы в зоне альтерации.
Моноциты трансформируются в тканевые макрофаги, обладают выраженной фагоцитарной активностью, очищают и подготавливают зону альтерации к последующей репарации и регенерации. Подобно нейтрофилам, моноциты продуцируют эластазу, коллагеназу и другие лизосомальные ферменты, вызывающие дезинтеграцию соединительной ткани. Стимулированные моноциты продуцируют эндопирогены – ФНО, ИЛ-1, ИЛ-6, γ-интерферрон, являются источником синтеза неспецифических факторов резистентности лизоцима, комплемента, пероксидазы, активных форм кислорода. Лимфоциты в зоне воспаления продуцируют лимфокины, обеспечивают развитие специфических иммунологических механизмов защиты и развитие аллергических реакций. Все лейкоциты в зоне воспаления подвергаются жировой инфильтрации, превращаются в гнойные тельца. В процессе апоптоза нейтрофилы теряют способность секретировать лизосомальные ферменты, а макрофаги активно фагоцитируют апоптозные нейтрофилы.
Экссудация, как правило, носит двухфазный характер и включает немедленную и замедленную фазы.
В зависимости от клеточного и биохимического состава экссудат бывает серозным, фибринозным, гнойным, геморрагическим, гнилостным, смешанным.
У детей в периоде новорожденности отсутствует способность рефлекторно регулировать интенсивность сосудистой реакции в зоне воспаления вследствие несформированности нейрогенного тонуса сосудов. В связи с этим, а также с незрелостью структуры лимфоидной, соединительной тканей, центральной нервной системы, обеспечивающих у взрослого быстрое формирование местных механизмов защиты, характерными особенностями воспалительного процесса у детей в этот период жизни являются преобладание альтеративно-дегенеративных изменений в тканях, быстрая генерализация инфекции и развитие септического состояния.
Изменение обмена веществ в очаге воспаления. Механизмы пролиферации при воспалении
Развитие альтерации, сосудистых изменений в зоне воспаления закономерно сочетается с типовыми расстройствами метаболизма. Причем, на стадии артериальной гиперемии возникает резкое увеличение интенсивности обмена веществ в связи с усилением оксигенации, трофики воспаленной ткани за счет возрастания кровотока в системе мнкроциркуляции. Однако, последовательная смена артериальной гиперемии венозной в зоне воспаления приводит к развитию явлений престаза, стаза, резкому снижению напряжения кислорода, что обуславливает подавление окислительно-восстановительных реакций, накопление промежуточных продуктов гликолиза, липолиза, протеолиза, в частности молочной, пировиноградной, жирных кислот, аминокислот и др. Избыточное накопление кислых метаболитов лежит в основе развития в зоне альтерации в начале компенсированного, а затем декомпенсированного метаболического ацидоза. Так, при остром абсцессе рН гнойного экссудата может снизиться до 5,3 – 5,0.
Наряду с гипер-Н-ионией в зоне альтерации повышается онкотическое и осмотическое давление, что связано с дестабилизацией цитоплазматических мембран и избыточным поступлением ионов калия во внеклеточную среду, возрастанием уровня гидрофильных метаболитов – продуктов протеолиза, гликолиза, липолиза, а также усиленным поступлением белков из сосудистого русла в ткани в процессе экссудации.
Характеризуя состояние энергетического обеспечения клеток в зоне воспаления, следует отметить, что на фазе венозной гиперемии в связи с развитием локального метаболического ацидоза возникает комплекс типовых нарушений: набухание митохондрий, разобщение процессов окислительного фосфорилирования и дыхания, снижение уровня макроэргических соединений в клетках, подавление различных энергозависимых реакций, в частности трансмембранного переноса ионов, синтеза белков и др.
В условиях дефицита кислорода, прогрессирующего на фазе венозной гиперемии, увеличивается содержание АДФ, АМФ, неорганического фосфата в клетках. Избыточные концентрации АДФ в клетках зоны альтерации обеспечивают активацию ключевого фермента гликолиза – фосфофруктокиназы, дальнейшую стимуляцию процесса гликолиза, усугубление метаболического ацидоза и формирование порочного круга в развитии патологии.
В условиях
Продукты стимулированных нейтрофилов вызывают дегрануляцию тучных клеток, активируют систему комплемента, калликреин-хининовую систему, систему свертывания крови и фибринолиза.
Следует отметить, что в зоне воспаления формируются и механизмы, противодействующие деградации клеток и межклеточного матрикса. Так, активированные нейтрофилы и моноциты выделяют трансформирующий фактор роста B1 (ТФР-В1), подавляющий синтез протеолитических ферментов лейкоцитами, способствующий стабилизации матрикса. Кроме того, нейтрофилы, эозинофилы и лимфоциты в зоне воспаления подвергаются апоптозу (программированная гибель клетки). При апоптозе происходят компактизация и фрагментация хроматина без разрушения биологических мембран и освобождения ферментов в окружающую среду, что исключает дальнейшее беспредельное повреждение тканей. Апоптозные лейкоциты подвергаются макрофагальному фагоцитозу и элиминируются из зоны воспаления.
Факторами, стимулирующими развитие процессов пролиферации, являются цитокины (ИЛ-1, фибронектин), фактор некроза опухоли, эпидермальный, тромбоцитарный, фибробластический факторы роста, а также умеренные концентрации биологически активных веществ, ионов водорода, полиамины, антикейлоны и др.
Наряду с фибробластами размножаются и другие тканевые и гематогенные клетки. Из тканевых клеток пролиферируют эндотелиальные клетки, которые формируют новые капилляры.
Фибробласты вместе с вновь образованными сосудами образуют
В процессе пролиферации участвуют и органоспецифические клеточные элементы органов и тканей.
С точки зрения возможностей пролиферации органоспецифических клеточных элементов все органы и ткани могут быть распределены по трем группам.
К
Ко
И, наконец, к
ЛЕКЦИЯ № 7. ЛИХОРАДКА
Развитие лихорадки обусловлено смещением установочной точки температурного гомеостаза на более высокий уровень под влиянием пирогенных веществ. Экзогенные пирогены инфекционного происхождения представляют собой высокомолекулярные липополисахаридные комплексы эндотоксинов, которые являются компонентом оболочек грамотрицательных микробов и выделяются при повреждении многих бактериальных клеток. Основным носителем пирогенной активности служит содержащийся в них липоид А. Высокоактивные экзопирогены практически не обладают токсическими, антигенными свойствами и видовой пирогенной специфичностью. При повторном воздействии на организм к ним формируется толерантность. Токсический эффект липополисахаридных пирогенов в организме проявляется под влиянием доз, в сотни тысяч раз превышающих минимальную пирогенную дозу.
Полагают, что их пирогенные и токсические свойства обусловлены наличием различных химических группировок. К экзогенным инфекционным пирогенам относятся также термолабильные белковые вещества, выделенные из экзотоксинов гемолитического стрептококка, дифтерийных бацилл, возбудителей дизентерии, туберкулеза и паратифов. Однако, пирогенная активность их значительно ниже, чем липополисахаридных. Вирусы, риккетсии и спирохеты вызывают развитие лихорадки, несмотря на отсутствие в них экзопирогенов. Эффект инфекционных пирогенов опосредуется через образующиеся в организме эндогенные пирогены, которые являются адекватными раздражителями гипоталамического центра терморегуляции. Эндогенные пирогены представляют гетерогенную группу биологически активных веществ, обьединенных понятием цитокины: лейкоцитарный пироген (ЛП), лейкоцитактивирующий фактор интерлейкин-1 (ИЛ-1), интерлейкин-6 (ИЛ-6), фактор некроза опухолей (ФНО), γ-интерферон, макрофагальный воспалительный белок-1а, а также менее активные катионные белки и колониестимулирующие факторы (КСФ). Они образуются в очаге инфекционного, асептического или иммуноаллергического воспаления возбужденными гранулоцитами, моноцитами крови и лимфы, тканевыми макрофагами, естественными Т-лимфоцитами киллерами, В-лимфоцитами, микроглиальными и мезангиальными элементами в результате пино– и фагоцитоза экзопирогенов или поврежденных клеточных структур, иммунных комплексов и т. п. Эндопирогены могут образовываться в лейкоцитах при воздействии на них лимфокинов и «пирогенных» стероидных гормонов типа этиохоланолона и прогестерона. В отличие от экзогенных, эндогенные пирогены не вызывают развитие толерантности при повторном воздействии на организм.
Для целостного понимания механизмов развития лихорадки необходимо иметь представление о структурно-функциональной организации терморегулирующего аппарата. Одна из основных функций системы теплорегуляции заключается в создании установочной точки температурного гомеостаза. Установочная температура является результатом интегрирования сигналов, поступающих от холодовых и тепловых рецепторов к специфическим термочувствительным нейронам терморегулирующего центра. Большинство их расположены в преоптической области переднего гипоталамуса. Тепло– и холодочувствительные нейроны, образующие отдел измерения («термостат»), воспринимают через соответствующие рецепторы прямые и рефлекторные температурные влияния. Медиаторами тепловых импульсов служат серотонин и норадреналин, а холодовых – ацетилхолин. Указанные термонейроны передают импульсацию о характере температурного воздействия интернейронам аппарата сравнения («установочная точка»), обладающим спонтанной импульсной активностью, которые воспринимают информацию и формируют установочную точку температурного гомеостаза. Роль медиатора в нейронах «установочной точки» выполняет ацетилхолин. Генерируемый вставочными нейронами сигнал рассогласования передается вегетативным симпатическим, парасимпатическим и соматическим нейронам, составляющим эффекторный отдел центра теплорегуляции. Медиаторами эфферентной импульсации являются норадреналин и ацетилхолин, регулирующие механизмы теплоотдачи, теплопродукции и поддержания температуры в полном соответствии с установочной точкой температурного гомеостаза. Возникающий в интернейронах сигнал сравнения необходим для осуществления обратной связи и стабилизации функции термочувствительных нейронов, обеспечивая постоянство уровня нормальной температуры и возврат к ней после понижения или повышения ее.
В развитии лихорадки выделяют три стадии:
I – повышения температуры;
II – установления ее на более высоком уровне;
III – снижения температуры до исходного значения.
Лихорадка, как и любой другой типовой патологический процесс, выполняет чаще всего зашитно-приспособительную роль, но при определенных условиях может иметь патогенное значение для организма. Повышение температуры тела при ряде инфекционных заболеваний препятствует размножению многих патогенных микробов, снижает резистентность их к лекарственным препаратам. При лихорадке стимулируются метаболизм, фагоцитарная способность различных клеточных элементов, выработка антител, синтез пропердина, интерферона, активность гипоталамо-гипофизарно-надпочечниковой системы, происходит усиление выделения гормонов адаптации, возрастание барьерной и антитоксической функции печени, активируется в целом иммунобиологическая защита организма. Однако гиперпиретическая лихорадка в организме больных характеризуется преобладанием реакций повреждения и дезадаптации. Так, при индивидуальной чувствительности организма к высокой температуре, нередко возникают потеря сознания, судорожный синдром, выраженная тахикардия, гипертония и гипертензия. В условиях повышенной нагрузки объемом и сопротивлением на миокард может возникать сердечная недостаточность. Критическое падение температуры сочетается с развитием острой сосудистой недостаточности – коллапса.
У детей лихорадка развивается обычно после 3 месяцев жизни. При этом температура тела повышается медленно и, как правило, не удерживается на высоком уровне, особенно на фоне колебания температуры окружающей среды. Резкий подъем температуры тела нередко не сопровождается развитием озноба и мышечной дрожи. Основным источником тепла являются у них активация метаболизма и распад бурой жировой ткани. Особенности развития лихорадки объясняются тем, что у детей первого года жизни имеют место функциональная неполноценность регуляторного центра нейрогексного сосудистого тонуса, термосенситивного рецепторного аппарата и низкая чувствительность гипоталамических нейронов к пирогенам. Кроме того, отмечаются неустойчивость обмена веществ, недостаточное потоотделение, слабое развитие скелетных мышц, теплоизолирующих свойств кожи и подкожной клетчатки, большая удельная температура тела, что выражается в несовершенстве химической и, особенно, физической терморегуляции. В условиях неполноценной физической терморегуляции не происходит существенного ограничения теплоотдачи, поэтому у значительной части детей первого года жизни лихорадка вообще не возникает. Однако при тяжелых инфекционных заболеваниях нередко отмечается высокая температурная реакция. В этих случаях повышение температуры тела связано с усилением теплопродукции в основном за счет воздействия токсических веществ, вызывающих разобщение свободного дыхания и окислительного фосфорилирования в тканях. У детей раннего возраста лихорадка может осложняться нарушением теплообмена и развитием гипертермии. У детей в возрасте старше 1 года лихорадка в неосложненных случаях развивается так же, как у взрослых. На фоне лихорадки развиваются ацидоз, значительное ограничение секреции слюны – гипосиалия, что может приводить к развитию ксеростомии и нарушению функционального состояния челюстно-лицевого аппарата.
ЛЕКЦИЯ № 8. АЛЛЕРГИЧЕСКИЕ РЕАКЦИИ НЕМЕДЛЕННОГО ТИПА
Различают аллергические реакции немедленного и замедленного типа (соответственно – гуморальные и клеточные реакции). За развитие аллергических реакций гуморального типа ответственны аллергические антитела.
Для проявления клинической картины аллергической реакции необходимо по крайней мере 2 контакта организма с антигеном-аллергеном.
В ряде случаев возможна длительная персистенция аллергена в организме и, в связи с этим, практически невозможно провести четкую грань между воздействием первой сенсибилизирующей и повторной разрешающей доз аллергена.
Классификация аллергических реакций немедленного типа:
1) анафилактические (атопические);
2) цитотоксические;
3) иммунокомплексная патология.
Стадии аллергических реакций:
I – иммунологическая
II – патохимическая
III – патофизиологическая.
Аллергены, индуцирующие развитие аллергических реакций гуморального типа
Антигены-аллергены подразделяются на антигены бактериальной и небактериальной природы.
Среди небактериальных аллергенов выделяют:
1) промышленные;
2) бытовые;
3) лекарственные;
4) пищевые;
5) растительные;
6) животного происхождения.
Выделяют полные антигены (детерминантные группировки + белок-носитель), способные стимулировать выработку антител и взаимодействовать с ними, а также неполные антигены, или гаптены, состоящие только из детерминантных группировок и не индуцирующие выработку антител, но взаимодействующие с готовыми антителами. Существует категория гетерогенных антигенов, имеющих сходство структуры детерминантных групп.
Аллергены могут быть сильными и слабыми. Сильные аллергены стимулируют выработку большого количества иммунных или аллергических антител. В роли сильных аллергенов выступают растворимые антигены, как правило, белковой природы. Антиген белковой природы тем сильнее, чем выше его молекулярная масса и жестче структура молекулы. Слабыми являются корпускулярные, нерастворимые антигены, бактериальные клетки, антигены поврежденных клеток собственного организма.
Различают также тимусзависимые аллергены и тимуснезависимые. Тимусзависимые – это антигены, которые индуцируют иммунный ответ только при условии обязательного участия 3 клеток: макрофага, Т-лимфоцита и В-лимфоцита. Тимуснезависимые антигены могут индуцировать иммунный ответ без участия Т-лимфоцитов-хелперов.
Общие закономерности развития иммунологической фазы аллергических реакций немедленного типа
Иммунологическая стадия начинается с воздействия сенсибилизирующей дозы аллергена и латентного периода сенсибилизации, а также включает в себя взаимодействие разрешающей дозы аллергена с аллергическими антителами.
Сущность латентного периода сенсибилизации заключается, прежде всего, в макрофагальной реакции, которая начинается с узнавания и поглощения макрофагом (А-клеткой) аллергена. В процессе фагоцитоза происходит разрушение большей части аллергена под влиянием гидролитических ферментов; негидролизованная часть аллергена (детерминантные группировки) экспонируется на наружную мембрану А-клетки в комплексе с Ia-белками и и-РНК макрофага. Образовавшийся комплекс носит название суперантигена и обладает иммуногенностью и аллергогенностью (способностью индуцировать развитие иммунных и аллергических реакций), во много раз превышающей таковую первоначального нативного аллергена. В латентный период сенсибилизации вслед за макрофагальной реакцией возникает процесс специфической и неспецифической кооперации трех типов иммунокомпетентных клеток: А-клеток, Т-лимфоцитов-хелперов и антигенреагирующих клонов В-лимфоцитов. Сначала происходит распознавание аллергена и Ia-белков макрофага специфическими рецепторами Т-лимфоцитов-хелперов, затем макрофаг секретирует интерлейкин-1, стимулирующий пролиферацию Т-хелперов, которые, в свою очередь, выделяют индуктор иммуногенеза, стимулирующий пролиферацию антигенчувствительных клонов В-лимфоцитов, их дифференцировку и трансформацию в плазматические клетки – продуценты специфических аллергических антител.
На процесс антителообразования влияет еще один тип иммуноцитов – Т-супрессоры, действие которых противоположно действию Т-хелперов: они тормозят пролиферацию В-лимфоцитов и превращение их в плазмоциты. В норме отношение Т-хелперов к Т-супрессорам составляет 1,4 – 2,4.
Аллергические антитела подразделяются на:
1) антитела-агрессоры;
2) антитела-свидетели;
3) блокирующие антитела.
Каждому типу аллергических реакций (анафилактические, цитолитические, иммунокомплексная патология) свойственны определенные антитела-агрессоры, отличающиеся иммунологическими, биохимическими и физическими свойствами.
При проникновении разрешающей дозы антигена (или в случае персистенции антигена в организме) происходит взаимодействие активных центров антител с детерминантными группировками антигенов на клеточном уровне или в системном кровотоке.
Анафилактические (атонические) реакции
Различают генерализованные (анафилактический шок) и местные анафилактические реакции (атопическая бронхиальная астма, аллергические ринит и конъюнктивит, крапивница, отек Квинке).
Аллергены, наиболее часто индуцирующие развитие анафилактического шока:
1) аллергены антитоксических сывороток, аллогенных препаратов γ-глобулинов и белков плазмы крови;
2) аллергены гормонов белковой и полипептидной природы (АКТГ, инсулина и др.);
3) лекарственные препараты (антибиотики, в частности пенициллин, мышечные релаксанты, анестетики, витамины и др.);
4) рентгеноконтрастные вещества;
5) инсектные аллергены.
Местные анафилактические реакции могут вызываться:
1) аллергенами пыльцы растений (полинозы), спор грибов;
2) аллергенами домашней и производственной пыли, эпидермиса и шерсти животных;
3) аллергенами косметических и парфюмерных средств и др.
Местные анафилактические реакции возникают при попадании аллергена в организм естественным путем и развиваются в местах входных ворот и фиксации аллергенов (слизистые конъюнктивы, носовых ходов, желудочно-кишечного тракта, кожные покровы и т. д.).
Антителами-агрессорами при анафилаксии являются гомоцитотропные антитела (реагины или атопены), относящиеся к иммуноглобулинам классов Е и G4, способные фиксироваться на различных клетках. Фиксируются реагины прежде всего на базофилах и тучных клетках – клетках с высокоаффинными рецепторами, а также на клетках с низкоаффинными рецепторами (макрофагах, эозинофилах, нейтрофилах, тромбоцитах).
При анафилаксии выделяют две волны выброса медиаторов аллергии:
Медиаторы анафилаксии и источники их образования:
1) тучные клетки и базофилы синтезируют и выделяют гистамин, серотонин, эозинофильный и нейтрофильный, хемотаксический факторы, гепарин, арилсульфатазу А, галактозидазу, химотрипсин, супероксиддисмутазу, лейкотриены, простагландины;
2) эозинофилы являются источником арилсульфатазы В, фосфолипазы D, гистаминазы, катионных белков;
3) из нейтрофилов освобождаются лейкотриены, гистаминаза, арилсульфатазы, простагландины;
4) из тромбоцитов – серотонин;
5) базофилы, лимфоциты, нейтрофилы, тромбоциты и эндотелиальные клетки являются источниками образования тромбоцитактивирующего фактора в случае активации фосфолипазы А2.
Клинические симптомы анафилактических реакций обусловлены биологическим действием медиаторов аллергии.
Анафилактический шок характеризуется быстрым развитием общих проявлений патологии: резкого падения артериального давления вплоть до коллаптоидного состояния, расстройств центральной нервной системы, нарушений со стороны свертывающей системы крови, спазма гладкой мускулатуры дыхательных путей, желудочно-кишечного тракта, повышения проницаемости сосудов, кожного зуда. Летальный исход может наступить в течение получаса при явлениях асфиксии, тяжелого поражения почек, печени, желудочно-кишечного тракта, сердца и других органов.
Местные анафилактические реакции характеризуются повышением проницаемости сосудистой стенки и развитием отеков, появлением кожного зуда, тошноты, болей в животе вследствие спазма гладкомышечных органов, иногда рвоты, озноба.
Цитотоксические реакции
Разновидности: гемотрансфузионный шок, резус-несовместимость матери и плода, аутоиммунные анемии, тромбоцитопении и другие аутоиммунные заболевания, компонент реакции отторжения трансплантата.
Антигеном в этих реакциях является структурный компонент мембраны клеток собственного организма либо антиген экзогенной природы (бактериальная клетка, лекарственное вещество и др.), прочно фиксирующийся на клетках и изменяющий структуру мембраны.
Цитолиз клетки-мишени под воздействием разрешающей дозы антигена-аллергена обеспечивается тремя путями:
1) за счет активации комплемента – комплементопосредованная цитотоксичность;
2) за счет активации фагоцитоза клеток, покрытых антителами – антителозависимый фагоцитоз;
3) через активацию антителозависимой клеточной цитотоксичности – при участии К-клеток (нулевых, или ни Т-, ни В-лимфоцитов).
Основными медиаторами комплементопосредованной цитотоксичности являются активированные фрагменты комплемента. Комплементом обозначают тесно связанную систему сывороточных ферментных белков.
Иммунокомплексная патология
Различают генерализованную форму иммунокомплексной патологии (сывороточная болезнь) и местные реакции типа феномена Артюса.
Иммунокомплексной патологии принадлежит определенное место в механизмах развития таких видов патологии, как гломерулонефрит, ревматоидный артрит, системная красная волчанка, артерииты, эндокардиты.
В образовании иммунных комплексов принимают участие в качестве антигенов лекарственные препараты (пенициллин, сульфаниламидные препараты и др.), антитоксические сыворотки, аллогенные γ-глобулины, пищевые продукты (молоко, яичные белки и др.), бактериальные и вирусные аллергены.
В состав иммунных комплексов при иммунокомплексной патологии входят преципитирующие и комплементсвязывающие антитела (IgG1 – 3 и IgM).
Повреждающее действие обычно оказывают растворимые комплексы средних размеров, образованные в небольшом избытке антигена.
Принципы и методы гипосенсибилизации
Под гипосенсибилизацией подразумевают уменьшение чувствительности к аллергену. Различают специфическую и неспецифическую гипосенсибилизацию.
Специфическая гипосенсибилизация – это снятие гиперчувствительности к определенному антигену.
1) устранения контакта с определенным антигеном-аллергеном;
2) введения малых доз антигена по различным схемам (при этом активируется выработка блокирующих антител и Т-супрессорная функция);
3) дробного введения лечебных антитоксических сывороток по Безредко (такой способ введения сопровождается постепенной элиминацией антител из организма вследствие связывания их малым количеством поливалентных антигенов).
В качестве средств, подавляющих иммунологическую фазу, используются рентгеновское облучение и глюкокортикоиды.
Подавление патохимической и патофизиологической фаз аллергических реакций достигается использованием комплекса фармакологических препаратов с различной направленностью действия:
1) препаратов, либо увеличивающих содержание цАМФ в клетках (β-адреномиметики ингибиторы, фосфодиэстеразы), либо уменьшающих уровень цГМФ (холинолитики), либо изменяющих их соотношение (левамизол и др.);
2) антигистаминных препаратов;
3) антагонистов серотонина (дигидроэрготамин, дигидроэрготоксин);
4) ингибиторов липоксигеназного пути обмена арахидоновой кислоты, подавляющих образование лейкотриенов;
5) антипротеазных препаратов;
6) антиоксидантов (α-токоферол и др.);
7) ингибиторов калликреин-кининовой системы;
8) противовоспалительных средств (глюкокортикоиды, салицилаты).
ЛЕКЦИЯ № 9. РЕАКЦИИ ГИПЕРЧУВСТВИТЕЛЬНОСТИ ЗАМЕДЛЕННОГО ТИПА
Для развития реакций ГЗТ необходима предшествующая сенсибилизация, возникающая при первичным контакте с антигеном. ГЗТ развивается у животных и людей через 6 – 72 ч после проникновения в ткани разрешающей (повторной) дозы антигена-аллергена.
Виды реакции ГЗТ:
1) инфекционная аллергия;
2) контактный дерматит;
3) отторжение трансплантата;
4) аутоиммунные заболевания.
Антигены-аллергены, индуцирующие развитие реакции ГЗТ:
1) инфекционные (бактерии, грибы, вирусы, простейшие паразиты);
2) клетки собственных тканей с измененной антигенной структурой (аутоантигены);
3) специфические антигены опухолей;
4) белковые антигены гистосовместимости;
5) комплексные соединения, образующиеся при взаимодействии некоторых химических веществ (мышьяк, кобальт) с белками тканей.
Основными участниками реакций ГЗТ являются Т-лимфоциты (CD3). Т-лимфоциты образуются из недифференцированных стволовых клеток костного мозга, которые пролиферируют и дифференцируются в тимусе, приобретая свойства антиген-реактивных тимусзависимых лимфоцитов (Т-лимфоцитов). Эти клетки расселяются в тимусзависимые зоны лимфатических узлов, селезенки, а также присутствуют в крови, обеспечивая реакции клеточного иммунитета.
Субпопуляции Т-лимфоцитов:
1) Т-эффекторы (Т-киллеры, цитотоксические лимфоциты) – разрушают опухолевые клетки, генетически чужеродные клетки трансплантатов и мутировавшие клетки собственного организма, выполняя функцию иммунологического надзора;
2) Т-продуценты лимфокинов – участвуют в реакциях ГЗТ, выделяя медиаторы ГЗТ (лимфокины);
3) Т-модификаторы (Т-хелперы (CD4), амплифайеры) – способствуют дифференцировке и пролиферации соответствующего клона Т-лимфоцитов;
4) Т-супрессоры (CD8) – ограничивают силу иммунного ответа, блокируя размножение и дифференцировку клеток Т– и В-ряда;
5) Т-клетки памяти – Т-лимфоциты, сохраняющие и передающие информацию об антигене.
Общие механизмы развития реакции гиперчувствительности замедленного типа
Антиген-аллерген при попадании в организм фагоцитируется макрофагом (А-клетка), в фаголизосоме которого под воздействием гидролитических ферментов происходит разрушение части антигена-аллергена (около 80 %). Нефрагментированная часть антигена-аллергена в комплексе с молекулами Ia-белка экспрессируется на мембране А-клетки в виде суперантигена и представляется антигенраспознающим Т-лимфоцитам. Вслед за макрофагальной реакцией идет процесс кооперации А-клетки и Т-хелпера, первым этапом которого является распознавание антигенспецифичными рецепторами на мембране Т-хелперов чужеродного антигена на поверхности А-клетки, а также распознавание Ia-белков макрофага специфическими рецепторами Т-хелпера. Далее А-клетки продуцируют интерлейкин-1 (ИЛ-1), стимулирующий пролиферацию Т-хелперов (Т-амплифайеров). Последние выделяют интерлейкин-2 (ИЛ-2), который активирует и поддерживает бласттрансформацию, пролиферацию и дифференцировку антигенстимулированных Т-продуцентов лимфокинов и Т-киллеров в регионарных лимфатических узлах.
При взаимодействии Т-продуцентов-лимфокинов с антигеном секретируются более 60 растворимых медиаторов ГЗТ-лимфокинов, которые действуют на различные клетки в очаге аллергического воспаления.
Классификация лимфокинов.
I. Факторы, влияющие на лимфоциты:
1) фактор переноса Лоуренса;
2) митогенный (бластогенный) фактор;
3) фактор, стимулирующий Т– и В-лимфоциты.
II. Факторы, влияющие на макрофаги:
1) миграциоингибирующий фактор (MIF);
2) фактор, активирующий макрофаги;
3) фактор, усиливающий пролиферацию макрофагов.
III. Цитотоксические факторы:
1) лимфотоксин;
2) фактор, тормозящий синтез ДНК;
3) фактор, ингибирующий стволовые гемопоэтические
клетки.
IV. Хемотаксические факторы для:
1) макрофагов, нейтрофилов;
2) лимфоцитов;
3) эозинофилов.
V. Антивирусные и антимикробные факторы – γ-интерферон (иммунный интерферон).
Наряду с лимфокинами в развитии аллергического воспаления при ГЗТ играют роль и другие БАВ: лейкотриены, простагландины, лизосомальные ферменты, кейлоны.
Если Т-продуценты лимфокинов реализуют свой эффект дистантно, то сенсибилизированные Т-киллеры оказывают прямое цитотоксическое действие на клетки-мишени, которое осуществляется в три стадии.
Фазы аллергических реакций замедленного типа:
I – иммунологическая – включает период сенсибилизации после введения первой дозы антигена-аллергена, пролиферацию соответствующих клонов Т-лимфоцитов-эффекторов, распознавание и взаимодействие с мембраной клетки-мишени;
II – патохимическая – фаза освобождения медиаторов ГЗТ (лимфокинов);
III – патофизиологическая – проявление биологических эффектов медиаторов ГЗТ и цитотоксических Т-лимфоцитов.
Отдельные формы ГЗТ
Аллергия этого типа чаще возникает к низкомолекулярным веществам органического и неорганического происхождения: различным химическим веществам, краскам, лакам, косметическим препаратам, антибиотикам, пестицидам, соединениям мышьяка, кобальта, платины, воздействующим на кожу. Контактные дерматиты могут вызывать также вещества растительного происхождения – семена хлопка, цитрусовые. Аллергены, проникая в кожу, образуют стабильные ковалентные связи с SH– и NН2-группами протеинов кожи. Эти конъюгаты обладают сенсибилизирующими свойствами.
Сенсибилизация обычно возникает в результате длительного контакта с аллергеном. При контактных дерматитах патологические изменения наблюдаются в поверхностных слоях кожи. Отмечаются инфильтрация воспалительными клеточными элементами, дегенерация и отслойка эпидермиса, нарушение целостности базальной мембраны.
ГЗТ развивается при хронических бактериальных инфекциях, вызываемых грибами и вирусами (туберкулезе, бруцеллезе, туляремии, сифилисе, бронхиальной астме, стрептококковой, стафилококковой и пневмококковой инфекциях, аспергиллезе, бластомикозе), а также при заболеваниях, вызываемых простейшими (токсоплазмоз), при глистных инвазиях.
Сенсибилизация к микробным антигенам обычно развивается при воспалении. Не исключена возможность сенсибилизации организма некоторыми представителями нормальной микрофлоры (нейссерии, кишечная палочка) или патогенными микробами при их носительстве.
При трансплантации организм реципиента распознает чужеродные трансплантационные антигены (антигены гистосовместимости) и осуществляет иммунные реакции, ведущие к отторжению трансплантата. Трансплантационные антигены есть во всех ядросодержащих клетках, за исключением клеток жировой ткани.
1.
2.
3.
Аллогенные и ксеногенные трансплантаты без применения иммуносупрессивной терапии отторгаются.
В первые 2 дня пересаженный кожный лоскут сливается с кожей реципиента. В это время устанавливается кровообращение между тканями донора и реципиента и трансплантат имеет вид нормальной кожи. На 6 – 8-й день появляются отечность, инфильтрация трансплантата лимфоидными клетками, локальный тромбоз и стаз. Трансплантат становится синюшным и твердым, происходят дегенеративные изменения в эпидермисе и волосяных фолликулах. К 10 – 12-му дню трансплантат отмирает и не регенерирует даже при пересадке к донору. При повторной пересадке трансплантата от того же донора патологические изменения развиваются быстрее – отторжение происходит на 5-й день или ранее.
1.
2.
Заболевания аутоиммунной природы разделяют на две группы.
Первую группу представляют
Ко второй группе относят
В развитии аутоиммунных заболеваний выделяют несколько возможных механизмов.
1.
2.
3.
4. Аутоиммунные поражения могут возникать
Развитие аутоиммунных заболеваний обусловлено сложным взаимодействием аллергических реакций клеточного и гуморального типа с преобладанием той или иной реакции в зависимости от характера аутоиммунного заболевания.
Принципы гипосенсибилизации
При аллергических реакциях клеточного типа используют, как правило, методы неспецифической гипосенсибилизации, направленной на подавление афферентного звена, центральной фазы и эфферентного звена гиперчувствительности замедленного типа.
Афферентное звено обеспечивается тканевыми макрофагами – А-клетками. Подавляют афферентную фазу синтетические соединения – циклофосфамид, азотистый иприт, препараты золота.
Для подавления центральной фазы реакций клеточного типа (включающей процессы кооперации макрофагов и различных клонов лимфоцитов, а также пролиферацию и дифференцировку антигенреактивных лимфоидных клеток) используют различные иммунодепрессанты – кортикостероиды, антиметаболиты, в частности, аналоги пуринов и пиримидинов (меркаптопурин, азатиоприн), антагонисты фолиевой кислоты (аметоптерин), цитотоксические вещества (актиномицин С и D, колхицин, циклофосфамид).
Для подавления эфферентного звена реакций гиперчувствительности клеточного типа, включающего повреждающее воздействие на клетки-мишени Т-киллеров, а также медиаторов аллергии замедленного типа – лимфокинов, используют противовоспалительные препараты – салицилаты, антибиотики с цитостатическим действием – актиномицин С и рубомицин, гормоны и биологические активные вещества, в частности кортикостероиды, простагландины, прогестерон, антисыворотки.
Следует отметить, что большинство используемых иммунодепрессивных препаратов не вызывает селективного ингибирующего воздействия лишь на афферентную, центральную или эфферентную фазы аллергических реакций клеточного типа.
Следует отметить, что в громадном большинстве случаев аллергические реакции имеют сложный патогенез, включая наряду с доминирующими механизмами реакций гиперчувствительности замедленного (клеточного) типа и вспомогательные механизмы аллергии гуморального типа.
В связи с этим для подавления патохимической и патофизиологической фаз аллергических реакций целесообразно сочетание принципов гипосенсибилизации, используемых при аллергии гуморального и клеточного типов.
ЛЕКЦИЯ № 10. ИММУНОДЕФИЦИТНЫЕ СОСТОЯНИЯ
По происхождению все ИДС подразделяются на:
1) физиологические;
2) первичные (наследственные, врожденные);
3) вторичные (приобретенные).
По преимущественному повреждению клеток иммунокомпетентной системы различают 4 группы ИДС:
1) с преимущественным повреждением клеточного иммунитета («Т-зависимые», «клеточные»);
2) с преимущественным повреждением гуморального иммунитета («В-зависимые», «гуморальные»);
3) с поражением системы фагоцитоза («А-зависимые»);
4) комбинированные, с поражением клеточного и гуморального звеньев иммунитета.
Физиологическая (транзиторная) гипогаммаглобулинемия новорожденных
К моменту рождения у здоровых детей в крови содержатся материнские IgG и небольшое количество собственных IgG, IgM, IgA. Иммуноглобулины, полученные от матери, содержат антитела против всех видов микробов, с которыми контактировала мать, благодаря чему ребенок оказывается защищенным против них на протяжении первых месяцев жизни. Уровень материнских иммуноглобулинов постепенно снижается. Максимально дефицит их наблюдается через 2 – 3 месяца после рождения. Затем уровень собственных иммуноглобулинов ребенка в крови начинает постепенно повышаться и количество IgM достигает нормального уровня взрослого человека в конце 1-го (мальчиков) или 2-го (девочек) года жизни, IgG – после 6 – 8 лет, IgA – после 9 – 12 и IgE – лишь спустя 10 – 15 лет.
Первичные ИДС
Первичные ИДС – это генетически обусловленная особенность организма реализовать то или иное звено иммунного ответа. Они обусловлены генетическим блоком на различных уровнях преобразования стволовых клеток в Т– и В-лимфоциты или на последующих этапах их дифференцировки. От уровня дефекта зависит проявление ИДС.
Возможно развитие ИДС с селективным нарушением синтеза IgG, IgA или IgM. В основе их формирования могут лежать как блокада развития отдельных субпопуляций В-лимфоцитов, так и повышение активности супрессорных Т-лимфоцитов (что бывает чаще).
У больных с селективным иммунодефицитом наблюдаются рецидивирующие инфекции слизистых оболочек верхних дыхательных путей и желудочно-кишечного тракта. Дефицит секреторных IgA в слизистых оболочках пищевого канала проявляется как рецидивирующий герпетический стоматит, хронический гастрит, кишечные инфекции.
Проявляется на 2 – 3-м месяце жизни и характеризуется злокачественным течением. В периферической крови отмечаются лимфопения, снижеие всех классов иммуноглобулинов, возникает неспособность проявлять реакции гиперчувствительности замедленного типа. Дети редко доживают до 2-летнего возраста.
Лечение зависит от типа первичной иммунологический недостаточности и включает в себя целенаправленную заместительную терапию (пересадка иммунокомпетентных тканей, трансплантация эмбрионального тимуса, костного мозга, введение готовых иммуноглобулинов – γ-глобулинов, концентрированных антител, прямое переливание крови от иммунизированных доноров, введение гормонов тимуса).
Применяется активная иммунизация против частых инфекций с помощью убитых вакцин, вводятся сульфаниламиды.
Вторичные ИДС
Вторичные ИДС развиваются под влиянием различных экзогенных воздействий на нормально функционирующую иммунную систему.
Перечень основных заболеваний, сопровождающихся вторичным иммунодефицитом, предложенный экспертами ВОЗ.
1. Инфекционные заболевания:
а) протозойные и глистные болезни – малярия, токсоплазмоз, лейшманиоз, шистозоматоз и др.;
б) бактериальные инфекции – лепра, туберкулез, сифилис, пневмококковые, менингококковые инфекции;
в) вирусные инфекции – корь, краснуха, грипп, эпидемический паротит, ветряная оспа, острый и хронический гепатиты и др.;
г) грибковые инфекции – кандидоз, кокцидиодомикоз и др.
2. Нарушения питания – истощение, кахексия, нарушения кишечного всасывания и др.
3. Экзогенные и эндогенные интоксикации – при почечной и печеночной недостаточности, при отравлении гербицидами и др.
4. Опухоли лимфоретикулярной ткани (лимфолейкоз, тимома, лимфогрануломатоз), злокачественные новообразования любой локализации.
5. Болезни обмена (сахарный диабет и др.).
6. Потери белка при кишечных заболеваниях, при нефротическом синдроме, ожоговой болезни и др.
7. Действие различных видов излучения, особенно ионизирующей радиации.
8. Сильные, длительные стрессорные воздействия.
9. Действие лекарственных препаратов (иммунодепрессанты, кортикостероиды, антибиотики, сульфаниламиды, салицилаты и др.).
10. Блокада иммунными комплексами и антителами лимфоцитов при некоторых аллергических и аутоиммунных заболеваниях.
Вторичные ИДС можно разделить на 2 основные формы:
1) системные, развивающиеся вследствие системного поражения иммуногенеза (при лучевых, токсических, инфекционных, стрессорных поражениях);
2) местные, характеризующиеся регионарным поражением иммунокомпетентных клеток (локальные нарушения иммунного аппарата слизистой, кожи и других тканей, развившиеся вследствие местных воспалительных, атрофических и гипоксических нарушений).
1. Заместительная терапия – использование различных иммунных препаратов (препаратов γ-глобулина, антитоксических, антигриппозных, антистафилококковых сывороток и др.).
2. Коррекция эффекторного звена. Включает воздействие на иммунную систему фармакологическими препаратами, корригирующими ее работу (декарис, диуцефон, имуран, циклофосфамид и др.), гормонами и медиаторами иммунной системы (препараты тимуса – тимозин, тималин, Т-активин, лейкоцитарные интерфероны).
3. Выведение ингибирующих факторов, связывающих антитела и блокирующих эффект иммунокоррекции (гемосорбция, плазмаферез, гемодиализ, лимфоферез и др.).
Ярким примером вторичного ИДС является
В организм вирус проникает с кровью, с клетками при пересадке органов и тканей, переливании крови, со спермой и слюной через поврежденную слизистую или кожу.
Через 6 – 8 недель после инфицирования появляются антитела к ВИЧ.
Клетки гибнут также вследствие деятельности самой иммунной системы (выработка нейтрализующих антител к белкам ВИЧ, выработка аутоантител к Т-хелперам). Все это выводит из строя иммунную защиту в целом и лишает организм способности противостоять каким-либо инфекциям.
1.
2.
3.
4.
При всех формах течения СПИДа отмечается повышенная склонность к образованию опухолей.
1) блокада размножения ВИЧ (подавление репликации его нуклеиновой кислоты путем ингибирования ревертазы; супрессия процессов трансляции и «сборки» вируса);
2) подавление и профилактика инфекций и опухолевого роста;
3) восстановление иммунной компетентности организма (введение препаратов тимуса, ткани костного мозга, интерлейкина-2).
Физиология и патология фагоцитоза
Различают фагоцитоз внутрисосудистый и тканевый, завершенный и незавершенный. В зависимости от размеров фагоцитируемого объекта выделяют истинный фагоцитоз – поглощение объектов размером 0,5 – 50 мкм, ультрафагоцитоз (размер объекта < 0,01 мкм), пиноцитоз (размер объекта < 0,001 мкм).
I. По морфологическим и функциональным особенностям:
1) микрофаги – нейтрофилы, эозинофилы, базофилы;
2) макрофаги – моноциты крови и костного мозга, тканевые макрофаги (гистиоциты, купферовские клетки, альвеолярные, перитонеальные, плевральные, микроглиальные макрофаги, макрофаги селезенки, лимфатических узлов, костного мозга, остеокласты и др.).
II. По способности к активному передвижению:
1) фиксированные – купферовские клетки печени, гистициты соединительной ткани, макрофаги костного мозга, лимфоузлов, синовиальных оболочек, ЦНС и др.;
2) подвижные – макрофаги серозных полостей, воспалительных экссудатов, альвеолярные макрофаги, моноциты и др.
I – приближение фагоцита к объекту фагоцитоза;
II – аттракция;
III – поглощение объекта фагоцитом;
IV – умерщвление жизнеспособных объектов (стадия киллинга);
V – переваривание нежизнеспособных объектов.
Для осуществления процесса хемотаксиса необходимы следующие факторы: наличие на поверхности фагоцита рецепторов к хемоаттрактантам, энергии АТФ, способности фагоцита к активному передвижению, а также достаточного количества хемоаттрактантов.
В роли хемоаттрактантов могут выступать продукты специфических реакций в организме (компоненты комплемента – С3а, С5а, С567, лимфокины, цитофильные антитела, иммунные комплексы и др.), эндогенные неспецифические хемоаттрактанты, выделяющиеся из поврежденных или активированных клеток, в том числе из фагоцитов, (протеазы, протеиназы, эндотоксины, калликреин, плазминогенный активатор, IgG, коллаген, цАМФ и др.).
Разновидности опсонинов:
1) термолабильные опсонины (компоненты комплемента – С3в, С4в, α– и β-глобулины, коопсонин, С-реактивный белок, фибронектин и др.);
2) термостабильные опсонины (IgG1, IgG3, IgM, агрегированные IgA1, IgA2 и др.);
3) тафтсин – тетрапептид активного центра антител.
Распознавание фагоцитом объекта фагоцитоза осуществляется за счет наличия на поверхности фагоцита специфических (для IgG1 – 2, IgA, С3в, С4в, С5а и др.) и неспецифических рецепторов (для чужеродных химических структур).
Прикрепление фагоцита к объекту фагоцитоза обеспечивается взаимодействием рецепторов фагоцита с поверхностью чужеродного объекта и находящимися на ней опсонинами.
Классификация бактерицидных факторов фагоцитов.
I. Кислородзависимые:
1) миелопероксидаза;
2) миелопероксидазнезависимые факторы – продукты «дыхательного взрыва», возникающего при активации фагоцитов (Н2О2, супероксидный анион-радикал, гидроксильный радикал, синглетный кислород, галогены и др.).
II. Кислороднезависимые:
1) лизоцим;
2) лактоферрин;
3) щелочная фосфатаза;
4) катионные белки;
5) кислая среда фагосомы (рН до 4,5).
I. Активаторы процесса фагоцитоза:
1) опсонины;
2) тироксин;
3) половые гормоны;
4) цГМФ;
5) ацетилхолин и холинергические препараты.
II. Факторы, тормозящие процесс фагоцитоза:
1) лейкотоксины;
2) антифагины;
3) цАМФ;
4) глюкокортикоиды.
Некоторые гормональные и гуморальные вещества оказывают двойственный эффект на активность и эффективность фагоцитарного процесса. Так, известно, что адреналин активирует АМФ-циклазу и создает условия для накопления цАМФ в клетках. Однако физиологические дозы адреналина могут повышать интенсивность фагоцитоза за счет:
1) выброса лейкоцитов из депо и развития перераспределительного лейкоцитоза;
2) усиления выработки лейкопоэтина, под влиянием которого возникает истинный лейкоцитоз;
3) активации фосфорилаз, повышения интенсивности гликолиза, что обеспечивает активацию всех энергозависимых процессов в фагоцитах.
Недостаточность фагоцитоза – довольно часто встречающееся состояние наследственной и приобретенной природы, которое характеризуется снижением неспецифической резистентности организма, уменьшением интенсивности антителообразования и проявляется постоянными рецидивирующими гнойно-септическими заболеваниями.
1. Уменьшение количества фагоцитов.
2. Структурно-функциональные изменения фагоцитов врожденного и приобретенного характера.
3. Изменения гормонально-гуморальной регуляции процесса фагоцитоза и др.
Уменьшение количества фагоцитов, прежде всего нейтрофильных лейкоцитов, возникает при лейкопениях врожденного и приобретенного характера, в частности при миелотоксических, выделительных, перераспределительных и иммуноаллергических лейкопениях.
Снижение фагоцитарной активности может быть обусловлено следующими структурно-функциональными изменениями фагоцитов врожденного или пробретенного характера:
1) нарушением сократительных структур фагоцита;
2) изменением структуры рецепторов, чувствительных к хемотаксическим веществам и опсонинам;
3) снижением активности ферментов, осуществляющих нормальный метаболизм фагоцитов, в частности энергетический;
г) дефектами бактерицидных систем фагоцитов.
Интенсивность фагоцитоза определяется не только степенью зрелости и количеством фагоцитов, но и характером воздействия хемоаттрактантов. При дефиците хемоаттрактантов нарушается направленное движение активных фагоцитов, поэтому снижается интенсивность процесса фагоцитоза. Причинами нарушения фагоцитоза в данном случае могут быть:
1) врожденная или приобретенная недостаточность различных компонентов комплемента, в частности Clr, Cl, C3 – 8;
2) врожденные или приобретенные иммунодефицитные состояния по Т– и В-системам лимфоцитов, которые сопровождаются дефицитом IgG, IgM, IgA.
Одним из этиологических факторов нарушения фагоцитарного процесса является дефицит опсонизирующих факторов:
1) недостаточность системы комплемента (С3b, C4b, C5b);
2) иммунологическая недостаточность первичного или вторичного происхождения, проявляющаяся нарушением продукции иммуноглобулинов.
При дефиците опсонинов затрудняется узнавание чужеродного объекта, а также прикрепление фагоцита на его поверхности.
Известно, что некоторые микроорганизмы, например, возбудители анаэробной газовой гангрены, продуцируют
Изменения коллоидно-осмотического (гипо– и гиперосмия) и онкотического давления в среде вызывают структурно-функциональные изменения фагоцитов и снижают интенсивность фагоцитарного процесса.
Эффективность неспецифических клеточных механизмов защиты во многом зависит от
ЧАСТЬ II. ЧАСТНАЯ ПАТОФИЗИОЛОГИЯ
ЛЕКЦИЯ № 11. ПАТОФИЗИОЛОГИЯ СИСТЕМЫ КРОВИ
Нормальный состав крови может изменяться в результате нарушения деятельности различных органов и систем, поддерживающих постоянство ее морфологического, белкового, электролитного, газового состава (нервная система, почки, легкие, эндокринные железы). При этом нарушаются присущие крови функции, например, дыхательная (перенос кислорода), транспортная (доставка к тканям питательных веществ, гормонов и удаление продуктов обмена), защитная (процесс фагоцитоза, выработка антител) и др.
Изменения общего количества крови
Общее количество крови в организме человека составляет в норме 6 – 8 % веса тела. Процентное содержание эритроцитов по отношению ко всему объему плазмы называют показателем гематокрита.
Этот показатель колеблется в норме в пределах 36 – 48 % и определяется путем центрифугирования крови в специальном капилляре – гематокрите.
При патологических условиях общее количество крови и соотношение между эритроцитами и плазмой меняется по разному.
Различают три вида гиперволемий.
1.
2.
Такое состояние возникает при некоторых заболеваниях почек (недостаточная фильтрация), во время спадения отеков (поступление межтканевой жидкости в сосуды), после введения физиологического раствора и кровезамещающих жидкостей.
3.
Гиповолемия встречается в трех вариантах.
1.
2.
3.
Причинами острой кровопотери могут стать ранение кровеносных сосудов при внешних травмах (наружное кровотечение), или кровотечение из внутренних органов (внутреннее кровотечение), например, желудочно-кишечное кровотечение (прободная язва желудка), легочное (каверна), маточное (преждевременная отслойка плаценты) и др.
Основным звеном патогенеза расстройств функций организма при кровопотере являются уменьшение объема циркулирующей крови и наступающая гипоксемия с последующей гипоксией органов и тканей. Гипоксемия обуславливает развитие как компенсаторно-приспособительных реакций, так и патологических изменений.
К приспособительным реакциям относятся:
1) спазм периферических сосудов (выравнивание сниженного кровяного давления) и перераспределение сосудистого тонуса, обеспечивающее лучшее кровоснабжение жизненно важных органов;
2) выброс депонированной крови;
3) ускорение свертывания крови;
4) тахикардия;
5) компенсаторная одышка;
6) поступление в кровеносное русло тканевой жидкости (так называемая гидремическая фаза компенсации на 2 – 3-й день после кровопотери);
7) усиление эритропоэза (костномозговая фаза компенсации, наступающая спустя 4 – 5 дней после кровопотери).
Несмертельная кровопотеря сопровождается временным патологическим состоянием, которое называют малокровием, или анемией.
Если компенсаторные реакции при кровопотере не обеспечивают потребность организма в кислороде, наступает фаза декомпенсации, т. е. кислородное голодание и смерть.
Изменение количественного и качественного состава эритроцитов
Процессы эритропоэза (продукции эритроцитов) и эритродиереза (разрушения эритроцитов) находятся в организме в состоянии равновесия.
Нарушение взаимоотношения этих процессов может привести к увеличению или уменьшению числа эритроцитов в крови.
Абсолютный эритроцитоз характеризуется увеличением числа эритроцитов вследствие активации эритропоэза. Наиболее частой причиной эритроцитоза является усиленная компенсаторная регенерация костного мозга при различных гипоксических состояниях (гидоксический эритроцитоз). К ним относятся заболевания легких (эмфизема, туберкулез), врожденные пороки сердца (тетрада Фалло и др.), сердечная декомпенсация, а также эритроцитоз у жителей высокогорных местностей (высотная гипоксия).
Считают, что в условиях гипоксии увеличивается в крови концентрация эритропоэтинов – гуморальных стимуляторов эритропоэза.
Относительный эритроцитоз возникает при обезвоживании организма. С потерей жидкости уменьшается объем плазмы, кровь сгущается, что приводит к относительному преобладанию эритроцитов.
Анемия возникает на почве различных заболеваний, интоксикаций, недостатка факторов, участвующих в кроветворении, гипоплазии костного мозга, гемолиза эритроцитов и т. д. При анемии нарушается дыхательная функция крови – доставка кислорода к тканям. Потребность организма в кислороде в какой-то степени компенсируется мобилизацией защитно-приспособительных реакций. К ним относятся рефлекторное усиление дыхания, тахикардия, ускорение кровотока, спазм периферических сосудов, выход депонированной крови, повышенная проницаемость оболочки эритроцитов и капиллярной стенки для газов крови.
Важнейшим фактором компенсации при анемии является усиление эритропоэза в костном мозге. В случае прогрессирующей анемии наступает тяжелая кислородная недостаточность, которая может закончиться гибелью организма.
В соответствии с функциональным состоянием костного мозга различают несколько типов анемии.
1.
2.
3.
Для различных видов анемии характерны не только уменьшение количества эритроцитов и гемоглобина, но и качественные изменения эритроцитов, которые касаются их окраски, размеров, формы, структуры и свойств.
В периферической крови сразу после кровотечения отмечается почти равномерное снижение количества эритроцитов и гемоглобина. Цветной показатель не изменяется. Кровеносное русло восполняется эритроцитами, поступившими из депо (рефлекторная фаза компенсации). Через 1 – 2 дня объем крови достигает нормальной величины за счет поступления в кровеносную систему тканевой жидкости (гидремическая фаза компенсации с нормохромной анемией). На 4 – 5-й день начинается интенсивная продукция эритроцитов, так как вызванная кровопотерей гипоксия является стимулятором выработки эритропоэтинов, под влиянием которых усиливается функция костного мозга (костномозговая фаза компенсации).
Процесс образования эритроцитов ускоряется, а гемоглобинизация их становится недостаточной из-за дефицита железа. Анемия приобретает гипохромный характер, цветной показатель падает ниже 0,9. В крови обнаруживается до 30 – 40 % ретикулоцитов (ретикулоцитарный криз).
Сроки восстановления нормального состава крови после однократной кровопотери различны. Они зависят от величины утраченной крови, содержания железа, состояния организма, регенераторной способности костного мозга и лечебных мероприятий.
Виды анемии:
1) гемолитическая;
2) приобретенная гемолитическая;
3) врожденная (наследственно обусловленная) гемолитическая – гемоглобиноз (серповидно-клеточная анемия или талассемия, обусловленная нарушенным синтезом гемоглобина А при высоком содержании гемоглобина А2 и гемоглобина F – гемоглобина плода).
1) при врожденной недостаточности фермента дегидрогеназы глюкозо-6-фосфата в эритроцитах нарушается превращение окисленного глютатиона в восстановленный;
2) дефицит фермента пируваткиназы тормозит образование пировиноградной кислоты и АТФ; нарушение гликолиза и энергетического обмена в эритроцитах способствует их гемолизу;
3) при недостатке фермента метгемоглобинредуктазы образующийся в эритроцитах метгемоглобин не может восстанавливаться в гемоглобин и функция гемоглобина как переносчика кислорода нарушается.
Во всех случаях дефицита железа нарушается синтез гемоглобина в эритро– и нормобластах. Недостаточная гемоглобинизация элементов красной крови приводит к задержке их созревания и выхода в кровеносное русло. Развивается типичная гипохромная анемия с падением цветного показателя до 0,6 и ниже.
1) токсическое действие химических веществ (бензол, соединения свинца, цитостатические препараты – миелосан, эмбихин и др.);
2) действие ионизирующей радиации;
3) длительное применение некоторых лекарственных препаратов (сульфаниламиды, амидопирин, хлормицетин);
4) истощающие инфекции с поражением костного мозга (туберкулезная интоксикация, сепсис);
5) лейкозы, метастазы злокачественных опухолей в костный мозг.
Изменение количественного и качественного состава лейкоцитов
Функции клеток белой крови разнообразны. Они защищают организм от бактерий путем фагоцитоза. Нейтрофилы выделяют бактерицидные вещества. Эозинофилы обладают антитоксической функцией. Лимфоциты превращаются в клетки, вырабатывающие антитела; эти лимфоциты называют в настоящее время В-лимфоцитами. Лейкоциты стимулируют процессы регенерации тканей, участвуют в межуточном обмене. Функция лейкоцитов становится недостаточной при уменьшении их количества или при поступлении в кровь незрелых и дегенеративных форм лейкоцитов. Недостаточность защитной функции лейкоцитов выражается в резком снижении сопротивляемости организма инфекциям.
В крови здоровых взрослых людей в условиях покоя натощак количество лейкоцитов составляет в среднем от 5000 до 8000 в 1 мм3 крови.
Увеличение числа лейкоцитов выше нормы называется лейкоцитозом, уменьшение – лейкопенией.
Лейкоцитоз и лейкопения не являются самостоятельными заболеваниями, а развиваются как сопутствующие реакции при разнообразных болезнях и некоторых физиологических состояниях организма.
Характеризуется падением содержания лейкоцитов ниже 4000 в 1 мм3 крови. Наблюдаются лейкопения с равномерным уменьшением числа всех клеток белой крови и лейкопения с преимущественным уменьшением количества отдельных видов лейкоцитов (нейтропения, эозинопения, лимфоцитопения и т. д.).
В возникновении лейкопений имеют значение следующие факторы:
1) перераспределение лейкоцитов в сосудистом русле;
2) интенсивное разрушение лейкоцитов, невосполняемое адекватной их продукцией;
3) подавление лейкопоэза.
Перераспределительная лейкопения наблюдается, например, при гемотрансфузионном или анафилактическом шоке в результате скопления лейкоцитов в расширенных капиллярах легких, печени, кишечника. Распределительная лейкопения носит временный характер и обычно сменяется лейкоцитозом.
Лейкоциты могут разрушаться под влиянием аллергических и антилейкоцитарных антител. Аллергическая лейкопения встречается иногда у лиц, обладающих повышенной чувствительностью к таким лекарствам-аллергенам, как амидопирин, сульфаниламидные препараты и пр.
Лейкопения вследствие нарушения или угнетения лейкопоэза. Нарушение лейкопоэза может проявиться в виде задержки созревания и выхода лейкоцитов в кровь, что наблюдается, например, при системных поражениях кроветворных органов (острый лейкоз), протекающих с лейкопенией.
Глубокое угнетение лейкопоэза вызывают следующие причины: хроническое отравление химическими веществами на производстве (бензол, тетраэтилсвинец); облучение рентгеновскими лучами или ионизирующей радиацией, к которой особенно чувствительна лимфоидная ткань; лимфопения обнаруживается уже в начальной стадии лучевой болезни; аутоаллергические реакции, развивающиеся в кроветворных органах; метастазирование опухолевых клеток в костный мозг; отравление перезимовавшими злаками, которые поражены грибком, содержащим токсическое начало.
а) лейкоцитоз новорожденных (количество лейкоцитов в течение первых 2 суток жизни составляет 15 000 – 20 000 в 1 мм3 крови);
б) пищеварительный лейкоцитоз, развивающийся через 2 – 3 ч после приема пищи;
в) миогенный лейкоцитоз, связанный с физической работой и др.
Более значительное увеличение числа лейкоцитов с появлением в периферической крови незрелых форм нейтрофильных, лимфоцитарных или моноцитарных клеток называют лейкемоидной реакцией (по внешнему сходству с картиной крови при лейкозах).
В зависимости от преобладания в крови тех или иных видов лейкоцитов различают нейтрофильпый, эозинофильный, базофильный лейкоцитозы, лимфоцитоз, моноцитоз.
ЛЕКЦИЯ № 12. ПАТОФИЗИОЛОГИЯ СЕРДЕЧНО-СОСУДИСТОЙ СИСТЕМЫ
Сердечная недостаточность кровообращения
Сердечная недостаточность кровообращения развивается в результате ослабления сократительной функции миокарда. Причинами его являются:
1) переутомление миокарда, вызванное рабочей перегрузкой сердца (при пороках сердца, повышении периферического сопротивления сосудов – гипертонии большого и малого круга кровообращения, тиреотоксикозе, эмфиземе легких, физическом перенапряжении);
2) непосредственное поражение миокарда (инфекции, бактериальные и небактериальные интоксикации, недостаток субстратов метаболизма, энергетических ресурсов и пр.);
3) нарушения коронарного кровообращения;
4) расстройства функции перикарда.
При любой форме поражения сердца с момента его возникновения в организме развиваются компенсаторные реакции, направленные на предупреждение развития общей недостаточности кровообращения. Наряду с общими «внесердечными» механизмами компенсации при недостаточности сердца включаются компенсаторные реакции, осуществляющиеся в самом сердце. К ним относятся:
1) расширение полостей сердца с увеличением их объема (тоногенная дилятация) и увеличение ударного объема сердца;
2) учащение сердечных сокращений (тахикардия);
3) миогенная дилятация полостей сердца и гипертрофия миокарда.
Два первых фактора компенсации включаются сразу же, как только возникает повреждение; гипертрофия сердечной мышцы развивается постепенно. Однако сам процесс компенсации, вызывающий значительное и постоянное напряжение работы сердца, уменьшает функциональные возможности сердечно-сосудистой системы. Резервные возможности сердца снижаются. Прогрессирующее падение резервов сердца в сочетании с нарушением обмена веществ в миокарде и приводит к состоянию недостаточности кровообращения.
Тоногенное расширение полостей поврежденного сердца и увеличение ударного (систолического) объема является результатом:
1) возврата крови в полости сердца через неполностью замкнутые клапаны или врожденные дефекты в перегородке сердца;
2) неполного опорожнения полостей сердца при стенозах отверстий.
На первых этапах повреждения сердца выполняемая им работа возрастает, а усиление работы сердца (его гиперфункция) постепенно приводит к гипертрофии сердечной мышцы. Гипертрофия миокарда характеризуется увеличением массы сердечной мышцы, главным образом за счет объема мышечных элементов.
Различают физиологическую (или рабочую) и патологическую гипертрофию. При
Недостаточность сердца при перегрузке во всех случаях развивается после более или менее длительного периода компенсаторной гиперфункции и гипертрофии миокарда. Образование энергии в миокарде при этом резко увеличено: напряжение, развиваемое миокардом, повышено, работа сердца усилена, но КПД значительно снижен.
Нарушения энергетического обмена в миокарде могут быть результатом недостаточности окисления, развития гипоксии, уменьшения активности ферментов, участвующих в окислении субстратов, и разобщения окисления и фосфорилирования.
Недостаточность субстратов для окисления чаще всего возникает вследствие уменьшения кровоснабжения сердца и изменения состава притекающей к сердцу крови, а также нарушения проницаемости клеточных мембран.
Склероз коронарных сосудов является наиболее частой причиной уменьшения кровоснабжения сердечной мышцы. Относительная ишемия сердца может быть результатом гипертрофии, при которой увеличение объема мышечных волокон не сопровождается соответствующим увеличением числа кровеносных капилляров.
Метаболизм миокарда может быть нарушен как при недостатке (например, гипогликемия), так и при избытке (например, при резком увеличении в притекающей крови молочной, пировиноградной кислот, кетоновых тел) некоторых субстратов. Вследствие сдвига рН миокарда возникают вторичные изменения активности ферментных систем, приводящие к нарушениям метаболизма.
Через коронарные сосуды у человека при мышечном покое за 1 мин протекает 75 – 85 мл крови на 100 г веса сердца (около 5 % от величины минутного объема сердца), что значительно превышает величину кровотока на единицу веса других органов (кроме мозга, легких и почек). При значительной мышечной работе величина коронарного кровотока возрастает пропорционально увеличению минутного объема сердца.
Величина коронарного кровотока зависит от тонуса коронарных сосудов. Раздражение блуждающего нерва обычно вызывает уменьшение коронарного кровотока, что зависит, по-видимому, от урежения ритма сердца (брадикардия) и снижения среднего давления в аорте, а также уменьшения потребности сердца в кислороде. Возбуждение симпатических нервов ведет к увеличению коронарного кровотока, которое, очевидно, обусловлено повышением артериального давления и увеличением потребления кислорода, наступающим под влиянием норадреналина, освобождающегося в сердце, и адреналина, приносимого кровью. Катехоламины значительно усиливают потребление миокардом кислорода, поэтому увеличение кровотока может оказаться неадекватным увеличению потребности сердца в кислороде. При уменьшении напряжения кислорода в тканях сердца коронарные сосуды расширяются и кровоток через них увеличивается иногда в 2 – 3 раза, что ведет к ликвидации недостатка кислорода в сердечной мышце.
Результатом острой коронарной недостаточности является ишемия миокарда, вызывающая нарушение окислительных процессов в миокарде и избыточное накопление в нем недоокисленных продуктов обмена (молочной, пировиноградной кислот и др.). При этом миокард недостаточно снабжается энергетическими ресурсами (глюкозой, жирными кислотами), сократительная способность его падает. Отток продуктов обмена также затруднен. При избыточном содержании продукты межуточного обмена вызывают раздражение рецепторов миокарда и коронарных сосудов. Возникшие импульсы проходят в основном через левые средний и нижний сердечные нервы, левые средний и нижний шейные и верхний грудной симпатические узлы и через 5 верхних грудных соединительных ветвей вступают в спинной мозг. Достигнув подкорковых центров (в основном подбугорья) и коры головного мозга, эти импульсы вызывают характерные для грудной жабы болевые ощущения.
В патогенезе нарушений гемодинамики при кардиогенном шоке существенное значение имеют три звена:
1) уменьшение ударного и минутного объема сердца (сердечный индекс ниже 2,5 л/мин/м2);
2) значительное повышение периферического артериального сопротивления (более 180 дин/сек);
3) нарушение микроциркуляции.
Уменьшение минутного и ударного объема сердца определяется при инфаркте миокарда резким снижением сократительной способности сердечной мышцы вследствие некроза более или менее обширного ее участка. Результатом уменьшения минутного объема сердца является снижение артериального давления.
Повышение периферического артериального сопротивления обусловлено тем, что при внезапном уменьшении минутного объема сердца и снижении артериального давления приводятся в действие синокаротидные и аортальные барорецепторы, в кровь рефлекторно выделяется большое количество адренергических веществ, вызывающих распространенную вазоконстрикцию. Однако различные сосудистые области реагируют на адренергические вещества неодинаково, что обуславливает различную степень повышения сосудистого сопротивления. В результате происходит перераспределение крови – кровоток в жизненно важных органах поддерживается за счет сокращения сосудов в других областях.
Нарушения микроциркуляции при кардиогенном шоке проявляются в виде вазомоторных и внутрисосудистых (реографических) расстройств. Вазомоторные нарушения микроциркуляции связаны с системным спазмом артериол и прекапиллярных сфинктеров, приводящих к переходу крови из артериол в венулы по анастомозам, минуя капилляры. При этом резко нарушается кровоснабжение тканей и развиваются явления гипоксии и ацидоза. Нарушения метаболизма тканей и ацидоз приводят к расслаблению прекапиллярных сфинктеров; посткапиллярные же сфинктеры, менее чувствительные к ацидозу, остаются в состоянии спазма. В результате этого в капиллярах скапливается кровь, часть которой выключается из кровообращения; гидростатическое давление в капиллярах растет, начинается транссудация жидкости в окружающие ткани. Вследствие этого уменьшается объем циркулирующей крови. Одновременно наступают изменения реологических свойств крови – возникает внутрисосудистая агрегация эритроцитов, связанная с уменьшением скорости кровотока и изменением белковых фракций крови, а также заряда эритроцитов.
Скопление эритроцитов еще более замедляет кровоток и способствует закрытию просвета капилляров. Вследствие замедления кровотока повышается вязкость крови и создаются предпосылки для образования микротромбов, чему способствует также повышение активности свертывающей системы крови у больных инфарктом миокарда, осложненным шоком.
Нарушение периферического кровотока с выраженной внутрисосудистой агрегацией эритроцитов, депонирование крови в капиллярах приводит к определенным последствиям:
1) падает венозный возврат крови к сердцу, что обуславливает дальнейшее снижение минутного объема сердца и еще более выраженное нарушение кровоснабжения тканей;
2) углубляется кислородное голодание тканей вследствие выключения из циркуляции эритроцитов.
При тяжелом шоке возникает порочный круг: расстройства метаболизма в тканях вызывают появление ряда вазоактивных веществ, способствующих развитию сосудистых нарушений и агрегации эритроцитов, которые в свою очередь поддерживают и углубляют существующие расстройства тканевого обмена. По мере нарастания тканевого ацидоза происходят глубокие нарушения ферментных систем, что ведет к гибели клеточных элементов и развитию мелких некрозов в миокарде, печени, почках.
ЛЕКЦИЯ № 13. ПАТОФИЗИОЛОГИЯ ПИЩЕВАРЕНИЯ
Недостаточность пищеварения
Недостаточность пищеварения – такое состояние желудочно-кишечного тракта, когда он не обеспечивает усвоение поступающей в организм пищи. Для недостаточности пищеварения, помимо нарушений деятельности пищеварительного тракта, характерны отрицательный азотистый баланс, гипопротеинемия, истощение организма, изменения реактивности.
Примерами недостаточности пищеварения в зрелом возрасте могут служить ахилия и понижение секреции панкреатического сока. В старческом возрасте недостаточность пищеварения развивается в результате снижения секреторной функции пищеварительных желез и процессов всасывания. К этому нередко присоединяются явления кишечной аутоинтоксикации в связи с ослаблением моторной функции кишечника.
Основные причины недостаточности пищеварения:
1) нарушения питания (недоброкачественная пища, сухоедение, прием чрезмерно горячей или холодной пищи и т. д.);
2) возбудители ряда инфекций (брюшной тиф, дизентерия, пищевые токсикоинфекции и др.);
3) попадание в пищеварительный тракт ядов (соли тяжелых металлов, яды растительного происхождения и др.);
4) опухоли;
5) послеоперационные состояния;
6) злоупотребление алкоголем и никотином;
7) психические травмы, отрицательные эмоции;
8) врожденные аномалии желудочно-кишечного тракта.
Нарушение аппетита
Аппетит может изменяться в сторону как понижения, так и патологического усиления.
Патологическое
Нарушения пищеварения в полости рта и пищеводе
Недостаточное размельчение пищи в полости рта часто бывает связано с нарушениями в работе жевательного аппарата. К этому аппарату относятся зубы, жевательные мышцы, мышцы языка и кости черепа, к которым прикреплены жевательные мышцы. Наиболее частыми причинами понижения жевательной способности являются поражения зубов – кариес, пародонтоз. При поражении зубов жевательное давление существенно снижается.
Жевание нарушается при воспалении жевательной мускулатуры, нарушениях ее иннервации (бульбарные параличи), травмах челюстных костей. Воспалительные процессы в полости рта затрудняют акт жевания, делают его болезненным. При плохом разжевывании пищи уменьшается рефлекторное отделение желудочного и панкреатического соков. Плохо измельченная пища травмирует слизистую оболочку полости рта и желудка, около анастомоза спастически сокращается и образует мышечный валик, который препятствует прохождению пищи по новому пути.
Нарушение продвижения пищи по пищеводу также в свою очередь может привести к нарушению переваривания пищи в целом.
Нарушение пищеварения в желудке
Нарушение пищеварения в желудке проявляется изменениями его эвакуаторной функции, переваривающей, секреторной и т. д.; в свою очередь это приводит к нарушениям нормального функционирования всего организма.
Так, например, при расстройствах резервуарной функции желудка наблюдаются его расширение, задержка в нем пищи, жидкости и газов. Стенка желудка атрофируется и нередко истончается. Ослабляется перистальтика желудка, уменьшается секреция желудочного сока. Поэтому пищевые массы в желудке подвергаются брожению и гниению, что ведет к отрыжке и рвоте. Расширенный желудок сдавливает двенадцатиперстную кишку. В организме уменьшается содержание воды, хлоридов, которые задерживаются в желудке. Как следствие этого могут возникнуть алкалоз и обезвоживание, приводящие иногда к судорогам. Может развиться коллапс.
1.
2.
3.
4.
5. Для
В патологии может наблюдаться диссоциация между количеством отделяемого сока, его кислотностью и переваривающей силой. Гипосекреция может сочетаться с высокой, а гиперсекреция – с низкой переваривающей силой сока.
Нарушения пищеварения в кишечнике
1) дуодениты – воспалительные процессы двенадцатиперстной кишки, сопровождающиеся уменьшением образования секретина;
2) неврогенное торможение функции поджелудочной железы (вагальная дистрофия, отравление атропином);
3) закупорка или сдавление протока железы;
4) разрушение опухолью;
5) аллергическая перестройка организма;
6) развитие в поджелудочной железе воспалительных процессов (острые и хронические панкреатиты).
При расстройствах функции поджелудочной железы в ней уменьшается образование ферментов, в связи с чем нарушается дуоденальное пищеварение. Особенно резко страдает переваривание жира, так как панкреатический сок содержит наиболее активный липолитический фермент. О недостаточном переваривании белка свидетельствует появление большого количества мышечных волокон в каловых массах после приема мясной пищи. Переваривание углеводов также нарушено. Развивается недостаточность пищеварения.
При разрушении поджелудочной железы ферменты могут всасываться в окружающие ткани, а также попадать в кровь. В тканях в результате действия на них ферментов развиваются некрозы. Особенно характерно появление некрозов жировой клетчатки (сальника), возникающих под влиянием липазы панкреатического сока. В крови и моче увеличивается содержание диастазы.
Большое значение расстройства секреции кишечного сока имеют у детей грудного возраста, когда вследствие недостатка лактазы или инвертазы нарушается усвоение молочного сахара.
Нарушения процессов всасывания проявляются в замедлении или патологическом их усилении.
Замедление всасывания может быть обусловлено:
1) недостаточным расщеплением пищевых масс в желудке и двенадцатиперстной кишке;
2) нарушениями пристеночного пищеварения;
3) застойной гиперемией кишечной стенки (парез сосудов, шок);
4) ишемией кишечной стенки (например, при свинцовой колике развивается спазм сосудов кишечника и даже инфаркт кишок);
5) воспалением тонкого кишечника (энтерит), когда его слизистая оболочка становится отечной, набухшей;
6) резекцией большей части тонкого кишечника;
7) кишечной непроходимостью в верхних отрезках кишечника, когда пищевые массы вообще не поступают в диетальные отрезки кишечника.
Вследствие длительных нарушений всасывания развивается истощение организма, возникают гиповитаминозы (рахит у детей) и другие проявления недостаточности пищеварения.
Патологическое усиление всасывания связано с повышением проницаемости кишечной стенки (например, при активной гиперемии ее или раздражении эпителия кишечника). Особенно легко усиление всасывания возникает у детей раннего возраста, у которых проницаемость кишечной стенки вообще высока. При этом могут всасываться и вызывать интоксикацию продукты неполного расщепления пищевых веществ.
Патогенез кишечной непроходимости сложен. Имеют значение интоксикация организма вследствие всасывания токсического кишечного содержимого, патологические рефлекторные влияния с измененной кишечной стенки, обезвоживание организма и падение уровня хлоридов крови, так как они вместе с водой переходят в брюшную полость.
1) при сильных психических потрясениях (страх, испуг) может выпадать влияние коры головного мозга на спинномозговой центр дефекации, при этом дефекация становится непроизвольной (рефлекторной);
2) при повреждениях nn. pelvici, itypogastrici дефекация нарушается в связи с расстройством функции мышц, участвующих в этом акте;
3) при воспалительных процессах в прямой кишке повышается чувствительность ее рецепторов и возникают частые ложные позывы на дефекацию (тенезмы);
4) при травмах пояснично-крестцового отдела спинного мозга вследствие выключения центра дефекации возникает недержание каловых масс; спустя некоторое время может восстановиться периодическое опорожнение кишечника, однако отсутствует чувство позыва на дефекацию.
ЛЕКЦИЯ № 14. ПАТОФИЗИОЛОГИЯ ПЕЧЕНИ
Печень является самым крупным железистым органом, при удалении или резком повреждении которого наступает смерть человека.
Основные функции печени:
1) синтез и секреция желчи;
2) участие в обмене углеводов, жиров и белков (синтез аминокислот, мочевины, мочевой и гиппуровой кислот и т. д.);
3) образование фибриногена;
4) образование протромбина;
5) образование гепарина;
6) участие в регуляции общего объема крови;
7) барьерная функция;
8) кроветворение у плода;
9) депонирование ионов железа и меди;
10) образование витамина А из каротина.
Недостаточность функций печени в организме проявляется в нарушении обмена веществ, расстройстве желчеобразования, понижении барьерной функции печени, изменении состава и свойств крови, изменении функции нервной системы, нарушении водного обмена.
Недостаточность печени
Среди большого количества этиологических факторов, которые приводят к недостаточности функций печени, наиболее важное значение принадлежит факторам, вызывающим воспалительный процесс в печени – гепатит.
Часто недостаточность функции печени возникает на почве длительного нарушения режима питания (употребление жирной пищи, спиртных напитков, недостаток в пище белков). Завершающим этапом развития хронического гепатита обычно является цирроз печени. Гистологически цирроз характеризуется дегенеративными изменениями печеночных клеток при одновременной их атипичной регенерации и сильным разрастанием соединительной ткани, в результате чего наступает или образование рубцов, или диффузное сморщивание печени.
Расстройства функции печени могут быть вторичного характера, например, при нарушении общего кровообращения, нарушении желчевыделения, общем амилоидозе.
Недостаточность функций печени характеризуется также нарушением ее барьерной функции.
Образование парных соединений. Образование таких соединений с глюкуроновой кислотой, гликоколом, цистином и серной кислотой часто бывает понижено.
В организме человека в среднем за сутки образуется 500 – 700 мл желчи. В печеночных клетках большая часть желчных кислот связывается с гликоколом или таурином, образуя соответственно гликохолевые (80 %) и таурохолевые (20 %) кислоты. В таком виде они поступают в желчь. При циррозе, гепатите, голодании, недостаточном поступлении метионина и цистеина в организм процесс образования парных желчных кислот ослабляется и тогда в желчи увеличивается количество свободных желчных кислот.
Процесс образования желчных пигментов в основном происходит в клетках ретикулоэндотелиальной системы из гемоглобина разрушенных эритроцитов. Освобожденный из этих клеток так называемый непрямой билирубин с током крови переносится к клеткам печени, где он конъюгирует с двумя молекулами глюкуроновой кислоты и превращается в прямой билирубин и выделяется с желчью в просвет кишечника.
Ослабление или полное прекращение поступления желчи в двенадцатиперстную кишку значительно изменяет содержание в моче и кале уробилина и стеркобилина, что может служить важным показателем для характеристики состояния печени.
Задержка выделения желчи может возникать в результате закупорки протоков продуктами воспаления, камнем или вследствие сдавления опухолью, а также при функциональных расстройствах в виде нарушения сокращения мышц желчного пузыря, протоков и сфинктера Одди. Раздражение парасимпатических волокон приводит к сокращению сфинктера и прекращению выделения желчи из желчного пузыря. Аналогичный эффект наблюдается при раздражении симпатического отдела вегетативной нервной системы и торможении блуждающего нерва. Механизм данного явления заключается в том, что желчный пузырь расслабляется, давление в нем падает и выход желчи задерживается.
При действии некоторых веществ (яичный желток, жиры, пептон, сернокислая магнезия) происходит ускорение выделения желчи. Большинство этих веществ оказывает влияние на образование желчи, но в основном они действуют на давление в желчных ходах или на расслабление сфинктера Одди. Одним из важных проявлений желчеотделения и желчеобразования служит желтуха.
ЛЕКЦИЯ № 15. ПАТОФИЗИОЛОГИЯ ПОЧЕК
Причины, вызывающие нарушения функций почек:
1) расстройства нервной и эндокринной регуляции функций почек;
2) нарушение кровоснабжения почек (атеросклероз, шоковые состояния);
3) инфекционные заболевания почек (пиелонефрит, очаговые нефриты);
4) аутоаллергические повреждения почек (диффузный гломерулонефрит);
5) нарушение оттока мочи (образование камней, сдавление мочеточников и пр.);
6) поражения почек при тяжело протекающих инфекционных заболеваниях и интоксикациях (сепсис, холера, отравление солями тяжелых металлов);
7) врожденная аномалия почек (гипоплазия, поликистоз);
8) наследственный дефект ферментативных систем канальцев (синдром Фанкони и др.).
Нарушение диуреза
За сутки у взрослых людей количество выделяемой мочи (суточный диурез) составляет около 1,5 л (от 1 до 2 л).
Уменьшение суточного количества мочи называется
Возбуждение корковых клеток обычно приводит к полиурии, а их торможение – к олигурии. Описаны случаи полного прекращения мочеотделения у людей, перенесших чрезвычайную психическую травму.
При различных поражениях гипоталамуса и гипофиза (кровоизлияния, опухоли, травмы черепа) диурез может увеличиваться или уменьшаться.
Подавление секреции антидиуретического гормона (АДГ) приводит к выраженной полиурии. Полиурия возникает потому, что при недостаточности АДГ нарушается обратное всасывание воды в дистальных канальцах и собирательных трубках (факультативная реабсорбция).
Может возникнуть болевая анурия. С различных рефлексогенных зон (кожа, кишечник, мочеточники, мочевой пузырь) возможно рефлекторное торможение мочеотделения. Механизм возникновения рефлекторной болевой анурии сложен, участвуют нервные и гуморальные факторы. При болевом раздражении возбуждается симпатическая нервная система, выбрасываются в кровь гормоны – адреналин и АДГ. Под влиянием избытка адреналина повышается тонус почечных артериол, что ведет к падению клубочковой фильтрации. Избыток АДГ способствует более интенсивной реабсорбции в канальцах. В конечном итоге снижается диурез вплоть до анурии.
Помимо адреналина и АДГ, на диурез оказывают влияние и другие гормоны. Увеличение диуреза при гиперфункции щитовидной железы связано с тем, что гормон тироксин усиливает фильтрацию в почечных клубочках. Такое же действие оказывает гидрокортизон – глюкокортикоидный гормон надпочечников. При избытке альдостерона (минералокортикоидный гормон надпочечников) отмечается полиурия. Возникновение ее связано, по-видимому, с торможением секреции АДГ, а также интенсивным выделением калия, вместе с которым теряется вода.
Нарушение фильтрации, реабсорбции и секреции
Ультрафильтрация плазмы с образованием первичной мочи осуществляется в клубочках почек.
Фильтрующая мембрана клубочка состоит из трех слоев: эндотелия капилляров, базальной мембраны и эпителиальных клеток внутренней части капсулы, которые называются подоцитами. Подоциты имеют отростки, плотно упирающиеся в базальную мембрану.
Фильтрующая мембрана клубочка способна пропускать почти все имеющиеся в плазме крови вещества с молекулярным весом ниже 70 000, а также небольшую часть альбуминов.
Фильтрация в клубочках происходит под влиянием фильтрационного давления (ФД).
ФД = 75 – (25 + 10) = 40 мм рт. ст., где 75 мм рт. ст. – гидростатическое давление в капиллярах клубочков, 25 мм рт. ст. – онкотическое давление белков плазмы; 10 мм рт. ст. – внутрипочечное давление. Фильтрационное давление может варьировать в пределах 25 – 50 мм рт. ст. Фильтрации подвергается примерно 20 % плазмы крови, протекающей по капиллярам клубочков (фильтрационная фракция).
Для выявления фильтрационной способности почек пользуются определением показателя очищения.
1) падение артериального давления;
2) сужение почечной артерии и артериол;
3) повышение онкотического давления крови;
4) нарушение оттока мочи;
5) уменьшение количества функционирующих клубочков;
6) повреждения фильтрующей мембраны.
Уменьшение площади фильтрации. У взрослого человека число клубочков в обеих почках превышает 2 млн. Сокращение количества функционирующих клубочков (хронический нефрит, нефросклероз) приводит к значительным ограничениям площади фильтрации и уменьшению образования первичной мочи, что является наиболее частой причиной уремии.
Поверхность фильтрации в клубочках может снижаться в связи с повреждениями фильтрующей мембраны, причинами которых могут быть:
1) утолщение мембраны за счет пролиферации клеток эндотелиального и эпителиального слоев, например, при воспалительных процессах;
2) утолщение базальной мембраны вследствие осаждения на ней противопочечных антител;
в) прорастание фильтрующей мембраны соединительной тканью (склерозирование клубочка).
Увеличение клубочковой фильтрации наблюдается при:
1) повышении тонуса отводящей артериолы;
2) уменьшении тонуса приводящей артериолы;
3) понижении онкотического давления крови.
Спазм выносящей артериолы и увеличение фильтрации отмечаются при введении малых доз адреналина (адреналовая полиурия), в начале развития нефрита и в начальной стадии гипертонической болезни.
Тонус приводящей артериолы может уменьшаться рефлекторно вследствие ограничения циркуляции крови на периферии тела, например, при лихорадке (увеличение диуреза в стадии подъема температуры).
Усиление фильтрации, обусловленное падением онкотического давления, отмечается при обильном введении жидкости или вследствие разжижения крови (во время спадения отеков).
Нарушение канальцевой реабсорбции
Эпителиальные клетки канальцев обладают высокоспециализированными функциями, они содержат различные ферменты, участвующие в активном транспорте веществ из канальцев в кровь (реабсорбция) и из крови в просвет канальцев (секреция). Эти процессы протекают активно с использованием кислорода и расходованием энергии расщепления АТФ.
К наиболее общим механизмам нарушения канальцевой реабсорбции относятся:
1) перенапряжение процессов реабсорбции и истощение ферментных систем вследствие избытка реабсорбируемых веществ в первичной моче;
2) падение активности ферментов канальцевого аппарата (наследственный дефект ферментов или действие ингибиторов);
3) повреждения канальцев (дистрофия, некроз, уменьшение числа функционирующих нефронов) при расстройстве кровоснабжения или заболевании почек.
При гипергликемиях различного происхождения (панкреатический диабет, алиментарная гипергликемия) через клубочки фильтруется много глюкозы и ферментативные системы не способны обеспечить ее полную реабсорбцию. Глюкоза появляется в моче, возникает глюкозурия.
Глюкозурия может явиться следствием повреждения эпителия канальцев при заболеваниях почек или некоторых отравлениях, например, лизолом, ртутными препаратами.
Появление белка в моче называется протеинурией. Чаще обнаруживается альбуминурия – выделение с мочой альбумина. Временная альбуминурия может встречаться у здоровых людей после напряженной физической работы, при длительных походах («маршевая альбуминурия»). Постоянная протеинурия является признаком заболевания или повреждения почек.
Аминоацидурия возникает при наследственном дефекте ферментов, обеспечивающих всасывание аминокислот в почечных канальцах, и при заболеваниях почек, сопровождающихся повреждением канальцевого аппарата. Выделение аминокислот увеличивается также при усиленном распаде белков в организме, например, при больших ожогах и при некоторых заболеваниях печени.
Если секреция альдостерона недостаточна или его действие тормозится под влиянием ингибиторов (альдоктан), реабсорбция натрия снижается. При хроническом воспалительном процессе (пиелонефрит) падает чувствительность клеток канальцев к альдостерону; при этом теряется много соли, воды и может наступить обезвоживание.
Наряду с участием альдостерона, в реабсорбции натрия большая роль принадлежит процессам ацидогенеза и аммониогенеза. При нарушении этих процессов почки перестают выполнять весьма ценную физиологическую функцию по поддержанию постоянства рН крови.
Обязательная реабсорбция воды может значительно падать при нарушении всасывания глюкозы или натрия, так как эти вещества, создавая высокое осмотическое давление, увлекают за собой воду, и наступает полиурия. Таков механизм полиурии при сахарном диабете и назначении мочегонных средств, блокирующих ферменты, участвующие в транспорте натрия и хлора.
Факультативная реабсорбция воды подавляется при недостатке АДГ (антидиуретического гормона), так как без него клетки канальцев становятся непроницаемыми для воды. Избыточная секреция АДГ сопровождается олигурией вследствие интенсивного всасывания воды.
Несахарное мочеизнурение встречается как наследственное заболевание, не поддающееся лечению АДГ в связи с отсутствием реакции почечных канальцев на этот гормон.
В здоровых почках осуществляется интенсивная реабсорбция воды из канальцев, благодаря особым механизмам осмотического концентрирования мочи (противоточная система).
У здорового человека удельный вес мочи при обычной диете не ниже 1,016 – 1,020 и колеблется в зависимости от приема пищи и воды в пределах 1,002 – 1,035.
Неспособность почек концентрировать мочу называется
Грозным признаком является изостенурия, когда удельный вес мочи приближается к удельному весу клубочкового фильтрата (1,010) и остается фиксированным на низкой цифре в разных суточных порциях мочи (монотонный диурез). Изостенурия свидетельствует о нарушении канальцевой реабсорбции воды и солей, о потере способности почек концентрировать и разводить мочу. В результате деструкции или атрофии канальцевого эпителия канальцы превращаются в простые трубки, проводящие клубочковый фильтрат в почечные лоханки. Сочетание изостенурии с олигурией является показателем тяжелой недостаточности функции почек.
Нарушение канальцевой секреции
При заболеваниях почек нарушаются процессы секреции в канальцах и все вещества, выделяемые путем секреции, накапливаются в крови.
Нарушение секреции мочевой кислоты встречается как наследственный дефект. Накопление в крови мочевой кислоты и мочекислых солей приводит к развитию так называемой почечной подагры. Усиленная секреция калия отмечается при избытке гормона альдостерона и при употреблении мочегонных средств, ингибиторов фермента карбоангидразы, содержащегося в эпителии канальцев. Потеря калия (калиевый диабет) приводит к гипокалиемии и тяжелым расстройствам функций.
Избыток паратгормона способствует интенсивной секреции и потере фосфатов (фосфатный диабет), возникают изменения в костной системе, нарушается кислотно-щелочное равновесие в организме.
Почечнокаменная болезнь
Почечнокаменная болезнь является одним из видов нарушения выделения солей почками. Причина этого заболевания изучена недостаточно. Камнеобразованию в почках способствует ряд факторов: нарушение минерального обмена, инфицирование мочевых путей, застой мочи, травмы почек, недостаток в пище витаминов А и D, наследственный дефект обмена веществ (оксалоз).
Камни состоят из фосфатов (кальциевые соли фосфорной кислоты), оксалатов (кальциевые соли щавелевой кислоты), уратов (соли мочевой кислоты) и могут иметь смешанный состав. Встречаются цистиновые камни при наследственном заболевании (цистинурия), сульфаниламидные камни при повышенной концентрации в моче сульфаниламидных препаратов, ксантиновые камни.
Рост камня происходит путем отложения на нем чередующихся концентрических слоев мукополисахаридов и кристаллоидов.
Почечные камни и осадки в моче имеют разнообразную форму и различаются по величине. Они обнаруживаются в виде мелких песчинок или больших образований, заполняющих полость лоханки.
Недостаточность функции почек
Основными показателями недостаточности функции почек являются:
1) падение клиренса;
2) азотемия;
3) резкое уменьшение или прекращение выделения мочи (ишурия, анурия);
4) падение удельного веса мочи (гипостенурия);
5) фиксация удельного веса на низких цифрах (1,010 – 1,012) в разных суточных порциях (изостенурия), ацидоз;
6) нарушение электролитного состава плазмы крови (гипонатриемия, гипер– или гипокалиемия, гипокальциемия и др.).
Для хронической почечной недостаточности наиболее характерна гипокалиемия вследствие нарушения реабсорбции калия. Потеря натрия и других щелочных катионов (калий, кальций) ведет к ацидозу. Состояние ацидоза при почечной недостаточности обусловлено не только потерей щелочных катионов и бикарбонатов, но и задержкой в крови кислых радикалов вследствие падения фильтрационной способности почек.
Для уремии характерны выраженные расстройства функций центральной нервной системы: сильная головная боль, апатия и сонливость, приступы возбуждения и судорог, одышка. Может наступить состояние с потерей сознания (уремическая кома). При уремии резко нарушается кровоснабжение головного мозга вследствие спазма сосудов. Гипоксия и интоксикация дыхательного центра служат причиной возникновения периодического дыхания типа Чейн – Стокса.
В терминальной стадии почечной недостаточности нарушения гомеостаза организма становятся несовместимыми с жизнью. Существуют различные способы борьбы с почечной недостаточностью.
Для освобождения больных от токсических продуктов обмена и нормализации гомеостаза используют искусственную почку (гемодиализ). Основной ее деталью является целлофановая полупроницаемая мембрана в виде трубочек или листов, вмонтированных в камеру. Мембрана не пропускает форменные элементы крови и белки. Кровь больного из артерии или вены протекает по камерам и возвращается в кровеносное русло. Снаружи камеры омываются диализирующим раствором минеральных солей и глюкозы. Меняя состав диализирующей жидкости, можно управлять гемодиализом.
Многократное применение гемодиализа при острых формах почечной недостаточности позволяет выиграть время, в течение которого почечная функция может восстановиться.
ЛЕКЦИЯ № 16. ПАТОФИЗИОЛОГИЯ ВНЕШНЕГО И ВНУТРЕННЕГО ДЫХАНИЯ
Нарушения внешнего дыхания
Внешнее (или легочное) дыхание складывается из:
1) обмена воздуха между внешней средой и альвеолами легких (вентиляция легких);
2) обмена газов (СО2 и О2) между альвеолярным воздухом и кровью, протекающей через легочные капилляры (диффузия газов в легких).
Главной функцией внешнего дыхания является обеспечение на должном уровне артериализации крови в легких, т. е. поддержание строго определенного газового состава оттекающей из легких крови путем насыщения ее кислородом и удаления из нее избытка углекислоты.
Под недостаточностью легочного дыхания понимают неспособность аппарата дыхания обеспечивать на должном уровне насыщение крови кислородом и удаление из нее углекислоты.
К числу показателей, характеризующих недостаточность внешнего дыхания, относятся:
1) показатели вентиляции легких;
2) коэффициент эффективности (диффузии) легких;
3) газовый состав крови;
4) одышка.
Изменения легочной вентиляции могут носить характер гипервентиляции, гиповентиляции и неравномерной вентиляции. Практически газообмен происходит только в альвеолах, поэтому истинным показателем вентиляции легких является величина альвеолярной вентиляции (АВ). Она представляет собой произведение частоты дыхания на разницу между дыхательным объемом и объемом мертвого пространства:
АВ – частота дыхания х (дыхательный объем – объем мертвого пространства).
В норме АВ = 12 х (0,5 – 0,14) = 4,3 л/мин.
По механизму развития различают гипервентиляцию, связанную с заболеванием легких, например, при спадении (коллапсе) альвеол или при накоплении в них воспалительного выпота (экссудата). В этих случаях уменьшение дыхательной поверхности легких компенсируется за счет гипервентиляции.
Гипервентиляция может быть результатом различных поражений центральной нервной системы. Так, некоторые случаи менингита, энцефалита, кровоизлияния в мозг и его травмы приводят к возбуждению дыхательного центра (возможно, в результате повреждения функции варолиева моста, тормозящего бульбарный дыхательный центр).
Гипервентиляция может возникнуть и рефлекторно, например, при болях, особенно соматических, в горячей ванне (перевозбуждение терморецепторов кожи) и т. п.
В случаях острой гипотензии гипервентиляция развивается либо рефлекторно (раздражение рецепторов аортальных и синокаротидных зон), либо центрогенно – гипотензия и замедление кровотока в тканях способствуют повышению рСО2 в них и, как следствие, возбуждению дыхательного центра.
Усиление метаболизма, например, при лихорадке или гиперфункции щитовидной железы, как и ацидоз обменного происхождения, приводит к повышению возбудимости дыхательного центра и гипервентиляции.
В некоторых случаях гипоксии (например, при горной болезни, анемии) рефлекторно возникающая гипервентиляция имеет приспособительное значение.
Гиповентиляция ведет к гипоксии (снижение рО2 в артериальной крови) и гиперкапнии (повышение рСО2 в артериальной крови).
Неравномерная вентиляция может возникнуть при потере эластичности легких (например, при эмфиземе), затруднении бронхиальной проходимости (например, при бронхиальной астме), скоплении экссудата или другой жидкости в альвеолах, при фиброзе легких.
Неравномерная вентиляция, как и гиповентиляция, ведет к гипоксемии, но не всегда сопровождается гиперкапнией.
Объем воздуха, который легкие могут вместить при максимально глубоком вдохе, называют
При заболеваниях легких величина остаточного объема и его вентиляция меняются. Так, при эмфиземе легких остаточный объем увеличивается значительно, поэтому вдыхаемый воздух распределяется неравномерно, альвеолярная вентиляция нарушается – снижается рО2 и нарастает рСО2. Остаточный объем возрастает при бронхитах и бронхоспастических состояниях. При экссудативном плеврите и пневмотораксе значительно уменьшаются общая емкость легких и остаточный объем.
Для объективной оценки состояния вентиляции легких и его отклонений в клинике определяют следующие показатели:
1) частота дыхания – в норме у взрослых равна 10 – 16 в минуту;
2) дыхательный объем (ДО) – около 0,5 л;
3) минутный объем дыхания (МОД = частота дыханиях х ДО) в условиях покоя колеблется от 6 до 8 л;
4) максимальная вентиляция легких (МВЛ) и др.
Все эти показатели существенно меняются при различных заболеваниях аппарата дыхания.
Коэффициент эффективности падает при нарушении диффузионной способности легких. Нарушение диффузии кислорода в легких может зависеть от уменьшения дыхательной поверхности легких (в норме около 90 м2), от толщины альвеоло-капиллярной мембраны и ее свойств. Если бы диффузия кислорода происходила одновременно и равномерно во всех альвеолах легких, диффузионная способность легких, рассчитанная по формуле Крога, составляла бы около 1,7 л кислорода в минуту. Однако в силу неравномерной вентиляции альвеол коэффициент диффузии кислорода в норме равен 15 – 25 мл/мм рт. ст./мин. Эта величина считается показателем эффективности легких и падение ее – один из признаков недостаточности дыхания.
Нарушения газового состава крови – гипоксемия и гиперкапния (в случае гипервентиляции – гипокапния) являются важными показателями недостаточности внешнего дыхания.
Гипер– или гипокапния и нарушения кислотно-щелочного равновесия – это важные показатели недостаточности дыхания. В норме в артериальной крови содержание СО2 равно 49 об.% (напряжение СО2 – 41 мм рт. ст.), в смешанной венозной крови (из правого предсердия) – 53 об.% (напряжение СО2 – 46,5 мм рт. ст.).
Напряжение углекислого газа в артериальной крови увеличивается при тотальной гиповентиляции легких или при несоответствии между вентиляцией и перфузией (легочным кровотоком). Задержка выделения СО2 с повышением его напряжения в крови приводит к изменениям кислотно-щелочного равновесия и развитию ацидоза.
Падение напряжения СО2 в артериальной крови в результате увеличенной вентиляции сопровождается газовым алкалозом.
Недостаточность внешнего дыхания может возникнуть при нарушениях функции или строения дыхательных путей, легких, плевры, грудной клетки, дыхательных мышц, расстройствах иннервации и кровоснабжения легких и изменении состава вдыхаемого воздуха.
Выключение
Механические затруднения прохождения воздуха через носовые ходы (чрезмерное отделение секрета, разбухание слизистой оболочки носа, полипы и пр.) нарушают нормальный ритм дыхания. Особенно опасно нарушение носового дыхания у грудных детей, сопровождающееся расстройством акта сосания.
Нарушение функции клеток мерцательного эпителия может привести к расстройствам дыхательного аппарата. Мерцательный эпителий верхних дыхательных путей является местом наиболее частого и вероятного контакта с различного рода патогенными и сапрофитными бактериями и вирусами.
Сужение просвета гортани и трахеи наблюдается при отложении экссудата (дифтерия), отеке, опухолях гортани, спазме голосовой щели, инспирации инородных тел (монет, горошин, игрушек и т. д.). Частичный стеноз трахеи обычно не сопровождается нарушениями газообмена благодаря компенсаторному усилению дыхания. Резко выраженный стеноз приводит к гиповентиляции и расстройствам газообмена. Сильное сужение трахеи или гортани может в ряде случаев вызвать полную непроходимость для воздуха и смерть от асфиксии.
Выделяют следующие периоды асфиксии.
1.
2.
3.
Общая продолжительность острой асфиксии у человека равна 3 – 4 мин.
Кашлевой рефлекс начинается с раздражения чувствительных окончаний (рецепторов) блуждающего нерва и его ветвей в слизистой оболочке задней стенки глотки, гортани, трахеи, бронхов. Отсюда раздражение передается по чувствительным волокнам гортанных и блуждающих нервов в область кашлевого центра в продолговатом мозге. В возникновении кашля имеют значение и корковые механизмы (нервный кашель при волнении, условнорефлекторный кашель в театре и т. д.). В известных пределах кашель можно произвольно вызывать и подавлять.
Возникают эти нарушения при воспалительных процессах (пневмонии), отеке, эмфиземе, опухоли легких и др. Ведущим звеном в патогенезе расстройств дыхания в этих случаях является уменьшение дыхательной поверхности легких и нарушение диффузии кислорода.
Диффузия кислорода через легочную мембрану при воспалительных процессах замедляется как из-за утолщения этой мембраны, так и из-за изменения ее физико-химических свойств. Ухудшение диффузии газов через легочную мембрану касается только кислорода, так как растворимость углекислоты в биологических жидкостях мембраны в 24 раза выше и ее диффузия практически не нарушается.
Нарушения функции плевры возникают чаще всего при воспалительных процессах (плевриты), опухолях плевры, попадании в полость плевры воздуха (пневмоторакс), скоплении в ней экссудата, отечной жидкости (гидроторакс) или крови (гемоторакс). При всех этих патологических процессах (за исключением «сухого», т. е. без образования серозного экссудата, плеврита) давление в грудной полости повышается, легкое сдавливается, возникает ателектаз, приводящий к уменьшению дыхательной поверхности легких.
Изменения строения грудной клетки, приводящие к нарушению дыхания, возникают при неподвижности позвонков и ребер, преждевременном окостенении реберных хрящей, анкилозе суставов и аномалиях формы грудной клетки.
Различают следующие формы аномалии строения грудной клетки:
1) узкая длинная грудная клетка;
2) широкая короткая грудная клетка;
3) деформированная грудная клетка в результате искривления позвоночника (кифоз, лордоз, сколиоз).
Нарушения функции дыхательных мышц могут возникнуть в результате поражения самих мышц (миозиты, атрофии мышц и т. п.), нарушения их иннервации (при дифтерии, полиомиелите, столбняке, ботулизме и др.) и механических препятствий их движению.
Наиболее выраженные нарушения дыхания возникают при поражениях диафрагмы – чаще всего при поражении иннервирующих ее нервов или их центров в шейной части спинного мозга, реже – от изменений в местах прикрепления мышечных волокон самой диафрагмы. Поражение диафрагмальных нервов центрального или периферического происхождения влечет за собой паралич диафрагмы, выпадение ее функции – диафрагма при вдохе не опускается, а оттягивается кверху в грудную клетку, уменьшая ее объем и затрудняя растяжение легких.
Эти нарушения возникают в результате недостаточности левого желудочка, врожденных дефектов перегородок сердца со сбросом крови справа налево, эмболии или стеноза ветвей легочной артерии. При этом не только нарушается кровоток через легкие (перфузия легких), но и возникают расстройства вентиляции легких. Отношение величины вентиляции к величине перфузии (В/П) является одним из главных факторов, определяющих газообмен в легких. В норме В/П равно 0,8. Диспропорция между вентиляцией и перфузией приводит к нарушению газового состава крови.
Различают следующие формы диспропорции вентиляции и перфузии.
1.
2.
3.
4.
Наршения внутреннего дыхания
Внутреннее дыхание включает:
1) транспорт кислорода из легких в ткани;
2) транспорт углекислоты из тканей в легкие;
3) использование кислорода тканями (тканевое дыхание).
Нарушение транспорта кислорода от легких к тканям возникает в результате либо уменьшения количества гемоглобина в крови (анемии, кровопотери и пр.), либо сдвига кривой диссоциации гемоглобина при различных патологических состояниях, снижении парциального давления кислорода в альвеолах. Это ухудшает возможность связывания кислорода гемоглобином, в то же время уменьшено и сродство гемоглобина к кислороду из-за сдвига кривой диссоциаций вправо. Насыщение крови кислородом оказывается меньше, чем могло бы быть при таком же парциальном давлении кислорода, но при нормальном ходе кривой диссоциации.
Большая часть углекислого газа транспортируется кровью в виде бикарбонатов плазмы и эритроцитов. Значение физически растворенного в плазме углекислого газа для общего транспорта его невелико. Кроме того, углекислый газ вступает и в химическую связь с гемоглобином, образуя карбаминогемоглобин (или карбогемоглобин). При этом восстановленный гемоглобин связывает больше углекислоты, чем оксигемоглобин. Оксигенация гемоглобина в легочных капиллярах способствует расщеплению карбогемоглобина и выведению углекислого газа из крови, а восстановление оксигемоглобина в тканях приводит к связыванию этого газа гемоглобином (образование карбогемоглобина), т. е. облегчает выведение углекислого газа из тканей. Таким образом, гемоглобин оказывается активным переносчиком не только кислорода, но и углекислого газа.
Нарушение транспорта углекислого газа из тканей в легкие чаще всего возникает при анемиях по следующим причинам:
1) потеря гемоглобина нарушает не только снабжение тканей кислородом, но и удаление оттуда углекислого газа, а также выделение этого газа в легких;
2) потеря бикарбонатов, содержащихся в эритроцитах, понижает емкость крови по отношению к углекислому газу, что затрудняет его отдачу в тканях.
Тканевое дыхание представляет собой процесс поглощения тканями кислорода. В обеспечении тканей кислородом участвуют и аппарат внешнего дыхания, и аппарат кровообращения, и система крови. Отсюда нарушение функции каждой из этих систем отдельно в той или иной мере отражается и на функции тканевого дыхания, но в то же время расстройство функции одной из этих систем компенсируется усилением другой, направленной на поддержание постоянства тканевого дыхания.
Условно можно различать экзогенные и эндогенные причины нарушения тканевого дыхания.
Нарушения тканевого дыхания возникают при многих патологических процессах как в отдельных органах, так и во всех тканях организма. Это наблюдается, например, при бластоматозном росте, авитаминозах, тяжелых сердечно-сосудистых расстройствах.
Наконец, нарушение тканевого дыхания может быть результатом расстройства функции нервной системы, например, при трофических язвах неврогенного происхождения.
Недостаточная доставка кислорода к тканям может быть обусловлена заболеваниями органов дыхания, кровообращения, системы крови или понижением парциального давления кислорода во вдыхаемом воздухе. Нарушение использования кислорода в тканях зависит обычно от недостаточности дыхательных ферментов или замедления диффузии кислорода через клеточные мембраны.
В зависимости от причин, вызывающих гипоксию, принято различать два типа кислородной недостаточности:
1) в результате понижения парциального давления кислорода во вдыхаемом воздухе;
2) при патологических процессах в организме.
Кислородная недостаточность при патологических процессах в свою очередь делится на следующие типы:
1) дыхательный (легочный);
2) сердечно-сосудистый (циркуляторный);
3) кровяной;
4) тканевый;
5) смешанный.
Кислородная недостаточность может быть острой и хронической.
Из всех функциональных систем организма к действию острой гипоксии наиболее чувствительны центральная нервная система, системы дыхания и кровообращения.