Учебное пособие посвящено элементарному мышлению, или рассудочной деятельности — наиболее сложной форме поведения животных. Впервые вниманию читателя предложен синтез классических работ и новейших данных в этой области, полученных зоопсихологами, физиологами высшей нервной деятельности и этологами. В пособии нашло отражение содержание лекционных курсов, которые авторы в течение многих лет читают в Московском Государственном университете им. М. В. Ломоносова и других вузах. Обширный список литературы предназначен для желающих самостоятельно продолжить знакомство с проблемой.
Пособие предназначено для студентов и преподавателей биологических и психологических факультетов университетов и педагогических вузов
3. А. Зорина, И. И. Полетаева
Зоопсихология
Элементарное мышление животных
Аспект пресс
Москва 2002
УДК 159.9 ББК 88.2 386
Рецензенты: доктор психол. наук, профессор
Директор Института высшей нервной деятельности и нейрофизиологии РАН, академик
доктор психол. наук, профессор
Зорина 3. А., Полетаева И. И.
3 86 Зоопсихология. Элементарное мышление животных: Учебное пособие/3. А. Зорина, И. И. Полетаева. — М.: Аспект Пресс, 2002.- 320 с.
ISBN 5-7567-0135-4.
Учебное пособие посвящено элементарному мышлению, или рассудочной деятельности — наиболее сложной форме поведения животных. Впервые вниманию читателя предложен синтез классических работ и новейших данных в этой области, полученных зоопсихологами, физиологами высшей нервной деятельности и этологами. В пособии нашло отражение содержание лекционных курсов, которые авторы в течение многих лет читают в Московском Государственном университете им. М. В. Ломоносова и других вузах. Обширный список литературы предназначен для желающих самостоятельно продолжить знакомство с проблемой.
Пособие предназначено для студентов и преподавателей биологических и психологических факультетов университетов и педагогических вузов
УДК 159.9 ББК 88.2
ISBN 5-7567-0135-4
«Аспект Пресс» 2001, 2002.
Все учебники издательства «Аспект Пресс» на сайте www.aspectpress.ru
Предисловие
Отличительная особенность этого учебного пособия состоит в том, что оно посвящено описанию преимущественно одной, но важной и фундаментальной функции мозга животных — элементарному (довербальному) мышлению, которое называют также «разумом», «рассудочной деятельностью», «разумным» или «рассудочным поведением».
Исследование рассудочной деятельности животных важно не только само по себе, но еще и потому, что оно тесно связано с проблемой происхождения психической деятельности человека в процессе эволюции. Представления о зачатках мышления животных и об уровнях его сложности всегда были предметом дискуссии и до сих пор продолжают вызывать разногласия. Вместе с тем к настоящему времени накоплено огромное количество фактов, которые убедительно свидетельствуют о том, что некоторые формы элементарного мышления имеются у достаточно широкого круга позвоночных. У ближайших родственников человека — человекообразных обезьян — в той или иной степени присутствуют элементы всех наиболее сложных когнитивных функций человека: обобщения, абстракции, усвоения символов, а также преднамеренности коммуникаций и самоузнавания. Очевидно, изучение физиологии высшей нервной деятельности и зоопсихологии невозможно без усвоения этой суммы знаний, что, в свою очередь, диктовало необходимость написания данного учебного пособия.
Весь комплекс современных знаний о мышлении животных оформился в результате усилий специалистов разных направлений на протяжении всего XX века. Первоначально пальма первенства принадлежала, несомненно, зоопсихологам и сравнительным психологам, которые заложили основы представлений об интеллекте животных. С середины 30-х годов по инициативе И. П. Павлова в работу включились физиологи высшей нервной деятельности. В 70—90-е годы существенный вклад в понимание этой проблемы внесли и этологи, поскольку именно они подробно изучили поведение многих видов животных в естественной среде обитания.
Особенно интенсивно эти работы развиваются, к сожалению, за пределами России. В последнее десятилетие одна за другой появились монографии, посвященные разным аспектам высших когнитивных функций и мышления животных. В новейших зарубежных руководствах по поведению животных (Domjan, 1993; Manning, Dawkins, 1998; Pearce, 1998), пока не переведенных на русский язык, эта область исследований получает все более полное освещение. Многие исследования российских ученых в этих книгах практически не упоминаются, равно как и в отечественной учебной литературе сколько-нибудь полное и систематизированное освещение этой области знаний отсутствует.
Принципиальная новизна данного пособия заключается в том, что в нем обобщены современные представления о мышлении животных и сделаны доступными для изучения студентами разных специальностей и разного уровня подготовки. Оно может быть использовано при изучении таких дисциплин, как сравнительная психология и зоопсихология (специальности 52. 100 и 02. 04. 00), физиология высшей нервной деятельности (специальность 03. 00. 13), этология и пр.
В книге достаточно подробно описаны те многообразные методические приемы, использование которых привело к современному пониманию проблемы разума животных (тесты на элементарную рассудочную деятельность животных, предложенные Л. В. Крушинским, выбор по образцу, обучение обезьян языкам-посредникам и др.). Особое внимание уделяется тем конкретным ситуациям, когда поведение животного выходит за рамки выполнения наследственно обусловленной видоспецифической программы или использования результатов той или иной формы индивидуального опыта.
В пособии дана характеристика развития рассудочной деятельности позвоночных животных с разным уровнем структурно-функциональной организации мозга. Наряду с описанием экспериментов на грызунах и голубях (имеющих достаточно примитивный мозг), рассматриваются результаты многочисленных исследований на более сложных животных — хищных млекопитающих, низших и человекообразных обезьянах (в этом ряду строение и функция их мозга усложняются). Помимо данных, полученных на обычных лабораторных объектах, приведены подробные итоги последних экспериментов на врановых птицах. Эта группа видов интересна тем, что представляет собой одну из вершин эволюционного развития в классе птиц и известны особой пластичностью поведения в естественной среде.
Весомый творческий вклад в разработку проблемы рассудочной деятельности, или мышления, животных внес наш учитель Леонид Викторович Крушинский (1911–1984) — ведущий отечественный специалист в изучении поведения животных. Ему принадлежит оригинальная концепция нейробиологических основ рассудочной деятельности, которая органически связана как с классической этологией, так и с генетикой поведения. По мере появления новых работ в области изучения сложных когнитивных функций животных, проводимых в том числе и в созданной им лаборатории, представления Леонида Викторовича получают убедительные подтверждения.
В пособие включена глава, где рассматриваются основы нейрогенетики и генетики поведения, на которых базируются современные представления о психической деятельности животных. Более детально эти проблемы изложены в нашем учебнике «Основы этологии и генетики поведения» (Зорина, Полетаева, Резникова, 1999).
Основу настоящего пособия составил спецкурс «Рассудочная деятельность животных как эволюционная предпосылка мышления человека», который 3. А. Зорина с середины 80-х годов читает на кафедре высшей нервной деятельности биологического факультета МГУ, а с конца 90-х и в некоторых других вузах (факультет психологии МГУ, Псковский педагогический университет и др.).
В помощь тем, кто заинтересован в более углубленном изучении проблемы, в пособии приводится подробный список первоисточников.
Для облегчения восприятия текста книги в каждой главе мы особо выделяем определения и выводы. Кроме того, для терминов, не имеющих устоявшихся русских эквивалентов, мы в скобках приводим английское название. В конце книги дан словарь терминов (Глоссарий).
Значительная часть фактов, представленных в этой книге, получена благодаря экспериментальным исследованиям наших коллег по лаборатории физиологии и генетики поведения биологического факультета МГУ, основанной Л. В. Крушинским, — Л. С. Бондарчука, Б. А. Дашевского, Л. П. Доброхотовой, Т. С. Калининой, О. Ф. Лазаревой, Н. В. Маркиной, Л. Н. Молодкиной, Е. И. Очинской, М. Г. Плескаче-вой, Н. В. Поповой, Н. П. Поповой, Л. Г. Романовой, А. Ф. Семиохиной, А. А. Смирновой, И. Б. Федотовой, Д. А. Флесса, О. О. Якименко.
Мы сердечно признательны И. В. Равич-Щербо, благодаря дружеским советам и настойчивости которой появилась эта книга, а также Н. А. Григорьян и В. В. Шульговскому за консультации и доброжелательную критику.
Выражаем глубокую благодарность И. А. Шевелеву и Н. Н. Даниловой, нашим рецензентам, за внимательное ознакомление с рукописью и благожелательные отзывы. Благодарим А. А. Смирнову, О. Ф. Лазареву и М. Г. Плескачеву за участие в написании ряда разделов книги, а также Н. ф. Еремина за помощь в подготовке рукописи к изданию.
Наши исследования последних лет стали возможны благодаря финансовой поддержке фондов РФФИ (гранты 95-04-11099-а, 97-04-62069-и и 98-04-48440-а), Университеты России (1992–1997)^ ISFJKE-100, «Фундаментальные проблемы естествознания и техники» Министерства образования РФ (№ 97-10-277), Швейцарского национального научного фонда (1Р№ 051224), а также NATO Science Programme, Cooperative Science & Technology Sub-programme, Colloborative Linkage Grant № 97-5824.
1. Введение
Основные представления и понятия науки о поведении животных в целом, а также связанные с изучением мышления животных в особенности. Краткая характеристика основных направлений науки о поведении и вклад каждого из них в изучение проблемы мышления животных. Некоторые классификации форм поведения, в том числе позволяющие выделить мышление животных как самостоятельное явление. Наиболее распространенные определения мышления человека и основные направления в изучении мышления животных. Подчеркивается, что все проявления мышления животных являются лишь элементами и зачатками соответствующих функций человека, что заставляет использовать для их обозначения более корректный термин «рассудочная деятельность».
1.1. Основные направления науки о поведении животных
Поведение животных изучают биологи разного профиля, а также психологи, поэтому исследования существенно различаются по своим теоретическим предпосылкам и методическим подходам, а также по вниманию к тем или иным сторонам поведения. Столь же неравнозначен вклад разных специалистов в анализ проблемы рассудочной деятельности (мышления) животных. Однако постепенно все эти первоначально разрозненные исследования находят точки соприкосновения и сливаются в единую современную науку о поведении животных. Эта наука пока еще не имеет «устоявшегося» названия. Иногда ее называют
В изучении поведения животных выделилось несколько самостоятельных, исторически сложившихся направлений. Это зоопсихология и сравнительная психология, бихевиоризм, физиология высшей нервной деятельности, гештальтпсихология, этология и генетика поведения.
Во второй главе их связь с проблемой элементарного мышления животных рассмотрена более подробно.
Зоопсихология — направление отечественной психологии, изучающее
Примерно такие же задачи имеет и сравнительная психология — направление исследований, в которых сопоставляются способности к обучению животных различных эволюционных ступеней развития (см.: Ярошевский, 1997). Сравнительно-психологическими в иностранной научной литературе обычно называют исследования способностей животных к обучению и рассудочной деятельности, проводящиеся в условиях лаборатории.
Бихевиоризм (от англ.
Бихевиоризм не занимается анализом происходящих в мозге процессов, а делает акцент на возможно более точной регистрации поведения и его количественном анализе. «Обучение», «интеллект», «представления» — эти понятия бихевиоризм намеренно игнорирует.
Физиология высшей нервной деятельности (ВНД) — основанное в начале XX века И. П. Павловым научное направление, связанное с
В настоящее время предметом физиологии ВНД считается экспериментальное исследование закономерностей и нейрофизиологических механизмов поведения, процессов обучения и памяти.
Исследования реализуются, как правило, на основе комплексного подхода — использования нейрофизиологических, нейрохимических, молекулярно-биологических методов (Симонов, 2000).
Психофизиология — пограничная область психологии, примыкающая к физиологии высшей нервной деятельности. Она ориентирована на
Психофизиология — направление, исследующее преимущественно человека, поскольку только он может дать отчет о своих субъективных переживаниях и психическом состоянии. Цели, методы исследования и понятийный аппарат психофизиологии в целом те же, что и у физиологии высшей нервной деятельности. Несмотря на то что термин имеет более узкое значение, существует ошибочная тенденция употреблять его вместо термина «высшая нервная деятельность».
Этология (от греч.
Ее основатели — австрийский исследователь Конрад Лоренц (1903–1989) и голландец, всю жизнь проработавший в Великобритании, Николае Тинберген (1907–1988). Этология развивалась в тесном контакте с физиологией, популяционной генетикой, генетикой поведения и др. Возникнув как направление описательное, связанное преимущественно с изучением «врожденных» действий, этология превратилась в целостную концепцию, включающую анализ поведения в онто- и филогенезе, изучение его механизмов и приспособительного значения.
Гештальтпсихология — направление, возникшее в 20-е годы в Германии и подобно бихевиоризму пытавшееся создать антитезу методу
Первичными элементами психической деятельности гештальтпсихология считала не отдельные ощущения, а
В основе этого направления лежал тезис о несводимости гештальта к сумме составляющих его частей, о значении целостного восприятия зрительного поля в структуре психической деятельности, о роли оперирования целостными зрительными образами. В отличие от рассмотренных выше направлений именно гештальтпсихология в период своего возникновения была непосредственно связана с разработкой проблемы мышления, и именно благодаря ей произошел решительный перелом в экспериментальном изучении интеллекта животных. Один из наиболее известных гештальтпсихологов — Вольфганг Келер (1925) — первым доказал наличие элементов мышления («инсайта») у животных.
Генетика поведения. Феномен
Направление, получившее название генетики поведения, с самого своего зарождения занималось анализом генетических механизмов поведения и, в частности, когнитивных способностей животных и человека.
Генетика поведения, или, как ее иногда называют теперь, «генетика мозга» — направление нейробиологии, исследующее физиологические основы процессов поведения генетическими методами. Вклад генетики поведения в понимание сложных форм поведения животных базируется на использовании
1.2. Классификации основных форм поведения
Поведение животных бесконечно разнообразно по своим формам, проявлениям и механизмам. В настоящее время накоплен большой материал, который характеризует поведение
Существующие в настоящее время системы классификации поведения многообразны, так как число
Классификация Д. Дьюсбери (1981), частично переработанная авторами, подразделяет поведение на три основные группы — индивидуальное, репродуктивное и социальное.
*
*
*
*
*
*
*
*
*
Один из аспектов социальных взаимоотношений животных связан с проблемой высших когнитивных функций. Речь идет о структуре индивидуализированных сообществ, все члены которых различают друг друга «в лицо» и сложность организации которых зависит от уровня рассудочной деятельности вида (Крушинский, 1986; Гудолл, 1992).
Проявление всех форм поведения находится под влиянием суточных, сезонных и других
Другие классификации поведения. Наиболее часто употребляемые классификации поведения подробно рассмотрены в фундаментальном руководстве Р. Хайнда «Поведение животных» (1975, гл. 2). Назовем некоторые из них.
«
•
•
•
Классификация форм поведения, предложенная Л. В. Крушинским.
Практически в любом исследовании поведения возникает вопрос о том, является ли данный поведенческий акт врожденным или приобретается в процессе накопления индивидуального опыта. Для точного ответа на вопрос о соотношении врожденных и приобретенных компонентов в поведении требуется специальный анализ с применением генетических методов и депривационных экспериментов (воспитание в изоляции от действия тех или иных факторов внешней среды). Ответ в каждом конкретном случае особый, причем наибольшие трудности возникают, когда речь идет о сложных когнитивных функциях (соотношение влияний генотипа и среды на психические особенности человека а также на некоторые признаки поведения животных рассмотрено.
Зачастую само деление на «врожденное» и «приобретенное» производится совершенно неправомерно. Например, во многих случаях, когда поведенческий акт сформировался без явного участия ассоциативного обучения, его относят к категории врожденных, следуя примитивной логике дихотомического подразделения. Однако это далеко не всегда верно, поскольку, во-первых, не все индивидуальные приспособительные поведенческие реакции есть результат обучения, и, во-вторых, если для появления поведенческого акта не требуется обучения, это еще не значит, что он осуществляется по готовой генетической программе. Здесь мы сталкиваемся с довольно распространенным вариантом смешения понятий. Объяснение этому дает классификация форм поведения, предложенная Л. В. Крушинским (1986). Она соединяет в себе два критерия: 1)
* Поведение, которое строится по
* Поведение, которое формируется
* Поведение в новой для животного ситуации, на основе
Реальное поведение животного представляет собой сложное переплетение названных компонентов. В ряде случаев сходные по внешнему выражению действия могут различаться по их соотношению.
Индивидуальное приспособление животного к условиям среды может осуществляться двояко: обучение дает ему возможность приспособиться к постоянно действующим, несколько варьирующим, но знакомым факторам среды, а благодаря различным видам мышления, или рассудочной деятельности, животное может ответить экстренной и адекватной реакцией на непредвиденные изменения привычных условий, что практически невозможно достичь лишь на основе навыков и привычек, приобретенных научением.
Как подчеркивает Л. В. Крушинский (1986), особая приспособительная роль элементарной рассудочной деятельности состоит
В современной науке явления, которые относятся к элементарной рассудочной деятельности, остаются наименее изученными, тем не менее их описание, анализ и интеграция в общую систему знаний о когнитивных процессах очень важны. Дело в том, что элементарное мышление животных в большей степени, чем другие когнитивные процессы, например, пространственная память, родственно невербальному мышлению человека.
*
1.3. Мышление человека: Определения и классификация
Прежде чем переходить к описанию проявлений мышления животных, напомним, как психологи определяют мышление человека.
Мышление — это опосредованное и обобщенное отражение действительности, в основе которого лежит произвольное оперирование образами и которое дает знание о наиболее существенных свойствах, связях и отношениях между объектами окружающего мира.
Мышление представляет собой самую сложную форму психической деятельности человека, вершину ее эволюционного развития, поэтому разные авторы в своих определениях делают акцент на разных сторонах этого многогранного процесса. Психолог О. К. Тихомиров (1984), суммируя существующие мнения, определял мышление как
По мнению С. Л. Рубинштейна (1958; 1989), разумное поведение должно быть адекватно ситуации и
Н. Н. Данилова (1997) предлагает рассматривать
Интеллект. Термин «интеллект» употребляют как в широком, так и в узком смысле. В широком смысле интеллект — это совокупность всех познавательных функций индивида, от ощущения и восприятия до мышления и воображения, в более узком смысле интеллект — это собственно мышление. Выделяют три функции интеллекта в познании человеком действительности:
«
А. В. Леонтьев (1972) видит отличительную особенность интеллекта в том, что «в дополнение к отражению отдельных вещей возникает отражение их отношений и связей (ситуации). Это отражение происходит в процессе деятельности, которая по своей структуре является двухфазной», т. е.
Формы мышления человека:
*
*
*
*
* наиболее сложной формой
Если некоторые формы мышления человека могут осуществляться без участия речи, то последняя неразрывно связана с речью (второй сигнальной системой). Именно благодаря ей мышление человека становится обобщенным и опосредованным.
Принято считать, что процесс мышления осуществляется с помощью мыслительных операций —
Мышление человека и рассудочная деятельность животных. В книге показано, какие из упомянутых мыслительных операций можно обнаружить у животных и какая степень сложности этих операций им присуща.
Для выбора критериев точного определения тех актов поведения животных, которые действительно можно считать зачатками мышления, особое внимание, как нам кажется, нужно обратить на формулировку нейропсихолога А. Р. Лурия (1966). Его определение понятия «мышление» (применительно к человеку) позволяет более точно разграничить этот процесс с другими типами психической деятельности и дает надежные критерии для выявления зачатков мышления у животных.
Согласно А. Р. Лурия, «акт мышления возникает только тогда, когда у субъекта существует соответствующий мотив, делающий задачу актуальной, а решение ее необходимым, и когда субъект оказывается в ситуации, относительно выхода из которой у него нет готового решения — привычного (т. е. приобретенного в процессе обучения) или врожденного».
Иными словами, речь идет об актах поведения, программа выполнения которых должна создаваться
* «экстренное появление ответа
* «познавательное выделение объективных условий, существенных для действия» (Рубинштейн, 1958);
* «обобщенный, опосредованный характер отражения действительности; отыскание и открытие существенно нового» (Брушлинский, 1983);
* «наличие и выполнение промежуточных целей» (Леонтьев, 1979).
Исследования элементов мышления у животных проводятся в
* способность в новых ситуациях решать незнакомые задачи, для которых нет готового решения, т. е. экстренно улавливать структуру задачи («инсайт») (см. гл. 4);
* способность к обобщению и абстрагированию в виде формирования довербальных понятий и оперирования символами (см. гл. 5, 6).
Вместе с тем во все периоды изучения этой проблемы исследователи пытались ответить на два одинаково важных и тесно связанных друг с другом вопроса:
1. Каковы
2. На каких этапах филогенеза возникли первые, наиболее
Как мы уже упоминали, проблемы мышления до недавнего времени практически не были предметом отдельного рассмотрения в пособиях по поведению животных, высшей нервной деятельности, а также зоопсихологии. Если же авторы затрагивали эту проблему, то старались убедить читателей в слабом развитии их рассудочной деятельности и наличии резкой (непроходимой) грани между психикой человека и животных. К. Э. Фабри, в частности, в 1976 году писал:
«Интеллектуальные способности обезьян, включая антропоидов, ограничены тем, что вся их психическая деятельность имеет биологическую обусловленность, поэтому они
Между тем за последние 15–20 лет накоплено огромное количество новых и разноплановых данных, которые позволяют точнее оценить возможности мышления животных, степень развития элементарного мышления у представителей разных видов, степень его близости к мышлению человека.
К настоящему времени сформулированы следующие представления о мышлении животных.
*
* Элементы мышления проявляются у животных в разных формах. Они могут выражаться в выполнении многих операций, таких как обобщение, абстрагирование, сравнение, логический вывод, экстренное принятие решения за счет оперирования эмпирическими законами и др. (см. гл. 4, 5).
* Разумные акты у животных связаны с обработкой множественной сенсорной информации (звуковой, обонятельной, разных видов зрительной — пространственной, количественной, геометрической) в разных функциональных сферах — пищедобывательной, оборонительной, социальной, родительской и др. Мышление животных — не просто способность к решению той или иной задачи. Это системное свойство мозга, причем чем выше филогенетический уровень животного и соответствующая структурно-функциональная организация его мозга, тем большим диапазоном интеллектуальных возможностей оно обладает.
Для обозначения высших форм познавательной (когнитивной) деятельности человека существуют термины — «разум», «мышление», «рассудок», «разумное поведение». Употребляя эти же термины при описании мышления животных, необходимо помнить, что сколь бы сложны ни были проявления высших форм поведения и психики животных в рассмотренном ниже материале, речь может идти только об элементах и зачатках соответствующих мыслительных функций
1. Какие направления биологии исследуют поведение животных?
2. На каких принципах основаны классификации поведения животных?
3. Какие вопросы стоят перед учеными, изучающими мышление животных?
4. Каковы основные направления в изучении мышления животных?
2. История исследований мышления животных
Эволюция представлений о «разуме» животных — от альтернативы понятия «инстинкт», объединяющей все формы индивидуально-приспособительной деятельности, до современных концепций, расценивающих элементарное мышление животных как особую ее форму, отличную от способности к обучению. Основные тенденции становления экспериментального и сравнительного подходов к изучению высших психических функций животных. Вклад различных направлений науки о поведении в решение этой проблем. Краткие персоналии исследователей, внесших существенный вклад в ее решение (Л. В. Крушинский, Н. Н. Ладыгина-Коте, В. Келер, Л. А. Фирсов и др.).
Становление представлений об элементарном мышлении (рассудочной деятельности) животных и ее проявлениях в разных сферах поведения имеет достаточно длинную историю. На всех этапах развития науки вопрос о наличии мышления у животных, степени его развития и роли в психике и поведении решался неоднозначно.
2.1. Донаучный период накопления знаний. Представления о «разуме» и «инстинкте» животных в трудах естествоиспытателей XVIII — первой половины XIX века
Представления человека о поведении животных развивались вместе с его общими знаниями о природе. Во всех сферах своей деятельности с древнейших времен человек в той или иной степени зависел от животных, и поэтому для него было важно понимать закономерности их поведения. Задолго до первых научных исследований в этой области у людей постепенно накапливались
Наблюдения за дикими и прирученными животными способствовали появлению первых представлений об
По мере накопления фактов о сложности и целесообразности поведения самых разных животных росло стремление не только преувеличивать их разумность, но и приписывать им чисто человеческие свойства — сознание, волю, любовь, злобу и т. п. Такой подход к оценке поведения животных называется
С появлением и развитием естествознания (еще с середины XVIII века) оформилось подразделение поведения животных на две категории. Одну из них назвали
Характерный для того периода развития науки подход к поведению животных можно найти в трудах французского натуралиста Ж. Бюффона (1707–1788). В книге «Всеобщая и частная естественная история» (1810) он попытался систематизировать данные не только о морфологических особенностях разных видов животных, но и об их образе жизни, нравах и привычках. Ученый выступил с критикой антропоморфического подхода в трактовке поведения животных. Описывая поразительные по сложности ритуальные действия общественных насекомых, Бюффон подчеркивал, что они являются механическими. В трудах Бюффона нет описаний тех форм поведения, которые можно было бы отнести к собственно разумным. Однако при описании «естественной истории» отдельных видов он указывал, что одни животные «умнее других», т. е. допускал различия в их умственных способностях.
Бюффон выступил против применения понятия «разум» к более элементарным формам поведения животных и тем самым способствовал созданию основ классификации отдельных форм поведения.
Одно из первых научных определений инстинкта дал немецкий ученый Г. Реймарус (1694–1768). Он допускал наличие у животных действий которые можно сопоставить с разумным поведением человека. Реймарус, так же как и его современники и предшественники включал в эту категорию прежде всего способность к подражанию и обучению.
2.2. Ф. Кювье об «уме» и инстинкте животных
Систематическое изучение поведения животных начинается с середины XIX века. Одним из первых
Ф. Кювье собрал многочисленные факты, свидетельствовавшие об «уме» животных, и попытался проанализировать их в поисках границы между «умом» и инстинктом, а также между умом человека и «умом» животных. Кювье отметил разную степень «ума» у животных. Он не использовал четких критериев «умственных способностей», тем не менее многие характеристики в дальнейшем подтвердились с помощью точных методов исследования. Например, Кювье ставил грызунов ниже жвачных только на основании того, что они не отличают человека, который за ними ухаживает, от остальных. В отличие от грызунов, жвачные животные хорошо узнают своего хозяина, хотя могут и «сбиться», когда тот меняет одежду. По мнению Ф. Кювье, хищные и приматы (их называли тогда «четверорукими») «обладают, кажется, таким умом, который только может быть у животных… По-видимому, орангутан обладает наибольшим умом». Следует отметить, Ф. Кювье принадлежит одно из первых и во многом точное описание повадок орангутана и некоторых других обезьян.
Оценивая удивительные по «целесообразности» и «разумности» действия животных, например постройку хаток бобрами, он указывал, что такие действия совершаются не целенаправленно, а как проявление сложного инстинкта, в «котором все слепо, необходимо и неизменно; тогда
Таким образом, вклад Ф. Кювье в развитие науки о поведении заключался в следующем:
* он впервые показал возможность проявления инстинкта в условиях изоляции от типичных для вида условий среды;
* попытался провести границу между «умом» и инстинктом;
* дал сравнительную характеристику «ума» представителей разных таксономических групп (хотя использовал для этого неподходящие критерии).
2.3. Влияние эволюционного учения Ч. Дарвина на исследование поведения. Книга Дж. Роменса. «Канон Ллойда-Моргана»
Решающее значение для возникновения и развития сравнительных и экспериментальных исследований поведения и психики животных имели труды Ч. Дарвина (1809–1882). Его учение о происхождении видов путем естественного отбора позволяло анализировать эволюционные аспекты поведения. Оно не только обогатило эмпирические знания, но и углубило теоретические представления ученых, а также определило использование сравнительного метода в этой области.
В работах «О выражении ощущений у животных и человека» (1872; см.: 1953), а также «Инстинкт» и «Биографический очерк одного ребенка» (1877) Дарвин впервые использовал
На большом фактическом материале Дарвин тщательно проанализировал репертуар выразительных движений у человека и животных, главным образом приматов. Обобщая результаты этого сравнения, Дарвин пришел к выводу, что проявления ощущений у животных и человека имеют много черт сходства: «Некоторые формы выражения эмоций человека, такие как вздыбливание волос под влиянием крайнего испуга или оскаливание зубов во время приступа ярости, едва ли можно понять, если не предположить, что некогда человек существовал в более примитивном и звероподобном состоянии. Общность некоторых способов выражения эмоций у различных, но близких видов, как, например, движение одних и тех же мышц во время смеха у человека и различных обезьян, представляется более осмысленным, если предположить, что они происходят от одного предка» (Дарвин, 1953). На этом основании он пришел к выводу об общности происхождения обезьян и человека, т. е. их родстве и преемственности.
Ч. Дарвин впервые применил принцип объективного анализа к таким психическим явлениям (выражение эмоций), которые до того момента считались наиболее субъективными.
Собранные Дарвиным многочисленные сведения о поведении животных в естественных условиях и в неволе позволили ему четко выделить три основные категории поведения —
Представление Ч. Дарвина о том, что психическая деятельность человека — лишь один из результатов единого процесса эволюционного развития, стимулировало применение
Таким образом, вклад Ч. Дарвина в проблему мышления животных состоит в следующем:
• впервые было введено представление о трех составляющих поведения и психики животных (инстинкт, обучение, рассудочная деятельность);
* учение Ч. Дарвина способствовало применению сравнительного и эволюционного подхода в психологии.
Одним из первых к проблеме сходства психики животных и человека обратился друг и единомышленник Дарвина Джон Ромене (1848–1894). Наибольшую известность получила его книга «Ум животных» (1888), где он выступил как натуралист, стремившийся доказать
Гипотеза о наличии у животных элементов разума всегда существовала в массовом сознании в эмпирическом, бытовом понимании этого термина. Собранный Дж. Роменсом обширный материал, на первый взгляд, вполне отвечал этому представлению, но был весьма неоднороден: наряду с вполне достоверными наблюдениями было приведено и много непроверенных. Анализ его «коллекции» с современных позиций показывает, что часть их следует рассматривать как иллюстрации проявления инстинкта, а многие другие правильнее было бы относить к «охотничьим рассказам» и «анекдотам». В книге упоминалось, что крысы «сообразили» воровать яйца особым способом: одна крыса обнимает яйцо лапами и переворачивается на спину, а другие тащат ее за хвост. Однако за более чем 100 лет интенсивного изучения поведения крыс в лаборатории никому не удалось наблюдать ничего похожего.
Работа Дж. Роменса при всей своей неоднозначности представляла собой первую попытку
Большую роль в выработке критериев, необходимых для надежного разделения разных форм поведения, сыграли работы (преимущественно теоретические) английского психолога Конвея Ллойда Моргана (1852–1936). Он одним из первых обратился к проблеме соотношения инстинктов и обучения в поведении животных. Рассматривая возможность изменения инстинктов под влиянием индивидуального опыта в книге «Привычка и инстинкт» (1899) и тщательно отграничивая все унаследованное, инстинктивное от индивидуально приобретенного, К. Л. Морган в то же время обращал внимание на постоянное переплетение этих компонентов в поведении животного.
Ученый обратил внимание, что наследуются не только инстинкты, но и способность к усвоению определенных видов индивидуального опыта, т. е. указал на существование
Морган выступал против антропоморфизма в трактовке феноменов поведения животных. Он автор «правила экономии», известного как
Согласно «правилу экономии»
Это положение особенно важно при анализе и трактовке сложных форм поведения животных, при решении вопроса о том, можно ли их считать проявлениями разума.
В работах К. Л. Моргана были сформулированы следующие положения важные для развития науки о поведении, в частности о зачатках мышления:
• взаимодействие инстинкта и приобретенных поведенческих реакций;
• существует биологическая предрасположенность к некоторым формам обучения;
• при изучении мышления животных необходимо следовать «правилу экономии».
2.4. Объективные методы изучения поведения и психики животных
Следующий этап в изучении поведения животных, и в частности наиболее сложных форм их психики, был связан с введением объективных методов исследования в противовес господствовавшему в психологии человека методу
Физиология высшей нервной деятельности, заложившая фундамент изучения физиологических основ психических явлений (подробнее см. 3.2), начинает формироваться в первом десятилетии XX века. В этот период практически параллельно Э. Торндайк в США разрабатывал основы
В основе учения И. П. Павлова лежал
Первоначально Павлов считал условный рефлекс аналогом психологического термина
В дальнейшем метод условных рефлексов действительно послужил одним из основных способов объективного изучения физиологических механизмов поведения и психики животных. Эта сторона научной деятельности И. П. Павлова широко известна, однако она не исчерпывает ни его реальных интересов, ни тех разносторонних работ, которые проводились в его лабораториях. Так, наряду с углубленными исследованиями особенностей формирования условных рефлексов животных и человека в норме и патологии, в лаборатории И. П. Павлова как при его жизни, так и впоследствии проводился анализ и «безусловно-рефлекторной деятельности» (т. е. инстинктов, хотя этот термин физиологи павловской школы почти не использовали). В той или иной степени были затронуты также проблемы онтогенеза поведения (опыты С. Н. Выржиковского и Ф. П. Майорова, 1933) и начались работы по генетике высшей нервной деятельности (подробнее см. гл. 9). Однако менее всего известны эксперименты сотрудников павловской лаборатории, которые внесли определенный вклад в исследование проблемы мышления животных (подробнее об этом см. в 2.7).
Американский ученый Эдвард Торндайк (1874–1949) наряду с И. П. Павловым считается основателем научного метода исследования процесса обучения у животных в контролируемых лабораторных условиях. Он первым из психологов применил к изучению психики животных
По Торндайку, исходным моментом поведенческого акта является наличие так называемой
В книге «Интеллект животных» (1898) Торндайк утверждал, что решение задачи является интеллектуальным актом.
И решение задачи появляется как результат активных действий индивида благодаря последовательному перебору различных манипуляций.
На основе экспериментальных данных Торндайк сформулировал ряд законов поведения при решении животным задач, основанном на «пробах и ошибках». Эти законы долгое время служили важной теоретической базой экспериментальной психологии.
Своими работами Торндайк положил начало объективному изучению поведения. Введенные им в практику лабораторного исследования методы (в том числе и метод «проблемных ящиков») позволяли количественно оценивать ход процесса научения. Торндайк первым ввел графическое изображение успешности выработки навыка — «кривую научения» (см. рис. 3. 4Б).
Переход к строгой количественной оценке действий подопытного животного сделал Торндайка
Работы Торндайка впервые позволили экспериментально разделить различные формы индивидуально приспособительного поведения. Первоначально предполагалось, что поведение животного в «проблемном ящике» будет служить демонстрацией
Торндайк показал, что в основе этого поведения лежит более простой процесс —
Таким образом, вклад Э. Торндайка в экспериментальную психологию состоит в следующем:
* он одним из первых разработал метод изучения поведения в эксперименте, который надолго вошел в научный обиход;
* сформулировал законы обучения, ввел количественные оценки этого процесса и способ его графического отображения;
* впервые дал сравнительную характеристику способности к обучению животных разных видов;
* показал, что в основе поведения, которое можно расценить как проявление разума, во многих случаях лежат другие, более простые по своей природе процессы;
* благодаря исследованиям Торндайка успешно развиваются современные направления экспериментальной сравнительной психологии.
Создателем бихевиоризма (от англ.
Основные положения бихевиоризма Дж. Уотсон четко сформулировал в программной статье в 1913 г. «Психология глазами бихевиориста». Он утверждал:
* поведение построено из секреторных и мышечных реакций организма, которые в свою очередь детерминированы действующими на животное внешними стимулами;
* анализ поведения следует проводить строго объективно, ограничиваясь регистрацией внешне проявляющихся феноменов;
* основным содержанием экспериментальной психологии является регистрация реакций в ответ на строго дозированное и контролируемое раздражение.
Эти положения произвели настоящий переворот в экспериментальной психологии. Впоследствии они были дополнены и расширены другими исследователями. Наиболее сильно бихевиоризм затронул развитие американской психологии.
Жесткая концептуальная схема бихевиоризма породила целый ряд новых, специфичных для него терминов (см. 3.2.2.3). Именно бихевиористы были сторонниками упомянутой выше тенденции исследовать поведение только двух видов лабораторных животных — белой крысы и голубя. Они активно отстаивали тезис, что исследования психики должны сводиться к изучению поведения, прежде всего к анализу связей между стимулами и возникающими на их основе реакциями (принцип «смежности» (contiguity) стимула и реакции). На долгие десятилетия
Бихевиористы (последователи Дж. Уотсона) сознательно отбрасывали возможность того, что какие-то «промежуточные переменные», например процессы переработки информации в нервной системе, можно оценить путем регистрации поведения.
Сформулированные Уотсоном принципы получили очень широкое распространение и дальнейшее разноплановое развитие (см.: Ярошевский, 1997). Большой вклад в развитие бихевиоризма внес американский исследователь Берхаус Ф. Скиннер (1904–1990). Он создал один из наиболее известных ныне методов изучения
В процессе развития бихевиоризма появились экспериментальные факты, выводы из которых вступили в противоречие с основными догмами этого учения. В частности, Э. Толмен (см. 2.4.4) сформулировал новую концепцию (необихевиоризм), допускавшую существование физиологических процессов, которые опосредуют проявление реакции на стимул. Она послужила основой для последующего изучения
В настоящее время убежденных сторонников «чистого» бихевиоризма практически не осталось. Используя приемы количественного анализа поведения (создание которых несомненно относится к заслугам бихевиоризма), современные экспериментальные психологи базируются в своих исследованиях на знаниях, накопленных наукой о поведении в целом. Как мы уже упоминали, эта тенденция — синтез научных направлений в общую теорию поведения, была основной в развитии науки о поведении второй половины XX века (см. также 2.9).
Отсутствие межвидовых различий в способности к элементарному обучению побуждало исследователей к поиску и созданию более сложных моделей его изучения. Исследования М. Биттермана (Биттерман, 1973; Bitterman, 1965), Г. Харлоу (Harlow, 1949; 1958), Л. Г. Воронина (1984) и др. позволили обнаружить более высокие уровни организации условно-рефлекторной деятельности (см. гл. 3).
Проблема мышления животных находилась за пределами основных интересов бихевиористов хотя бы потому, что крысы и голуби, главные объекты их — исследований, давали не слишком много пищи для ее анализа. Тем не менее исследования
Вместе с тем, по мере накопления данных о наиболее сложных формах поведения животных некоторые из бихевиористов (Epstein, Premack, Shusterman и др.) предпринимали попытки их трактовки в терминах теории «стимул-реакция», подобно тому как приверженцы павловского учения о высшей нервной деятельности пытались объяснять сходные факты как совокупность условных рефлексов. Примеры такого подхода мы рассмотрим в соответствующих разделах.
Психологическую концепцию американского исследователя Эдварда Толмена (1886–1959) иногда называют
На основе экспериментов по обучению крыс в разных типах лабиринтов Толмен пришел к выводу, что схема Дж. Уотсона «стимул-реакция» недостаточна для описания поведения, поскольку при этом оно сводится к совокупности элементарных ответов на стимулы и как таковое теряет свое своеобразие. Для объяснения получаемых результатов он выдвинул представление о том, что, находясь в лабиринте, животное обучается выявлять смысловые связи между элементами среды (стимулами). Так, в разных типах экспериментов по обучению крыс он показал, что животные усваивают информацию об общих характеристиках экспериментальной камеры или лабиринта, хотя сначала это никак не сказывается на поведении.
С точки зрения Толмена, в процессе обучения животное приобретает
Придерживаясь в целом бихевиористской схемы «стимул-реакция» для объяснения своих данных, Толмен ввел представление о так называемых
Предположение Толмена о существовании у животных некоего «процесса представления» согласовывалось с данными, ранее полученными американским психологом У. Хантером (Hunter, 1913). Для исследования такой способности он предложил
Представления Э. Толмена лежат в основе практически всех современных исследований когнитивных процессов у животных. Основные результаты его работ были изложены в монографии «Целенаправленное поведение животных и человека» (1932). Д. Мак-Фарленд (1988) пишет, что Толмен во многом опередил свое время и что его можно считать отцом современного
В отечественной физиологии сходные представления развивал Иван Соломонович Бериташвили (или Беритов, 1884–1974), создатель Института физиологии Грузинской АН и известной грузинской нейрофизиологической школы. Еще в конце 20-х годов XX в. Бериташвили начал оригинальные экспериментальные исследования способности животных к отсроченным реакциям. На их основе была создана гипотеза о «психонервных образах», согласно которой поведение собаки, поставленной в ситуацию решения задачи, определяется не действующими в данный момент стимулами, а
Продолжение и развитие положения И. С. Бериташвили получили в уникальных исследованиях Я. К. Бадридзе (1987) Он проанализировал онтогенез пищевого поведения волка — весьма трудного для экспериментальной работы животного. Длительные и подробные наблюдения за становлением рассудочной деятельности этого животного проводились как в условиях полусвободного содержания, так и в природе. В настоящее время исследования Бадридзе связаны с разработкой проблемы реинтродукции редких и исчезающих видов млекопитающих в Грузии. Одно из необходимых условии решения таких задач автор видит в точном знании поведения животных в естественных условиях и, в частности, их реакций на человека и элементы антропогенной среды, которые, по его данным, осуществляются с участием различных форм элементарного мышления.
2.5. Сравнительная психология и зоопсихология в России
В России основоположниками научного изучения психической активности животных были К. Ф. Рулье (1814–1858) и В. А. Вагнер. Основанное ими направление получило название
Владимир Александрович Вагнер (1849–1934) внес большой вклад в сравнительное изучение природы инстинктов и разработку самой методологии «биопсихологических», по его терминологии, исследований. Хорошо известны, например, его работы о «строительном» поведении десятков видов пауков, городской ласточки и других животных. Эти работы принесли Вагнеру большую известность как естествоиспытателю. Он был также блестящим лектором и педагогом.
В докторской диссертации «Биологический метод в зоопсихологии» (1902; см. 1997) Вагнер сделал первую сводку своих работ по психологии животных. Он подчеркивал огромное значение зоопсихологии в поиске путей эволюции психических способностей в животном мире — эволюции, которая приводит в конце концов к пониманию генезиса нашего собственного «Я». «Объективный биологический метод» Вагнера отвергал изучение психики человека как пути к пониманию психики животных. Основные идеи диссертации были затем развиты в работе «Биологические основания сравнительного метода», где ученый анализировал специальные
*
В. А. Вагнер был одним из первых русских ученых, пытавшихся анализировать проблему индивидуально-приобретенного поведения и его роль в жизнедеятельности животных. Согласно традициям своего времени он называл его «разумом», включая в это понятие результаты научения, накопление опыта в форме ассоциаций и подражание.
Вагнер отмечал, что, поскольку индивидуально-приобретенное поведение всегда связано с биологически важными ситуациями, провести границу между ним и врожденным поведением трудно, но в этом могут помочь предложенные им критерии (Вагнер, 1997):
* анатомо-физиологический;
* онтогенетический;
* биопсихологический.
Однако применение
В. А. Вагнер
Свои выводы и общетеоретические заключения Вагнер строил на основе наблюдений, многие из которых были поистине замечательными Однако он не был экспериментатором, и это, возможно, определило характер многих его выводов. В. А. Вагнер отказывал животным в наличии у них зачатков разума, он также считал, что способность к научению как таковая не является особой формой поведения. Сообщества социальных насекомых, в частности шмелей, он рассматривал как специальную форму симбиоза (!). Это, как мы знаем, также не соответствует действительности, и уже в то время социальная структура сообществ перепончатокрылых была известна. в Работы Вагнера оказали существенное влияние на развитие отечественной науки о поведении. Введенный им
Этот метод использовали Н. Н. Ладыгина-Коте (1935; 1959), Н. Ю. Войтонис (1949), Н. Ф. Левыкина (1947), Н. А. Тих (1955; 1970), Г. 3. Рогинский (1948), С. Л. Новоселова (1997), К. Э. Фабри (1976). Эти ученые изучали психику человекообразных обезьян с точки зрения биологических предпосылок антропогенеза, возникновения и развития человеческого сознания (см.: Фабри, 1976; 1993) Объектами их исследований были манипуляционная активность и орудийная деятельность, сложные навыки и интеллект, стадное поведение обезьян как предпосылка зарождения социальности и языка человека.
Особый вклад в исследование поведения и психики животных внесла Надежда Николаевна Ладыгина-Коте. Своим главным учителем Надежда Николаевна считала Ч. Дарвина. В своих исследованиях эволюции психики она применяла сравнительно-психологический метод, сопоставляя особенности поведения животных разного филогенетического уровня — высших и низших обезьян, птиц и млекопитающих разных видов, антропоидов, а также детей. По ее инициативе при Дарвиновском музее была организована зоопсихологическая лаборатория.
(1889–1963) с ее воспитанником шимпанзе Иони (фото А. Ф Котса, 1913 г.)
Н. Н. Ладыгина-Коте.
Особый след в истории науки оставила ранняя работа Н. Н. Ладыгиной-Коте — сравнительное описание онтогенеза познавательной деятельности детеныша шимпанзе и собственного ребенка. Результатом сравнения этих наблюдений явился уникальный труд «Дитя шимпанзе и дитя человека» (1935), проиллюстрированный десятками фотографий и рисунков.
Полуторагодовалый шимпанзе Иони прожил в семье Надежды Николаевны два с половиной года (1910–1913). Благодаря возможности наблюдать за Иони постоянно, был впервые описан поведенческий репертуар детеныша шимпанзе, включающий игровую, исследовательскую и конструктивную деятельность (1923). Особое значение имели наблюдения особенностей восприятия и обучаемости шимпанзе. Иони обнаружил также способность к наглядно-действенному мышлению, к обобщению нескольких признаков и использованию понятия о тождестве (сходстве) стимулов. Последнее он применял не только в ситуации эксперимента, но и в повседневной жизни.
Отмечая
Полемизируя с В. Кодером и Р. Йерксом, которые подчеркивали черты сходства в когнитивной деятельности антропоидов и человека, Н. Н. Ладыгина-Коте акцентировала внимание на имеющихся между ними различиях, на том, что «…шимпанзе не почти человек, а совсем не человек».
Подобные исследования развития детенышей обезьян, «усыновленных» человеком, успешно повторили В. и Л. Келлог (Kellog, Kellog, 1933) и К. и К. Хейс (Hayes, Hayes, 1951). Вторая жизнь этого экспериментального метода началась в 70-е годы XX века, когда американские ученые обратились к поискам у антропоидов зачатков второй сигнальной системы и начали обучать их различным языкам-посредникам (см. 2.9.2 и гл. 6). Многие из них (см., например: Savage-Rumbaugh, 1993) подтвердили выявленные Ладыгиной-Коте черты сходства в раннем развитии познавательных способностей человека и шимпанзе, а кроме того показали, что шимпанзе к 5 годам могут усваивать аналог человеческого языка на уровне детей в возрасте 2–2,5 года. Закономерности, обнаруженные Ладыгиной-Коте, подтвердились также в многочисленных исследованиях этологов, например Дж. Гудолл, Дж. Шаллера, Д. Фосси, наблюдавших шимпанзе и горилл в естественной среде обитания.
В процессе изучения познавательных способностей Иони Ладыгина-Коте разработала и ввела в экспериментальную практику методику
Центральное место в трудах Н. Н. Ладыгиной-Коте занимала проблема
Н. Н. Ладыгина-Коте писала, что «обезьяны имеют
Научное наследие Н. Н. Ладыгиной-Коте продолжает оказывать глубокое влияние на современных исследователей проблемы эволюционных предпосылок мышления человека как в России, так и за рубежом. Это влияние проявляется в разных формах. Так, до настоящего времени многие авторы (и зоопсихологи, и физиологи) продолжают широко цитировать ее труды. Более того, многие современные ученые и целые лаборатории в новых формах и на новом уровне применяют разработанные ею методы и подходы и продолжают изучать некогда затронутые ею проблемы.
Представления Ладыгиной-Коте о наличии у животных элементов мышления нашли многообразные подтверждения. Однако вопрос о степени сходства психики шимпанзе с человеческой существенно пересмотрен. Не подлежит сомнению, что пропасть между возможностями их психики не столь глубока, как считалось прежде. Даже по уровню понимания речи человека и овладения его языком шимпанзе все же достигают уровня двухлетнего ребенка.
В заключение остается упомянуть еще об одном направлении более поздних исследований, которое способствовало развитию взглядов Н. Н. Ладыгиной-Коте на эволюцию мышления. Она считала, что определение интеллекта обезьян, данное Г. 3. Рогинским (1948), нуждается в одном существенном уточнении. По ее мнению, «о наличии интеллекта может свидетельствовать установление лишь
Итак, значение работ Н. Н. Ладыгиной-Коте состоит в том, что: впервые был проведен эксперимент по воспитанию детеныша шимпанзе в «развивающей среде»; был описан онтогенез поведения шимпанзе, сопоставлены особенности познавательной деятельности приматов и человека; показано наличие у шимпанзе способности к обобщению и абстрагированию как одной из основных характеристик элементарного мышления; разработан и введен в практику важнейший современный метод исследования психики животных — обучение «выбору по образцу»; проведено сравнительное исследование орудийной и конструктивной деятельности приматов; сделан вывод о наличии у животных зачатков мышления как предпосылки мышления человека.
В 20-60-е годы в нашей стране был выполнен ряд других исследований поведения и психики обезьян в Московском, Ленинградском и Киевском зоопарках (под руководством Н. Н. Ладыгиной-Коте, Г. 3. Ро-гинского и В. П. Протопопова), в Сухумском питомнике (Н. Ю. Войтонис и его ученики, а также Л. Г. Воронин и его сотрудники), в Институте физиологии в Колтушах (ученики И. П. Павлова, в том числе П. К. Денисов, Э. Г. Вацуро, М. П. Штодин, Ф. П. Майоров, Л. Г. Воронин, позднее Л. А. Фирсов и др.; см. также 2.7).
В работах Г. 3. Рогинского (1948), Н. Ю. Войтониса (1949), Н. А. Тих (1955; 1970) и других были описаны различные
2.6. Описание «инсайта» в опытах В. Келера
Вольфганг Келер
(1887–1967).
В начале XX столетия, когда Н. Н. Ладыгина-Коте получила первое
В 1913–1920 годах В. Келер работал на станции по изучению антропоидов, находившейся на острове Тенериф Канарского архипелага. Эксперимент строился таким образом, что шимпанзе должны были решать новые, достаточно разнообразные задачи, однако построенные по одному принципу: животное могло достичь цели (например, получить недоступное до этого лакомство) только в случае, если, по словам Келера,
В опытах В. Келера все предметы, необходимые для нахождения правильного ответа, находились в пределах «зрительного поля» животного и давали ему возможность решить задачу за
Теоретический анализ поведения шимпанзе в данной экспериментальной ситуации проводился автором с позиций гештальтпсихологии. В книге «Исследование интеллекта человекоподобных обезьян» (1930) В. Келер писал, что шимпанзе способны к решению некоторых проблемных ситуаций не методом «проб и ошибок», а за счет иного механизма —
В. Келер определял «инсайт» как решение задачи на основе улавливания логических связей между стимулами или событиями: воспринимая всю ситуацию в целом, со всеми ее внутренними связями, животное может принимать адекватное решение. В. Келер оценивал такое поведение шимпанзе как
В. Келер описал также способность шимпанзе к орудийной и конструктивной деятельности и считал ее убедительным доказательством наличия у них элементов мышления. В настоящее время орудийная деятельность животных, и в первую очередь приматов, продолжает оставаться одной из популярных экспериментальных моделей для изучения элементарного мышления (см. 4, 5).
Работы В. Келера вызвали волну полемики (Выготский, 1997) и попыток трактовать «инсайт» как результат переноса ранее имевшегося опыта (или «проб, совершаемых в уме» и т. п.). Впоследствии целый ряд ученых, в их числе И. П. Павлов (см. 2.7) и американский психолог Р. Йеркс, пытались воспроизвести опыты В. Келера.
Роберт Йеркс (Yerkes, 1929; 1943) показал, что с задачами «келеровского типа» справляются не только шимпанзе, но также орангутан и горилла. Кроме того, антропоиды в его опытах различали цвет, форму и величину предметов (как Ион и в опытах Ладыгиной-Коте) и решали разные задачи, требующие использования орудий (см. рис. 4.4). В 1932 году Йеркс организовал при Йельском университете большой питомник для человекообразных обезьян (в 40-е годы там находилось до 100 шимпанзе). В настоящее время он преобразован в Йерксовский региональный приматологический центр в городе Атланта (штат Джорджия). На его базе выполнены многие работы, в том числе обучение шимпанзе языкам-посредникам (см. 2.9.2 и гл. 6).
Работы Р. Йеркса были продолжены его последователями в США, хотя их число было несоизмеримо меньше, чем сторонников бихевиоризма (Nissen, 1931; Kellog, Kellog, 1933; Hayes, Hayes, 1951 и др.). Обобщая результаты этого периода исследований, Р. Йеркс (1943) пришел к выводу, что «…результаты экспериментальных исследований подтверждают рабочую гипотезу, согласно которой научение у шимпанзе связано с иными процессами, нежели подкрепление и торможение… Можно предполагать, что в скором времени эти процессы будут рассматриваться как предшественники символического мышления человека».
Взгляды Р. Йеркса на психику антропоидов радикально отличались от точки зрения тех психологов, которые вслед за Н. Н. Ладыгиной-Коте подчеркивали наличие более резкой грани между психикой человека и животных.
2.7. Учение о высшей нервной деятельности и проблема мышления животных
Точка зрения И. П. Павлова. Существует мнение, что И. П. Павлов отрицательно относился к гипотезе о наличии у животных более сложных форм высшей нервной деятельности, чем условный рефлекс. Такое представление имело вполне реальную основу. Так, его первая реакция на работы В. Келера и Р. Йеркса о способности шимпанзе к «инсайту» как проявлению способности к разумному решению была резко отрицательной. Он обвинил этих авторов «…во вредной, я бы сказал, отвратительной, тенденции отступления от истины», и это его высказывание до сих пор продолжает цитироваться в зарубежной литературе. Позднее он писал: «Келеру… нужно было доказать, что обезьяны разумны и приближаются по разумности к человеку, — не то что собаки», тогда как поведение шимпанзе есть не что иное, как «…ряд ассоциаций, которые частью уже получены в прошлом, частью на ваших глазах сейчас образуются и получаются» (Павловские Среды, 1949. Т. 2. С. 429).
Резкие комментарии по поводу трактовки опытов В. Келера не помешали И. П. Павлову отнестись к предмету полемики как к научной задаче. Чтобы опровергнуть выводы В. Келера и доказать, что в поведении даже высших обезьян нет ничего, выходящего за рамки условно-рефлекторных механизмов, Павлов приступил к собственным экспериментам. В 1933 году в лаборатории появились шимпанзе Роза и Рафаэль. П. К. Денисов, а позднее Э. Г. Вацуро и М. П. Штодин, работая с этими животными, сначала повторили опыты В. Келера, а затем провели и собственные оригинальные исследования. Их результаты позволили Павлову в последние годы жизни высказать принципиально новые представления о наличии у животных более высокого уровня интегративной деятельности мозга, чем условный рефлекс.
Разбирая опыты с Рафаэлем, о которых мы будем говорить ниже, на лабораторном семинаре (вошедшем в историю науки под названием Павловских Сред), Павлов отмечал способность этой обезьяны оперировать
Ученики И. П. Павлова не оценили и не поддержали тех радикальных изменений, которым подверглись на основе проведенных опытов взгляды их учителя. Более того, было приложено немало сил, чтобы представить самые сложные формы поведения антропоидов всего лишь цепями и сочетаниями условных рефлексов. Когда Л. В. Крушинский в 70-е годы одним из первых попытался привлечь внимание к этой стороне павловского наследия, то не встретил должного понимания.
Прозорливость Павлова, привлекшего в 30-х годах для анализа поведения собак, обезьян и человека генетический, онтогенетический, приматологический (точнее, сравнительно-физиологический), математический и кинематографический методы, остается до настоящего времени непонятой. Здесь снова можно говорить скорее о неприятии, чем о заблуждении.
После смерти И. П. Павлова работы на антропоидах проводились под общим руководством его преемника — Л. А. Орбели. Однако настоящее развитие мысли И. П. Павлова о «зачатках конкретного мышления» у животных получили лишь во вторую половину XX века в работах ученика Орбели ленинградского физиолога Л. А. Фирсова, а также в работах Л. В. Крушинского в МГУ (см. гл. 4 и 8).
Начиная с 60-х годов изучение высших психических функций животных в нашей стране сделалось объектом преимущественно в физиологических исследований.
Леонид Александрович Фирсов.
Л. А. Фирсов (род. 1920 г.)
Важный вклад в исследования поведения и психики человекообразных обезьян внесли работы Л. А. Фирсова, ученика Л. А. Орбели. Лабораторные исследования Л. А. Фирсова включали сравнительную оценку:
* разных видов памяти;
* способности к подражанию;
* способности к обобщению и формированию довербальных понятий;
* голосового общения;
* некоторых аспектов социальных взаимодействий у антропоидов.
Многоплановые исследования Л. А. Фирсова показали, что шимпанзе обладают высочайшим уровнем развития поведения и психики. Они действительно способны к одномоментному образованию множества условных реакций разного уровня сложности. Фирсов проанализировал природу таких условно-рефлекторных связей и показал, что часть из них — «подлинные» условные рефлексы, другие реализуются на основе синтеза новых и старых ассоциаций, третьи возникают благодаря «переносу» ранее сформированных реакций (за счет «вторичного научения»), четвертые — благодаря подражанию, а пятые — как реализация «каузальной связи», т. е. улавливания закономерностей процессов и явлений.
В Л. А. Фирсов пришел к заключению о том, что психика антропоидов характеризуется таким уровнем способности к формированию довербальных понятий, который можно рассматривать как В
Всесторонние лабораторные исследования традиционными методами Л. А. Фирсов сочетал с наблюдениями и экспериментами в условиях, приближенных к естественным. С этой целью группу шимпанзе (а затем и макаков-резусов) выпускали на небольшой озерный остров в Псковской области и наблюдали, как воспитанные в неволе обезьяны осваивают природные корма, строят гнезда, избегают опасности, играют, как складываются отношения в сообществе. Одновременно проводились эксперименты для анализа орудийной деятельности (были созданы специальные установки, получить пишу из которых можно было только при помощи орудий — палок, выломанных в ближайшем лесу). Были повторены также опыты на «выбор по образцу» (см. гл. 3 и 5), где в качестве стимулов использовались не геометрические фигуры, как это практикуется в лабораториях, а растения, цветы, веточки, палочки и другие природные объекты. В процессе опытов и наблюдений регулярно проводилась профессиональная киносъемка. Благодаря этому было создано около 10 документальных фильмов (в том числе «Обезьяний остров» и «Думают ли животные?»), которые сохранили для нас реальную картину многих уникальных экспериментов.
Наибольший интерес в связи с проблемой мышления животных представляют работы Л. А. Фирсова, посвященные соотношению образной и условно-рефлекторной памяти, сравнительному изучению функции обобщения, а также орудийной деятельности обезьян. В 90-е годы Л. А. Фирсов занимался также «живописью» обезьян. Он автор целого ряда монографий и обзорных статей (1972; 1977; 1982; 1987; 1993).
2.8. Исследование зачатков мышления у животных-неприматов в первой половине XX века. Работы Н. Майера и О. Келера
Наряду с работами на приматах, уже начиная с 30-х годов, рассматривалась возможность наличия зачатков мышления у менее высокоорганизованных позвоночных.
Одной из первых попыток экспериментального исследования этого вопроса были работы американского исследователя Николаев Майера. Он изучал способность лабораторных белых крыс к «поиску обходного пути», к преодолению различных преград, и к обучению в лабиринтах (см. рис. 4.19).
Ученый пытался выяснить, способны ли эти животные к рассудочной деятельности
Крысы в опытах Н. Майера оказались способными «спонтанно интегрировать изолированные элементы прошлого опыта, создавая новую, адекватную ситуации поведенческую реакцию». Как будет показано далее (см. 4.8), эта способность составляет один из признаков, по которым можно судить о наличии
Отто Келер (1889–1974).
Способность к обобщению как проявление элементарного разума исследовал в опытах с птицами немецкий ученый О. Келер, коллега и единомышленник К. Лоренца, одного из создателей этологии (см. 2.11). Вместе с Лоренцем в 1937 году они основали и долгие годы издавали «Журнал психологии животных» («Zeitschrift fur Tierpsychologie», позднее переименованный в «Ethology»), в котором были опубликованы многие, ставшие классическими работы этологов. Применяя сравнительный подход к исследованию поведения животных, Келер еще в середине 50-х годов XX века пришел к выводу, что у человека и животных имеется целый ряд общих элементов поведения, в том числе и
Главную известность получили опыты О. Келера по обучению птиц «счету», а точнее — оперированию количественными и, в особенности, числовыми параметрами стимулов (см. 5.5 и 6.2).
Научный подход О. Келера характеризовался применением количественного анализа результатов эксперимента, в отличие от большинства своих предшественников, работы которых носили описательный характер и допускали в основном качественный анализ.
Работы О. Келера знаменовали собой начало нового этапа в методологии исследований поведения и в развитии представлений о мышлении животных:
• он одним из первых начал регистрировать ход эксперимента на кинопленку, что обеспечивало высокий, ранее никогда не достигавшийся уровень объективности в оценке результатов и возможность их последующего тонкого анализа;
• принципиальной новизной отличалась и разработанная О. Келером процедура формирования обобщения по признаку «число» (см. гл. 5);
• на основании своих опытов О. Келер пришел к выводу о высокой способности птиц
• благодаря работам О. Келера «счет» у животных сделался такой же моделью для изучения зачатков мышления, как орудийная и конструктивная деятельность (см. гл.
* он сформулировал представление о наличии
Наряду с данными о наличии элементов мышления у человекообразных обезьян к середине XX века сформировалось представление о том, что зачатки этой высшей психологической функции имеются также у других, не столь высокоорганизованных позвоночных.
2.9. Исследования высших когнитивных функций животных во второй половине XX века
К сожалению, архивы О. Келера погибли во время бомбежек Кенигсберга в конце Второй мировой войны.
К началу 60-х годов факт существования
Следующий логический этап в изучении проблемы требовал:
* более широкого сравнительного подхода, как, в частности, в бурно развивавшейся в тот период этологии;
* исследования физиологических механизмов рассудочной деятельности и их сопоставления с механизмами обучения;
* дальнейшего углубленного исследования мышления антропоидов — для уточнения границы между психикой человека и животных.
Прогресс в первых двух направлениях был достигнут в значительной мере благодаря работам Г. Харлоу (см. гл. 3), а также Л. В. Крушинского и его лаборатории, которые сделали элементарное мышление животных предметом физиологического эксперимента, заложили основы анализа нейрофизиологических механизмов и морфологического субстрата процессов мышления.
В этих исследованиях были разработаны универсальные схемы опытов на животных разных таксонов, и их результаты были доступны регистрации и объективной количественной оценке. Такие эксперименты можно было воспроизводить многократно и даже моделировать математически. Они позволяли проводить сравнительный анализ высших когнитивных функций животных, приближаясь к пониманию их физиолого-генетических механизмов.
Принципиально важными были достижения и в третьем направлении. В многочисленных исследованиях американских психологов подтверждалась способность антропоидов к освоению языков-посредников (см. гл. 6), а работы Л. А. Фирсова показали высокую способность к обобщению и использованию символов на базе традиционных подходов.
Л. В. Крушинский
(1911–1984)
Леонид Викторович Крушинский был эрудированный биолог с широким кругом научных интересов, включавших проблемы биологии развития, патофизиологии, генетики поведения, этологии, теории эволюции (Лексин, 1995; Полетаева, 1999). Исследования онтогенеза поведения позволили Л. В. Крушинскому сформулировать
Суммируя основной вклад Л. В. Крушинского в развитие учения об элементарном мышлении, можно выделить следующие положения:
* он дал рабочее определение рассудочной деятельности (см. 4.6);
* предложил оригинальные методики ее лабораторного изучения, пригодные для тестирования представителей самых различных таксонов (см. гл. 4);
* дал сравнительную характеристику развития рассудочной деятельности в ряду позвоночных, показав, что ее наиболее простые формы имеются у представителей рептилий, птиц и млекопитающих;
* проанализировал некоторые аспекты ее морфофизиологических механизмов и роль в обеспечении адаптивности поведения (см. гл. 8);
* изучал генетическую детерминацию и онтогенез этой формы поведения (см. гл. 9).
Концепция физиолого-генетических основ рассудочной деятельности животных обобщала все многообразие полученных в лаборатории фактов и открывала перспективы дальнейших работ.
Основные результаты и теоретические воззрения Л. В. Крушинского изложены им в книге «Биологические основы рассудочной деятельности» (1977, 1986), посмертно удостоенной Ленинской премии (1988) и в 1991 году переведенной на английский язык. В 1991 и 1993 годах были изданы два тома «Избранных трудов» Л. В. Крушинского, в которые вошли наиболее важные статьи из его научного наследия.
По мере накопления данных о том, что между психикой человека и человекообразных обезьян обнаруживается много сходного, у исследователей закономерно возникло предположение, что даже владение
Попытки выяснить, действительно ли такая возможность существует, неоднократно предпринимались еще с начала века (см. Линден, 1981; Фирсов, 1993), но первые результаты таких исследований свидетельствовали, что обезьянам человеческая речь недоступна. В то же время неудачи в попытках обучить их речи не воспринимались исследователями как окончательный «приговор». Р. Иеркс (Yerkes, 1929) первым усомнился в «лингвистической неспособности» антропоидов. Позднее было высказано предположение, что эти неудачи связаны прежде всего с
Впервые такой опыт осуществили американские ученые Беатрис и Аллен Гарднер (Gardner, Gardner, 1969; 1985).
В 1966 году у них в доме появилась 10-месячная самка шимпанзе Уошо, которую они растили, как ребенка С ней постоянно занимались воспитатели, которые в присутствии обезьяны и между собой общались только с помощью амслена (AMSLAN — American Sign Language) — жестового языка глухонемых Предполагалось, что обезьяна начнет подражать людям, но ее пришлось обучать жестам специально, особенно в начальный период В возрасте 3 лет Уошо усвоила уже 130 знаков, к месту употребляла их, объединяла «слова» в небольшие предложения, придумывала собственные, шутила и даже ругалась (подробнее см гл 6).
Работа Гарднеров оказала огромное влияние на представления ученых не только о возможностях психики животных, но и о происхождении человеческого мышления. Полученные ими данные были поистине сенсационными. Их эффект можно было сравнить только с впечатлениями ученых от опытов В. Келера.
Вскоре результаты своих исследований стал публиковать другой американский ученый — Дэвид Примэк (Premack, 1972; 1983; 1994). Он работал с шимпанзе Сарой, которую обучал не амслену, а своеобразному искусственному языку. Это был «язык» пластиковых жетонов, каждый из которых обозначал предмет, свойство или понятие. Такие жетоны располагали в той или иной последовательности на магнитной доске, тем самым «поддерживая беседу».
В период подготовки рукописи (лето 2000 года) эта обезьяна продолжала участвовать в экспериментах. По-видимому, она — один из выдающихся долгожителей среди лабораторных приматов (как правило, опыты над ними прекращаются в гораздо более раннем возрасте). Одна из причин — агрессивность и неуправляемость взрослых шимпанзе, особенно самцов.
Следует отметить, что супруги Гарднеры и Примэк были представителями двух во многом расходившихся в теоретическом плане направлений в изучении поведения животных — этологии и бихевиоризма. Биологи-эволюционисты и этологи, Гарднеры стремились к соблюдению биологической адекватности условий эксперимента и пытались включить элементы языка-посредника в естественную структуру поведения обезьяны. Не случайно, что одну из своих обобщающих работ (Gardner, Gardner, 1985) они посвятили основоположнику этологии Н. Тинбергену, поскольку именно он добивался блестящих результатов, умело сочетая тонкий аналитический эксперимент с наблюдением целостного поведения животного в естественной для него среде обитания.
Д. Примэк первоначально опирался на представления бихевиоризма. Он считал, что любое, в том числе и коммуникативное поведение, можно сформировать за счет «сочетания» стимулов, реакций и подкрепления. Он полагал, что если выделить основные «стимульные» параметры, свойственные языку человека, то далее на основе этой программы можно обучать обезьяну. По мнению Примэка, для выполнения такой работы на первом этапе исследователь должен сначала
Различные подходы этих исследователей способствовали прогрессу в познании наиболее сложных форм высшей нервной деятельности приматов. Вскоре после первых работ начались исследования по обучению обезьян «языку-посреднику» в Йерксовском приматологическом центре (г. Атланта, штат Джорджия, США). Американский исследователь Дуэйн Рамбо с сотрудниками (Rumbaugh et al., 1973; 1977; 1991) разработали установку, где обезьяна должна была нажимать клавиши с изображением так называемых лексиграмм — значков, каждый из которых обозначал название предмета, действия или определения.
Это был еще один искусственный язык
Компьютерный вариант йеркиша дал возможность ответить на ряд вопросов, возникших в связи с предыдущими попытками обучения обезьян языку-посреднику, и продолжает интенсивно использоваться и до настоящего времени (см. гл. 6).
Данные, полученные в этих исследованиях, свидетельствуют | об отсутствии разрыва в познавательных способностях человека и человекообразных обезьян.
В настоящее время показано, что при соответствующем воспитании у шимпанзе спонтанно проявляется понимание устной речи (Savage-Rumbaugh, 1993; 1995; см. гл. 6), что позволяет наметить новые подходы к изучению интеллекта животных.
Высокий уровень способности человекообразных обезьян к обобщению и использованию символов был продемонстрирован и в работах, выполненных на основе более традиционных подходов, не связанных с обучением языку (Фирсов, 1993; Boysen et al., 1993 и др.). О них будет рассказано в гл. 6.
2.10. Генетика поведения
Первая экспериментальная работа по изучению генетических основ поведения была проведена Адой Йеркс (A. Yerkes, 1916) — она исследовала наследование комплекса злобности, пугливости и дикости у крыс
Как известно, в экспериментах И. П. Павлова и его сотрудников довольно быстро стало ясно, что у разных собак условные рефлексы вырабатывались с разной быстротой и в дальнейшем обнаруживали разную стойкость. Анализ этих различий привел Павлова к мысли о существовании разных типов высшей нервной деятельности, а также о генетически детерминированных различиях в свойствах поведения. Результатом этого было создание в Колтушах специальной лаборатории «Генетики высшей нервной деятельности». Целью ее работы
В течение многих месяцев у собак, предположительно различавшихся между собой, по определенной программе (так называемые «большой» и «малый» стандарты) вырабатывали множество условных реакций и на этой основе определяли
Принципиально новый подход к исследованию генетических основ поведения предложил Л. В. Крушинский, работы которого в этой области по своему содержанию и методологии практически не имеют себе равных и по сей день (Полетаева, 1999). Ему удалось показать, что некоторые генетически детерминированные особенности поведения животных (в частности, трусость — предрасположенность к пассивно-оборонительным реакциям) обнаруживаются в поведении собаки совсем не всегда, а только при достаточно высоком общем уровне ее возбудимости. Изучение наследования особенностей поведения собак было также материалом большой монографии П. Скотта и Дж. Фуллера
В 1960 году увидела свет первая обобщающая монография под названием «Генетика поведения» (Fuller, Thompson, 1960). Она быстро стала очень популярной среди биологов, поскольку авторы, будучи не генетиками, а экспериментальными психологами, смогли достаточно просто, понятным языком, не злоупотребляя специальными генетическими терминами, показать, как важна роль генотипа в формировании поведения, и привести экспериментальные свидетельства этого.
Значительную роль в формировании генетического подхода к анализу поведения сыграли работы сотрудников так называемой Джексоновской лаборатории в штате Мэн (Jackson Laboratory, Maine, USA). Это учреждение — всемирно известный центр, основанный в 1929 году генетиком К. Литтлом. В нем поддерживаются инбредные и селектированные линии мышей, число которых в настоящее время очень велико. В этой коллекции имеются десятки линий с мутациями, затрагивающими строение мозга и поведение. Джексоновская лаборатория может предоставить любое число животных, имеющих нужный исследователям генотип. Такая возможность позволила ученым разных стран подробно исследовать множество линий и выявить межлинейные различия поведения и нейрохимических признаков. Это послужило основой для разработки новых подходов к изучению
В нашей стране генетические исследования поведения животных проводились в нескольких лабораториях, созданных крупными учеными-биологами. В Институте физиологии им. И. П. Павлова АН СССР М. Е. Лобашев (1907–1971) и В. К. Федоров (1914–1972) в развитие идей Павлова изучали генетическую детерминированность свойств нервной системы и вопросы сравнительной генетики поведения. Эти два научных коллектива — лаборатории сравнительной генетики поведения и генетики высшей нервной деятельности — плодотворно работают и сейчас. В Институте цитологии и генетики СО АН СССР (Новосибирск) под руководством Д. К. Беляева (1917–1985) в 60-е годы была начата селекционная работа по созданию «одомашненной» линии серебристо-черных лисиц. Эта работа увенчалась успехом, и линия лисиц, не имеющих страха перед человеком и обнаруживающих в своем поведении целый ряд черт, сходных с собаками, продолжает быть предметом исследований (Трут, 2000). На биологическом факультете МГУ, в лаборатории, созданной и возглавленной Л. В. Крушинским, была выведена чувствительная к звуку линия крыс (Крушинского — Молодкиной, КМ), которая в настоящее время переведена в инбредное состояние. Аудиогенная эпилепсия, которая свойственна этим животным, является общепринятой и ценной лабораторной моделью судорожных состояний человека (Романова, Калмыкова, 1981).
Под руководством Л. В. Крушинского были проведены исследования
Применение генетических методов необходимо в исследованиях В физиологических механизмов обучения и когнитивных процессов.
2.11. Этология
В этой главе необходимо кратко упомянуть еще об одном из направлений в изучении поведения, хотя по своим первоначальным целям и задачам оно не имело прямого отношения к проблеме мышления животных. Речь идет об
Этология развивалась сначала как альтернатива строго лабораторной науке — сравнительной психологии. Благодаря контакту этологии с популяционной биологией и генетикой возник ряд современных направлений науки о поведении, например социобиология. Первоначально, вплоть до 60-х годов XX века, существовала достаточно активная конфронтация этологов и приверженцев сравнительной психологии, однако со временем были предприняты вполне удачные попытки синтеза этих направлений с целью создания общей науки о поведении животных. Одной из наиболее полных и до сих пор не устаревших книг по поведению животных является монография Р. Хайнда (1975), целью которой было именно непротиворечивое изложение огромного количества данных, накопленных учеными разных направлений. Рассмотрим основные направления этологии.
Приспособительное значение поведения — одна из центральных проблем этологии. Например, английские этологи в течение многих лет подробно изучали поведение разных видов морских птиц, в особенности систему их приспособлений к борьбе с хищниками.
Основная цель этих работ — понять, каким образом отдельные реакции способствуют сохранению вида и под влиянием каких факторов среды они сформировались в процессе естественного отбора.
Индивидуальное развитие поведения. Вопрос о роли врожденного и приобретенного в поведении на протяжении десятилетий был дискуссионным. Этологи подошли к решению этой проблемы со строгих генетических позиций.
Подобно любому морфологическому признаку организма, поведенческие признаки развиваются на основе генетической программы с большим или меньшим воздействием внешних факторов.
Применяя метод воспитания детенышей в изоляции от действия определенных факторов внешней среды (например, без контакта с сородичами или без доступа к какому-то виду пищи), они показали, что одни признаки поведения — инстинктивные действия — развиваются у животного независимо от индивидуального опыта или же требуют воздействия среды лишь в определенный чувствительный период развития Другие же признаки, хотя и имеют явную генетическую программу, могут полностью проявиться только при дополнительном обучении (см также гл 9).
Эволюцию поведения этологи изучают путем сопоставления инстинктивных действий у животных разных видов, относящихся к разным, иногда близким, а иногда удаленным друг от друга таксономическим группам.
Сравнительный метод позволяет проследить происхождение таких движений подобно тому, как устанавливается происхождение морфологических признаков в сравнительной анатомии.
Классическим исследованием такого рода можно считать описание церемонии ухаживания у 16 видов уток, выполненное К. Лоренцем.
Общественное поведение животных. Особое направление этологических исследований составляет изучение внутригрупповых отношений.
Многообразные и сложные инстинкты обеспечивают как рассредоточение животных в пространстве, так и поддержание порядка при жизни в сообществе.
Начало этим работам было положено наблюдениями Лоренца за полуручными птицами у него дома — галками и гусями. Отслеживая поведение птиц с момента вылупления, Лоренц убедился, что многие элементы его появляются сразу или вскоре после рождения, не требуя для своего формирования специального обучения или тренировки. Опыты с воспитанными в неволе утками и гусями позволили ему обнаружить явление
Задачи этологии. Н. Тинберген (Tinbergen, 1963) четко определил круг основных проблем, которые должна изучать этология и вокруг которых на деле концентрируются интересы практически всех исследователей поведения. Анализ поведенческого акта, по мнению Тинбергена, можно считать полноценным, если после разностороннего описания его феноменологии исследователь получит возможность ответить на следующие 4 вопроса:
* какие факторы регулируют проявление данного поведения;
* каков способ его формирования в онтогенезе;
* каковы пути его возникновения в филогенезе;
* в чем состоят его приспособительные функции?
Эти знаменитые
Методы этологических исследований. Полное описание поведения (с использованием объективных методов регистрации — магнитофонных записей, кино- и видеосъемки, хронометража) берется за основу составления
В качестве единиц инстинктивного поведения этологи выделяют так называемые
Это видоспецифические (одинаковые у всех особей данного вида), врожденные (т. е. проявляющиеся в «готовом виде», без предварительной тренировки), шаблонные (т. е. стереотипные по порядку и форме исполнения) двигательные акты.
При изучении формирования поведения этологи опираются на представление о структуре поведенческого акта, предложенное еще в начале 20-х годов американским исследователем Уоллесом Крэгом.
У животного в определенный период развивается состояние той или иной
Этологи считают, что поведение животного — это не всегда реакция на внешние раздражители. Во многих случаях, достигнув состояния специфической готовности к какому-то виду деятельности (например, готовности к размножению), оно активно ищет стимулы — ключевые раздражители, при действии которых эта деятельность могла бы осуществиться. Так, в начале сезона размножения самцы территориальных видов птиц выбирают место для гнезда и охраняют занятый участок, ожидая появления самки. У ряда видов, образующих пары лишь на один сезон, самец в начале весны должен разыскивать самку.
Поисковое поведение представляет собой изменчивый комплекс реакций и характеризуется
Например, выбор гнездовой территории птицей иногда ограничивается перелетом в определенное, ранее уже использованное место; в других случаях требуются и длительные поиски, борьба с другими самцами, а при поражении — выбор нового участка. Поисковая фаза, как и завершающий акт, строится на врожденной основе. В ходе онтогенеза эта основа дополняется приобретенными реакциями. Именно поисковое поведение является средством индивидуального приспособления животных к окружающей среде, причем это приспособление бесконечно разнообразно по своим формам.
Основу формирования поискового поведения в онтогенезе составляют такие процессы, как привыкание и обучение во всех его многообразных формах. Именно к
В отличие от вариабельного по форме поискового поведения непосредственное осуществление стоящей перед животным цели, удовлетворение руководившего им побуждения происходит в виде
Типичные примеры таких ФКД — различные формы угрожающего и полового поведения, специфические позы «выпрашивания пищи», подчинения и др. Именно реакции типа завершающих актов и представляют собой, по Лоренцу, инстинктивные движения в чистом виде, как это было определено выше. Как уже указывалось, такие реакции часто оказываются филогенетически более консервативными, чем многие морфологические признаки. Примером их служит одновременное вытягивание крыла и ноги, а также шеи и крыла, наблюдаемое у птиц всех видов.
В Этология рассматривается как одна из основ современной нейробиологии. Благодаря этологии появились новые эффективные модели для исследования физиологических процессов, прежде всего С памяти.
Современная этология включает более широкий диапазон исследований — от нейроэтологии до этологии человека (Этология человека, 1999). Исследование сложнейших коммуникативных процессов у животных получило название
Оценка рассудочной деятельности первоначально не входила в задачи классической этологии. Тем не менее основоположники этологии решали для себя положительно вопрос о наличии у животных элементарного разума. К. Лоренц, в частности, в своей знаменитой книге «Человек находит друга» (1992) приводит множество примеров проявления интеллекта у собак.
Лоренц определял
Следует напомнить и известны с конца 40-х годов работы ближайшего коллеги К. Лоренца — О. Колера о способности птиц к обобщению количественных и числовых признаков (см. 2.8).
Наблюдения этологов внесли существенный вклад в современные представления о проявлениях разума в поведении животных. Благодаря систематическим исследованиям поведения животных разных видов в естественной среде обитания накапливались данные о том, что их разум действительно играет реальную роль в обеспечении адаптивности поведения. Особенно ярко и полно это описано в наблюдениях Дж. Гудолл (см. 2.1.4 и 7.5). Кроме того, знание полного репертуара поведенческих актов данного вида позволяло, в соответствии с «каноном Ллойда-Моргана», отбросить те случаи, которые ошибочно расценивались как «разумные», а на самом деле были отражением некой «готовой» программы, ранее не известной наблюдателю. Особый интерес представляют полученные этологами данные о поведении высших обезьян.
Интерес к поведению высших обезьян в естественной среде обитания биологи проявляли еще в середине XX века. Первая серьезная попытка была предпринята в 1930 году по инициативе американского приматолога Р. Йеркса, который на два с половиной месяца отправил своего сотрудника Генри Ниссена во Французскую Гвинею для организации полевых наблюдений за шимпанзе. Однако систематические исследования, длительностью от нескольких месяцев до нескольких десятилетий, начались только в 60-е годы XX века, когда в них постепенно включились десятки ученых разных стран. Наиболее весомый вклад в изучение поведения популяции
Гораздо большее внимание было уделено изучению поведения
Джейн Гудолл начала свои исследования в 1960 году, чуть позже Д. Шаллера, совсем молодой 18-летней девушкой. В начале работы у Джейн не было помощников, и с ней поехала в Африку мать, чтобы не оставлять дочь одну. Они разбили палатку на берегу озера, в долине Гомбе-Стрим, и Джейн приступила к наблюдениям за свободно живущими шимпанзе. Потом, когда ее данными заинтересовались во всем мире, у нее возникли тесные контакты с коллегами, приезжавшими из разных стран, а главными помощниками стали местные зоологи — танзанийцы.
В своих взаимоотношениях с шимпанзе Дж. Гудолл прошла три этапа. Долгие недели она бесплодно бродила по лесам, не встречая обезьян или только слушая издали их крики. На этом этапе она старалась лишь преодолеть естественный для диких животных страх, потому что обезьяны просто разбегались при ее появлении. Через некоторое время они перестали убегать при виде девушки и явно заинтересовались ею. Сначала шимпанзе пытались угрожать ей, однако эти реакции со временем угасли, и они стали встречать Гудолл как сородича: при ее появлении не убегали, а издавали особый приветственный крик, в знак дружелюбия раскачивали ветви деревьев, а в некоторых случаях вообще не обращали на нее внимания, реагируя как на «свою». А потом наступил долгожданный момент, когда кто-то из обезьян первый раз коснулся ее руки. Все долгие десятилетия после этого знаменательного дня обезьяны воспринимали присутствие исследовательницы как нечто само собой разумеющееся. Также спокойно они переносили и появление ее коллег. В первые годы работы Гудолл активно поощряла непосредственные контакты шимпанзе с человеком. Однако с течением времени становилось очевидным, что работы в Гомбе-Стрим будут продолжаться и расширяться и в них будут участвовать все новые исследователи. Ввиду этого было решено отказаться от такой практики и не подвергать людей риску нападения этих чрезвычайно сильных и ловких животных. Во избежание возможных осложнений впредь было решено не подходить к шимпанзе ближе, чем на 5 метров, и уклоняться от установления прямых контактов.
С годами методы и направления работы группы Дж Гудолл менялись. Например, несколько лет обезьян подкармливали бананами в специальном пункте недалеко от лагеря. Это помогло выявить особенности, которые остались бы неизвестными, если бы ученые ограничились только наблюдениями за естественным поведением обезьян (см. гл. 7).
Длительные наблюдения дали Дж. Гудолл возможность хорошо «познакомиться» со всеми членами группы. В ее книге «Шимпанзе в природе: поведение» (1992) прослеживаются «биографии» и судьбы десятков отдельных особей на протяжении десятилетий, иногда от рождения до смерти. Нет, пожалуй, ни одной стороны поведения шимпанзе, которая осталась бы за пределами ее внимания. Благодаря работе Дж. Гудолл мы узнали:
• как шимпанзе общаются друг с другом и поддерживают порядок в своих группах;
• как воспитывают детенышей;
• чем питаются;
• как протекают контакты с соседними группами и с животными других видов.
Наряду с детальным описанием всех видоспецифических форм индивидуального, репродуктивного и социального поведения шимпанзе автор внимательно анализирует роль индивидуально-приспособительных факторов. Большое внимание в книге уделено описанию того, как происходит формирование необходимых навыков у детенышей, какова роль подражания в обучении не только молодняка, но и взрослых особей.
Многие наблюдения Гудолл свидетельствуют об уме этих животных, их способности экстренно, «с ходу», придумывать неожиданные решения новых задач. Целая глава ее книги посвящена
Таким образом, регулярные наблюдения за поведением животных в привычной для них среде обитания привели Дж. Гудолл и ряд других этологов к следующему представлению: для человекообразных обезьян характерно рассудочное поведение, включающее умение планировать, предвидеть, способность выделять промежуточные цели и искать пути их достижения, вычленять существенные моменты данной проблемы.
Другие доказательства того, что в естественном поведении шимпанзе есть элементы, удовлетворяющие этому критерию, приводит Л. А. Фирсов (1977) на основе наблюдений за ними в неволе и в приближенных к естественным условиях.
Современные представления о высших психических функциях животных основаны на разноплановом комплексе знаний, почерпнутых как из экспериментов, так и из наблюдений этологов за их поведением в природной среде обитания.
2.12. Основные гипотезы об эволюции психики
Завершая краткий очерк истории исследований рассудочной деятельности животных, необходимо особо упомянуть о том, как формировались представления о возникновении этой формы психики в процессе эволюции.
С появлением
Дарвин считал, что признаки поведения, как и морфологические признаки, характеризуются наследственной изменчивостью. Они также могут формироваться в эволюции «путем медленного накопления многочисленных слабых, но полезных уклонений», которые «обязаны своим возникновением тем же причинам, какие вызывают изменения в строении тела». Свою мысль Дарвин подробно проиллюстрировал, описав вероятный путь эволюционного происхождения инстинкта размножения у кукушки, строительного инстинкта пчел и «рабовладельческого» инстинкта муравьев, а также выразительных движений у человека. Чарльз Дарвин одним из первых высказал гипотезу о наличии у животных элементов мышления. Этот вопрос имел для него принципиальное значение, поскольку был связан с вопросом о происхождении человека. Выдвигая в «Происхождении видов» тезис о наличии у животных зачатков разума, он называл это свойство
Однако в научном мире с момента своего появления эта гипотеза вызывала серьезные возражения и до сих пор не получила окончательного признания ни у физиологов и психологов, ни, в особенности, у философов. Одна из причин этого — опасение быть обвиненными в антропоморфизме, другая — догматическая убежденность многих в уникальности высших психических функций человека. Между тем эти возражения не обоснованны, так как уникальность уровня развития психических способностей человека
Алексей Николаевич Северцов (1866–1936), выдающийся русский биолог, был одним из многих эволюционистов, которые поддерживали и развивали взгляды Дарвина. В его книге «Эволюция и психика» (1922) проанализированы возможные пути эволюционных изменений поведения. По его мнению, существует два основных способа приспособления живых организмов (и животных, и растительных) к изменениям окружающих условий:
• наследственные изменения — значительные приспособительные изменения строения и функций; развиваются медленно и отражают приспособления к медленно протекающим и весьма постепенным преобразованиям среды;
* ненаследственные функциональные изменения строения, посредством которых организм может приспособиться к незначительным, но быстро возникающим изменениям внешних условий.
У животных есть еще один способ приспособления к изменениям окружающих условий — изменение поведения.
Северцов дает схематическую классификацию возможных путей изменения приспособленности животных к меняющейся окружающей среде:
* наследственные приспособления к очень медленным изменениям среды:
— наследственные изменения строения;
— наследственные изменения поведения без изменения строения (рефлексы и инстинкты);
* ненаследственные приспособления к сравнительно быстрым изменениям среды:
— структурно-функциональные изменения;
— изменения поведения животных «разумного типа».
Северцов выделял три основных типа психической деятельности — рефлексы, инстинкты и деятельность «разумного типа».
Наследственные изменения поведения (рефлексов и инстинктов) протекают в ходе эволюционного процесса так же медленно, как и наследственные изменения строения тела. В то же время, как отмечает Северцов, у высших позвоночных животных широко распространены действия, которые он обозначает условным термином
Способность к «разумным» действиям присуща млекопитающим и птицам в значительно большей степени, чем животным других таксономических групп. С биологической точки зрения, пишет Северцов — этот фактор («разумное поведение») чрезвычайно важен, поскольку он очень
При эволюции этого способа приспособления у животных не происходит видоизменения тех или иных определенных реакций организма, а
Из постулата об эволюции способностей к «разумным» действиям логически следует и гипотеза автора о том, что животные с высоким уровнем организации психики, существующие в своей «повседневной жизни» в стабильных, стандартных условиях, не реализуют всех «психических возможностей», на которые они потенциально способны. Косвенным подтверждением этого А. Н. Северцов считает поразительные результаты дрессировки самых разных животных. Подтверждением этой мысли могут служить также способности животных к решению сложнейших когнитивных тестов, обнаруженные в исследованиях-второй половины XX века.
В целом взгляды А. Н. Северцова на эволюцию психики опередили время и, в отличие от концепций многих его современников, не потеряли свою актуальность и сегодня.
Проблему эволюции психики рассматривал также Леон Абгарович Орбели (1882–1958), один из наиболее выдающихся учеников И. П. Павлова. Его теоретические построения были основаны на большом экспериментальном материале по условно-рефлекторной деятельности и по функции ЦНС в целом у большого числа видов животных разного филогенетического уровня. Л. А. Орбели внес существенный вклад в развитие медицины и нейрофизиологии, эволюционной физиологии и биохимии, а также в формирование современных представлений о закономерностях развития поведения.
Согласно представлениям Л. А. Орбели, в ходе прогрессивной эволюции происходило увеличение
Важную роль в формировании современных взглядов на происхождение высших психических функций человека сыграла гипотеза Л. А. Орбели (1949) о существовании
Промежуточные формы сигнальных систем, по его мнению, обеспечили возможность использования символов вместо реальных объектов и реальных явлений на переходном уровне отражения психикой реальной действительности.
Умение связывать незнакомый знак с
Предположения Л. А. Орбели получили блестящее подтверждение в современных исследованиях способности к обобщению и использованию символов у высших позвоночных (см. гл. 6).
Выдающийся психолог, глава самой известной советской психологической школы, Алексей Николаевич Леонтьев (1903–1979) считал, что существуют три стадии эволюции психики животных.
По представлениям А. Н. Леонтьева, появление у более развитых животных
«Историческая» глава пособия показывает, что взгляды ученых на мышление животных претерпели значительные изменения. На протяжении XX века произошел переход от полного отрицания элементов разума у животных к признанию того факта, что они есть у довольно широкого круга позвоночных, а у приматов-антропоидов достигают уровня формирования довербальных понятий и овладения символами.
1. Как изменялось содержание понятия «разум» животных на разных этапах развития науки?
2. Какие ученые впервые экспериментально показали наличие элементов мышления у животных?
3. Какие направления науки о поведении непосредственно связаны с изучением элементарного мышления животных?
4. Каков вклад Н. Н. Ладыгиной-Коте, Л. А. Фирсова и Л. В. Крушинского в формирование представлений о мышлении (рассудочной деятельности) животных?
3. Индивидуааьно-приспособитеаьная деятельность животных:
Ассоциативное обучение, когнитивные процессы
Общая характеристика тех проявлений индивидуальной приспособи-тельной деятельности, в основе которых лежит обучение. Краткое описание классических и инструментальных условных рефлексов. Примеры методов исследования процессов обучения, в частности анализируется формирование пространственных представлений. Ассоциативные процессы, отражающие механизм образования у слоеных рефлексов, сопоставляются с основными видами когнитивной деятельности. Описание методов обучения (дифференцировки и их системы, выбор по образцу), по которым можно судить о способности животных к обобщению и умозаключению.
Индивидуально-приспособительная деятельность животного, т. е. адаптация особи к конкретным условиям среды, позволяет ему с большим или меньшим успехом выживать, преодолевая трудности и опасности повседневного существования. Эта деятельность многообразна по составу и включает приобретенные компоненты разной природы. Рассмотрим виды индивидуально-приспособительного поведения, в основе которых лежат процессы обучения.
3.1. Обучение и пластичность
Из существующих в настоящее время определений феномена «обучение» предпочтение отдается определению У. Торпа (Thorpe, 1963).
На обучении основаны события естественной жизни животных. например формирование навыков отыскания определенной пищи, избегания опасных участков местности, выбора удобных троп, взаимодействия с сородичами и животными других видов и т. п. В лабораторных опытах можно наблюдать, как животное обучается действиям, заданным экспериментатором. Примерами могут быть «слюнные» условные рефлексы собаки, т. е. выделение слюны уже в момент попадания животного в комнату, где в процессе опытов оно получало подкормку; отыскание крысой выхода из лабиринта; избегание болевого раздражения; клевание птицей кнопки при действии определенных стимулов и т. п.
Способность к обучению базируется на присущем центральной нервной системе свойстве пластичности.
'Й-
Она проявляется в способности системы изменять реакции на повторяющийся многократно раздражитель, а также в случаях его совместного действия с другими факторами. Пластичность может иметь разную направленность: чувствительность к раздражителю может повышаться — это явление называется
По определению нейрофизиологов, анализирующих пластические изменения в мозге (Конорски, 1970; Котляр, 1986),
Это достаточно формальное определение показывает, что изменения ответа системы при повторном действии стимула можно описать на языке математики.
3.2. Классификация форм индивидуально-приспособительной деятельности
Формы обучения животных весьма разнообразны и обычно их подразделяют на три основные категории:
Классификация включает некоторые сведения об элементах рассудочной деятельности, которым посвящена основная часть пособия. Ряд авторов выделяют в своих книгах раздел
Для изучения механизмов обучения нередко используют различные модели, в том числе так называемые
— привыкание. > Ассоциативное обучение:
— классические условные рефлексы;
— инструментальные условные рефлексы. > Когнитивные процессы:
— латентное обучение;
— выбор по образцу;
— обучение, основанное на представлениях о:
^ пространстве;
Далее рассматриваются основные формы обучения, приведенные в схеме классификации.
Неассоциативное обучение (привыкание) заключается в ослаблении реакции при повторных предъявлениях раздражителя.
Изначально любой раздражитель (стимул), действующий на органы чувств животного, вызывает у него соответствующую ответную реакцию: поворот головы в сторону света или звука, отдергивание конечности и др., у моллюсков — втягивание жабр и т. д. При повторном систематическом предъявлении того же стимула реакция постепенно ослабевает и может исчезнуть совсем, т. е. происходит
' Обширный экспериментальный материал по восприятию и оценке животными параметров времени в книге не затронут, поскольку эти вопросы практически не имеют прямой связи с проблемой мышления животных.
2 Классификация видов мышления животных рассматривается в главе 4.
Более строго привыкание определяют как снижение вероятности появления реакции или уменьшение интенсивности при неоднократном повторении вызывающего ее раздражителя. Ослабление ответной реакции можно считать истинным привыканием только в том случае, когда оно обусловлено изменениями в ЦНС, а не адаптацией рецепторов или утомлением.
Применение какого-либо нового стимула прекращает процесс привыкания к прежнему раздражителю, и угасшая было реакция на исходный раздражитель полностью восстанавливается. Для привыкания характерно и так называемое
При ассоциативном обучении в ЦНС формируется
Формирование этой связи обнаруживается в виде изменений в поведении животного, которые в зависимости от своей «структуры» называются либо
В 1902 году, анализируя нервную регуляцию процесса пищеварения у собак, И. П. Павлов обнаружил так называемое «психическое слюноотделение». Феномен заключался в выделении у животного слюны, которая стекала в пробирку через фистулу на щеке еще до попадания пищи в рот, т. е. заранее, «в опережающем режиме», как только собаку приводили в экспериментальную комнату и помещали в специальный станок (рис. 3.1).
Таким же образом повторное сочетание любого нейтрального для животного раздражения (например, звонка) с кормлением вызывает выделение слюны еще до того, как собака получит пищу.
И. П. Павлов назвал звонок
Рис. 3.1.
Через фистулу в щеке слюна поступает в устройство, измеряющее ее объем Перед животным имеется панель, где расположены источники нейтральных раздражителей (света и звука), которые могут стать УС.
Принцип образования условного рефлекса состоит в следующем: действие какого-либо нейтрального (или индифферентного) для животного раздражителя совместно со стимулом, вызывающим у него определенную реакцию (например, отдергивание конечности при болевой стимуляции), приводит к тому, что постепенно этот ранее нейтральный стимул начинает вызывать такую же реакцию.
Предъявление безусловного стимула вслед за условным в процессе выработки УР называется его
Подкрепление, которое используется для выработки УР, оказывается эффективным, если оно применяется в период достаточно сильного
Слюнной и мигательный УР относятся к категории
Рис.
Безусловный стимул — струя воздуха, направленная на роговицу, условный — звук, А — его угашение, Б — генерализация ответа при использовании в качестве УС тонов разных частот По оси ординат — доля УР (в %). по оси абсцисс — число предъявлении (А) и частота тона (Б).
На основе изучения слюнных УР у собак И. П. Павлов сформулировал основные общие правила образования УР:
• условный сигнал должен предшествовать безусловному раздражению, но не наоборот;
• действие условного и безусловного раздражителей должно частично перекрываться во времени;
• сочетание условного и безусловного раздражителей должно повторяться многократно.
Эти правила приложимы не только к классическим, но и к инструментальным (см ниже) УР. И формирование, и проявления уже выработанных слюнных УР у собак в значительной степени чувствительны к влиянию посторонних раздражителей В лаборатории И. П. Павлова было обнаружено, что любой посторонний и достаточно сильный стимул, подействовавший в течение эксперимента, уменьшает условно-рефлекторное слюноотделение у собаки, как бы «отвлекает» ее Павлов объяснял это явление на основе своего понимания механизма формирования УР: вмешательство постороннего стимула вызывает в коре головного мозга собаки сильный очаг возбуждения, который в силу природы условно-рефлекторных связей подавляет уже сформированный УР, «индуцируя» торможение участка коры, ответственного за этот УР Такое торможение И. П. Павлов назвал
Помимо внешнего торможения в лаборатории Павлова было описано и
Следует отметить, что для проявления условном связи между двумя стимулами подкрепление
Несколько отличается от описанного другой опыт, который также показывает, что для формирования УР подача подкрепления не всегда обязательна. Если два УС предъявлять животному совместно (УС-1 + УС-2) много раз еще до применения безусловного стимула, а затем предлагать только сочетание УС-1 и безусловного раздражения, то затем условная реакция проявится при даче одного лишь УС-2. Таким образом, хотя УС-2 никогда сам по себе не подкреплялся, между УС-1 и УС-2 сформировалась связь, которая позволила проявиться условной реакции при действии только УС-2. Процесс формирования связи между индифферентными раздражителями иногда называют
На основе огромного опыта изучения условных рефлексов у собак И. П. Павлов и его ученики создали учение о
Оно базировалось на ряде постулатов, которые довольно хорошо соответствовали накопленным к тому времени экспериментальным данным. Концепция Павлова содержала следующие положения:
* высшая нервная деятельность (т. е. образование условных рефлексов) есть результат взаимодействия двух основных нервных процессов —
* свойством генерализации обладает и тормозный процесс;
* очаги возбуждения и торможения обладают свойством
* процессы возбуждения и торможения взаимодействуют на основе не только их иррадиации, но и концентрации; если иррадиации нервных процессов соответствует явление генерализации, то концентрация процесса возбуждения проявляется в формировании
• формирование УР заключается в образовании связи между двумя очагами возбуждения, вызванными условным и безусловным раздражителями.
Д Фундаментальное значение открытия И. П. Павловым условных рефлексов заключается в том, что такой вид психической активности, как ассоциативное обучение, стал предметом экспериментальных физиологических исследований (ранее психологи изучали его только на основе интроспективных заключений).
Павловская концепция физиологии высшей нервной деятельности логично описывала полученные в тот период и теми методами экспериментальные данные. Она сыграла большую роль в науке, объясняя механизм формирования целого ряда сложных поведенческих реакций. Однако постепенно, с расширением методической базы, а также с переходом к экспериментам на других животных, стала очевидной ее ограниченная применимость для объяснения многих фактов, прежде всего потому, что упомянутые закономерности нервных процессов далеко не всегда подтверждались прямыми нейрофизиологическими исследованиями функций головного мозга. Так, например, представления об иррадиации и концентрации нервных процессов не подтвердились при использовании в качестве моделей других УР. В настоящее время отдельные ученые продолжают использовать положения павловской концепции при трактовке результатов изучения высшей нервной деятельности, получаемых традиционными методами павловской школы. В этом нет ничего парадоксального, так как в любой теории, прошедшей проверку временем, основная идея сохраняется.
В Сущность павловского учения составляет идея об условных рефлексах как элементарной единице приспособительной деятельности. Методологический подход к изучению высшей нервной деятельности базируется на четырех принципах:
Ассоциативное обучение, включающее классические и инструментальные условные рефлексы, интенсивно исследовалось на протяжении всего XX века. Рассмотрим более подробно основные типы условных рефлексов.
Условно-рефлекторное слюноотделение, которому уделялось основное внимание в лаборатории Павлова, относится к классическим УР.
При выработке классического УР последовательность событий в опыте никак не зависит от поведения животного. Она устанавливается либо экспериментатором, либо специальной программой, в соответствии с которой включаются те или иные стимулы, в ответ на них можно наблюдать образование условных реакций.
В настоящее время в связи с использованием разнообразных экспериментальных животных (не только традиционных собак), а также благодаря разнообразным методам регистрации изучаемых реакций на смену павловской методике классических слюнных УР пришли другие, более удобные
Разнообразные классические условно-рефлекторные реакции можно наблюдать в экспериментах на животных, если проводить
В настоящее время классические УР наиболее часто исследуют на моделях, использующих
Было, например, обнаружено, что классические УР образуются с разной скоростью в зависимости от того, какие физиологические системы вовлечены в их формирование. Так, УР избегания пищевого яда у крыс (как правило, используют хлорид лития) формируется легко, если введение его в организм сочетается с предложением животному пищи определенного вкуса. Однако УР избегания яда формируется с трудом или не образуется совсем, если его введение сочетается, например, со звуковым раздражением. На схеме (рис. 3.3) показано, как авторы (Garcia et al., 1970) представляют себе гипотетический механизм формирования такого УР вкусового отвращения. Вкусовой стимул, сочетающийся с пищевым отравлением, ведет к образованию УР вкусового отвращения. При сочетании звука с ударом тока образуется УР на боль. В то же время иное сочетание, например вкусового и болевого стимулов, не ведет к образованию УР.
Классический УР — сокращение мигательной перепонки при действии тактильного или звукового УС — обычно изучают на кроликах. При действии на роговицу глаза безусловного раздражителя — воздушной струи (или слабого удара тока) — мигательная перепонка сокращается. Это сокращение можно регистрировать специальным прибором и оценивать его интенсивность. Если безусловное раздражение сочетать с каким-либо нейтральным стимулом, например звуком, то после нескольких сочетаний мигательная перепонка будет сокращаться уже при изолированном действии этого звука, который становится условным сигналом (см. рис. 3.2).
Стимулы | Последствия рвота | Последствия боль |
---|---|---|
Сладкий вкус | формирование УР вкусового отвращения | УР не формируется |
Щелчок | УР не формируется | формирование оборонительного УР |
Рис. 3.3. Схема, показывающая избирательность ассоциаций между УС и подкреплением при формировании классических УР.
Начало исследований инструментальных УР связано с именем Э. Торндайка (см. 2.4.1), хотя их анализ проводился и в лаборатории И. П. Павлова.
В лаборатории И. П. Павлова «классические» УР носили название условных рефлексов 1-го рода, а инструментальные — условных рефлексов 2-го рода. В монографии Ю. Конорски (1969) на большом экспериментальном материале дается анализ сходства и различия между ними.
В опытах с «проблемными ящиками» Торндайк наблюдал, как посаженная в ящик кошка ищет выход, пытаясь открыть дверцу разными способами (рис. 3.4А) (для этого нужно было нажать на задвижку или потянуть за пружину). Кошка сначала совершает много разных действий
Торндайк первым предложил количественную оценку динамики обучения животного инструментальному навыку. Для этого он ввел так называемые «кривые научения», примеры которых приведены на рис. 3.4Б.
Между классическими и инструментальными УР существуют определенные различия.
Инструментальные УР.
Рис. 3.4.
А — один из вариантов «проблемного ящика», предложенный Э. Торндайком для исследования способности животного к решению задачи методом «проб и ошибок»; Б — примеры кривых научения при использовании этого метода. По оси ординат — время, затраченное на решение задачи, по оси абсцисс — последовательные предъявления теста.
При классических УР временная связь между условным сигналом и безусловной реакцией возникает непроизвольно при действии безусловного раздражителя (подкрепления).
При инструментальных УР подкрепление, например пища, дается только после того, как животное
В классическом УР выделение слюны происходит в ответ на контакт пищи с рецепторами полости рта, и эта реакция может стать условно-рефлекторной. В отличие от этого при выработке инструментального УР пищевое подкрепление изначально никак не связано ни с протягиванием лапы, ни с побежкой в лабиринте. Однако мы можем давать животному пищу сразу после того, как оно сделало такое движение, и вскоре животное будет его совершать, чтобы получить подкрепление.
К категории инструментальных УР относится формирование навыка
Включению тока предшествует включение УС — звука или света. Чтобы избежать болевого воздействия, животное перебегает в другую половину камеры По прошествии небольшого периода времени (как правило, его длину варьируют, чтобы не вырабатывать у животного УР на время) ток включают в той половине камеры, куда оно перед этим перебежало УР считается выполненным, если животное перебегает в безопасную половину камеры во время действия УС и до включения тока.
Рисунок, сделанный по фотографии «исторического» эпизода. Собака К. Л. Моргана научилась открывать задвижку калитки, получая тем самым возможность «обрести свободу». Эта ситуация считается прототипом торндайковского «проблемного ящика».
Рис. 3.5.
Камера Б. Скиннерадля обучения голубей.
Рис. 3.6.
В верхней части левой стенки камеры размещены 3 диска-«ключа». Они различаются не только по положению, но и по цвету лампочки, которая загорается за каждым из них. В кормушку (ниже) подают подкрепление. Клевание ключа (или, например, каждое клевание) автоматически подает зерно в кормушку.
Челночные камеры для исследования у лабораторных крыс и мышей реакции активного избегания. А — современная установка для изучения условной реакции активного избегания, которая обычно состоит из 4 челночных камер с автоматизированным управлением и выводом результатов на экран монитора; Б — отдельная челночная камера.
Рис. 3.7.
Обширные исследования, выполненные сторонниками идей бихевиоризма, привели к появлению целого ряда новых терминов и понятий и созданию специфического языка для описания закономерностей процесса обучения, обнаруженных только благодаря примененным ими подходам. Многие термины сначала использовались как чисто технические — для объективного описания данных (знакомство с ними может помочь при чтении научных статей бихевиористов). К таким терминам, в частности, относятся:
* оперантное поведение — спонтанные действия, не вызванные каким-либо очевидным стимулом;
* реактивное поведение — всякое поведение, которое совершается в ответ на определенный стимул;
* режим подкрепления
* постоянный (или переменный) интервал
* фиксированное (или переменное) соотношение
* смежность
* ключ
На рис. 3.6 схематически изображена камера для выработки инструментальных УР у голубей. Скиннер считал, что любое поведение, относящееся к категории «оперантное», можно модифицировать, если при его выполнении давать животному подкрепление. Именно такой подход он предложил как эффективный способ анализа поведения. Если для выработки классических УР необходимы сочетания условных сигналов и подкрепления, то при методике
Например, крысу можно обучить нажимать на рычаг, если сначала сопровождать подкреплением любые ее действия в той части камеры, где он находится. Постепенно крыса обучается держаться вблизи рычага, и тогда подкрепление дают только, если она касается рычага мордой или лапой (для этого иногда на рычаг даже кладут пищу) Через некоторое время подкрепление дается только после выполнения четких движений — нажатий (одного или нескольких) лапой на рычаг.
Такое постепенное видоизменение поведения животного в результате вмешательства экспериментатора называется
Деление условных рефлексов на классические и инструментальные, удобное методически, не означает, что они имеют совершенно разную природу. В их основе лежат сходные нейрофизиологические механизмы, а любое «чисто» инструментальное действие животного всегда сопровождается реакцией, которая относится к классическим УР. И наоборот, в любом «чисто» классическом УР можно обнаружить Двигательный компонент, который по своим свойствам относится к инструментальным (Борукаев, 1982).
О связи классических и инструментальных УР свидетельствует также «самоформирование» условной реакции
С помощью метода «последовательного приближения» у животных удается сформировать не только клевание ключа при его освещении, но и самые разнообразные, сложные и иногда неожиданные навыки. В опытах Скиннера голуби «играли» в пинг-понг, а крысы могли подтянуть к себе с помощью бечевки бильярдный шар, взять его в передние лапы и засунуть в трубку, расположенную на 5 см выше пола клетки (описание экспериментов П. Эпштейна, посвященных формированию сложных навыков у голубей, будет дано в гл. 4.8.2).
Метод последовательного приближения составляет основу дрессировки цирковых и служебных животных. Примером продуктивного использования принципов бихевиоризма, и в частности роли метода последовательного приближения в формировании поведения, является работа знаменитой американской дрессировщицы дельфинов и психолога (1995).
Тезис Скиннера о том, что любые движения, на которые способно животное данного вида, равновероятно можно использовать для инструментального научения, был достаточно обоснованно подвергнут сомнению в работе его коллег — К. и (Breland, Breland, 1961). Некоторые виды животных при обучении манипуляциям с предметами производят «заданные» экспериментатором действия только после выполнения некоторых врожденных (инстинктивных) действий либо совсем не могут им научиться. Так, например, обучая енота нажимать на рычаг, Бреланды заметили, что нажатию предшествует видоспецифическое движение лап — «полоскание», характерное для этого вида при добыче пищи из ручья (за что енота и называют «полоскун»). На основании таких наблюдений возникло представление о предрасположенности к определенным видам обучения (подробнее см.: Зорина и др., 1999).
В Образование инструментальных УР по механизму «последовательного приближения» играет важную роль в организации поведения животных не только в эксперименте, но и в естественных В условиях.
Обучение по методу последовательного приближения может происходить самым неожиданным образом. Об этом, в частности, свидетельствует получившая широкую известность в начале XX века история «умного Ганса». Это был конь, который демонстрировал способность «считать», «складывать», «извлекать корни», отвечать на вопросы и т. п. (рис. 3.8). Столь «разумное» поведение объяснялось тем, что конь научился замечать малоуловимые движения дрессировщика, которые тот непроизвольно совершал, видя, что конь вот-вот даст правильный ответ. Ориентируясь на эти условные сигналы, конь в нужный момент прекращал стучать копытом.
3.8. Инструментальные условные рефлексы у дрессированной лошади «умного Ганса». На фотографии видно, как ударами копыта по специальной доске Ганс сигнализировал «правильный» ответ (по Н. Н. Ладыгиной-Коте, 1914).
Рис.
В начале XX века (1900–1904) барон В. фон Остен, убежденный в огромных умственных способностях лошадей, обучал нескольких из них различению цветов, азбуке и «счету». Узнавание каждой буквы или цифры лошадь обозначала соответствующим числом ударов копыта. Друг фон Остена художник Редлих обучил таким же образом свою собаку. Наиболее способным учеником оказался орловский рысак Ганс, который производил достаточно сложные арифметические подсчеты, отвечал на разнообразные вопросы, а иногда высказывался по собственной инициативе. Так, супруги Н. Н. и, специально приехавшие для знакомства с ним в 1913 году, рассказывали, что после нескольких относительно коротких ответов на вопросы Ганс заявил: «В поле я встретил милую госпожу Краль, которая меня кормила».
Поведение его было столь впечатляющим, что вводило в заблуждение не только публику, но даже членов специальных комиссий, включая Н. Н. Ладыгину-Котс. Предполагали, что хозяин подает коню некие скрытые сигналы (как дрессировщик — цирковым животным), однако его обследовали 13 экспертов (комиссия психолога К. Штумпфа) и не обнаружили никакого обмана. Они засвидетельствовали, что Ганс действительно «считает» и никаких скрытых сигналов ему не подают. И лишь много позднее наблюдатели постепенно заметили, что Ганс отвечает только на те вопросы, ответ на которые знает сам экспериментатор. Специальный анализ, проведенный психологом О. Пфунгстом. показал, что животное реагирует на мельчайшие непроизвольные (идеомоторные) движения экспериментатора, например отклонения корпуса на 2 мм, микродвижения бровей, мимику и т. п. Эта невольная подача сигналов происходила, по-видимому, из-за эмоционального напряжения человека, по мере того как число ударов копытом приближалось к искомому. Даже картонный щит, которым пробовал отгородиться от Ганса экспериментатор, не помогал: животное все равно улавливало какие-то только ему понятные знаки для определения правильного ответа.
Для проверки своего предположения Пфунгст специально научил Ганса реагировать на микродвижения, которые он совершал уже сознательно, и продемонстрировал комиссии механизм и природу «математических способностей» этой лошади.
История «умного Ганса» оставила заметный след в развитии науки о поведении животных:
* она показала, сколь сложное поведение могло быть результатом обучения методом проб и ошибок;
* продемонстрировала справедливость «канона Ллойда Моргана» (см. 2.3) и актуальность его применения, поскольку в основе поведения этой «мыслящей лошади» лежали чисто условно-рефлекторные, а не связанные с мышлением механизмы;
* впервые привлекла внимание к проблеме чистоты эксперимента с точки зрения возможности
3.3. Дифференцировочные условные рефлексы
Перестав подкреплять выполнение условной реакции, можно не только «угасить» УР, но и «усовершенствовать» его, т. е. добиться, что условная реакция будет осуществляться точно на данный и только на данный стимул, а близкие по своим физическим свойствам раздражители ее не вызовут. Как известно, в начале формирования УР животное реагирует не только на строго конкретный условный стимул, например звук определенной частоты, но и на сходные с ним звуки, хотя и не полностью ему идентичные, например звуки близких частот (см. рис. 3.2Б). Эта стадия выработки УР называется
В основе формирования дифференцировочных УР лежит
Процедура такого «совершенствования» сигнального значения условных раздражителей была названа И. П. Павловым
Выработка дифференцировочных УР (разными методами) успешно используется для оценки сенсорных способностей (т. е. возможностей органов чувств) животных разных таксономических групп (см., например: Дьюсбери, 1981; Pearce, 1998). Так, выработав у животного УР дифференцирования (различения) двух цветовых стимулов, можно, выравнивая их другие параметры (например, яркость), изучать механизмы восприятия цвета. При этом если животное, в силу особенностей органов чувств, не воспринимает различий между двумя зрительными стимулами (цветами спектра), то выработать у него устойчивую дифференцировку такой пары стимулов невозможно.
Методики выработки дифференцировочных УР весьма многочисленны и разнообразны по процедуре эксперимента. Перечислим основные параметры, по которым различаются такие методики.
1. Порядок предъявления стимулов может быть последовательным или одновременным.
2. Животному предлагают сделать выбор стимулов: альтернативный или множественный.
3. Предъявление стимулов может осуществляться в соответствии с двумя режимами: повторение одной пары стимулов до достижения критерия и чередование нескольких пар стимулов при систематическом варьировании второстепенных параметров.
Рассмотрим некоторые методы более подробно.
Например, животных можно обучить различать не конкретные круг и квадрат, а любые круги и квадраты независимо от их размера, цвета, ориентации и т. п. С этой целью в процессе обучения каждый следующий раз им предлагают новую пару стимулов (новые круг и квадрат). Новая пара отличается от остальных по всем второстепенным признакам стимулов — цвету, форме, размерам, ориентации и т. п., но сходна по их основному параметру — геометрической форме, различения которой и предполагается добиться. В результате такой тренировки у животного постепенно происходит
Данный режим оказался весьма эффективным для выработки дифференцировочного УР на обобщенный признак «мерность», когда животное училось выбирать любую объемную (трехмерную) фигуру и не реагировать на плоские (двумерные) фигуры (см. 4.6.3). В таких опытах с собаками, обезьянами и воронами у одной группы животных каждого вида вырабатывали УР выбора любой объемной (трехмерной) фигуры, а у второй группы — любой плоской (двумерной). Каждый раз животному предъявляли новую пару стимулов из набора, изображенного на рис. 4.15 ' (всего 30 пар), причем плоская фигура всегда представляла собой фронтальную проекцию объемной.
Может возникнуть предположение, что задача по выработке таких дифференцировок для животных очень сложна, однако с ней справляются не только приматы, но и хищные млекопитающие (Дашевский, Детлаф, 1974), а также птицы — врановые (Крушинский и др., 1981) и даже голуби. При этом животным всех указанных видов требовалось примерно столько же сочетаний, как и при выработке дифференцировки с одной парой стимулов. После такой серии обучения они способны выбирать любую новую объемную (или плоскую) фигуру без дополнительной тренировки.
При систематическом варьировании второстепенных признаков стимулов можно исследовать не только способность животных к обучению, но и более сложную форму их высшей нервной деятельности —
Как уже упоминалось, животные с разным уровнем структурно-функциональной организации мозга практически не различаются по способности к простым формам условно-рефлекторного обучения. Образование отдельных дифференцировочных УР в этом плане не составляет исключения. Однако благодаря использованию дифференцировочных УР в качестве элементарных единиц обучения и созданию их разнообразных комбинаций было разработано несколько экспериментальных процедур, которые называют
* последовательные переделки сигнального значения дифференцировочных стимулов;
* формирование установки на обучение;
* формирование «систем» дифференцировочных УР.
Переделка сигнального значения условных раздражителей (ее часто называют переделкой дифференцировки) — это
После достижения определенного, выбранного экспериментатором
Американский исследователь М. Биттерман (1973) предложил проводить такие переделки многократно. Эта процедура получила название
Опыты проводились на разных видах позвоночных. При каждой следующей переделке число ошибок снижалось, и в конце концов наступал момент, когда при очередной смене сигнального значения стимулов животное уже со второй пробы начинало выбирать «правильно» без дополнительного обучения. в Снижение числа проб, необходимого для очередной переделки реакции, происходит тем быстрее, чем выше уровень эволюционного развития данного животного.
Метод формирования
Правило состоит в том, чтобы «выбирать тот же предмет, что и в первой пробе, если его выбор сопровождался подкреплением, или другой, если подкрепление получено не было (в дальнейшем эта стратегия получила название
Принято считать, что при обучении с использованием метода последовательных переделок и при формировании установки происходят сходные процессы, так что первый можно считать частным случаем формирования установки.
Впоследствии было создано несколько модификаций исходной методики. Например, Д. Уоррен (Warren, 1977) в своих опытах не вырабатывал каждую дифференцировку до достижения критерия обученности, а предъявлял каждую пару определенное число раз и затем предлагал следующую. Именно этот вариант был использован рядом авторов для сравнения обучаемости разных видов приматов (Passingham, 1982; Rumbaugh et al., 1987, 2000).
Методом формирования установки на обучение впервые была получена широкая сравнительная характеристика обучаемости животных разных систематических групп, которая в определенной степени коррелировала с показателями организации мозга. Вместе с тем, как и данные М. Биттермана, эти результаты свидетельствовали о существовании у животных каких-то процессов, выходящих за рамки простого образования дифференцировочных УР. Считают, что в ходе такой процедуры животное «учится учиться». Оно освобождается от связи «стимул-реакция» и «переходит от ассоциативного обучения к
Аналогичной точки зрения придерживается Л. А. Фирсов. Он считает, что этот вид обучения по своей сути и по лежащим в его основе механизмам близок к процессу обобщения (подробнее см. гл. 5), и с какого-то момента «первичное» обучение — выработка конкретной дифференцировки — сопровождается «вторичным» обучением — некими когнитивными процессами, при которых
То же мнение разделяет английский специалист по теории обучения Н. Макинтош (Mackintosh, 2000): в основе формирования установки на обучение
Данные, полученные с помощью метода последовательных переделок и метода формирования «установки», впервые создали основу для широкой сравнительной характеристики обучаемости животных и показали, что в процессе такого обучения наряду с ассоциативными участвуют механизмы другого уровня — когнитивные (см. 8.1 и 3.4).
В работах Л. Г. Воронина (1984) также было показано, что при комбинации отдельных УР возникают новые свойства, не сводимые к свойствам суммы исходных рефлексов. Происходит образование так называемых систем дифференцировочных УР, или просто «систем». Такие системы Л. Г. Воронин считал целостными функциональными единицами, из которых складывается психическая деятельность.
У животного вырабатывают несколько дифференцировочных УР, объединенных в систему таким образом, что выполнение одного УР зависит от усвоения другого.
Одна из таких процедур составляет необходимый этап в изучении способности к
Программа эксперимента по выработке систем дифференцировок состоит в следующем. Животное учится дифференцировать несколько пар раздражителей (как правило, цветовых стимулов). При выработке дифференцировки каждой следующей пары стимулов производится смена сигнального значения части из них в соответствии с определенным правилом: стимул, бывший положительным в паре А — В+ (где «В+» — подкрепляемый стимул, а «А—» — неподкрепляемый), становится отрицательным в паре В — С+. В процессе обучения животное должно усвоить информацию о том, что значения стимулов В, С, D могут быть как положительными (В+, С+, D+), так и отрицательными (В—, С—, D—), в зависимости от пары, в которой они в данный момент предъявляются. Стимулы А- и F+, т. е. первый и последний в последовательности, остаются во всех комбинациях только положительным (F) или только отрицательным (А). Высокая доля правильных выборов при чередовании всех пар стимулов, когда животное выбирает, например, стимул С в паре В — С+, но не реагирует на него в паре С — D+, свидетельствует, что оно усвоило принцип данной системы. Такую систему дифференцировок успешно усваивают дети, начиная с 4 лет (Bryant, Trabasso, 1971), взрослые шимпанзе (Gillan, 1981; Boysen, Berntson, 1995), а также голуби и вороны (Зорина и др., 1989). Межвидовые различия в динамике и успешности формирования такой системы дифференцировок у этих видов птиц оказались незначительными и недостоверными. В то же время при обратимых последовательных переделках и формировании установки на обучение голуби существенно отставали как от врановых, так и от приматов.
Метод выработки дифференцировочных УР в разных его комбинациях является одним из ведущих в физиологии ВНД и используется как инструмент для исследования целого ряда проблем.
К этим проблемам, помимо оценки возможностей органов чувств животных разных видов, относится изучение следующих более сложных когнитивных способностей:
* к обобщению;
* к транзитивному заключению;
* к формированию установки на обучение.
Такие экспериментальные исследования будут подробнее рассмотрены ниже.
3.4. Когнитивные (познавательные) процессы
Термин
И. С. Бериташвили называл их
Наличие
Внутренние представления могут отражать самые разные типы сенсорной информации, не только абсолютные, но и относительные признаки стимулов, а также соотношения между разными стимулами и между событиями прошлого опыта. По образному выражению, животное создает некую внутреннюю картину мира, включающую комплекс представлений
Метод отсроченных реакций. Мысль о существовании у животных некоего «процесса представления», т. е. такой активности мозга, которая соответствует полученной ранее стимуляции, но которая может поддерживаться в ее отсутствие, была впервые высказана У. Хантером в 1913 г. Для оценки способности животного реагировать
Животное (в опытах Хантера — енота) помещали в клетку с тремя одинаковыми и симметрично расположенными дверцами для выхода. Над одной из них на короткое время зажигали лампочку, а потом еноту давали возможность подойти к любой из дверец. Если он выбирал дверцу, над которой зажигалась лампочка, то получал подкрепление. При соответствующей тренировке животные выбирали нужную дверцу даже после 25-секундной отсрочки — интервала между выключением лампочки и возможностью сделать выбор.
В опытах других исследователе!) задача ставится иначе. На глазах у голодного животного в один из двух (или трех) ящиков помещают корм. По истечении периода отсрочки животное выпускают из клетки или (как на рис. 3.9) убирают отделяющую его преграду. Его задача выбрать ящик с кормом.
Выполнение теста на отсроченные реакции на неслучайном уровне считается доказательством наличия у животного
Опыты на разных животных были дополнены исследованиями на детях. Эту методику стали довольно широко применять и в нашей стране, начиная с 30-х годов, но многие ученики И. П. Павлова (например, Э. Г. Вацуро) отождествляли ее с методом
Между условно-рефлекторной (ассоциативной или процедурной) и образной (декларативной) памятью существуют тонкие функциональные различия. От особенностей их взаимодействия зависят, например, различия в организации сложного поведения низших и высших обезьян (Фирсов, 1972; 1993).
В классическом тесте на отсроченные реакции виды животных проявляют себя по-разному. Собаки, например, после того как корм положен в один из ящиков, ориентируют тело по направлению к нему и сохраняют эту неподвижную позу в течение всего периода отсрочки, а по ее окончании сразу бросаются вперед и выбирают нужный ящик. Другие животные в подобных случаях не сохраняют определенной позы и могут даже разгуливать по клетке, что не мешает им, тем не менее, правильно обнаруживать приманку. У шимпанзе формируется не просто представление об ожидаемом подкреплении, но ожидание определенного его вида. Так, если вместо показанного в начале опыта банана после отсрочки обезьяны обнаруживали салат (менее ими любимый), то отказывались его брать и искали банан. Мысленные представления контролируют и гораздо более сложные формы поведения. Многочисленные свидетельства этого были получены и в специальных экспериментах, и в наблюдениях за повседневным поведением обезьян в неволе и естественной среде обитания (см., например: Ладыгина-Коте, 1923; 1935; Гудолл, 1992; подробнее об этом см. гл. 7).
Тест на оценку представлений о константности свойств предметов. Один из способов изучения роли представлений в поведении и психике животного —
Для оценки способности животных оперировать представлениями о константности свойств предмета существуют тесты:
• на «неисчезаемость»;
• на «вмещаемость»;
• на «перемещаемость» и др.
Термины были введены Л. В. Крушинским (1986) и соответствующие тесты названы им
В основе понимания животным или ребенком принципа
По мнению Л. В. Крушинского, понимание животным этого принципа составляет необходимое условие для проявления способности к экстраполяции направления движения стимула и решению ряда других элементарных логических задач (см. гл. 4).
«Мысленный план» лабиринта. Одним из первых гипотезу о роли представлений в обучении животных выдвинул Э. Толмен в 30-х годах XX века (1930, 1997). Исследуя поведение крыс в лабиринтах разной конструкции, он пришел к выводу, что общепринятая в то время схема «стимул-реакция» не может удовлетворительно описать поведение животного, усвоившего ориентацию в такой сложной среде, как лабиринт. Толмен высказал предположение, что в период между действием стимула и ответной реакцией в мозге совершается определенная цепь процессов («внутренние или промежуточные переменные»), которые определяют последующее поведение. Сами эти процессы, по мнению Толмена, можно исследовать строго объективно по их функциональному проявлению в поведении.3.9. Схема опытов по изучению отсроченных реакций.
Рис.
А — демонстрация приманки и пустого контейнера; Б — приманку и пустой контейнер закрывают от животного непрозрачным экраном; В — экран убирают, и животное имеет возможность достать приманку, положение которой не изменилось При следующем предъявлении этого теста контейнер с приманкой может располагаться слева.
В процессе обучения у животного формируется «когнитивная карта» всех признаков лабиринта, или его «мысленный план». Затем на основе этого «плана» животное выстраивает свое поведение.
Толмен и его последователи исследовали формирование «мысленного плана» («карты») с помощью лабиринтов разных конструкций, траекторию движения в которых животные могли менять в зависимости от того, были ли им доступны более короткие пути.
В работе Н. Чапиуса и П. Скардигли (цит. по: Реагсе, 1998) хомячка помещали в камеру А гексагонального лабиринта (рис. 3.10А), в котором ему «надлежало» пройти за пищей по пути, указанному штриховой линией. От этой дороги хомячок не отклонялся, поскольку все входы в другие отсеки были закрыты. После запоминания этого пути во время целого ряда предъявлении задачи в лабиринте открывали все дверцы, за исключением той, которая позволяла попасть к корму по прямой. Теперь кратчайшим путем к пище стала траектория через центр (сплошная линия). Этот путь можно уверенно найти, только имея «мысленный план» данного лабиринта. После определенной тренировки хомячки выбирали этот путь достоверно чаще, чем остальные.
Два других примера, взятых из работы самого Толмсна, показывают, как животное находит новый путь к пище, если знакомая дорога перекрыта (рис. 3.10 Б и В).
Образование «мысленного плана» может происходить и в отсутствие подкрепления, в процессе ориентировочно-исследовательской активности. Этот феномен Толмен назвал
Сходных взглядов на организацию поведения придерживался И. С. Бериташвили (1974). Ему принадлежит термин —
Гипотеза о
Рис. 3.10.
А — гексагональный лабиринт; Б — усвоение общего плана строения лабиринта при изменении его конфигурации. Слева — голодная крыса обучается находить путь к пище, следуя по траектории а-б-в-г-д-е. После упрочения навыка животное помещают в точку а, но теперь из круглой камеры можно выйти по множеству рукавов за исключением одного (в). При наличии у животного «мысленного плана» оно чаще, чем случайно, выходит к пище по рукаву 5. В — крысу помещали в точку старта (с) и обучили находить корм (К). Постепенно у нее сформировался «мысленный план» лабиринта. После того как убрали перегородку (П), она стала бегать по более короткому пути, который обозначен пунктирной линией.
Когнитивная психология человека — направление, возникшее как реакция на господство идей бихевиоризма в области изучения психики человека, — оказала влияние на исследования когнитивных процессов у животных. Проведение аналогий между работой мозга и вычислительной машиной позволило описывать память животных как процесс переработки информации с привлечением соответствующего математического аппарата и понятий теории информации (Солсо, 1996).
Одно из наиболее популярных направлений в анализе когнитивных процессов у животных — это
Понятие,
На формировании представлений основаны следующие виды обучения животных:
*
По определению У. Торпа, латентное обучение — это «…образование связи между индифферентными стимулами или ситуациями в отсутствие явного подкрепления».
Элементы латентного обучения присутствуют практически в любом процессе обучения, но могут быть выявлены только в специальных опытах.
В естественных условиях латентное обучение возможно благодаря исследовательской активности животного в новой ситуации. Оно обнаружено не только у позвоночных. Эту или сходную способность для ориентации на местности используют, например, многие насекомые. Особенно хорошо латентное обучение изучено у перепончатокрылых. Так, пчела или оса, прежде чем улететь от гнезда, совершает «рекогносцировочный» полет над ним, что позволяет ей фиксировать в памяти «мысленный план» данного участка местности.
Наличие такого «латентного знания» выражается в том, что животное, которому предварительно дали ознакомиться с обстановкой опыта, обучается быстрее, чем контрольное, не имевшее такой возможности.
В настоящее время термин «латентное обучение» употребляется редко и лишь в определенном контексте. Однако на самом деле этот феномен достаточно широко распространен. Например, в разделе 4.8.2 будет показано, что оно сопровождает выработку простых инструментальных УР (открывание кормушек разного цвета). Птицы (вороны и голуби) запоминают число единиц подкрепления, получаемого при действии стимулов разного цвета, а затем используют эту информацию в новой ситуации (Зорина и др., 1991). В гл. 5 мы покажем, что феномен, который Л. А. Фирсов называет «вторичным обучением», по существу можно считать одним из вариантов латентного обучения.
Способность животных к ориентации в пространстве. Сведения об этой форме когнитивной деятельности вкратце заключаются в следующем.
Животное может искать путь к цели разными способами. По аналогии с прокладыванием морских путей эти способы называют:
•
•
•
Животное может одновременно пользоваться всеми тремя способами в разных комбинациях, т. е. они взаимно не исключают друг друга. Вместе с тем эти способы принципиально различаются по природе той информации, на которую животное опирается при выборе того или иного поведения, а также по характеру тех внутренних «представлений», которые у него при этом формируются.
Рассмотрим способы ориентации несколько подробнее.
В качестве примера расскажем о способностях к пространственной ориентации у столь разных видов млекопитающих, как шимпанзе и бурый медведь.
Наблюдения Э. Мензела (Menzel, 1979) за группами молодых шимпанзе, живших на огороженной, но достаточно обширной территории, показали, что при отыскании корма они гибко пользуются мысленным планом окружающей местности. Дж. Гудолл (1992) также приводит многочисленные подтверждения роли пространственной памяти в механизмах ориентировки шимпанзе в пространстве. По ее наблюдениям
Пространственная память обезьян хранит не только расположение крупных источников пищи, например больших групп обильно плодоносящих деревьев, но и местонахождение отдельных таких деревьев и даже одиночных термитников. В течение по крайней мере нескольких недель они помнят о том, где происходили те или иные важные события, например конфликты между сообществами.
Знание своей территории обитания — важнейший фактор приспособленности хищных млекопитающих. Многолетние наблюдения В. С. Пажетнова (1991) за бурыми медведями в Тверской области позволили объективно охарактеризовать, какую роль играет мысленный план местности в организации их поведения. По следам животного натуралист может воспроизвести детали его охоты на крупную добычу, перемещения медведя весной после выхода из берлоги и в других ситуациях. Оказалось, что медведи часто используют такие приемы, как «срезание пути» при одиночной охоте, обход жертвы за многие сотни метров и др. Это возможно лишь в том случае, если у взрослого бурого медведя есть
Начало лабораторным исследованиям пространственной ориентации животных было положено в электрофизиологическом исследовании — при анализе реакций клеток гиппокампа (старой коры).
В 1976 г. появилась статья американского ученого Дж. 0'Кифа, обнаружившего «клетки места»
Для ориентации «по карте» у животного должны быть представления о расположении как близких, так и далеких объектов среды. Именно пространственные представления такого рода 0'Киф и Надел назвали вслед за Толменом
Успешность использования животным внутренних пространственных карт основана на стабильности расположения объектов внешней среды. Экспериментально показано, что изменение их В положения вносит ошибки в ориентацию. Восьмилучевой радиальный лабиринт.
Рис. 3.11.
А — автоматизированный радиальный лабиринт с закрытыми рукавами; Б — изображение лабиринта на экране монитора.
Существует целый ряд подходов к исследованию формирования у животного пространственных представлений. Некоторые, как мы только что показали на примере работ Мензела и Пажетнова, связаны с оценкой ориентации животных в естественных условиях. В лаборатории наиболее часто используются две методики —
Методика изучения способности животных к обучению в радиальном лабиринте была предложена американским исследователем (Olton, 1978).
Обычно радиальный лабиринт (рис. 3.11) состоит из центральной камеры и 8 (или 12) лучей, открытых или закрытых (называемых в этом случае отсеками, или коридорами). В опытах на крысах длина лучей лабиринта варьирует от 100 до 140 см. Для экспериментов на мышах лучи делают короче. Перед началом опыта в конец каждого коридора помешают пищу. После процедуры приучения к обстановке опыта голодное животное сажают в центральный отсек, и оно начинает заходить в лучи в поисках пищи. При повторном заходе в тот же отсек животное пищи больше не получает, а такой выбор классифицируется экспериментатором как ошибочный.
По ходу опыта у крыс формируется
При помещении в радиальный лабиринт многие животные испытывают страх, что затрудняет оценку их способности к пространственному обучению. Возможной причиной этого являются узкие, стесняющие движение коридоры-лучи. В целях более полного анализа способности к усвоению пространственного расположения пищевого подкрепления недавно были начаты исследования обучения животных и птиц разных видов в «гигантском» радиальном лабиринте. Он расположен на открытой местности, а его лучи и центральный отсек в несколько раз больше, чем у лабиринтов, обычно используемых в лабораториях (Lipp et al., 2001).
Методом радиального лабиринта можно оценивать:
* формирование
* соотношение таких категорий пространственной памяти, как
Для раздельного анализа рабочей и референтной памяти часто используют следующую схему опыта. Животных обучают искать пищу в 4 открытых рукавах, 4 других все время остаются закрытыми, так что в них они зайти не могут (и, следовательно, пищи никогда в них не бывает). В ситуации теста все отсеки открывают, и в поиске пищи животное имеет возможность зайти в любой. Заход только в ранее открытые отсеки, где пищи уже нет, — это ошибка рабочей памяти. Заход в отсек, который при обучении был всегда закрыт, — ошибка референтной памяти.
Пространственная рабочая память достаточно долговечна. Ее длительность определяется временем, в течение которого крыса по окончании эксперимента помнит, в какие лучи она уже заходила. В некоторых случаях это время достигало 24 часов.
Исследуя пространственную память в радиальном лабиринте и проводя с животным длительные опыты, мы исследуем его
Подразделение памяти на референтную и рабочую основано на запоминании пространственных ориентиров и событий (посещение отсека).
Деление памяти на
Подразделение памяти на декларативную и процедурную мы рассматривали выше (см. 3.4.1).
Работы с радиальным лабиринтом позволили выявить у животных (главным образом, крыс) наличие определенных
В самой общей форме такие стратегии подразделяются на алло- и эгоцентрические:
• при
*
Такое деление в большой степени условно, и животное, в особенности в процессе обучения, может параллельно использовать элементы обеих стратегий. Доказательства использования крысами аллоцентрической стратегии (мысленной карты) базируются на многочисленных контрольных экспериментах, в ходе которых либо вводятся новые, «сбивающие» с пути ориентиры (или, наоборот, подсказки), либо меняется ориентация всего лабиринта относительно ранее неподвижных координат и т. д.
В начале 80-х годов шотландский исследователь (Morris, 1984) предложил для изучения способности животных к формированию пространственных представлений использовать «водный лабиринт». Метод приобрел большую популярность, и его стали называть «водным лабиринтом Морриса».
Принцип метода заключается в следующем. Животное (обычно мышь или крысу) выпускают в бассейн с водой (рис. 3.12). Из бассейна нет выхода, но имеется невидимая (вода замутнена) подводная платформа, которая может послужить убежищем: отыскав ее, животное может выбраться из воды. Мышь вынимают из бассейна, а через некоторое время снова выпускают плавать, однако уже из другой точки периметра. Постепенно время, которое проходит от пуска животного до отыскания платформы, укорачивается, а путь упрощается. Это свидетельствует о
Рис. 3.12.
А — проекция на экран монитора круглого бассейна с водой плавая в котором животное отыскивает невидимую платформу Б — траектория движении животного зарегистрированная специальным устройством.
Создание специальных технических средств автоматизации эксперимента с водным лабиринтом (например, системы
* динамику формирования пространственного навыка;
* стратегии поведения животного в ходе опыта;
* обнаруживать слабые отличия в поведении, например у мышей-нокаутов (см. гл. 9).
Такие возможности делают водный тест Морриса важным инструментом не только для изучения когнитивных функций, но и для решения ряда вопросов современной нейрогенетики (см. гл. 9).
Исследование роли отдельных структур мозга в формировании навыка поиска пищи в радиальном и водном лабиринтах показало, что ключевую роль в этом процессе играет гиппокамп Фармакологические воздействия, относительно избирательно повреждающие эту структуру, нарушают поведение крыс и мышей и в радиальном, и в водном лабиринте
Все большую роль в изучении когнитивных функции животных начинают играть работы, выполненные в естественных для вида или приближенных к ним условиях Такой подход позволяет отбросить предположение, что в неадекватных лабораторных условиях способность животного к тому или иному виду обучения может проявиться не полностью (например, слишком тесные рукава лабиринта, нечеткие ориентиры, стресс при плавании) Ввиду этого поиск биологически адекватных моделей для изучения способностей к обучению и памяти составляет одну из актуальных задач современной нейробиологии Важную роль в разработке таких моделей играет знание видоспецифического (инстинктивного) поведения животных.
Один из аспектов этих исследований — оценка пространственной памяти в естественной среде обитания.
Пищедобывательное поведение ряда видов птиц из семейств врановых
Изучение процесса запасания и отыскания пищи кедровками
Опыты были проведены в 1962–1963 годах на Телецком стационаре Биологического института СО АН СССР В сезон плодоношения кедров в построенную прямо в тайге большую вольеру выпускали по очереди кедровок после небольшого периода голодания Получив доступ к шишкам и утолив первый голод птицы начинали рассовывать орехи под мох корни кустарника под стволы деревьев (по нескольку штук в каждую <кладовку>) Наблюдатели точно картировали расположение кладовок, а птиц затем удаляли из вольера на разные промежутки времени (от нескольких часов до нескольких дней).
По возвращении в вольеру все подопытные птицы (перед этим остававшиеся без корма в течение нескольких часов) безошибочно обнаружили подавляющее число
Характер поведения кедровок полностью соответствовал тому, что наблюдали в естественных условиях орнитологи (Воробьев, 1982).
Точность обнаружения кладовок кедровками нарушается при смещении внешних пространственных ориентиров (Крушинская, 1966) Это экспериментально подтверждало предположение зоологов о том, что эти птицы точно запоминают место каждой кладовки, а не ищут их наугад. Н. Л. Крушинская, занимавшаяся в 60-е годы исследованием нейроморфологического субстрата обучения и памяти птиц, предположила, что способность запоминать местоположение кладовки можно рассматривать как модель для изучения механизмов пространственной памяти, и поставила цель проанализировать роль гиппокампа в его осуществлении. Как известно, мозг птиц по общему плану строения радикально отличается от мозга млекопитающих (см.: Обухов, 1999). Тем не менее опыты Н. Л. Крушинской на голубях, а позднее опыты Зиновьевой и Зориной (1976) на врановых и курах свидетельствовали о том, что гиппокамп у птиц, как и у млекопитающих, играет решающую роль в механизме памяти. После разрушения гиппокампа кедровки отыскивали кладовки лишь наугад (Крушинская, 1966). Таким образом, экспериментально было показано, что в основе способности птиц к отысканию спрятанного корма действительно лежит точная фиксация и хранение в памяти местоположения своих кладовок.
Описанные выше опыты стали практически
Способность к систематическому запасанию корма накладывает отпечаток на общую структурно-функциональную организацию мозга и поведения птиц. Прослеживаются следующие корреляции (подробнее см. обзоры: Clayton, Krebs, 1994, 1995; Shettleworth, 1995).
* У птиц тех видов, которые активно запасают корм, отношение объема гиппокампа к объему конечного мозга положительно коррелирует с выраженностью поведения запасания (Basil et at., 1996).
Существует прямая зависимость между выраженностью запасания у 5 видов врановых (4 вида американских соек и колумбийской кедровки) и их способностью к некоторым видам обучения, включая радиальный лабиринт (Balda, Kamil, 1992; Shettleworth, 1995). Чем более важную роль в выживании вида играет способность создавать запасы корма, тем точнее птицы запоминают пространственные координаты кладовок и тем лучше решают аналогичные задачи в эксперименте.
Представляло интерес выяснить, какие характеристики событий, наряду с запоминанием пространственных координат, фиксируют птицы при устройстве запасов. Работы английской исследовательницы Н. Клэйтон показывают, что они запоминают более сложную информацию и могут ответить не только на вопрос,
Птицы способны запоминать и хранить информацию не толь-| ко о месте расположения запаса, но и о времени события, а также и о пространственно-временных соотношениях.
Данные о том, что птицы помнят не только, где спрятано, но также что и когда спрятано (Clayton et al., 2000), представляются весьма актуальными, поскольку такой вид памяти
Пространственную память исследуют и у
Вопрос о том, в какой степени голубь, увезенный за сотни километров от дома, ориентируется по мысленной пространственной карте (Lipp, 1983), а в какой степени — по заученным ориентирам, насколько в этом участвуют обоняние (Papi et al., 1995) и восприятие магнитного поля, не имеет окончательного ответа (Bingman et al., 1995). Эти формы когнитивной деятельности голубей можно исследовать анатомо-физиологическими методами, например путем удаления некоторых структур мозга, в частности гиппокампа, а также с помощью фармакологических препаратов с известным типом действия. Формирование пространственных представлений у голубей при естественной навигации можно сопоставить с данными по их пространственному обучению в чисто лабораторных опытах.
«Выбор по образцу» — один из видов когнитивной деятельности, также основанный на формировании у животного внутренних представлений о среде. Однако в отличие от обучения в лабиринтах этот экспериментальный подход связан с обработкой информации не о пространственных признаках, а о соотношениях между стимулами — наличии сходства или отличия между ними.
Метод «выбора по образцу» был введен в начале XX в. И. Н. Ладыгиной-Коте и с тех пор широко используется в психологии и физиологии. Он состоит в том, что животному демонстрируют стимул-образец и два или несколько стимулов для сопоставления с ним, подкрепляя выбор того, который соответствует образцу. Существует несколько вариантов «выбора по образцу»:
* выбор из двух стимулов —
* выбор из нескольких стимулов —
Когда животное выбирает нужный стимул, оно получает подкрепление. После упрочения реакции стимулы начинают варьировать, проверяя, насколько прочно животное усвоило правила выбора. Следует подчеркнуть, что речь идет не о простой выработке
Успешное решение задачи при отставленном выборе также заставляет рассматривать данный тест как способ оценки когнитивных функций мозга и использовать его для изучения свойств и механизмов памяти.
Используются в основном две разновидности этого метода:
*
Отдельно надо отметить так называемый
???
Рис. 3.13.
Первоначально опыт ставился так: экспериментатор показывал обезьяне какой-либо предмет (образец), а она должна была выбрать такой же из других предлагаемых ей двух или более предметов (рис. 3.13). Затем на смену прямому контакту с животным, когда экспериментатор держал в руках стимул-образец и забирал из рук обезьяны выбранный ею стимул, пришли современные экспериментальные установки, в том числе и автоматизированные, полностью разделившие животное и экспериментатора. В последние годы для этой цели используют компьютеры с монитором, чувствительным к прикосновению, а правильно выбранный стимул автоматически перемещается по экрану и останавливается рядом с образцом.
Голубей и крыс обучают выбору по образцу в камере Скипнера (см рис 3 6) На диск, расположенный в центре, проецируется образец, на боковые диски — стимулы для сравнения В качестве стимулов используется, как правило, подсвет дисков разными цветами Животное осуществляет выбор путем клева-пня одного из боковых дисков (голубь) или нажатия на него мордой или лапой (крыса).
Иногда ошибочно считают, что обучение выбору по образцу — это то же самое, что выработка дифференцировочных УР. Однако это не так: при дифференцировке происходит только образование реакции на присутствующие в момент обучения стимулы; при «выборе по образцу» основную роль играет мысленное представление об отсутствующем в момент выбора образце и выявление на его основе соотношения между образцом и одним из стимулов.
Метод обучения выбору по образцу наряду с выработкой дифференцировок используется для выявления способности животных к обобщению (см. гл. 5).
Интерес к этой форме когнитивной деятельности животных возник в связи с обучением обезьян языкам-посредникам, при котором выяснилось, что шимпанзе могут составлять «фразы» из нескольких «слов»-жестов и понимать смысл обращенных к ним «высказываний» (см. гл. 6). Г. Террес (Terrace et al., 1977), один из авторов этих ранних работ, проанализировал структуру таких фраз и высказал гипотезу, что в основе подобного поведения лежит не истинное понимание правильного порядка слов в английском предложении, а более простая и, вероятно, более универсальная для животных способность запоминать длинные ряды («списки») стимулов.
Процесс запоминания цепей стимулов путем их разделения на подгруппы называется «делением на куски»
* Исследования Терреса позволяют понять, каким образом животные обрабатывают информацию о совокупностях, или цепях воспринимаемых стимулов, чтобы выполнить в ответ серию действий.
Предполагают, что внутренняя организация таких представлений осуществляется сходным образом у животных разного уровня организации. У голубей подобное обучение протекает так же, как у высших приматов, однако скорость обучения у них гораздо ниже, а последовательности, которые они в состоянии запомнить, менее сложные (D'Amato, Colombo, 1988).
Термин «инсайт-обучение» (Thorpe, 1963) был введен в 60-е годы для описания ряда случаев сложных форм обучения, а также проявлений мышления, которые явно нельзя было отнести ни к одной из упомянутых выше простых категорий. Его использовали в случаях, когда решение задачи происходило слишком быстро для обычного обучения методом «проб и ошибок». К инсайт-обучению относили описанное В. Келером (1925; 1997) поведение шимпанзе, соединившего две палки, чтобы достать недоступное лакомство, а также опыты Н. Майера (Maier, 1929), в которых, как выражался автор, можно было тестировать способность крыс «к рассуждению» (см. 4.8). Однако согласно современным представлениям эти формы поведения относятся к проявлениям мышления, и они будут рассмотрены в следующих главах. В настоящее время термин «инсайт-обучение» употребляется все реже, уступая место конкретным определениям тех или иных форм обучения или рассудочной деятельности. Так, в 4-м и 5-м изданиях одного из самых известных учебников по поведению животных (Manning, Dawkins,
Индивидуально-приспособительная деятельность животного и в эксперименте, и в естественных условиях представляет собой сплав способностей к ассоциативному обучению и когнитивным процессам разного уровня сложности. Не только в естественных условиях жизни, но и в спланированных экспериментах бывает трудно разделить ассоциативное обучение и когнитивные процессы. Тем не менее существуют экспериментальные подходы, позволяющие анализировать эти явления раздельно. О них будет рассказано в последующих главах книги.
1. Какие категории поведения относятся к основным типам индивидуально-приспособительной деятельности?
2. Каковы основные принципы учения о высшей нервной деятельности?
3. В чем сходство и отличие классических и инструментальных условных рефлексов?
4. Какие методы позволяют оценивать способность животных к обобщению?
5. Как исследуют формирование у животных пространственных представлений и в чем оно выражается?
6. Можно ли исследовать формирование пространственных представлений у животных в естественных условиях?
4. Элементарное мышление, или рассудочная деятельность животных:
Основные понятия и методы изучения
Основные экспериментальные данные о мышлении животных, о способности к экстренному решению новых задач, для которых у них нет «готового» решения. Анализ основных взглядов на природу мышления животных. Определение требований, которые необходимо соблюдать при планировании, проведении и обработке результатов экспериментов. Описание методик изучения рассудочной деятельности животных. Сопоставление экспериментов по орудийной деятельности и характеристик ее проявлений при жизни животных в естественных условиях. Краткие сравнительные характеристики решения элементарных логических задач животными разных таксономических групп. Обоснование необходимости комплексного разностороннего тестирования для получения полноценной характеристики уровня рассудочной деятельности вида.
История изучения проблемы элементарного мышления животных была кратко рассмотрена в гл. 2. Следующие разделы посвящены экспериментальному изучению этой формы когнитивной деятельности, которая по своим приспособительным функциям и механизмам отлична от инстинктов и способности к обучению.
4.1. Определения понятия «мышление животных»
В разд. 1.4 было приведено краткое описание структуры мышления человека и названы критерии, которым должен отвечать акт поведения животного, чтобы в нем можно было видеть участие процесса мышления. Напомним, что в качестве ключевого было выбрано определение А. Р. Лурия, согласно которому «акт мышления возникает только тогда, когда у субъекта существует соответствующий мотив, делающий задачу актуальной, а решение ее необходимым, и когда субъект оказывается в ситуации, относительно выхода из которой у него нет
Иными словами, речь идет об актах поведения, программа которых должна создаваться
Мышление человека — процесс многогранный, включающий и развитую до уровня символизации способность к обобщению и абстрагированию, и предвосхищение нового, и решение задач за счет экстренного анализа их условий и выявления лежащей в их основе закономерностей. В определениях, которые дают мышлению животных разные авторы, сходным образом отражаются всевозможные аспекты этого процесса, в зависимости от того, какие формы мышления выявляются теми или иными экспериментами.
Современные представления о мышлении животных складывались на протяжении всего XX столетия и во многом отражают использованные авторами исследований методические подходы. Интервал времени между некоторыми работами этого направления составил более полувека, поэтому их сопоставление позволяет проследить, как менялись взгляды на эту исключительно сложную форму высшей нервной деятельности.
У высокоорганизованных животных (приматов, дельфинов, врановых птиц)
В структуру процесса мышления многие авторы включали способность как к экстренному решению тех или иных элементарных логических задач, так и к обобщению.
В. Келер (1925), впервые исследовавший проблему мышления животных в эксперименте (см. 2.6), пришел к выводу, что человекообразные обезьяны обладают интеллектом, который позволяет им решать некоторые проблемные ситуации не методом проб и ошибок, а за счет особого механизма —
В основе инсайта лежит, по мнению В. Келера, тенденция воспринимать всю ситуацию в целом и благодаря этому принимать адекватное решение, а не только автоматически реагировать отдельными реакциями на отдельные стимулы.
Предложенный В. Келером термин «инсайт» вошел в литературу для обозначения случаев разумного постижения внутренней природы задачи. Этим термином активно пользуются и в настоящее время при исследовании поведения животных для обозначения внезапных решений ими новых задач, например при описании поведения обезьян, осваивающих амслен (гл. 6).
Современник и единомышленник В. Келера американский исследователь Р. Йеркс на основе разнообразных экспериментов с человекообразными обезьянами пришел к выводу, что в основе их когнитивной деятельности лежат
Наличие мышления у животных допускал И. П. Павлов (см. 2.7). Он оценивал этот процесс как «зачатки конкретного мышления, которым и мы орудуем», и подчеркивал, что его нельзя отождествлять с условными рефлексами. О мышлении, по мнению И. П. Павлова, можно говорить в случае, когда связываются два явления, которые в действительности постоянно связаны: «Это уже будет другой вид той же ассоциации, имеющей значение, может быть, не меньшее, а скорее большее, чем условные рефлексы — сигнальная связь».
Американский психолог Н. Майер (Maier, 1929) показал, что одна из разновидностей мышления животных — способность в новой ситуации реагировать адекватно за счет экстренной реорганизации ранее приобретенных навыков, т. е. за счет способности «спонтанно интегрировать изолированные элементы прошлого опыта, создавая
Н. Н. Ладыгина-Коте (1963) писала, что «обезьяны имеют элементарное конкретное образное мышление (интеллект), способны к элементарной абстракции
Способность к экстренному решению новых задач. Способность устанавливать
Л. В. Крушинский (1986) исследовал эту способность как основу элементарного мышления животных.
Мышление, или рассудочная деятельность (по Крушинскому), — это «способность животного улавливать эмпирические законы, связывающие предметы и явления внешнего мира, и оперировать этими законами в новой для него ситуации для построения программы адаптивного поведенческого акта».
При этом Л. В. Крушинский имел в виду ситуации, когда у животного
Напомним, что это именно те особенности, которые отмечены в определении мышления человека, данном А. Р. Лурия (1966). В то же время, как подчеркивает Л. В. Крушинский, имеются в виду ситуации, выход из которых может быть найден не методом проб и ошибок, а именно логическим путем, на основе мысленного анализа условий задачи. По его терминологии, решение осуществляется на основе
Американский исследователь Д. Рамбо, анализирующий процесс символизации у антропоидов, подчеркивает когнитивную природу этого явления и рассматривает мышление животных как «адекватное поведение, основанное
Другой американский исследователь, Д. Примэк (Premack, 1986) также приходит к выводу, что «языковые» способности шимпанзе (сложная форма коммуникативного поведения) связаны с «умственными процессами высшего порядка».
К таким процессам Примэк относит способности к сохранению «сети перцептивных образов-представлений, к использованию символов, а также к мысленной реорганизации представления о последовательности событий».
Не ограничиваясь обучением шимпанзе созданному им языку-посреднику (см. 2.9.2), Примэк разработал и в значительной степени осуществил комплексную программу изучения мышления животных. Он выделил следующие ситуации, которые надо исследовать, чтобы доказать наличие мышления у животных:
* решение задач, моделирующих естественные для животного ситуации
* построение аналогий
* осуществление операций логического вывода
* способность к самоосознанию.
Всестороннюю характеристику интеллекта животных дал в своей книге «Мыслящие антропоиды» американский исследователь Ричард Бирн (Вугпе, 1998). По его мнению, в понятие «интеллект» включены способности особи:
* извлекать знания из взаимодействий со средой и сородичами;
* использовать эти знания для организации эффективного поведения как в знакомых, так и в новых обстоятельствах;
* прибегать к мышлению
* осуществлять любые формы соединения
Способность к обобщению и абстрагированию и формированию довербальных понятий. Это еще одно важнейшее проявление зачатков мышления животных (Koehler, 1956; Ладыгина-Коте, 1963; Mackintosh, 1988; и др.). Как указывает Фирсов (1987; 1993), возможно, именно эта форма высшей нервной деятельности составляет первооснову других, выше перечисленных проявлений мышления. Л. А. Фирсов дает следующее определение данной способности:
«Способность к обобщению и абстрагированию — это умение животного в процессе обучения и приобретения опыта выделять и фиксировать относительно устойчивые, инвариантные свойства предметов и их отношений».
Способность предвидеть результаты собственных действий. Ряд авторов, исследовавших разумные элементы в целостном поведении животных в естественных или близких к ним условиях, особо отмечает еще и этот вид высшей нервной деятельности, а также
Так, всестороннее знание поведения в естественной среде обитания привело этолога Дж. Гудолл (1992) к уверенности в том, что шимпанзе обладают зачатками мышления, которые проявляются в разнообразных формах и многих ситуациях. Она пользуется таким определением мышления:
«Умение планировать, предвидеть, способность выделять промежуточные цели и искать пути их достижения, вычленять существенные моменты данной проблемы — вот в сжатом виде суть рассудочного поведения».
«Социальное сознание». Это особая грань процесса мышления животных
Мышление животных обеспечивает (теми или иными способами) способность сразу же адекватно реагировать на новую ситуацию, для которой нет ранее подготовленного решения (см. гл. 7).
Рассмотрим теперь те конкретные эксперименты, в которых можно выявлять различные формы довербального мышления животных, исследовать их природу и выяснить, в какой мере они представлены у животных разных систематических групп.
4.2. Основные направления изучения элементов мышления у животных. Экспериментальные модели
Для экспериментального изучения зачатков мышления животных используются достаточно многочисленные и разнообразные по своей природе тесты. Часть из них в той или иной степени воссоздает проблемные ситуации, которые могут возникать в естественной среде обитания. Их решение основано на способности животного оперировать так называемыми
Исследования способности животных к решению новых задач в новых, экстренно возникших ситуациях, для выхода из которых у них нет «готового решения» и которые могут быть решены «за счет улавливания связей и соотношений между предметами и явлениями», за счет «активного овладения закономерностями окружающей среды» при первом же предъявлении. Такой тип задач использовали В. Келер (см. 4.5), Л. В. Крушинский (см. 4.6), отчасти Л. А. Фирсов (1977), Е. Мен-зел (Menzel, 1979), Д. Гиллан (Gillan, 1981) и др. Следует подчеркнуть, что во всех случаях возможно логическое решение задачи на основе мысленного анализа ее условий, т. к. по своей природе она не требует предварительных «проб и ошибок». Л. В. Крушинский называл их
Способность животных решать задачи за счет переноса ранее выработанной реакции на новые стимулы (или наборы стимулов) и в новые ситуации. В основе этого типа элементарного мышления лежит функция
Часть тестов в той или иной степени была заимствована из арсенала методов
* оценка способности к операциям логического вывода;
* оценка способности к построению аналогий (см. гл. 5).
В тех случаях, когда животным предъявляют задачи, решение которых у человека связано с функцией второй сигнальной системы, их необходимо преобразовать в невербальную форму. Примером такого преобразования может служить тест на
Очевидно, сам по себе факт решения подобного теста не означает, что животные и человек решают его с помощью одних механизмов. Поэтому (как и следует по «канону К. Л. Моргана», см. 2.3) необходимо особенно тщательно проанализировать, действительно ли в основе решения лежит предполагаемая экспериментатором логическая операция или животные используют более простой механизм, например ассоциативное обучение.
Применение «канона К. Л. Моргана» — обязательный этап анализа способности животных к мышлению.
В основе большинства элементарных логических тестов, используемых для оценки рассудочной деятельности, лежат проблемные ситуации, связанные с добыванием пищи. В одних случаях животное все время видит приманку, которая отделена от него какой-либо преградой или расстоянием (см. 4.5), в других она тем или иным способом исчезает из поля зрения (см. 4.6).
Если животное без специального обучения, без проб и ошибок, при первом же предъявлении «изобретает» способ достижения приманки, такое решение рассматривают как проявление мышления.
Следует подчеркнуть, что во втором типе задач, когда приманка исчезает из поля зрения, животное должно руководствоваться при решении не ее непосредственным воздействием на органы чувств, а ее
Исследование мышления животных базируется в основном на анализе таких способностей, как:
* оценка количественных параметров среды, т. е.
* орудийная деятельность (см. ниже);
* освоение языков-посредников (см. гл. 6).
4.3. Каким требованиям должны удовлетворять тесты на рассудочную деятельность
Как же нужно проводить эксперимент, чтобы быть уверенным, что он выявляет именно способность к разумному решению задачи, а не какие-то другие когнитивные функции? Прежде чем переходить непосредственно к описанию методик экспериментов, рассмотрим некоторые общие требования, которым они должны удовлетворять.
В противоположность первым, в значительной мере описательным работам, например опытам В. Келера (см. 4.5), которые к тому же могли быть проведены главным образом на приматах, в настоящее время существует ряд универсальных тестов, применимых для животных разных видов. Благодаря структуре такого теста животное может решить его при первом же предъявлении, а результат выражается в форме
Результаты первых предъявлении теста. Как правило, они считаются наиболее информативными для оценки уровня рассудочной деятельности животного. Если же тест необходимо повторить, то для того, чтобы при этом он оставался, согласно определению,
Право- и левостороннее предъявления подкрепляемого стимула при повторении опыта на одном и том же животном чередуются в квазислучайном порядке, чтобы предотвратить формирование предпочтение выбора стимула только с одной из сторон. Для этого часто используют стандартные фрагменты последовательности случайных чисел, выбранные так, чтобы в каждых 10 опытах число предъявлении стимула с обеих сторон было одинаково и не превышало двух или трех повторений подряд. Например:
Соблюдение общих принципов физиологической и экологической адекватности условий эксперимента — это необходимое требование ко всем тестам на рассудочную деятельность. Его выполнение способствует уверенности в том, что полученная в эксперименте характеристика отражает способность именно к экстренному логическому решению, а не какие-то другие особенности поведения (Дашевский, 1979; Дьюсбери, 1981).
Специфику сенсорных, двигательных и мотивационных особенностей животного необходимо учитывать для обеспечения адекватности тестов на рассудочную деятельность. Действительно, невозможно себе представить, чтобы голубь при доставании корма воспользовался орудием или чтобы животное, обладающее тонким обонянием, не использовало запаховые подсказки, а руководствовалось только зрительной информацией о направлении движения корма. При решении задач, связанных с анализом разного рода зрительной информации. необходимо убедиться, что животные обладают достаточно развитым зрением. Например, животные с ограниченными возможностями восприятия цветов могут не справиться с задачей, где требуется тонкое их различение, но это не значит, что у них отсутствует изучаемая когнитивная функция. Или другой пример: специальные опыты показали, что хищные млекопитающие обладают достаточно развитой бинокулярностью зрения. Это позволило утверждать, что их неспособность к решению задачи на оперирование эмпирической размерностью фигур не может быть отнесена за счет этого рода сенсорною дефицита и связана, по-видимому, с другими механизмами (Дашевский, 1979; см. 4.6.3).
Подобным же образом были проанализированы когнитивные способности голубей, чтобы объяснить отсутствие у них способности к экстраполяции направления движения пищевого раздражителя, исчезающего из поля зрения (см. 4.6.2). Оказалось, что голуби способны к достаточно тонкому восприятию и анализу движущихся стимулов и после многих сочетаний могут научиться успешно прослеживать движение точки на экране (Rilling, Neiworth, 1987). Из этого следует, что их неспособность к экстраполяции направления движения пищевого стимула в новой ситуации также не связана с сенсорным дефицитом.
«Отказы» от решения. Помимо правильных и неправильных ответов при решении теста могут наблюдаться случаи, когда животное вообще не совершает никакой реакции — ни правильной, ни ошибочной. Одной из причин этого может быть неспособность осуществить нужную реакцию из-за ограниченности его двигательных или манипуляционных возможностей. Например, бесполезно предлагать собаке доставать приманку палкой или ждать, когда она будет что-то сооружать из ящиков, поскольку ей заведомо недоступны манипуляции такого рода. Еще одной причиной таких «отказов» может быть боязнь обстановки опыта. Очевидно, что эксперименты с таким животным следует отложить до полного угашения у него страха и тревоги.
Размеры экспериментальной установки. При тестировании способности к экстраполяции необходимо учесть, что животные разных видов существенно различаются по своим размерам и это может повлиять на результаты решения. Этого можно попытаться избежать, подобрав размеры установки так, чтобы животное «не заблудилось» в слишком большой для него камере, направляясь к передвигающейся за ширмой приманке (см. 4.6.2). Именно поэтому хищных млекопитающих тестировали с помощью ширмы длиной около 3 м и высотой около 1 м, расположенной в комнате площадью 25 кв. м, а мышей — в камере размером 24 х 15 х 15 см (см. рис. 4.12).
Мотивационное состояние животного. Для получения адекватной оценки способности к рассудочной деятельности у тестируемого животного необходимо создавать соответствующее мотивационное состояние. Как правило, опыты проводят на голодных животных при пищевом подкреплении, причем желательно подбирать наиболее привлекательную для каждой особи приманку. По мере привыкания к обстановке опыта уровень пищевой депривации можно ослабить.
Вопрос о том, какая степень голодания допустима в таких экспериментах, до недавнего времени решайся чисто эмпирически. Однако в зарубежных лабораториях установлены
В то же время при работе с высшими млекопитающими более целесообразным может быть использование не пищевой мотивации, а стремления к игре и исследованию окружающей среды. В частности, чтобы дельфины решали задачу на оперирование эмпирической размерностью фигур, в качестве приманки использовали не пищу, а мяч (Крушинский и др., 1972). Большинство экспериментов по обучению шимпанзе языкам-посредникам (см. гл. 6) проводится без пищевого подкрепления, а за счет удовлетворения их любознательности. В некоторых опытах подкреплением им служит возможность посмотреть видеофильм.
Убедительный пример влияния мотивации на характер решения теста на рассудочную деятельность получен в работе А. Ф. Семиохиной и С. И. Забелина (1978). По их данным, белые лабораторные крысы проявили способность к экстраполяции направления движения, если объектом поиска был рычаг, с помощью которого включалось электрическое раздражение ряда структур мозга (самостимуляция), тогда как задачу на экстраполяцию направления движения пищевой приманки они практически не решали.
Видоспецифические особенности поведения могут быть одним из возможных объяснений удачного решения того или иного теста. Например, различия в результатах решения задачи на экстраполяцию направления движения пищевого раздражителя могут быть объяснены тем, что одни животные в естественных условиях питаются движущейся добычей, в то время как кормом для других служат неподвижные объекты. Для того, чтобы убедиться в том, что успешное решение не есть следствие особенностей поведения, связанных с экологией вида, например с пищевой специализацией, для оценки уровня его рассудочной деятельности целесообразно применять комплекс различных тестов, в том числе и таких, решение которых не зависит от способа питания (см. гл. 8). Опыты должны проводиться так, чтобы животные с сильно развитым обонянием (грызуны, собаки) не могли использовать при решении тестов запаховые метки. Для этого надо промывать камеру после каждой пробы, не закладывать приманку в объекты, где ее можно найти по запаху, уравновешивать запахи в разных точках камеры.
Предотвращение невольных «подсказок» экспериментатора составляет особенно важный момент при планировании экспериментальной процедуры. Такая опасность была очень убедительно продемонстрирована в истории «умного Ганса» (см. 3.2.2.3). Речь идет о тех неосознаваемых идеомоторных движениях, которые может непроизвольно совершать экспериментатор, когда животное приближается, например, к «правильному» стимулу. Чтобы избежать этого, применяют «слепой» контроль, когда проводящий опыт человек не знает, какие реакции правильны. Кроме того, тенденция большинства современных методик состоит в том, что подача стимулов и регистрация реакций животного производится автоматически, с помощью компьютерных программ.
Для получения достоверных результатов при проведении когнитивных тестов необходимо соблюдать целый набор условий. Повторим их кратко:
• возможность оценить выполнение теста при первом предъявлении;
• обеспечение «новизны» стимулов при повторных предъявлениях задачи;
• соответствие условий эксперимента сенсорным, манипуляционным и локомоторным возможностям животных данного вида;
• оценка экологических и этологических особенностей данного вида;
• создание у животного мотивации, побуждающей его решать задачу;
• устранение таких признаков, которые животное могло бы использовать при решении (обонятельные, пространственные и другие стимулы-«подсказки»);
• предотвращение невольных «подсказок» экспериментатора.
Другие требования, которые необходимо учитывать при организации экспериментов, мы рассмотрим ниже, при описании используемых в подобных опытах методик Дополнительно в соответствующих разделах будут рассмотрены некоторые условия, также необходимые для создания физиологической и экологической адекватности тестов на рассудочную деятельность.
4.4. Классификация тестов, применяемых для изучения рассудочной деятельности (мышления) животных
К настоящему времени накоплены разнообразные и многочисленные, но разрозненные данные о мышлении животных. Они получены в разных лабораториях, с помощью весьма разнообразных тестов. Единая классификация таких тестов, основанная на особенностях разных аспектов мышления животных, практически отсутствует. Для восполнения этого пробела ниже приведена классификация существующих ныне тестов для изучения мышления животных (Зорина, 1997), которой мы в дальнейшем будем пользоваться.
I. Улавливание принципа, лежащего в основе задачи, с правильным ответом в первой пробе.
1.
1) преодоление преграды или выбор обходного пути;
2) достижение приманки с помощью орудий
2.
1) экстраполяция направления движе
2) оперирование пространственно-геометрическими признаками.
3.
II. Реорганизация ранее усвоенных независимых навыков.
1.
1) отыскание пути в трехлучевом лабиринте;
2) выбор короткого пути в лабиринте.
2.
1) наблюдения в природе;
2) совместные манипуляции для добычи приманки.
3.
4.
III. Выявление общего алгоритма.
1.
2.
IV. Обобщение и абстрагирование.
1.
2.
3.
4.
5.
V. Операции логического вывода.
1.
VI. «Социальное сознание» (SocialCognition).
1.
2.
3.
В этой главе приводятся наиболее известные методы изучения тех форм рассудочной деятельности животных, которые связаны с экстренным улавливанием принципа задачи (1) и экстренной реорганизацией независимых навыков (II). Решение на основе выявления общего алгоритма при многократном предъявлении серии однотипных задач (III) были рассмотрены в гл. 3, а проблемам обобщения и абстрагирования (IV) посвящена гл. 5.
4.5. Способность к достижению приманки, находящейся в поле зрения
С помощью задач этого типа началось непосредственное экспериментальное исследование зачатков мышления животных. Впервые их использовал В. Келер (1930) в своих ставших классическими опытах (см. 2.6), где создаются разнообразные проблемные ситуации, в большей или меньшей степени новые для животных, а их структура позволяет
Задачи, применявшиеся В. Келером, можно расположить в порядке возрастания их сложности и разной вероятности использования предшествующего опыта. Рассмотрим наиболее важные из них.
Опыт с корзиной. Это относительно простая задача, для которой, по-видимому, существуют аналоги в естественных условиях. Корзину подвешивали под крышей вольеры и раскачивали с помощью веревки. Лежащий в ней банан невозможно было достать иначе, чем взобравшись на стропила вольеры в определенном месте и поймав качающуюся корзину. Шимпанзе легко решали задачу, однако это нельзя с полной уверенностью расценивать как экстренно возникшее новое разумное решение, так как не исключено, что с похожей задачей они могли сталкиваться ранее и имели опыт поведения в подобной ситуации.
Задачи, описанные в следующих разделах, представляют собой наиболее известные и удачные попытки создания животному проблемных ситуаций, для выхода из которых у него
В. Келер предлагал своим обезьянам несколько задач, решение которых было возможно только при использовании
Подтягивание приманки за нити. В первом варианте задачи лежащую за решеткой приманку можно было получить, подтягивая за привязанные к ней нити (рис. 4.2А). Эта задача, как выяснилось впоследствии, оказалась доступной не только шимпанзе, но также низшим обезьянам и некоторым птицам. Более сложный вариант этой задачи был предложен шимпанзе в опытах Г. 3. Рогинского (1948), когда приманку надо было подтягивать за два конца тесемки одновременно. С такой задачей шимпанзе в его опытах не справились (рис. 4.2Б). Изготовление орудия шимпанзе: соединение двух палок (А). С помощью новой палки большей длины приманку достать можно (Б) (опыты В. Келера).
Рис. 4.1.
Представители приматов разного уровня развития решают данную задачу с разной степенью успешности, в особенности когда тесемка уложена сложным образом (рис. 4.2В) (Rumbaugh et al., 2000).
Использование палок. Более распространен другой вариант задачи, когда банан, находящийся за клеткой вне пределов досягаемости, можно было достать только с помощью палки. Шимпанзе успешно решали и эту задачу. Если палка находилась рядом, они брались за нее практически сразу, если в стороне — решение требовало некоторого времени на раздумье. Наряду с палками шимпанзе могли использовать для достижения цели и другие предметы.
В. Келер обнаружил многообразные способы обращения обезьян с предметами как в условиях эксперимента, так и в повседневной жизни. Обезьяны, например, могли использовать палку в качестве шеста при прыжке за бананом (рис. 4.ЗА), в качестве рычага для открывания крышек, как лопату, при обороне и нападении; для очистки шерсти от грязи; для выуживания термитов из термитника и т. п. Добывание приманки с помощью тесемки.
Рис. 4.2.
А — шимпанзе выбирает и подтягивает тесемку, привязанную к приманке (см текст), Б — подтягивание приманки сразу за два конца тесемки были для шимпанзе недоступной задачей (опыты Г. 3. Рогинского), В — график, который демонстрирует успешность решения «задачи с тесемкой» обезьянами разных видов слева — простой вариант задачи, когда тесемка располагалась по прямой, справа — усложненный вариант, когда тесемка была расположена в виде ломаной линии.
Орудийная деятельность шимпанзе. Наблюдения В. Келера за орудийной деятельностью шимпанзе дали начало особому направлению в изучении поведения. Дело в том, что использование животными орудий представлялось наиболее очевидной демонстрацией наличия у них элементов мышления как способности в новой ситуации принимать адекватное решение экстренно, без предварительных проб и ошибок Впоследствии орудийную деятельность в разных ситуациях (не только в эксперименте) обнаружили и у других видов млекопитающих у обезьян разных видов (Дерягина, 1986, Ладыгина-Коте, 1959), у птиц (Фабри, 1980, Jones, Kamil, 1973, Hunt, 1996)
Рис. 4.3.
А — шимпанзе применяет палку в качестве шеста, встав на который можно дотянуться до приманки (опыты В Келера), Б — молодой шимпанзе Тарас (опыты Л. А. Фирсова) сообразил, как «заклинить» крышку с помощью палки, чтобы достать лакомство (см текст).
Изучение орудийной деятельности составило один из фрагментов того комплексного исследования ВНД и поведения антропоидов, которое проводил Л. А. Фирсов (см. 2.7). В его работах приведены многочисленные наблюдения за орудийной деятельностью приматов в лаборатории и в условиях, приближенных к естественным В течение нескольких сезонов группы обезьян (шимпанзе, а затем макак) выпускали на небольшой озерный остров в Псковской области.
Для проверки способности шимпанзе к использованию природных объектов в качестве орудий был разработан специальный аппарат Он представлял собой прозрачный ящик, внутрь которого помещали приманку Чтобы получить ее, нужно было потянуть за рукоятку тяги, достаточно удаленную от аппарата Проблема состояла в том, что как только животное отпускало рукоятку, дверца аппарата захлопывалась При этом тяга была слишком длинной и обеих рук шимпанзе было недостаточно, чтобы, держась за рукоятку, одновременно дотянуться до баночки с компотом Молодой самец Тарас справился с этой задачей После безуспешных попыток решить задачу «в лоб» он отошел в сторону ближайших кустов По дороге он поднял небольшую хворостину и тут же ее бросил, через несколько секунд потянулся к сухим веткам ольхи, отломил короткую тонкую веточку, но бросил и ее После этого Тарас выломал довольно длинную и прочную хворостину и с нею вернутся к аппарату Не делая никаких лишних (поисковых или пробных) движении, он с силой потянул за рукоять тяги Открывшуюся при этом дверцу он заклинит с помощью принесенной из тесу палки Убедившись в достигнутом результате Тарас стремительно бросился к аппарату открыл дверцу и забрал компот (рис 4 ЗБ).
Характерно что поиски нужного орудия не были слепыми пробами и ошибками было похоже что обезьяна действует в соответствии с определенным планом, хорошо представляя себе что ей нужно Проведенный впоследствии анализ кинокадров отснятых во время опыта, подтвердил это предположение так как пленка зафиксировала движения которыми Тарас как бы примерял» необходимою длину будущего орудия сопоставляя ее с размера ми собственного тела.
При добывании видимой, но недоступной приманки, которую опускали на дно узкой и довольно глубокой ямки, шимпанзе также проявили способность быстро выбирать наиболее подходящее орудие, и это также происходило не как «пробы наугад», а как бы в результате сопоставления с мысленным образом нужного им орудия.
В решении этой задачи четко проявились индивидуальные особенности поведения всех четырех шимпанзе Так одна обезьяна (Сильва) каждый раз особым образом готовила себе орудия Она пригибала какой нибудь куст отламывала или откусывала от него несколько веток и возвращалась к ямке там она принималась за окончательную подготовку орудии делила ветки на короткие кусочки очищала от листьев а иногда и от коры Из этих заготовок она выбирала одну остальные бросала и принималась за дело Если выбор палочки оказывался неудачным она снова отправлялась к кусту и все повторялось в том же порядке Другие обезьяны в этих целях использовали случайно подобранные предметы.
Особо надо подчеркнуть что ни в этих опытах Л А Фирсова ни в похожих случаях шимпанзе не сохраняли удачного орудия Отметим что Дж Гудолл наблюдала противоположное явление шимпанзе носили с собой (по крайней мере в течение целого дня) < при тянувшееся > им орудие (Гудотт 1992).
Извлечение приманки из трубы (опыт Р. Йеркса). Эта методика существует в разных вариантах В наиболее простом случае, как это было в опытах Р. Йеркса, приманку прятали в большой железной трубе или в сквозном узком длинном ящике (170 х 10 х 10 см), а в качестве орудий животному предлагались шесты (170 х 4 х 4 см) Оказалось, что такую задачу успешно решают не только шимпанзе, но и горилла, и орангутан (Yerkes, 1943, см рис 44).
Палка (или другое орудие) в руках шимпанзе зачастую служит не только для добывания корма, но и в других целях (рис 4 5).
Применение палок в качестве орудии — результат не случайных манипуляций, а осознанный и целенаправленный акт.
Конструктивная деятельность обезьян. При анализе способности шимпанзе применять орудия В Келер обратил внимание, что помимо использования готовых палок они
Гортла выталкивает палкой плод из трубы (опыт Р Йеркса).
Рис. 4.4.
Рис. 4.5.
А — <обследование> ноги с помощью палочки Б — вытирание носа папирос нон бумагой В — шимпанзе дразнит мартышек палкой (из работы Н. Н. Ладыгиной-Коте 1959)
Рис. 4.6.
Интерес к этой проблеме, возникший в 20-30-е годы, побудил Н. Н. Ладыгину-Коте (1959) к специальному исследованию вопроса о том, в какой степени приматы способны к употреблению, доработке и изготовлению орудий Она провела обширную серию опытов с шимпанзе Парисом, которому предлагались десятки самых разных предметов для добывания недоступного корма Основной задачей, которую предлагали обезьяне, было извлечение приманки из трубы.
Методика опытов с Парисом была несколько другой, чем у Р. Йеркса в них использовали непрозрачную трубку длиной 20 см Приманку заворачивали в ткань, и этот сверток помещали в центральную часть трубки, так что он был хорошо виден, но достать его можно было только с помощью какого-нибудь приспособления Оказалось, что Парис, как и антропоиды в опытах Йеркса, смог решить задачу и использовал для этого любые подходящие орудия (ложку, узкую плоскую дощечку, лучину, узкую полоску толстого картона, пестик, игрушечную проволочную лесенку и другие самые разнообразные предметы) При наличии выбора он явно предпочитал для этого предметы, большие по длине или более массивные тяжеловесные палки (рис 4 6).
Наряду с этим выяснилось, что шимпанзе обладает довольно широкими возможностями использования не только готовых «орудий», но и предметов, требующих
Результаты более чем 650 опытов показали, что диапазон орудийной и конструктивной деятельности шимпанзе весьма широк Парис, как и обезьяны в опытах В. Келера, успешно использовал предметы самой разной формы и размера и производил с ними всевозможные манипуляции сгибал, отгрызал лишние ветки, развязывал пучки, раскручивал мотки проволоки, вынимал лишние детали, которые не давали вставить орудие в трубку. В этот набор входили и гораздо более сложные операции, чем те, что были отмечены Фирсовым в его экспериментах в естественных условиях Не во всех случаях такое изготовление орудий было успешным и отвечало ситуации (рис. 4.7).4.7. Изготовление и использование орудий шимпанзе в условиях неволи.
Рис. 4.7. Изготовление и использование орудий шимпанзе в условиях неволи.
Животное соединяет палки под углом, использовать такое орудие явно нельзя (опыты Н. Н. Ладыгиной-Коте, 1959).
Оказалось, что труднее всего для шимпанзе составить орудие из более мелких элементов, тогда как процесс расчленения для них более привычен и освоен. Видимо, как полагает Н. Н. Ладыгина-Коте (1959), это связано не с трудностью выполнения соответствующих манипуляций, а со спецификой и ограниченностью их мышления — «с неспособностью шимпанзе оперировать зрительными образами,
Ладыгина-Коте относит орудийную деятельность шимпанзе к проявлениям мышления, хотя и подчеркивает его специфику и ограниченность по сравнению с мышлением человека.
Представления о возможности целенаправленной, осознанной конструктивной деятельности шимпанзе высказывают и современные этологи, изучавшие их поведение в естественных условиях, прежде всего Дж. Гудолл (см. 2.11.4).
Вопрос о том, насколько «осмысленны» действия шимпанзе (и других животных) при использовании орудий, всегда вызывал и продолжает вызывать большие сомнения Так, есть много наблюдений, что наряду с использованием палок по назначению шимпанзе совершают ряд случайных и бессмысленных движений Особенно это касается конструктивных действий, если в одних случаях шимпанзе успешно удлиняют короткие палки, то в других соединяют их под углом, получая совершенно бесполезные сооружения (рис. 4.7). В связи с важностью этого вопроса его нужно было внимательно проанализировать в специальном лабораторном эксперименте. Схема экспериментальной установки и орудийные действия обезьяны (пояснения в тексте).
Рис. 4.8.
А — простая задача; Б — задача с «ловушкой», неправильное решение; В — то же; правильное решение: Г — фото капуцина, которому предъявлялась задача с «ловушкой» (с любезного разрешения Э. Визальберги, институт психологии, Национальный центр научных исследований, Рим).
Итальянская исследовательница Элизабета Визальберги (Visalberghi et al., 1995; 1997; 1998) предложила методику изучения орудийной деятельности, которая позволила разрешить многие из этих сомнений. Опыты проводились в строго контролируемых лабораторных условиях, но сохраняли при этом биологическую адекватность. Они не просто демонстрировали использование обезьянами орудий, но позволяли выяснить, могут ли животные планировать свои действия и предвидеть их последствия (рис. 4.8). Наконец, что особенно важно, результат одного из вариантов опыта мог быть выражен не в описательной форме, а в форме «да — нет» и потому был доступен количественной оценке и статистической обработке.
Так же как Н. Н. Ладыгина-Коте и Р. Йеркс, Э. Визальберги предлагала задачу на доставание приманки из трубы, но использовала прозрачную трубку. Опыты на шимпанзе шли параллельно с опытами на низших обезьянах — капуцинах. Эксперимент заключался в следующем. Приманку (1) помещали в прозрачную трубку (2), а вытолкнуть ее оттуда можно было только с помощью палки (3) подходящей толщины. Оказалось, что решают задачу и капуцины, и шимпанзе, но между ними существуют огромные различия в понимании связи производимого действия с его результатом.
В первом варианте задачи (как и в опытах Ладыгиной-Коте) обезьянам предлагали различные «полуфабрикаты» орудий — заготовки, которые надо было соответствующим образом изменить, чтобы добыть приманку. Шимпанзе легко решали задачу, тогда как капуцины
Тем не менее данные об орудийном поведении капуцинов, полученные Визальберги, отличаются от полученных Н. Ф. Левыкиной (1959) — ученицей Н. Н. Ладыгиной-Коте. Ни одна из изученных ею 16 низших обезьян (в том числе 3 капуцина) по собственной инициативе не только не использовала палку в качестве орудия, но даже не сделала таких попыток. Возможно, что поиск приманки в прозрачной трубке, а не в установке, где приманки не видно. — задача более простая.
Для ответа на вопрос, могут ли обезьяны «планировать» свои действия в зависимости от конкретной схемы задачи, решающее значение имел второй вариант опыта Э. Визальберги (рис. 4.8Б — Г). В этом случае в средней части трубки имелось отверстие, через которое приманка (продвинутая с помощью орудия) могла упасть в приделанный к нему снизу прозрачный стакан. Автор назвала этот стакан «ловушкой». Чтобы получить приманку, обезьяна должна была не только правильно подобрать орудие — палку соответствующего диаметра, но и вставить ее в трубку так, чтобы приманка не попала в эту ловушку. Это показано на схемах (см. рис. 4.8Б и В). На фотографии (рис. 4.8Г) видно, что капуцин решить эту задачу не может. Одна приманка уже попала в ловушку, но животное не сменило тактику и собирается повторить ошибку.
Применение методики с ловушкой позволило достаточно четко разделить
Шимпанзе и эту задачу могли решать точно. Они продемонстрировали высокую долю правильных решений, т. е. достоверно чаще вставляли палку так, чтобы приманка попала им в руки, а не в ловушку.
Таким образом, первоначальные данные В. Келера были подтверждены в детальных современных исследованиях.
Эксперименты, в которых животные должны «догадаться», как достать приманку из трубки, свидетельствуют о способности шимпанзе к изготовлению орудий и их целенаправленному использованию в соответствии с ситуацией. Между низшими и человекообразными обезьянами существуют качественные различия в таких способностях.
Человекообразные обезьяны (шимпанзе) способны к «инсайту» — осознанному «спланированному» употреблению орудий в соответствии с имеющимся у них
Наибольшую известность получила группа опытов В. Келера с построением «пирамид» для достижения приманки. Под потолком вольеры подвешивали банан, а в вольеру помещали один или несколько ящиков. Чтобы получить приманку, обезьяна должна была передвинуть под банан ящик и взобраться на него. Эти задачи существенно отличались от предыдущих тем, что явно не имели никаких аналогов в видовом репертуаре поведения этих животных.
Шимпанзе оказались способными к решению подобного рода задач. В большинстве опытов В. Келера и его последователей они осуществляли необходимые для достижения приманки действия: подставляли ящик или даже пирамиду из них под приманку (рис. 4.9А). Характерно, что перед принятием решения обезьяна, как правило, смотрит на плод и начинает двигать ящик, демонстрируя, что улавливает наличие связи между ними, хотя и не может ее сразу реализовать.
Действия обезьян не всегда были однозначно адекватными. Так, Султан пытался в качестве орудия использовать людей или других обезьян, взбираясь к ним на плечи или, наоборот, пытаясь поднимать их над собой. Его примеру охотно следовали другие шимпанзе, так что колония временами формировала «живую пирамиду» (рис. 4 9Б). Иногда шимпанзе приставлял ящик к стене или строил «пирамиду» в стороне от подвешенной приманки, но на уровне, необходимом для ее достижения.
Анализ поведения шимпанзе в этих и подобных ситуациях ясно показывает, что они производят
Рис. 4.9.
На следующих этапах В Келер усложнял задачу и комбинировал разные ее варианты. Например, если ящик наполняли камнями, шимпанзе выгружали часть из них, пока ящик не становился «подъемным». В другом опыте в вольер помещали несколько ящиков, каждый из которых был слишком мал, чтобы достать лакомство. Поведение обезьян в этом случае было очень разнообразным. Например, Султан первый ящик пододвинул под банан, а со вторым долго бегал по вольере, вымещая на нем ярость. Затем он внезапно остановился, поставил второй ящик на первый и сорвал банан. В следующий раз Султан построил пирамиду не под бананом, а там, где тот висел в прошлый раз. Несколько дней он строил пирамиды небрежно, а затем вдруг начал делать это быстро и безошибочно. Часто сооружения были неустойчивы, но это компенсировалось ловкостью обезьян В ряде случаев пирамиду сооружали вместе несколько обезьян, хотя при этом они мешали друг другу.
Наконец, «пределом сложности» в опытах В. Келера была задача, в которой высоко под потолком подвешивали палку, в угол вольеры помещали несколько ящиков, а банан размещали за решеткой вольеры Султан сначала принялся таскать ящик по вольере, затем осмотрелся. Увидев палку, он уже через 30 с подставил под нее ящик, достал ее и придвинул к себе банан. Обезьяны справлялись с задачей и тогда, когда ящики были утяжелены камнями, и когда применялись различные другие комбинации условий задачи.
Примечательно, что обезьяны постоянно пытались применять разные способы решения так, В Келер упоминает случаи, когда Султан, взяв его за руку, подвел к стене, быстро вскарабкался на плечи и оттолкнувшись от макушки, схватил банан Еще более показателен эпизод, когда он прикладывал ящик к стене, глядя при этом на приманку и как бы оценивая расстояние до нее. ь Успешное решение шимпанзе задач, требующих конструирования пирамид и вышек, также свидетельствует о наличии у них И «мысленного» плана действий и способности к реализации такого плана.
По инициативе И. П. Павлова (см. 2.7) его сотрудники в Колтушах повторили опыты В. Келера на шимпанзе Розе и Рафаэле. На основании полученных результатов И. П. Павлов во многом пересмотрел свои взгляды на поведение и психику обезьян. В отличие от своего учителя, П. К. Денисов (Цит. по: Фирсов, 1982), М. П. Штодин (1947) и Э. Г. Вацуро (1948) сочли возможным опровергнуть представления В. Келера о наличии у антропоидов элементов мышления.
Следует отметить, что задачи, которые авторы предъявляли Розе и Рафаэлю, по своей сложности несколько превосходили те, что решал Султан в опытах В Келера. Так, чтобы достать банан, им приходилось сооружать пирамиду из шести разнокалиберных ящиков В такой ситуации животным действительно требовались не только «внезапное озарение», но и определенная «квалификация» — владение рядом навыков, необходимых, чтобы сделать сооружение устойчивым.
Еще более сложной по своей структуре была задача (вернее, серия задач) на «тушение огня», которую предлагалось решать Рафаэлю. Она состояла в том, чтобы достать апельсин из ящика, перед открытой стороной которого стояла горящая спиртовка. После многих и разнообразных проб он научился решать эту задачу (рис. 4.10) разными способами:
* подтаскивал бак с водой к ящику и гасил огонь;
* набирал воды в рот и, возвратившись к огню, заливал его;
* набирал воды в кружку и гасил ею огонь;
* когда в баке не оказалось воды, Рафаэль схватил бутылку с водой и вылил ее на пламя. В другой раз, когда бак оказался пустым, он помочился в кружку и залил ею огонь.
И. П. Павлов считал результаты этого опыта (в частности, последний из приведенных фактов) весьма убедительными свидетельствами существования у человекообразных обезьян более сложных когнитивных функций, чем простые условные рефлексы. Тушение огня водой для получения приманки (по Э. Г. Вацуро, см пояснения в тексте).
Рис. 4.10.
Однако исследователи пытались снова и снова проанализировать, насколько осмысленны были действия обезьяны в этой ситуации.
Рафаэлю предлагали разные кружки и обнаружили, что он предпочитает пользоваться только той же самой кружкой, что и в период освоения этой операции Стереотипность его поведения особенно ясно выступила, когда кружку продырявили и предложите ему пробки, палочки и шарики для затыкания отверстия Оказалось, что Рафаэль не замечает отверстия, вновь и вновь подносит кружку под кран Он не обратил внимания, что, случайно закрыв кружку ладонью, он временно приостановил вытекание воды, и не воспользовался этим приемом Не обращая внимания на отсутствие воды, однажды он 43 раза опрокидывал над огнем пустую кружку, при этом не использовал ни одной из предложенных ему затычек, хотя ранее, во время игры делал это неоднократно.
Наконец, опыты перенесли на озеро, и ящик с приманкой поместили на один плот, а бак с водой — на другой, соединенный с первым довольно длинным и шатким мостиком. Рафаэль приложил массу усилий, чтобы принести воду из бака, вместо того чтобы зачерпнуть ее тут же, прямо с плота. Это окончательно убедило исследователей в его неспособности к пониманию истинных связей между элементами данной проблемной ситуации.
По их мнению, во всех проведенных опытах у шимпанзе отсутствовало «смысловое понимание задачи», и все их поведение было основано прежде всего на ориентировочно-исследовательских пробах, а затем на закреплении связен от случайно достигнутого полезного результата «Поведение человекообразной обезьяны определяется взаимодействием положительных и отрицательных условно-рефлекторных связей В решении новых задач обезьяна использует ранее выработанные навыки
Рис. 4.11.
Между тем на самом деле оснований для столь безапелляционного вывода не было. В частности, при анализе фотографий современному наблюдателю бросается в глаза, что плоты (скорее платформы) были расположены достаточно высоко над водой, так что шимпанзе, который побаивается воды, мог предпочесть перебраться на соседний плот, чем рисковать оказаться в воде, пытаясь зачерпнуть ее с платформы (рис. 4.11).
Не исключено, что такое решение было характерно только для этой обезьяны, а не для шимпанзе как вида. В пользу такого предположения говорит следующий факт. В 70-е годы Л. А. Фирсов воспроизвел опыт с тушением огня для фильма «Думают ли животные?». Когда в баке не оказалось воды, участвовавшая в съемках шимпанзе Каролина впала в тяжелую истерику: она рвала на себе волосы, визжала, каталась по полу, а когда успокоилась, то взяла половую тряпку и одним броском накрыла спиртовку, погасив огонь. На следующий день Каролина уверенно повторила это решение. Другие обезьяны тоже нашли разнообразные выходы из этой ситуации. Не исключено, что и в ситуации с плотами другие обезьяны могли бы проявить свойственную виду изобретательность и найти другие варианты решений.
Анализируя упомянутые опыты, Ладыгина-Коте (1959), в целом соглашаясь с выводом авторов об ограниченной способности обезьян к решению данного типа задач, указывает, что многие описанные ими особенности поведения шимпанзе обусловлены не неспособностью решить новую задачу, а характерной для шимпанзе приверженностью к ранее выработанным навыкам. По ее выражению, «шимпанзе — рабы прошлых навыков, которые трудно и медленно перестраиваются на новые пути решения» (с. 296). Следует, правда, делать поправку на то, что эта последняя особенность могла быть следствием долгой жизни в неволе многих из подопытных обезьян, прежде всего ее подопытного 16-летнего Париса.
Ладыгина-Коте полемизирует с мнением, согласно которому «у шимпанзе отсутствуют проявления интеллектуальных действий». Она приводит убедительные доказательства того, что как Парис, так и Рафаэль продемонстрировали способность к
Завершая описание этой группы методик изучения мышления животных, необходимо отметить, что полученные с их помощью результаты убедительно доказали способность человекообразных обезьян к решению такого рода задач.
В Шимпанзе способны к разумному решению задач в новой для них ситуации без наличия предшествующего опыта. Это решение осуществляется не путем постепенного «нащупывания» правильного результата методом проб и ошибок, а путем
Подтверждения такого представления можно почерпнуть и просто из наблюдений за поведением шимпанзе. Убедительный пример способности шимпанзе к «работе по плану» описал Л. А. Фирсов, когда в лаборатории недалеко от вольеры случайно забыли связку ключей. Несмотря на то что его молодые подопытные обезьяны Лада и Нева никак не могли дотянуться до них руками, они каким-то образом их достали и очутились на свободе. Проанализировать этот случай было не трудно, потому что сами обезьяны с охотой воспроизвели свои действия, когда ситуацию повторили, оставив ключи на том же месте уже сознательно.
Оказалось, что в этой совершенно новой для них ситуации (когда «готовое» решение заведомо отсутствовало) обезьяны придумали и проделали сложную цепь действий. Прежде всего они оторвали край столешницы от стола, давно стоявшего в вольере, который до сих пор никто не трогал. Затем с помощью образовавшейся палки они подтянули к себе штору с окна. находившегося довольно далеко за пределами клетки, и сорвали ее. Завладев шторой, они стали набрасывать ее на стол с ключами, расположенный на некотором расстоянии от клетки, и с ее помощью подтягивали связку поближе к решетке. Когда ключи оказались в руках у одной из обезьян, она открыла замок, висевший на вольере снаружи. Эту операцию они раньше видели много раз, и она не составила для них труда, так что оставалось только выйти на свободу.
В отличие от поведения животного, посаженного в «проблемный ящик» Торндайка, в поведении Лады и Невы все было подчинено
Для достижения поставленной цели обезьяны совершили целый ряд
Комментируя этот случай, Фирсов писал: «Надо быть слишком предубежденным к психическим возможностям антропоидов, чтобы во всем описанном увидеть только простое совпадение. Общим для поведения обезьян в этом и подобных случаях является отсутствие простого перебора вариантов. Эти акты точно развертывающейся поведенческой цепи, вероятно, отражают
У живущих на свободе обезьян «подловить» такие случаи тоже удается не часто, но за долгие годы накопилось немало подобных наблюдений. Приведем лишь отдельные примеры.
Гудолл (1992), например, описывает один из них, связанный с тем, что ученые подкармливали посещавших их лагерь животных бананами Многим это пришлось весьма по вкусу, и они так и держались неподалеку, выжидая, когда можно будет получить очередную порцию угощения (см. также 7.5). Один из взрослых самцов по кличке Майк боялся брать банан из рук человека. Однажды, разрываемый борьбой между страхом и желанием получить лакомство, он впал в сильное возбуждение. В какой-то момент он стал даже угрожать Гудолл, тряся пучком травы, и заметил, как одна из травинок коснулась банана. В тот же миг он выпустил пучок из рук и сорвал растение с длинным стеблем. Стебель оказался довольно тонок, поэтому Майк тут же бросил его и сорвал другой, гораздо толще С помощью этой палочки он выбил банан из рук Гудолл, поднял и съел его. Когда та достала второй банан, обезьяна тут же снова воспользовалась своим орудием.
Самец Майк не раз проявлял недюжинную изобретательность Достигнув половозрелости, он стал бороться за титул доминанта (завоевал его благодаря весьма своеобразному использованию орудий). Он устрашал соперников грохотом канистр из-под бензина. Использовать их не додумался никто, кроме него, хотя канистры валялись вокруг во множестве. Впоследствии ему пытался подражать один из молодых самцов. Отмечены и другие примеры использования предметов для решения новых задач.
Например, некоторые самцы пользовались палками, чтобы открывать контейнер с бананами. Оказалось, что в самых разных сферах своей жизнедеятельности обезьяны прибегают к сложным действиям, включающим составление плана и предвидение их результата.
Систематические наблюдения в природе с прослеживанием «биографий» отдельных особей позволяют убедиться, что разумные действия в новых ситуациях — не случайность, а проявление общей стратегии поведения. В целом такие наблюдения подтверждают, что проявления мышления антропоидов в экспериментах и при жизни в неволе объективно отражают реальные характеристики их поведения.
Первоначально предполагалось, что любое применение постороннего предмета для расширения собственных манипуляторных способностей животного можно расценивать как проявление разума. Между тем наряду с рассмотренными примерами индивидуального изобретения способов применения орудий в экстренных, внезапно сложившихся ситуациях известно, что некоторые популяции шимпанзе регулярно
В двух последних примерах орудийная деятельность шимпанзе имеет уже совсем другую природу, нежели действия Майка. Применению прутиков для «ужения» термитов и камней для разбивания орехов, которые составляют их обычный корм, обезьяны
Орудийные действия шимпанзе могут быть не только проявлениями разума, но во многих случаях являются
Орудийная деятельность описана не только у человекообразных обезьян, но и у некоторых других видов млекопитающих, а также у птиц. В этом случае неоднозначность природы орудийных действий не ограничивается двумя рассмотренными вариантами. Наряду с тем, что они могут проявляться как разумные решения в новой ситуации или формироваться как повседневный навык за счет обучения и подражания, орудийные действия входят в обычный
В ряде случаев орудийные действия характерны для всех особей данного вида, проявляются почти одинаково, развиваются в онтогенезе даже при воспитании в изоляции от сородичей. Они составляют
Наиболее известный пример этого рода орудийной деятельности демонстрируют дарвиновы вьюрки
О диапазоне пластичности этой формы поведения вьюрков свидетельствует следующее наблюдение. Птицы, выращенные в неволе Эйбл-Эйбесфельдтом, были избавлены от необходимости добывать личинки, но они самостоятельно создавали ситуацию, где можно было бы воспользоваться палочкой как орудием. Наевшись из обычной кормушки, они рассовывали личинки хрущака, которыми их кормили, по вольере, а затем доставали при помощи палочек или других подходящих предметов и снова прятали и т. д.
Необходимо подчеркнуть, что орудийная деятельность птиц не ограничивается проявлениями инстинкта у отдельных видов. Известно, что представители нескольких видов врановых прибегали к употреблению орудий в непредвиденных обстоятельствах.
Наиболее убедительным свидетельством их способное! и к разумному употреблению орудий может служить поведение голубой сойки
Инстинкты | «Инсайт» | Обучение и традиции |
---|---|---|
Дятловые вьюрки: | Шимпанзе: | Шимпанзе: |
добывание насекомых с помощью палочек | — сооружение вышек; — угроза канистрами; — применение палок; | — «ужение» термитов; — разбивание |
Калифорнийские каланы: | — побеги из клеток; — тушение огня | орехов камнями на наковальнях; |
разбивание раковин камнями | Сойки: изготовление бумажных «жгутов» для доставания пищи | Макаки: — мойщики картофеля; — крабоеды |
Новокаледонские галки: | ||
изготовление «крючков» для ловли насекомых |
В табл. 4.1 приведены некоторые примеры орудийных действий животных, имеющих разную природу. Они иллюстрируют представление о том, что в
Эти факты демонстрируют сложность и неоднородность такой формы поведения животных, как орудийная деятельность. В основе этих актов, схожих по внешнему проявлению, могут лежать принципиально разные механизмы:
• экстренное решение в новой ситуации («инсайт»);
• обучение методом проб и ошибок и подражание сородичам;
• выполнение видоспецифической (инстинктивной) программы.
4.6. Методики, разработанные А. В. Крушинским для изучения способности животных к поиску приманки, исчезающей из поля зрения
Рассмотренные выше эксперименты убедительно показали способность антропоидов к целенаправленному употреблению орудий в соответствии с «мысленным планом». Данную способность можно рассматривать как проявление элементарного мышления.
В то же время описанные выше методы анализа решения животными задач имели определенные ограничения:
• результаты таких опытов носили чисто описательный характер, и субъективизм в их трактовке был почти неизбежен;
• при повторении эксперимента неизменно возникал вопрос о том, что животное не решает задачу заново, а стереотипно применяет опыт, приобретенный в предшествующей пробе;
• такие методики практически невозможно было использовать в опытах на животных-неприматах, а поэтому исключалась возможность сравнительного анализа, необходимого для ответа на вопрос, насколько широко зачатки мышления представлены у более примитивно организованных животных (см. 1.3).
Ответ на последний вопрос требовал другого методологического подхода. Для его изучения нужны были
Такие методологические подходы были созданы независимо друг от друга двумя учеными — Г. Харлоу и Л. В. Крушинским. Г. Харлоу (см. 3.3.2) в 50-е годы предложил метод сравнительной оценки высших когнитивных функций животных, который дает возможность выяснить, улавливают ли животные общий принцип, лежащий в основе их решения, т. е., по выражению автора, формируется ли у них
Попытка Г. Харлоу была удачной. С помощью его теста действительно можно было почти в стандартных условиях исследовать самых разных животных и охарактеризовать динамику их обучения количественными параметрами. Однако метод Харлоу позволял охарактеризовать в основном одну сторону мышления животных — способность к обобщению.
Л. В. Крушинский предложил универсальные методики тестирования и предпринял широкое сравнительное исследование способности животных к
В отличие от описанных выше задач, в которых надо было достать удаленную, но видимую цель, значительная часть методик, предложенных Л. В. Крушинским для изучения зачатков мышления животных, основана на поиске приманки, тем или иным способом
Повторим определение мышления (рассудочной деятельности животных), данное Л. В. Крушинским, которое он называл «рабочим»:
«Способность животного улавливать эмпирические законы, связывающие предметы и явления внешнего мира, и оперировать этими законами в новой для него ситуации для построения программы адаптивного поведенческого акта».
Л. В. Крушинский ввел понятие
Отличительную черту тестов Крушинского составляет то, что их решение требует (согласно его определению) оперирования так называемыми
Прибегая к терминологии когнитивной психологии, можно сказать, что эти «законы» входят в состав «познавательной карты», или «образной картины мира животного», т е. той системы знаний, которую оно накапливает в течение жизни На необходимость и плодотворность использования таких тестов указывал Д. Примэк (Premack, 1983), называя эту форму мышления животных «естественным мышлением»
' Более подробно методики описаны в книге Л. В. Крушинского «Биологические основы рассудочной деятельности» (1986).
Тесты для изучения способности к обобщению и умозаключению организованы таким образом, что их условия и структура достаточно произвольно определяются экспериментатором и совершенно не связаны с естественными закономерностями Это относится также к тесту Ревеша-Крушинского, где алгоритм изменении положения приманки задается экспериментатором произвольно и не имеет никакой связи с процессами в естественной для животных среде (см 4 7), или формированию установки на обучение в тестах Харлоу.
Базовые формы когнитивной деятельности животных были частично описаны в гл. 3. Ниже перечислены наиболее важные эмпирические законы, владение которыми, как писал Л. В Крушинский, необходимо животному для решения ряда логических задач.
1.
2.
3.
В лаборатории Л В Крушинского разработаны две группы тестов, с помощью которых можно оценивать способность животных разных видов оперировать указанными эмпирическими законами в новой ситуации Схемы этих экспериментов представлены ниже (см. 4.6.3).
Как полагал Крушинский, перечисленные им законы не исчерпывают всего, что может быть доступно животным Он допускал, что они оперируют также представлениями о временных и количественных параметрах среды, и планировал создание соответствующих тестов. Животные действительно способны оценивать количественные и даже числовые параметры стимулов (см. гл. 5).
Многие животные, в том числе обезьяны, в тесте на предпочтение выбирают стимулы большей площади и объема По-видимому, они могут, также без специальной тренировки, воспринимать и сравнивать стимулы, различающиеся по числу элементов Вороны и голуби, например, без всякой предварительной подготовки выбирают кормушку, содержащую большее число зерен или личинок мучного хрущака В обоих случаях тест проводится в ситуации «свободного выбора», когда птицы съедают любую выбранную ими приманку, а обезьяны получают любой выбранный ими стимул
|] Предложенные Л. В. Крушинским (1986) и описанные ниже методики сравнительного изучения рассудочной деятельности с помощью элементарных логических задач основаны на допущении, что животные улавливают эти «законы» и могут использовать их в новой ситуации Задачи построены так, что возможно их экстренное решение, принятое логическим путем, в соответствии с лежащим в их основе принципом, и не требующее предварительного обучения по методу проб и ошибок.
4.6,2. Методика изучения способности животных к экстраполяции направления движения пищевого раздражителя, исчезающего из поля зрения («задача на экстраполяцию»).
Под
Рис. 4.12.
А — общий вид установки для опытов с хищными млекопитающими, кроликами и птицами (рисунок Т. Никитиной); Б — камера для экспериментов с мышами (пояснение в тексте).
Наибольшее распространение получил так называемый «опыт с ширмой» (рис. 4.12). В этом опыте перед животным помешают непрозрачную преграду — ширму (длина — около 3 м, высота 1 м) В центре ширмы имеется вертикальная щель, через которую видны две кормушки, в начале опыта расположенные прямо перед щелью. Кормушки разъезжаются в стороны, как только животное начинает есть, но оно может видеть начальный участок их пути до момента исчезновения за поперечными преградами-клапанами. Через несколько секунд кормушки скрываются из поля зрения, так что их дальнейшее перемещение животное уже не видит и может только представлять его мысленно.
За щелью находятся две кормушки: одна с кормом, другая пустая. Это делается для того, чтобы создать животному возможность альтернативного выбора. К тому же если двигаются две кормушки, то животное не сможет отыскать корм, ориентируясь на звук при движении.
Опыты с грызунами проводятся несколько по-другому. Вторую кормушку тоже наполняют кормом (поилки с молоком). Эту кормушку либо закрывают сеткой (в опытах с крысами), либо (опыты с мышами) ставят так, чтобы животное ее не видело. Это позволяет «уравнять запахи», идущие от приманки с двух сторон камеры, и тем самым препятствовать отысканию корма с помощью обоняния. Экспериментальная камера для исследования способности к экстраполяции у мышей (рис 4.12Б) устроена так, чтобы животное оставалось в ней в интервалах между предъявлениями задачи. В одной из стенок камеры (I) на середине ее длины на уровне пола имеется отверстие (2), дающее животному доступ к поилке (3) и позволяющее видеть начальный этап ее перемещения. Контрольная поилка (4) перемещается в противоположную сторону. С помощью специального рычага (5) их можно передвинуть к боковым отверстиям (6). «Обход ширмы» в этом варианте установки — это перемещение животного вправо или влево и подход к одному из боковых отверстий. Траектория (7) показывает путь мыши при правильном решении задачи.
В Чтобы решить задачу на экстраполяцию, животное должно j представить себе траектории движения обеих кормушек после исчезновения из поля зрения и на основе их сопоставления определить, с какой стороны надо обойти ширму, чтобы получить корм.
Способность к решению этой задачи проявляется у многих позвоночных, но ее выраженность значительно варьирует у разных видов.
Основной характеристикой способности животных к рассудочной деятельности служат
Как показали исследования Л. В. Крушинского, животные многих видов (хищные млекопитающие, дельфины, врановые птицы, черепахи, крысы-пасюки, мыши некоторых генетических групп) успешно решали задачу на экстраполяцию. В то же время животные других видов (рыбы, амфибии, куры, голуби, большинство грызунов) обходили ширму чисто случайно (рис. 4.13А).
При повторных предъявлениях задачи поведение животного зависит не только от способности (или неспособности) экстраполировать направление движения, но и от того, запомнило ли оно результаты предыдущих решений. Ввиду этого данные повторных опытов отражают взаимодействие ряда факторов, и для характеристики способности животных данной группы к экстраполяции их надо учитывать с известными оговорками.
Многократные предъявления позволяют точнее проанализировать поведение в опыте животных тех видов, которые плохо решают задачу на экстраполяцию при ее первом предъявлении (о чем можно судить по невысокой доле правильных решений, которая не отличается от случайного 50 %-го уровня). Оказывается, что большинство таких особей ведет себя чисто случайным образом и при повторениях задачи. При очень большом числе предъявлении (до 150) такие животные, как, например, куры или лабораторные крысы, постепенно обучаются чаще обходить ширму с той стороны, в которую скрылся корм. Напротив, у
Рис. 4.13.
А — успешность решения задачи на экстраполяцию животными разных таксономических групп при ее первом предъявлении; по оси ординат — доля правильных решений в процентах (плоскость соответствует 50 %-му случайному уровню правильных решений); Б — усредненные кривые успеха решения задачи при ее многократных предъявлениях животными разных таксономических групп (по Крушинскому, 1986). По оси ординат — как в случае А, по оси абсцисс — номера предъявлении.
Вопрос о влиянии разных стратегий поведения в опыте на проявление способности к экстраполяции был подробно проанализирован на
С помощью теста на экстраполяцию, который позволяет давать.1 точную количественную оценку результатов его решения, впервые I была дана широкая сравнительная характеристика развития зачатков мышления у позвоночных всех основных таксономических групп, изучены их морфофизиологические основы, некоторые аспекты формирования в процессе онто- и филогенеза, т. е. практически весь тот J круг вопросов, ответ на которые, согласно Н. Тинбергену (Tinbergen, D1963), необходим для всестороннего описания поведения.
Анализ пространственных характеристик необходим во многих ситуациях, с которыми сталкиваются животные в естественной среде обитания. В опытах Толмена (1997) была продемонстрирована способность животных к обучению в лабиринте за счет формирования и запоминания мысленной «пространственной карты» (см. 3.4).
Элементы пространственного мышления обезьян были обнаружены и в опытах В. Келера. Он отмечал, что во многих случаях, намечая путь достижения приманки, обезьяны предварительно сопоставляли, как бы «оценивали» расстояние до нее и высоту предлагаемых для «строительства» ящиков. Понимание пространственных соотношений между предметами и их частями составляет необходимый элемент более сложных форм орудийной и конструктивной деятельности шимпанзе (Ладыгина-Коте. 1959; Фирсов, 1987).
К пространственным признакам можно отнести также геометрические свойства предметов (например, форму, наличие или отсутствие симметрии, размерность). С их анализом связаны эмпирические законы
Задача на оперирование эмпирической размерностью фигур (ОЭРФ). Л. В. Крушинский (1986) предложил тест для оценки одной из форм пространственного мышления — способности животного в поисках приманки сопоставлять предметы разной размерности: трехмерные (объемные) и двумерные (плоские).
*1 Суть теста состоит в том, что объемная приманка может быть помещена (и спрятана) только в объемную (ОФ), но не в плоскую (ПФ) фигуру, поэтому животное должно выбрать ОФ.
Он был назван тестом на
Этот термин был введен для характеристики предлагаемой задачи потому, что так называемая «плоская фигура», хотя и имела минимальную толщину, на самом деле также была трехмерной Однако поскольку соотношение толщины плоской фигуры и размера «в глубину» объемной фигуры было от 1 40 до 1 100, то при предъявлении в паре такие фигуры имели четко различную «пространственность» и
Для успешного решения задачи на ОЭРФ животные должны владеть следующими эмпирическими законами и выполнять следующие операции:
• мысленно представить себе, что приманка, ставшая недоступной для непосредственного восприятия, не исчезает
• оценить пространственные характеристики фигур;
• пользуясь
• сбросить объемную фигуру и овладеть приманкой.
Первоначально опыты были проведены на собаках, но методика экспериментов была сложна и непригодна для сравнительных исследований. Б. А. Дашевский (1972) сконструировал установку, применимую для исследования этой способности у любых видов позвоночных, включая человека.
Она представляет собой стол, в средней части которого расположено устройство для раздвигания вращающихся демонстрационных платформ с фигурами. Животное находится по одну сторону стола, фигуры отделены от него прозрачной перегородкой с вертикальной щелью в середине. По другую сторону стола находится экспериментатор. В части опытов животные не видели экспериментатора: он был скрыт от них за перегородкой из стекла с односторонней видимостью.
Опыт ставится следующим образом (рис. 4.14). Голодному животному предлагают приманку (1), которую затем прячут за непрозрачный экран-коробку (2). Под его прикрытием приманку помещают в объемную фигуру (ОФ), например куб, а рядом помещают плоскую фигуру (ПФ), в данном случае квадрат (проекцию куба на плоскость). Затем экран удаляют, и обе фигуры, вращаясь вокруг собственной оси, раздвигаются в противоположные стороны с помощью специального устройства (3). Чтобы получить приманку, животное должно опрокинуть объемную фигуру (4).
Процедура эксперимента позволяла многократно предъявлять задачу одному и тому же животному, но при этом обеспечивать
Для этого всякий раз животному предлагали новую пару фигур, отличающуюся от остальных по цвету, форме, размеру, способу построения (плоскогранные и тела вращения) и размеру (рис. 4.15).
Примеры индивидуальных «кривых накопления», демонстрирующих динамику успешности решения задачи на ОЭРФ, даны на рис. 4.16. На этих кривых правильное решение задачи — выбор объемной фигуры — изображен отрезком прямой, направленным под углом 45° вверх по оси абсцисс, выбор плоской фигуры — таким же «шагом вниз», отсутствие выбора — горизонтальным отрезком. Обезьяны, дельфины, медведи и врановые птицы успешно решают эту задачу. Как при первом предъявлении теста, так и при повторных пробах они выбирают преимущественно объемную фигуру. В отличие от них хищные млекопитающие и часть врановых птиц реагируют на фигуры чисто случайно и лишь после десятков сочетаний постепенно
Эти эксперименты позволили существенно уточнить картину различий в уровнях развития зачатков мышления у животных разных таксономических групп.
Особое значение имеет факт сходства в решении этого теста у врановых птиц и наиболее высокоорганизованных млекопитающих — низших узконосых обезьян, дельфинов, а также медведей, тогда как большинство других хищных млекопитающих его не решает. Такие же различия между ними были обнаружены по показателям формирования
Рис. 4.14. Эксперимент с вороной по оперированию эмпирической размерностью фигур (рисунок Т. Никитиной).
Рис. 4.15. Набор фигур, использованных в тесте на оперирование эмпирической размерностью фигур (по Дашевскому, 1972) Фигуры различались по форме и цвету.
1 — желтые, 2 — бледно-желтые, 3 — темно-серые, 4 — зеленые, 5 — неокрашенные, 6 — голубые, 7 — синие, 8 — темно-зеленые, 9 — желтые, 10— голубые, 11 — серебристые, 12 — зеленые, 13— серые, 14 — бордовые, 15 — сине-зеленые, 16 — красные, 17 — оранжевые, 18 — светло-серые, 19 — черные, 20 — серо-голубые, 21 — малиновые, 22 — темно-розовые, 23 — белые, 24 — малиновые, 25 — золотые, 26 — фиолетовые, 27 — неокрашенные, 28 — светло-розовые, 29 — неокрашенные, 30 — черные.
Несмотря на принципиальные различия в строении мозга млекопитающих и птиц (отсутствие у птиц новой коры), наиболее высокоразвитые представители обоих классов достигают сходных, В достаточно высоких уровней развития элементарного мышления.
Контрольный опыт. Схема задачи на оперирование размерностью позволила на ее основе разработать принципиально важный контрольный эксперимент — альтернативу логической задачи При этом все «внешние атрибуты» опыта сохраняются, за исключением
Задачу, предлагаемую в подобном контрольном эксперименте, нельзя решить при первом предъявлении за счет «понимания» ее смысла. То, какой выбор является правильным, можно установить только по ходу последовательных предъявлении теста (Дашевский, 1979). Поясним это на примере, приведенном на рис. 4 17 Слева вверху (А) (как и на рис. 4 14) дана схема исходного теста на ОЭРФ. В контрольном опыте (Б, В) демонстрационные платформы (2), на которых в собственно эксперименте на ОЭРФ животному показывали приманку (1), а затем устанавливали фигуры (4 и 5), заменены кормушками такого же диаметра (3). Подкрепление можно помещать в любую из кормушек, и ее можно накрыть крышкой с прикрепленной к ней ОФ (как на рис. 4.17Б) или ПФ (как на рис. 4Л7В).
Рис. 4.16. Успешность решения задачи на оперирование эмпирической размерностью фигур животными разных видов А — примеры «кривых накопления > По оси ординат — разность между числом правильных и неправильных решении, по оси абсцисс — номера предъявлении, Б — усредненные кривые решения задачи на оперирование эмпирической размерностью фигур и контрольного теста По оси ординат — доля правильных выборов, по оси абсцисс — номера предъявлений.
Рис. 4.17. Схемы опыта по оперированию эмпирической размерностью фигур (А), контрольных опытов по выработке дифференцировочного УР на предъявление ОФ и ПФ (Б, В) и по дифференцированию двух объемных фигур разного размера (Г) (см. текст; по Дашевскому, 1979).
В данной модификации контрольная задача теряет однозначность решения, поскольку приманка может с равной вероятностью находиться как в одной, так и в другой кормушке (тогда как в задаче на ОЭРФ она могла быть спрятана только в ОФ).
В этом варианте задачи использовали те же самые зрительные раздражители: тот же набор ОФ и ПФ, что и в задаче на ОЭРФ (рис. 4, 15). У одной группы особей каждого вида (собаки, кошки, врановые) подкрепляли выбор ОФ, у другой — ПФ. В обоих случаях при первых предъявлениях животные обеих групп выбирали фигуры чисто случайно, и лишь постепенно, после десятков сочетаний они начинали чаще выбирать подкрепляемую фигуру, т. е.
Как показывает рис. 4.16Б, динамика обучения дифференцировке существенно отличается от динамики решения задачи на ОЭРФ. Она сравнима с той, которая характерна для животных, плохо решающих тест на ОЭРФ (например, собак) и не имеет ничего общего с динамикой реакций у животных, хорошо справляющихся с задачей (обезьяны, дельфины, врановые птицы).
Таким путем были впервые продемонстрированы четкие различия в поведении животных при решении элементарных логических задач и при выработке дифференцировочного УР, т. е. задачи, где логическая структура отсутствует (Дашевский, Детлаф, 1974; Дашевский, 1979; Крушинский и др., 1981).
Животные, способные к решению задачи на «размерность», уже в первых предъявлениях теста реагируют правильно. При такой же по внешним признакам задаче, но требующей выработки дифференцировочного УР, правильные ответы появляются после десятков предъявлении.
Задача на поиск приманки в двух объемных фигурах разного объема. Успешное решение теста на ОЭРФ позволило предположить, что врановым могут быть доступны и другие задачи, основанные на оперировании представлением о геометрических свойствах предметов. Для проверки этого предположения может служить тест, в котором используются две ОФ, одинаковые по форме и цвету, но
Для решения этого теста необходимо не только
Опыты были проведены на 20 птицах, имевших разный опыт участия в экспериментах ' 10 из них ранее успешно решили задачу на ОЭРФ. 5 птиц с этой задачей не справлялись, а еще 5 предварительно вообще не были тестированы. В их поведении при решении этой задачи, как и задачи на ОЭРФ, обнаружились значительные индивидуальные различия 7 птиц (из 20) достоверно чаще выбирали большую ОФ (в среднем в 87 % случаев), 5 птиц выбирали большую фигуру, но это предпочтение было недостоверно (примерно 65 %); 4 птицы выбирали обе фигуры одинаково часто, а у 2 птиц обнаружилось предпочтение меньшем фигуры.
Эти индивидуальные особенности птиц при решении данного теста соответствовали показателям решения теста на ОЭРФ. Чем выше были они в тесте на ОЭРФ, тем легче эти птицы справлялись и с «фигурами разного объема». Однако, способность к решению основного теста на оперирование размерностью — условие необходимое, но не достаточное для решения второго.
Как уже указывалось, предполагаемый механизм решения таких тестов — мысленное сопоставление пространственных характеристик имеющихся при выборе фигур и отсутствующей в момент выбора приманки, которая служит как бы эталоном для их сопоставления (Дашевский, 1979). Опыты с использованием двух ОФ, из которых лишь одна могла вместить объемную приманку, также свидетельствуют об участии указанного механизма — мысленного сопоставления параметров фигур и отсутствующей в момент выбора приманки. Поскольку эту задачу решает меньшая доля особей, можно заключить, что она представляет для птиц большую сложность, чем предыдущая.
Врановые птицы, дельфины, медведи и обезьяны способны к решению элементарных логических задач, основанных на оперировании пространственно-геометрическими признаками предметов.
4.7. Изучение способности животных к экстренному определению алгоритма изменений положения скрытой приманки. Тест Ревеша-Крушинского
Этот тест был предложен Дж. Ревешем (Revecz, 1925) для сравнительной оценки рассудочной деятельности обезьян и детей, а позднее и независимо от него использовался Л. В. Крушинским, О. О. Якименко и Н. П. Поповой (1983) для изучения онтогенеза невербального мышления человека. Предполагалось, что его можно рассматривать как аналог задачи на экстраполяцию, более подходящий для опытов на человеке.
Опыт ставится следующим образом. Перед животным располагают ряд одинаковых непрозрачных кормушек, накрытых крышками (испытуемым демонстрируют ряд стаканов). В первый раз приманку вне поля зрения животного помещают в первую кормушку и предоставляют возможность ее отыскать. Во второй раз (также незаметно) приманку помещают во вторую кормушку, затем в третью и т. д. После того как приманка обнаружена в первой (1-е предъявление), а затем во второй (2-е предъявление) кормушках, животное уже имеет необходимую и достаточную информацию, чтобы понять, где будет спрятана приманка при следующем предъявлении теста. Иными словами, этой информации достаточно, чтобы определить закономерность дальнейшего перемещения приманки:
На рисунке 4 18Б видно, что галка (график слева) находила приманку безошибочно в предъявлениях с 8-го по 11-е, а в 7-м ошиблась только на один «шаг», у павиана-анубиса (в середине) безошибочные выборы были в 5-м и 6-м. а также в 9-м и 10-м предъявлениях теста, серая крыса (справа) не сделала ни одною безошибочного выбора.
Рис. 4.18. Тест Ревеша — Крушинского.
А — обстановка эксперимента на врановых птицах в лаборатории Л В Крушинского, Б — результаты решения теста галкой (слева), павианом-анубисом (в середине) и серой крысой (справа); по вертикали отложены предъявления теста, по горизонтали — номера кормушек; положение приманки обозначено квадратом, неправильные реакции животного отмечены ромбами, соединенными линией, правильное (без предварительных ошибок) решение обозначено одиночным квадратом: В — гистограмма распределения первых выборов кормушек (см текст).
Напомним, что ранее рассмотренные тесты на экстраполяцию и ОЭРФ основаны на предположении, что у животных имеются представления о физических законах окружающего мира. Каждый такой тест имеет единственное решение. В то же время в данном тесте
Многочисленные исследования показали, что у человека способность к решению этого теста — три безошибочных выбора подряд — проходит длительный путь формирования в онтогенезе и лишь к 15 годам достигает уровня, характерного для взрослых. Разные испытуемые используют при решении
Интересно отметить, что способность использовать собственную программу поиска появляется у детей между 6-м и 7-м годами жизни. В этот же период заметно снижается частота применения стратегии стереотипного поиска.
Решение теста Ревеша — Крушинского исследовали у врановых птиц, голубей, крыс ряда линий, низших узконосых обезьян разных видов, а также нескольких человекообразных обезьян. Оказалось, что лишь в отдельных и весьма немногочисленных случаях животные и птицы были способны «идеально» определить закономерность перемещения приманки и находили ее безошибочно в нескольких предъявлениях задачи подряд (см. рис. 4.18Б). Тем не менее, за исключением голубей, у животных всех исследованных видов выбор кормушек по ходу предъявления теста был достоверно неслучайным. Число попыток, которое они делали для отыскания приманки, было существенно меньше, чем это должно быть при случайном «блуждании».
Определенные стратегии поиска (случайный, стереотипный или «программный») были обнаружены и при анализе решения теста животными разных видов. При этом оказалось, что у всех одни и те же стратегии встречаются в сходных пропорциях. Например, склонность к стереотипии — открыванию подряд всех кормушек — свойственна в равной степени всем изученным видам, а оптимизация поведения — снижение числа попыток, совершаемых при отыскании корма, — составляет около 30 % как у человекообразных обезьян, так и у крыс.
* Анализ ошибок, совершаемых в процессе решения теста, свидетельствует, что животные всех видов ищут приманку главным образом там, где они ее находили в предыдущих пробах. При этом они крайне редко открывают новые кормушки, хотя условия задачи («приманка каждый раз в новом месте, соседнем с предыдущим») требуют именно этого.
Среди исследованных видов животных ни у одного из них не обнаруживается достоверного улавливания логической структуры задачи — основного правила перемещения приманки.
В подавляющем большинстве случаев все животные ищут приманку не там, где она должна появиться, а в месте ее недавнего обнаружения (Плескачева и др., 1995; 1998). Гистограмма распределения ошибочных первых выборов кормушек по отношению к той, в которой была спрятана приманка в данном предъявлении, приведенная на рис. 4.18В, иллюстрирует этот факт. На гистограмме знаком «+» отмечены ошибки «опережения», когда животное ищет корм там, где его до сих пор еще не было, т. е. впереди от истинного положения приманки, знаком «—» отмечены случаи, когда животное начинает поиск с кормушек, где оно обнаруживало приманку в предыдущих случаях. Реакций последней категории оказалось достоверно больше.
Предполагалось, что решение данного теста будет доступно животным с наиболее высоким уровнем рассудочной деятельности. Однако полученные результаты не подтвердили этого предположения. Даже человекообразные обезьяны решали задачу не в соответствии с ее принципом, а на основе гораздо более простой стратегии, которую используют и крысы.
* Хотя животные практически не улавливают закономерность перемещения приманки, они все же применяют
4.8. Изучение способности к экстренной интеграции ранее образованных независимых навыков.
Этот вид рассудочной деятельности животных стал объектом исследования еще в конце 20-х — начале 30-х годов (Maier, 1929). Его можно обнаружить, если предложить животному такую задачу, которую оно может решить в новой ситуации на основе ранее приобретенного опыта. Однако речь идет не о выборе и применении одной из
Помимо опытов самого Майера, хорошей иллюстрацией такого подхода могут служить эксперименты американского исследователя Р. Эпштейна (Epstein, 1984; 1987; см. ниже). Несколько таких тестов было разработано и в лаборатории Л. В. Крушинского в 70-е годы XX века (см. ниже).
Рис. 4.19. Одна из установок, предложенных Н. Майером для тестирования способности крыс к рассудочной деятельности (Maier, 1929).
Существует несколько тестов, решение которых требует экстренной интеграции ранее образованных навыков. На рис. 4.19 показана схема классического опыта Майера для оценки зачатков мышления
Использованная в этих опытах установка состоит из трех дорожек (длиной 244 см каждая), расходящихся из одной центральной точки. Каждая дорожка заканчивается столиком, отличающимся от остальных по размеру, форме и типу. На столиках установлены деревянные экраны (Э1, Э2, ЭЗ) таким образом, чтобы с одного столика нельзя было видеть, что делается на остальных. После того как крыса обследовала все столики и дорожки, ей давали пищу, например на столике А. Затем крысу помещали на один из двух других столиков, например В, и отпускали. Достигнув центра установки, крыса могла выбрать один из двух путей — на столик А (где ее раньше кормили) или на столик Б. Перед каждым тестом животному давали возможность осмотреть установку. Всякий раз крысу кормили на другом столике. При случайном выборе доля правильных решений равна 50 %, однако у некоторых крыс она была гораздо выше. Это позволило автору сделать следующий вывод.
Крысы способны в каждом новом предъявлении комбинировать (интегрировать) имеющуюся у них информацию и делать правильный выбор.
Американский исследователь Р. Эпштейн (Epstein, 1984; 1987) в ряде работ пытался опровергнуть уже прочно утвердившееся в 80-е гг. XX в. представление о наличии у животных элементарного мышления. В соответствии со взглядами бихевиористов (см. 2.4.3) он задался целью показать, что любое самое сложное поведение высших позвоночных, которое принято считать проявлением разума, есть не что иное, как результат переноса ранее сформированных навыков или другая форма применения ранее приобретенного опыта. Для начала Эпштейн попытался воспроизвести на голубях описанные выше опыты В. Келера, где шимпанзе доставали с помощью палок или придвиганием ящиков видимую, но недосягаемую для рук приманку.
С этой целью у голубя в камере Скиннера сначала вырабатывали обычный инструментальный УР методом «последовательных приближений» (см. 3.2.3). Голубю давали немного зерна каждый раз, как только он клевал рычаг-манипулятор. Затем рычаг помещали очень высоко — под потолком камеры, так что птица не могла его достать (взлететь в камере голубь не мог). Однако в углу камеры находилась подставка, придвинув которую, можно было легко достать и клюнуть манипулятор (именно так в опытах В. Келера в угол вольеры ставили ящик, с которого шимпанзе мог достать висящий под потоком банан). В течение нескольких часов наблюдений ни один из 11 подопытных голубей по собственной воле не только не пытался передвинуть подставку, но даже не прикоснулся к ней.
Иными словами, поведение голубей коренным образом отличалось от активности, которую обычно развивают для доставания подвешенного банана человекообразные обезьяны (см. 4.5).
Убедившись в том, что голуби сами не догадываются, что нужно делать, у них начали вырабатывать два УР, причем один независимо от другого. В одних сеансах голубей учили подталкивать подставку к зеленому пятну-мишени на полу камеры, т. е. подкрепляли пищей такие движения, причем пятно располагали каждый раз на новом участке пола Во время этого обучения первый манипулятор из камеры удаляли. В других сеансах (их проводили параллельно и независимо от первых) голубей обучали забираться на подставку и клевать манипулятор. Важно отметить, что во время этих сеансов отсутствовало пятно-мишень на полу камеры. Если же голуби все же принимались передвигать подставку, то подкрепления за эти движения они не получали.
После того как голуби прочно усвоили каждый из УР, с ними снова провели тот же тест, что и в начале, когда подставка находилась в стороне от манипулятора, а пятно-мишень на полу отсутствовало. В этом случае
Контрольных голубей обучали либо только забираться на подставку и клевать манипулятор, либо только передвигать подставку Оказалось, что они успешно решают тест только во втором случае По-видимому, им важно научиться подталкивать подставку, а уж взобраться на нее они могут и без специального обучения.
Авторы рассматривали поведение голубей как результат взаимодействия независимо образованных условных реакций на зрительные стимулы. Они считали, что во время теста у них происходит «функциональная генерализация» навыков, в отличие от генерализации, основанной на сходстве физических признаков стимулов (см. 3.1).
Эпштейн предположил, что это поведение аналогично поведению обезьян и собак при решении подобных задач и что такие процессы у животных разных видов сходны, однако специалисты по высшим когнитивным функциям животных с этим категорически не согласились. Сходство между поведением антропоидов («инсайт» в опытах Келера) и голубей в ситуации «доставания банана» они считали чисто внешним, поверхностным и грубым.
Эксперименты Эпштейна показали, что голуби способны к |У реорганизации ранее полученных независимых навыков.
Отметим, что невысокий в целом уровень развития рассудочной деятельности этих птиц сильно ограничивает возможности их использования в опытах такого типа. Методика (задача на «доставание банана») может быть использована для сравнительного изучения рассудочной деятельности у тех видов животных, для которых другие тесты на элементарное мышление оказываются слишком сложными.
Следующий тест, построенный по тому же принципу, что и описанные выше, был разработан 3. А. Зориной (Зорина и др., 1991) в процессе изучения способности птиц к оценке и оперированию количественными параметрами стимулов. Как известно, животные в процессе обучения усваивают информацию о количестве подкрепления, несмотря на то, что это не предусматривается специальной процедурой. Об этом свидетельствует тот факт, что увеличение размера подкрепления дает возможность ускорить процесс обучения в лабиринте (Рябинская, Ашихмина, 1988). И наоборот, при резком сокращении порции корма нарушаются ранее сформированные навыки. Известно также, что самые разные животные при свободном выборе предпочитают стимулы, которые больше других и по абсолютной величине, и по числу составляющих их элементов.
Предлагаемый тест требует экстренного сопоставления величин подкрепления, связанного с разными стимулами, в новой для птицы ситуации.
Опыт ставится следующим образом. В процессе предварительной тренировки у птиц вырабатывают серию независимых одиночных пищедобывательных УР (сбрасывание крышки с кормушки). В этот период птицы усваивают информацию о том, что кормушкам разного цвета соответствует определенное число единиц подкрепления: от 1 до 8 зерен пшеницы — для голубей и от 5 до 12 личинок мучного хрущака — для ворон. По окончании предварительного обучения проводят собственно тесты, во время которых кормушки предъявляют парами в разных комбинациях (20–25 проб). Чтобы сделать ситуацию максимально новой для птиц, в каждой пробе применяют новую комбинацию кормушек, повторяя каждую не более 3 раз за тест. (Для снижения возможного влияния подкрепления на последующие результаты в половине проб приманку помещают в обе кормушки, а остальные пробы идут без подкрепления.)
При проведении собственно теста проверяют, будут ли птицы выбирать кормушку, ранее связанную с большим количеством подкрепления, и в каких пределах они будут осуществлять такой выбор.
Поведение при решении этого теста, с точки зрения авторов, соответствует определению Майера, так как основано на
Птицы обоих видов во всем диапазоне исследованных множеств (от 1 до 8 зерен или личинок мучного хрущака) в среднем чаще выбирают стимул, связанный с большим количеством подкрепления. Следует подчеркнуть, что у голубей вероятность правильного выбора тем выше, чем больше абсолютная и относительная разница между сравниваемыми количествами пищи, т. е. когда множества единиц подкрепления имеют резко выраженные различия. У ворон величина различий между сравниваемыми количествами пищи влияла на правильность выбора не столь резко.
Таким образом, оказалось,
Полученные с помощью этой методики данные не только
Вместе с тем эти результаты внесли определенный вклад в характеристику способности птиц к оперированию количественными параметрами среды (которое условно иногда называют «счетом»).
Оказалось, что выбор, который делает птица в новой ситуации (когда ей дают пару стимулов, ранее всегда предъявлявшихся поодиночке), определяется
Способность птиц к выполнению такой операции послужила основой для изучения у них процесса символизации, методика и результаты которого рассмотрены в гл. 5 и 6.
Рассмотренные методы и экспериментальные приемы исследования элементарной рассудочной деятельности животных дали богатый экспериментальный материал для формирования новых представлений о мышлении животных. В описанных методиках были устранены те ограничения, которые были свойственны методам изучения мышления антропоидов, использованным в начале XX века. Эти методики оказались достаточно универсальными для предъявления животным самых разных видов. Их можно модифицировать так, чтобы предъявлять одному и тому же животному по нескольку раз, сохраняя, тем не менее, определенную степень новизны ситуации. Работы Л. В. Крушинского и его коллег сформировали самостоятельный подход к исследованию мышления животных, основу которого составил ряд важных положений, ранее не использовавшихся в экспериментах такого рода. Универсальный эксперимент, который, в соответствии с представлениями Л. В. Крушинского, характеризует рассудочную деятельность животных данного вида или данной группы, планируется так, чтобы обеспечивать: возможность объективной количественной оценки результатов; применимость к представителям разных систематических групп; получение сравнимых результатов; возможность исследования физиологических и генетических основ рассудочной деятельности.
1. Какие проявления мышления животных можно исследовать в эксперименте?
2. Каким требованиям должны удовлетворять тесты на рассудочную деятельность животных?
3. Что такое орудийная деятельность и какие механизмы могут лежать в ее основе у животных разных видов?
4. Какие стороны рассудочной деятельности выявляют тесты, предложенные Л. В. Крушинским?
5. Изучение способности животных к обобщению и абстрагированию
Данные об операциях обобщения и абстрагирования, составляющих важное свойство мышления животных. Краткое описание экспериментальных процедур, которые используются для изучения этих функций. Примеры признаков, которые могут обобщать животные (абсолютные, относительные, отвлеченные и др.). Определение доступных животным уровней обобщения и абстрагирования (допонятийный, «естественные» понятия (категории), довербальные понятия, символы). Конкретные примеры из классических работ Н. Н. Ладыгиной-Котс (1923), О. Келера (1956), С. Бойзен (Boysen, 1993), Л. А. Фирсова (1982, 1993), а также из новейших исследований. Описание процесса обобщения признаков («симметрия», «новизна», «больше», «сходство», «число» и др.) у представителей разных видов. Обсуждение современных представлений о способности животных к обобщению и о роли довербальных понятий как основы процесса символизации (см. также гл. 6).
5.1. Общие сведения
В этой главе рассмотрены те когнитивные способности, благодаря которым мышление выступает как «обобщенное и опосредованное отражение действительности». Как уже упоминалось (см. 1.4), оно включает следующие операции: анализ и синтез, сравнение
Обобщение и абстрагирование обеспечивают ту сторону мышления животных, которая не связана с экстренным решением новых задач, а основана на способности в процессе обучения и приобретения опыта
Это обеспечивает возможность не только реагировать на конкретные признаки единичных предметов и явлений, усвоенные в процессе обучения, но и создает основу для адекватных реакций в новой ситуации, при появлении новых стимулов или событий того же класса. Операция обобщения тесно связана с функциями памяти. По мнению Л. А. Фирсова (1972; 1993), «феномен конкретного обобщения можно рассматривать как функциональные блоки систематизированной информации о предметах, явлениях, действиях, отношениях, тождестве и многом другом, хранящиеся в аппаратах памяти». Согласно его гипотезе, избирательное «использование информации таких блоков (у человека они могут быть выражены словами) является реальным основанием для формирования
Вопрос о
Благодаря вторичному обучению предметы и явления мысленно группируются (объединяются) по общим для них свойствам, что и составляет сущность операции обобщения.
Способность к обобщению и абстрагированию зависит от возраста животного, его индивидуальных особенностей, а также от уровня филогенетического развития данного вида (см. 5.4).
5.2. Методические основы экспериментов по изучению операций обобщения и абстрагирования
В главе 3 мы уже говорили о том, что основой для изучения операций обобщения и абстрагирования в экспериментах на животных служат два основных методических подхода:
* выработка дифференцировочных УР (см. 3.3);
* обучение выбору по образцу (см. 3.4 5).
Изучение этих операций основано на некоторых общих принципах (гл. 3). Например, используют такие варианты предъявления стимулов:
• животному предоставляют
* при множественном выборе для сравнения с образцом (или при выработке дифференцировки) предлагается несколько стимулов, один из которых положительный, а несколько — «отрицательных», т. е. неподкрепляемых стимулов (рис. 5.1, см. также 3.3).
Предъявление раздражителей может быть:
•
• или
Схема экспериментов с птицами методом выбора по образцу.
Рис. 5.1.
А — альтернативный выбор, Б — множественный выбор по признаку «число элементов» Стрелкой отмечен стимул, соответствующий образцу (по О Келеру).
В разделе 3.3 были описаны также режимы обучения, применяемые в исследованиях способности животных к обобщению и абстрагированию. Согласно
Например, КУБ (+) делают подкрепляемым, т. е. положительным стимулом, а ШАР (-) — неподкрепляемым, т. е. отрицательным (причем оба окрашены одинаково). Когда животное достигает условного критерия ' правильных реакций (выбирает КУБ не менее чем в 80 % случаев в 30 предъявлениях подряд), можно считать, что у него сформировался УР дифференцирования данных фигур по признаку формы.
Сходным образом при обучении выбору по образцу на этом первом этапе также используется одна пара (или ограниченное число пар) стимулов. При этом вырабатывается частное правило выбора одного из них по сходству с данным образцом. Если образец — КУБ, то выбирать надо КУБ, а не ШАР; если образец ШАР, то выбирать надо ШАР, а не КУБ.
Например, при выработке упомянутой выше дифференцировки можно использовать не одни и те же КУБ и ШАР до достижения критерия, а несколько пар таких фигур, так что каждая может отличаться от предыдущей по размеру, цвету, фактуре.
Этот прием оказался особенно плодотворным при формировании у животных обобщения по
Например, чтобы добиться обобщения признака «больше», с самого начала чередуют 20 пар стимулов-карточек, на каждой из которых изображено по нескольку элементов разной формы, цвета и т. п., причем на одной их количество всегда больше, чем на другой. Чтобы животное при обучении не ориентировалось на какие-то другие признаки (кроме изучаемого), набор стимулов и порядок их применения тщательно планируются заранее (см. рис. 5.3).
Убедительные доказательства эффективности режима варьирования второстепенных признаков были получены, когда одну группу голубей обучали выбору по образцу с использованием различных комбинации 152 стимулов (цветных картинок), а вторую — только с двумя картинками.
' Условный критерий обученное™ — это принятая в данном экспериментальном протоколе доля правильных реакций животного, после достижения которой его считают «обучившимся». Условный критерий может составлять 80 или 75 % правильных ответов в тесте за определенное число предъявлении.
Для достижения принятого авторами критерия обучения (75 %) птицам первой группы потребовалось более 27000 предъявлении (18 месяцев экспериментов). Они успешно выполнили тест на перенос и выбирали новые стимулы в 80 % случаев. Голуби второй группы, обученные только с двумя стимулами, разумеется, не могли выбирать по сходству с образцом новые стимулы.
Несмотря на то, что голуби в данном случае продемонстрировали потенциальную способность научиться использованию единого (абстрактного) правила «выбирай похожее», авторы все же полагают, что для этого вида более характерно «использовать абсолютные признаки стимулов и формировать ассоциации между ними» (Wright et al., 1988).
В процессе многократного повторения серий обучения в любом из указанных режимов постепенно повышается доля правильных реакций животного. Обучение завершается после того, как животное достигло условного критерия обученности (будь то дифференцировочный УР или реакция выбора по образцу). Обычно это должно быть не меньше, чем 80 % правильных выборов за 30 предъявлении, что обеспечивает достоверное отличие от случайного уровня (р<0,001).
После достижения критерия проводят наиболее важную часть процедуры — так называемый
Процедуру повторяют многократно, последовательно используя в опытах десятки пар сходных стимулов, пока животное уже при первом (или одном из первых) предъявлении не начнет выбирать правильно любые новые ШАР или КУБ. Это свидетельствует, что животное сопоставляет полученную в процессе первичного обучения информацию и
Если при очередном тесте на перенос животное сразу же реагирует безошибочно, то это означает, что теперь оно делает выбор на основе
Подавляющему большинству видов животных для формирования обобщения и абстрагирования требуется от нескольких десятков до нескольких сотен предъявлении. Исключение составляют приматы и дельфины, у которых эта операция может произойти после единственной серии обучения (Oden et al., 1988; Pack et al., 1991).
Для того чтобы результаты теста на перенос могли доказать или опровергнуть наличие обобщения, он должен удовлетворять нескольким условиям (Santiago et al., 1984; Wnght et al., 1988).
* Стимулы в тесте на перенос (т. е. предметы, которые животное должно различать или выбирать по сходству с образцом) должны быть не только новыми, но и как можно сильнее отличаться от тех, что были использованы при исходном обучении. Поскольку животные могут быстро усвоить, какие именно стимулы связаны с отсутствием подкрепления, предъявлять новые следует с соблюдением нескольких правил. Либо
* Доля правильных выборов новых стимулов должна быть не ниже достигнутой в результате обучения и намного превышать случайный уровень (80 % за 30 предъявлении, р<0,001).
5.3. Оценка уровня обобщения и абстрагирования в тестах на перенос
Доступный животным уровень обобщения может существенно варьировать в зависимости от многих факторов. Степень обобщения того или иного признака можно оценить и качественно, и количественно, используя ряд приемов и критериев.
Рис. 5.2. Формирование у вороны обобщенного правила выбора по признаку «сходство». Стимулами были карточки разного цвета (белые столбики), множества с разным числом элементов (заштрихованные столбики) и арабские цифры (черные столбики). В каждой следующей серии достижение критерия требовало меньше предъявлении.
1. Перенос на новые стимулы той же категории. Это первый способ оценки уровня обобщения. В примере, который мы рассматривали в предыдущем разделе, обобщение должно было происходить по конкретному признаку — кубической форме предмета (против шарообразной).
В процессе обучения число сочетаний, необходимое для появления адекватной реакции на каждую новую пару стимулов, постепенно снижалось.
Число сочетаний, необходимое для достижения выбранного критерия правильных выборов новых стимулов после теста на перенос, может быть показателем достигнутого животным уровня обобщения. Чем меньше эта величина, тем ближе животное к формированию обобщения поданному признаку (рис. 5.2).
Число тестов на перенос, число серий обучения с новыми стимулами, а также число предъявлении, необходимых для достижения критерия в каждой последовательной серии, — все эти показатели могут служить
2. Перенос на новые стимулы других категорий. Этим методом исследуют способность животных к более высокому уровню обобщения, т. е. к пониманию того, что признак может относиться к более «общей» категории. Поясним это на конкретных примерах обобщения птицами
Для изучения способности птиц к обобщению по признаку «сходство» их сначала обучали выбору по образцу стимулов (предметов) разного цвета, а в тесте на перенос использовали карточки, поверхность которых была покрыта разным типом штриховки (Wilson et al., 1985, a, b). Оказалось, что в этом случае галки справились с тестом на перенос при первых же предъявлениях новых стимулов. Это означает, что у них произошло успешное обобщение признака «сходство», они смогли сформировать
Большинство видов животных не справляется с переносом правила выбора по сходству с образцом от исходных стимулов на стимулы другой категории. Такой уровень обобщения оказывается для них слишком сложным.
Так, в упомянутой выше работе Уилсона голуби, обученные выбирать стимулы по сходству цвета, не смогли правильно устанавливать сходство по типу штриховки, и решению этой задачи они обучались почти заново. Даже врановые птицы, у которых в целом такие способности развиты достаточно высоко, осуществляют перенос на стимулы другой категории не во всех случаях. Так, в опытах Смирновой и др. (1998) вороны успешно усвоили правило выбора стимулов по сходству цвета. Однако для достижения более высокого уровня обобщения по признаку «сходство» потребовалось провести несколько дополнительных серий (которые были названы «доучиванием»). Только после этого птицы смогли безошибочно выбирать по сходству с образцом стимулы двух новых категорий — арабские цифры и множества2 — и в дальнейшем правильно реагировали на новые стимулы этих категорий.
3. Перенос правила выбора на стимулы другой модальности (кросс-модальный перенос). Этот способ оценки уровня обобщения особенно важен, поскольку его рассматривают как одно из доказательств наличия у животных мысленных представлений о свойствах предметов и событий окружающего мира. Одной из первых такую способность наблюдала в своих экспериментах Н. Н. Ладыгина-Коте (1925).
2 В исследованиях, связанных с сопоставлением числа предметов, а также при анализе способностей птиц к «счету» множествами называются сгруппированные объекты, числом более одного, которые предъявляются птице на специальных карточках В качестве таких «множеств» используют графические изображения разного числа объектов — точек, прямоугольников и т. п.
Детенышу шимпанзе, который успешно освоил выбор по сходству, показывали образцы — фигурки разной формы, но предметы, с которыми следовало сравнивать образец, были спрятаны в мешок. Их он должен был выбирать на ощупь, засунув в него руку. Обезьяна успешно выполнила этот тест.
Таким образом, при таком
На основе уже сформированного обобщения животные (не только приматы, но и врановые птицы, а также некоторые другие виды) способны к кроссмодальному переносу, который базируется на сопоставлении признаков разных категорий.
Одним из первых это доказал О. Келер (Koehler, 1956) в опытах на попугаях. Он обучил попугая жако особому виду выбора по образцу: тот должен был открывать кормушки до тех пор, пока не находил кормушку с одной «единицей» приманки, если перед этим ему подавали единичный звуковой сигнал, или же отыскивал кормушку с двумя «единицами» подкрепления, когда сигналов было два. Когда этот навык был достаточно упрочен, перед птицей поставили пять кормушек. На крышках трех из них по-прежнему ничего не было, а на двух других были изображены одна или две точки.
В описанных выше экспериментах были использованы приемы, позволяющие оценить способность животных к операции обобщения. В них данная способность выступает как
4. Оценка уровня абстрагирования в опытах с различением множеств.
Степень независимости уже сформированного обобщения от второстепенных признаков можно также оценить, применяя особые экспериментальные приемы. Они определяют
Чем больше стимулы в успешно решаемом тесте на перенос отличаются от использованных при первичном обучении, тем выше достигнутая степень абстрагирования, тем более отвлеченным можно считать сформированное животным правило выбора и лежащее в его основе обобщение.
При выяснении степени абстрагирования (в пределах одной категории) можно последовательно менять такие свойства предметов и изображений, применяемых в качестве стимулов, как цвет фигур и фона, их размеры, контрастность, форма и т. д.
Например, крыс, шимпанзе и детей 2 лет научили выбирать белый треугольник на черном фоне, а затем проводили тест на перенос. Оказалось, что когда фон сделали белым, а треугольник — черным, крысы перестали его узнавать и реагировали на эти стимулы, как на новые. Их приходилось предъявлять снова и снова и подкреплять правильный выбор, чтобы животные научились правильно реагировать. То же самое происходило при изменении ориентации белого треугольника на черном фоне. В отличие от крыс, с таким тестом справлялись и шимпанзе, и дети. Следовательно, у них произошло обобщение признака «треугольность» и они оказались способными абстрагироваться (отвлекаться) от таких второстепенных черт, как окраска фигуры и фона, а также ориентация треугольника. В то же время, когда треугольник изобразили в виде совокупности точек, его смогли опознать как «треугольник» только дети, но не шимпанзе. Таким образом, способность к абстрагированию этого признака у шимпанзе хотя и была велика, но все же оказалась ниже, чем у детей.
В работе 3. А. Зориной и А. А. Смирновой (1995) уровень абстракции в процессе обучения был исследован еще более детально. У ворон вырабатывали дифференцировочные УР выбора карточки, на которой было изображено множество с большим, чем на другой карточке, числом элементов.
Такими картонными карточками накрывали две одинаковые кормушки, расположенные в 15 см друг от друга (рис. 5.ЗА). Элементами множеств (в интервале от 1 до 12) служили небольшие кружки, прямоугольники, треугольники и др. Если птица сбрасывала карточку с изображением большего числа элементов, она находила в кормушке подкрепление — личинок мучного хрущака. Оба стимула предъявляли одновременно, так что выбор был альтернативным. Обучение проводили в
После 200–250 предъявлении вороны начали достоверно чаще выбирать подкрепляемый стимул — множество, содержащее большее число элементов (т. е. делали не менее 80 % правильных выборов в 30 предъявлениях подряд).
В
Проведенные в этой работе тесты на перенос позволили оценить, от каких именно признаков способны абстрагироваться птицы, выбирая стимул с «большим числом» элементов. Тесты показали, что:
* птицы продолжают выбирать любое большее множество из новых пар (в том же диапазоне — от 1 до 12), даже если они отличались от исходных
* птицы продолжают реагировать правильно, несмотря на то, что предъявленные в качестве стимулов
* вороны могут абстрагироваться от такого признака, как
* птицы выбирают по признаку
Ни в одном из тестов птицам не пришлось «доучиваться»: доля правильных выборов новых стимулов сразу же достоверно превышала случайный уровень.
Рис. 5.3. Схема экспериментов по формированию обобщения признака «больше, чем». А — схема опыта; Б — примеры множеств, предъявляемых в тесте. В парах множеств для сравнения — 1 и 2 — показаны стимулы, у которых суммарная площадь большего множества больше (первая сверху пара карточек) или меньше (вторая сверху пара), чем меньшего; 3 — в паре
Е Выбор в тестах на перенос определялся именно признаком j «большее число» элементов, абстрагированным от сопряженных с о ним второстепенных признаков.
5. Опознание предметов по их изображениям — еще один вариант теста на перенос для оценки степени абстрагирования. Имеется в виду оценка способности животных реагировать на графические изображения предметов, в разной степени похожие на прототип, или на их фотографии. Такой тест позволяет оценить, в какой степени животные способны «. удаляться от чувственных корней, от реального образа конкретного предмета» (Сеченов, 1935). Такие исследования проводили на животных разных видов. Оказалось, что способность к этой форме абстрагирования у животных имеется, но представлена в разной степени Н. Н. Ладыгина-Коте (1923) отметила, что Иони был способен узнавать предметы по фотографиям, однако успешность выбора по образцу существенно снижалась при замене образца его изображением. Сходное явление было обнаружено и у низших обезьян. В работе А. Я. Марковой (1962) было показано, что у макаков, обученных дифференцировке предметов разной формы, доля правильных ответов (80 %) прогрессивно снижалась по мере того, как их заменяли все более и более отвлеченными изображениями — фотографиями (70 %), рисунками (60 %) и пунктирными линиями (50 %).
У человекообразных обезьян способность узнавать предметы по их изображениям развита в существенно большей степени, чем у обезьян других видов, однако она также зависит от возраста и индивидуальных способностей особи. Так, по данным К. и К. Хейс (цит. по: Дембовский, 1963), уже в первые месяцы жизни детеныш шимпанзе подает человеку предмет, изображение которого ему показывают. «Говорящие» обезьяны рассматривают картинки и по собственной инициативе «называют» изображенные на них предметы (см. гл. 6). Шимпанзе, у которых сформировано обобщение по признаку «больше», после изначального сравнения плоских изображений правильно реагируют на соответствующие реальные (объемные) предметы, т. е. легко осуществляют перенос. У макаков такого обобщения не было, и им приходилось всему учиться практически заново. Капуцины занимают промежуточное положение. Сходная картина была обнаружена и в опытах, когда в качестве образца использовали изображения предметов, а для выбора предлагали натуральные предметы, или наоборот (Малюкова и др., 1990; 1995). Следовательно, уровень абстрагирования, доступный низшим узконосым обезьянам, существенно ниже, чем у человекообразных обезьян.
В процессе специальным образом организованного обучения животные приобретают способность реагировать не только на конкретные, использованые при обучении стимулы, но и на стимулы со сходными признаками. Если при первоначальном обучении формируются
5.4. Уровни обобщения и абстрагирования, доступные животным
Согласно существующим в психологии определениям,
Способность животных выделять и хранить в отвлеченной форме информацию о наиболее устойчивых свойствах предметов и явлений обозначается в мировой литературе терминами
1993), т. е. результаты операций обобщения и абстрагирования хотя и хранятся в отвлеченной форме, но не выражаются словами. По нашему мнению, такая формулировка Л. А. Фирсова четко описывает определенный уровень когнитивной деятельности животных.
«Допонятийный» уровень обобщения. Он отражает способность к обобщению стимулов по абсолютным характеристикам, к выделению общего признака «в наглядно представленных конкретных объектах». Критерий достижения этого уровня обобщения — способность к переносу ранее выработанной реакции на
В Допонятийное обобщение — это именно тот уровень, который доступен большинству животных и который выявляется обычными методиками. Долгое время считалось, что это единственный В доступный им уровень (Протопопов, 1950; Ладыгина-Коте, 1963).
Довербальные понятия. На основе процессов обобщения и абстрагирования у животных могут формироваться также
Такой уровень обобщения (формирование довербальных понятий) проявляется как способность к переносу правильных выборов на более широкий диапазон стимулов, в том числе стимулов других категорий и других модальностей.
Так, в приведенном выше примере обучения птиц выбору по образцу из работы Уилсона и соавторов (Wilson et al., 1985b) о наличии такого обобщения свидетельствовали правильные ответы галок на новые стимулы совершенно другой категории (не цвет, а разные типы штриховки). В этом случае птицы, правильно решившие тест на перенос при первых же предъявлениях, выбирали образец не по частному правилу «сходство по цвету», а по более отвлеченному правилу «сходство вообще», применимому к любым стимулам.
Довербальные понятия обеспечивают адекватное поведение в совершенно других ситуациях и экспериментальных процедурах. Например, в опытах О. Колера (Koehler, 1956) попугаи и ворон, сформировав обобщение об определенном числе единиц,
Уровень довербальных понятий (по Л. А. Фирсову) достигается за счет процесса вторичного научения, когда животное переходит от наглядно-образной к более абстрактной, хотя и невербальной форме обработки и хранения информации.
При более абстрактной форме обработки и хранения информации отражение действительности идет на уровне понятий, не опосредованных словом, — происходит «обобщение обобщений».
Это выражается в том, что животное вместо применения набора частных правил для отдельных пар или наборов стимулов использует единое отвлеченное правило, не зависящее ни от их второстепенных параметров (таких, как цвет, размер, форма и т. п.), ни от категории стимулов. Примерами формирования
Так например, в опытах Л. А Фирсова (1982) шимпанзе сначала научили выбирать большие по площади геометрические фигуры (сформировали обобщение по признаку «больше по величине»), а затем проверяли, возможен ли перенос этого обобщения на стимулы другой категории, где требуется использовать правило выбора «больше по числу». С этой целью обезьянам предлагали для выбора пары стимулов, на которых было изображено разное число точек. Правильные реакции (выбор большего множества) появлялись у шимпанзе в первых же пробах. Это свидетельствует о том, что обобщение по признаку «больше», сформированное в отношении размера фигуры, они применяют также и в отношении числа элементов множества, т. е. другой категории признаков. Иными словами, оно превратилось в обобщение обобщений — «больше вообще». Такой перенос и расценивают как показатель формирования
Примэк (Premack, 1983) также предполагал, что эти разные уровни обобщения имеют в своей основе разные когнитивные процессы.
Формирование довербальных понятий доступно лишь наиболее высокоорганизованным животным — человекообразным обезьянам, врановым птицам, попугаям и, по-видимому, дельфинам. Многие исследователи (Орбели, 1949; Koehler, 1956; Фирсов,1993) полагают, что способность древних позвоночных к формированию довербальных понятий послужила основой для возникновения
5.5. Признаки, доступные обобщению животных
Как следует из предыдущих разделов, при исследовании способности к обобщению традиционно используют несколько типов стимулов, преимущественно зрительных. Во многих работах ими служат графические изображения и предметы, относящиеся к разным категориям, т. е. стимулы различаются либо по форме, либо по цвету, либо по типу штриховки и т. п. При оценке способности животных к оперированию количественными параметрами среды в качестве стимулов используют множества — графические изображения, содержащие определенное число элементов разного размера, паттерна распределения и формы (см. рис. 5.3Б). Наряду с этим, начиная с 70-х годов, исследуется также способность к обобщению так называемых «естественных» признаков — изображений объектов окружающей среды, относящихся к разным категориям (подробнее см. 5.5.3). Наряду со зрительными стимулами, хотя и в меньшей степени, в экспериментах исследуют обобщение признаков других модальностей, например звуковых и обонятельных. Так, собаки способны не только тонко различать и запоминать отдельные запахи, но и формировать на их основе обобщения.
В работах К. Т. Сулимова (1994) и В И Круговой и др. (1991) собак обучали выбору по сходству с образцом или по отличию от него, причем в качестве стимулов использовали сложные естественные запахи Обучение проводили по методике множественного выбора, когда собаке давали понюхать запах-образец, а затем предлагали обойти расставленные по кругу металлические сосуды В одном из них находился источник запаха, соответствующий образцу, в остальных — источники нескольких других запахов Оказалось, что собаки успешно обучаются такому выбору Они могут точно устанавливать сходство любого из впервые предъявленных запахов человека с запахом-образцом и на этом основано их привлечение к криминалистической экспертизе.
Собаки могут сформировать обобщение более высокого порядка. Они, например, могут идентифицировать индивидуальные запахи не только людей, но и животных разных видов. Характерно, что собака, обученная выбирать по образцу индивидуальные запахи крыс, уверенно выполняла и тесты на перенос, без дополнительного обучения узнавала индивидуальные запахи лягушек и рыб, т. е. стимулы других категорий.
Животные могут обобщать признаки разных модальностей.
Рассмотрим, какие характеристики признаков любых модальностей могут быть объектом анализа и обобщения.
Большинство из перечисленных выше признаков относятся к
Вместе с тем и абсолютные, и относительные признаки могут в свою очередь быть
Рассмотрим подробнее, что известно в целом о способности животных к обобщению и абстрагированию указанных признаков и каких степеней обобщения могут достигать в том или ином случае животные с разным уровнем структурно-функционального развития мозга.
В разделах 5.2 и 5.3 приводились примеры того, как происходит обобщение некоторых абсолютных признаков, когда животное выучивается, например, узнавать любые предметы определенной формы. Предметом первого экспериментального исследования такой операции у животных было обобщение признака
Н. Н. Ладыгина-Коте (1923) показала, что молодой шимпанзе сравнительно легко усвоил правило выбора любых красных объектов, а затем применял его в отношении любых других цветов. Однако абстрагирование (отвлечение) этого признака от признаков «форма» и «величина» происходило у него с определенными трудностями.
На примере обобщения абсолютного признака «цвет» достаточно четко проявляются различия в способностях животных других видов. Голуби, например, не способны к переносу выработанной реакции на новые цвета. В этом отношении они отличаются не только от шимпанзе (что достаточно предсказуемо), но и от других птиц, в частности от более высоко организованных врановых (Wilson et al., 1985 b) и попугаев (Pepperberg, 1987 а). Характерно, что в работе И Пепперберг попугай Алекс не только четко выделял категорию признака «цвет», но и употреблял символы для ее обозначения — произносил названия цветов (см. также гл. 6).
Другой пример обобщения абсолютных признаков — формирование способности узнавать
Еще одним примером обобщения абсолютного признака может служить способность голубей научиться узнавать стимулы в зависимости от их симметрии или асимметрии. В работе немецкого ученого X. Делиуса (Delius, Habers, 1978) голубей обучали отличать двусторонне симметричные стимулы — различные геометрические фигурки — от асимметричных (рис. 5.4). В параллельных сериях экспериментов у них вырабатывали дифференцировочные УР, подкрепляя симметричные и не подкрепляя асимметричные стимулы. У втором группы голубей положительными были асимметричные стимулы, а отрицательными — симметричные (рис. 5.4А).
Рис. 5.4. Обобщение признаков «симметрия» и «асимметрия» у голубей.
А — динамика правильных выборов при обучении голубей выбору симметричных и асимметричных значков, различавшихся в последовательных сериях по конфигурации. Птице начинали предъявлять новую пару стимулов после того, как выполнение теста достигало 80 %-го критерия. По оси абсцисс — серии опытов, по оси ординат — доля правильных решений в %. Б — высота столбиков показывает успешность выбора в тестах на перенос, т. е. при предъявлении новых пар фигур другой ориентации, размера и т. п. Вертикальные линии на столбцах — ошибки средней.
Всего в процессе обучения было использовано по 26 стимулов, обладающих и не обладающих свойством симметрии Поскольку их второстепенные характеристики постоянно менялись, можно считать, что подкреплялся выбор «отвлеченного» признака. Стимулы обоих типов предъявляли по одному и чередовали в квазислучаином порядке3, так чтобы предотвратить выработку реакции на посторонние признаки. Птицам потребовалось относительно небольшое число сочетаний, чтобы научиться узнавать наличие (или отсутствие) симметрии, и они успешно выполнили тест на перенос даже при предъявлении новых, по-разному ориентированных и преобразованных стимулов (рис. 5.4Б).
Таким образом, голуби оказались способны к обобщению по р отвлеченному признаку «симметрия».
Во всех приводившихся до сих пор примерах мы рассматривали способность к обобщению относительно простых признаков, искусственно выделенных из того информационного потока, который действует на животное (и на человека) в реальной жизни (цвет, форма, симметрия). В то же время очевидно, что в естественной среде обитания животные способны опознавать весьма сложные многокомпонентные раздражители, несущие биологически важную информацию. О наличии процесса обобщения и его роли в приспособительном поведении животных свидетельствуют накопленные этологами данные о способности избирательно опознавать некоторые характерные для каждого вида категории стимулов.
В этой связи закономерен вопрос: как животные обрабатывают такого рода информацию и как они обобщают более сложные признаки, чем «цвет», «форма» и т. п.? Экспериментальное исследование этого вопроса одним из первых предпринял американский исследователь Гернштейн (Herrnstein, Loveland, 1964; Hermstein, 1990). Он показал, что голуби могут научиться отличать слайды, на которых были изображены городские улицы, парки, интерьеры и т. п. с человеком (или группой людей), от слайдов, на которых людей не было. Сходные результаты были получены, когда в качестве обобщаемых стимулов использовались изображения деревьев, рыб, воды (в виде капель, морских волн, наполненного стакана и т. п.), автомобилей, т. е. таких объектов, с которыми лабораторные голуби никогда не встречались. Даже когда в качестве стимулов для различения им показывали картины кубистов и импрессионистов, они научались их различать и справлялись также с тестом на перенос (Watanabe, 1995).
Отметим, что во всех этих работах птицам в каждом сеансе обучения предъявляли по очереди несколько десятков различных слайдов. Для обеспечения максимального разнообразия второстепенных признаков их запас в некоторых опытах доходил до 500. Половина из них содержала «правильный» стимул, причем он не был особенно подчеркнут, скорее, это был просто один из компонентов картинки, например изображение дерева На второй половине слайдов были те же картинки, но без деревьев Обучение обычно было весьма длительным. Голуби начинали выбирать подкрепляемые стимулы только после многих тысяч предъявлении.
3 Квазислучайным называют такую последовательность предъявления стимулов, когда из ряда случайных чисел выбирают отрезки, так называемые серии Геллермана, удовлетворяющие определенным требованиям. В этих последовательностях не должно быть более 3 повторов одного стимула и должно быть приблизительно равное число положительных и отрицательных стимулов.
На основании этих опытов авторы предположили, что у голубей не только проявляется способность распознавать встречающиеся в природе конкретные объекты, но и формируются соответствующие обобщения. Обобщения такого типа были названы
Большинство авторов склонялось к тому, что в основе формирования «естественных понятий» лежит иной способ обработки и хранения информации, чем тот, который обеспечивает формирование обобщений. Д. Примэк (Premack, 1983), например, писал о том, что в отличие от довербальных понятий, основанных на формировании «абстрактных представлений», «естественные понятия» могут иметь в своей основе
При более подробном анализе эксперименты Гернштейна и его коллег вызвали целый ряд критических замечаний. Возникло предположение, что голуби в этих опытах могли анализировать другие, не столь сложные признаки, как «человек» или «вода». В них, например, не обращали внимания на «выравнивание» второстепенных стимулов, т. е. фона слайда. Выяснилось, например, что человек мог быть изображен на слайдах чаще на фоне городского, а не сельского пейзажа Недостаточное внимание авторы уделили также выбору неподкрепляемых стимулов. Не было проверено, как реагируют голуби, если им предлагают различить слайд не по присутствию или отсутствию человека, а по наличию человека и обезьян, других животных или детей (Premack, 1983). Критики говорили, что если о существовании категории стимулов «дерево» и «человек» говорить можно, то противопоставление «человек — не-человек» искусственно и в природе не встречается.
Кроме того, было неясно, что именно воспринимали голуби в этих опытах — образ реального предмета или некий набор пятен, точек и линий. В пользу последнего предположения говорит, например, работа, в которой голубей обучали отличать карикатурное изображение человека от других сходных изображений (Cerella, 1980). Оказалось, что они продолжали считать «человеком» даже те изображения, где поменяли местами различные его части: например, голову поставили на место ног и т. п., после чего сходство с человеком полностью утрачивалось. Очевидно, что в таком случае воспринимается и оценивается не образ реального объекта, а некая совокупность линий.
На основе этих и многих других соображений появилась гипотеза, согласно которой формирование «естественных понятий» у голубей расценивали не как результат операций обобщения и абстрагирования, а как следствие обработки информации на более низком,
Как известно, сенсорные системы передают в центральные отделы мозга гораздо больше информации о действующих стимулах, чем те могут переработать, а двигательная система в состоянии реализовать в данный момент. Этот закон «бутылочного горлышка» требует резкого сокращения притока информации, которое обеспечивается разными способами. Один из них —
Категоризация — это группировка стимулов по тем или иным свойствам еще на стадии восприятия, благодаря чему целые их совокупности вызывают один и тот же ответ. Способность к такой группировке стимулов животные проявляют как в природных условиях, так и в эксперименте.
Категоризация составляет неотъемлемое свойство восприятия человека, которое обнаружено также и у многих животных, прежде всего человекообразных обезьян. Зоопсихологи неоднократно отмечали стремление шимпанзе классифицировать и соответствующим образом сортировать предметы обихода и игрушки (Иони в опытах Ладыгиной-Коте, 1923) или, например, фотографии людей и животных (Вики в опытах Hayes, Hayes, 1957).
Есть все основания полагать, что приматы и в повседневной жизни оперируют некоторыми
Способность к категоризации описана и у шимпанзе, обученных языкам-посредникам. Одна из обезьян, усвоившая несколько десятков существительных и прилагательных, с их помощью практически безошибочно относила к той или иной категории многочисленные объекты своего обихода, конкретных названий которых на языке жестов она не знала. Она (и другие обезьяны) успешно отличала любые «фрукты» от других съедобных продуктов («еда»), а «игрушки» — от «инструментов». Более того, обезьяна могла даже «называть» эти категории с помощью символов. При наиболее высоком уровне овладения языком антропоиды распределяют по категориям не только сами предметы, но обозначающие их символы (подробнее см. гл. 6).
Вопрос о том, считать ли формирование «естественных понятий» у голубей проявлением их способности к категоризации, потребовал дополнительного анализа и до сих пор до конца не решен. Было высказано предположение, что в основе этого явления лежит еще более простой механизм. К такому предположению привел тот факт, что Гернштейн, а вслед за ним и другие исследователи при планировании экспериментов первоначально недооценили способность голубей к запоминанию огромного числа отдельных стимулов. Так, в одной из работ (Vaughan, Greene, 1984) было показано, что они могут различать и запоминать до 320 стимулов-«картинок», отличающихся друг от друга совершенно незначительными, даже не сразу заметными для человека деталями. Например, в паре изображений кроны дерева «правильное» отличается наличием более толстой ветки на переднем плане.
Тем не менее, по данным ряда авторов, поведение голубей простым «зазубриванием» не ограничивается, а сочетается с распределением стимулов по соответствующим категориям. Наиболее важными для нашего анализа были опыты, в которых голуби и обезьяны-саймири обучались быстрее при противопоставлении значимых для них категорий «живое/неживое», чем при противопоставлении «птицы/ звери» — биологически менее значимых (Roberts, Mazmanian, 1988). Более того, в тех опытах, где положительные и отрицательные стимулы экспериментаторы объединяли произвольно, создавая некие «псевдокатегории», птицы вели себя так, как будто бы они все-таки пытались их каким-то образом группировать (Wasserman et al., 1988; Bhatt, Wasserman, 1989; Vauclair, Fagot, 1996). Так, в ряде работ Бхатта и Вассермана было показано, что если подкрепляемые стимулы объединены произвольно и мало похожи друг на друга, то голуби обучаются намного медленнее. В пользу такого предположения говорит и анализ ошибок, допущенных птицами в решении задачи на «псевдокатегоризацию». Частично ошибки могли возникнуть только потому, что голуби пытались объединять стимулы по общим признакам и относить их к тем или иным категориям, хотя в данном случае условия обучения этого не требовали.
Что же лежит в основе формирования «естественных понятий»? Большинство авторов склоняется к тому, что это иной способ обработки и хранения информации, нежели операция обобщения.
Было высказано предположение, что при длительном обучении (которое необходимо для появления «естественного понятия» в эксперименте) происходит не просто механическое заучивание большого числа «правильных» и «неправильных» стимулов, а более сложный ассоциативный процесс — формирование
Естественные понятия у голубей действительно отражают их способность научиться относить стимулы к соответствующим категориям на основе их перцептивного сходства. Такая способность не сводится только к механическому заучиванию большого количества дифференцировок, но и не свидетельствует о способности к обобщению.
Все сказанное выше касалось в основном экспериментов по выявлению «естественных понятий» у голубей, которые, как мы упоминали, обладают невысоким уровнем развития когнитивных способностей. В то же время у антропоидов отнесение стимулов к соответствующим категориям может происходить без специального обучения и довольно легко выявляется при тестировании. Более того, как уже упоминалось, обученные «языку» животные обозначают эти категории с помощью символов. Столь глубокие различия в уровне «естественных понятий» у животных двух наиболее изученных групп диктуют необходимость более широких
При анализе восприятия и обработки сложных «естественных» стимулов и связанного с этим круга феноменов четко проявилась необходимость в соответствии с «каноном Ллойда Моргана» (см. 2.3) учитывать, что в основе сходных по внешнему проявлению поведенческих актов могут лежать совершенно разные процессы:
• у голубей в основе образования «естественных понятий» лежат сложные ассоциативные процессы, благодаря которым формируется эквивалентность стимулов внутри категории и обеспечивается возможность отвечать на них сходным образом;
• процесс категоризации на основе перцептивного сходства, который может приводить к формированию «естественных понятий»;
• у более высоко организованных животных процесс категоризации происходит легче и, по-видимому, не ограничивается перцептивным уровнем переработки информации. Вероятно, он вовлекает более сложные когнитивные процессы, включая образование довербальных понятий, благодаря которым человекообразные обезьяны могут обозначать категории отвлеченными символами.
Согласно принятой классификации
Способность к обобщению по таким признакам называли «рефлексом на отношение» («чаще — реже», «темнее — светлее») и активно исследовали ученики И. П. Павлова и при его жизни, и в последующие годы (А. О. Долин, С. В. Клещев, М. М. Кольцова, В. П. Протопопов и др.).
Обобщение относительного признака «больше». В лаборатории В. П. Протопопова элементарные формы обобщения и абстрагирования относительных признаков были обнаружены и изучены у разных видов млекопитающих.
А. Е. Хильченко (1950) обучал павианов-гамадрилов выбирать меньший из двух квадратов (площадью 225 см2 и 101 см2). Их расположение в каждом опыте меняли, чтобы животное не могло ориентироваться по каким-то другим, например топографическим, признакам. В тестах на перенос оказалось, что обезьяны выбирали любые меньшие по площади фигуры, а также и меньшие по объему предметы.
Обобщая описанный выше и подобные эксперименты, В. П. Протопопов (1950) тем не менее подчеркивал, что «абстракция, которая наблюдается в примитивной форме у животных, все же не та абстракция, которая присуща человеку».
Обобщение относительного признака «больше по площади» описано у разных видов приматов (Фирсов, 1972; 1993) и хищных млекопитающих. Так например, показано, что кошки, научившиеся выбирать круг большей площади, успешно применяют правило выбора к фигурам другой формы и других размеров, а также к стимулам, состоящим из разного числа элементов.
Способность к обобщению по относительному признаку «больше по числу» обнаружена также у врановых птиц. В разделе 5.3 подробно описано, как вороны выбирают любое большее множество в широком диапазоне значений, абстрагируясь и от того, насколько различаются сопоставляемые карточки, и от того, какую форму, цвет и расположение имеют составляющие их элементы. Способность ворон правильно реагировать на множества новых диапазонов позволяет рассматривать достигнутый ими уровень обобщения как довербальное понятие (Зорина, Смирнова, 1995).
Относительные «пространственные признаки». Особую группу составляют
* справа — в середине — слева;
* внутри — снаружи;
* вверху.
Так, в работах Д. А. Флесса и др. (1986; 1990), Е. И. Очинской (1990) и Ю. Д. Стародубцева (2000) было показано, что собаки, кошки, крысы, болотные черепахи и дельфины-афалины способны к формированию дифференцировочных УР по признаку взаимного расположения двух идентичных раздражителей («правее — левее»).
Приведем методику такого опыта (опустив особенности работы с животными разных видов). Сначала животному показывают, что в закрытой кормушке есть пища, и оно старается ее достать — царапает или толкает кормушку. Затем животное получает возможность открывать две показанные ему кормушки, однако приманка оказывается только в одной, например в правой. В следующих опытах кормушки передвигают, так что правая («подкрепляемая») попадает на место левой, а бывшая левая оказывается на новом месте. Перед каждой следующей пробой кормушки снова меняют местами и т. д. Специальное внимание уделяется тому, чтобы обе кормушки оказывались справа и слева равное число раз и животное не предпочитало одну из сторон.
Оказалось, что животные способны не только к выработке такой дифференцировки, но и к ее
Кошки, собаки и дельфины
У дельфинов была описана также способность к обобщению таких относительных пространственных признаков, как «средний» и «верхний», с использованием трех одинаковых предметов. В тестах на перенос животные успешно ориентировались на указанные относительные признаки и когда все новые предметы также были одинаковыми, и когда они различались по форме, и когда их число увеличивали до 5 (Стародубцев, 2000). Даже при виде естественных (природных) раздражителей — рыб — два из шести дельфинов не пытались хватать их все подряд, а выбирали по усвоенному ими относительному признаку «верхний».
Способность к обобщению по еще одному относительному пространственному признаку (по признаку «внутри») описана у голубей (Herrnstein et al., 1989). Они способны научиться выбирать любой замкнутый контур с точкой внутри, предпочитая его всем вариантам изображений, где точка находится снаружи. Однако, как и при различении естественных категорий, предполагается, что голуби скорее заучивают и хранят в памяти все варианты правильных реакций, а не абстрагируют относительный признак.
Относительный признак «новизна». Одну из методик изучения обобщения по относительному признаку
Оценка и обобщение признака «новизна» стимулов представляет гобой частный случай более универсального (и необходимого) компонента поведения животных — способности
Обобщение этого вида относительных признаков изучают преимущественно с помощью
*
*
Животные способны также к обобщению альтернативных признаков —
В классических опытах Н. Н. Ладыгиной-Коте шимпанзе Иони демонстрировали полоску картона определенного цвета и предлагали для сравнения и выбора до 10 полосок других цветов. Иони довольно легко научился выбирать стимул, по цвету аналогичный образцу. Однако в тестах на перенос, когда меняли форму, размер и «фактуру» стимулов для выбора, Иони мог испытывать определенные трудности. Как пишет автор, обезьяне «необходимо большое количество проб, чтобы прийти, наконец, к должному обобщению, причем особенно трудно давался Иони процесс абстрагирования (отвлечения)». Например, он не мог найти соответствующий образцу более сложный стимул, когда необходимо было учитывать
Вместе с тем многое указывало на то, что Иони не просто усвоил правило выбирать похожий по цвету стимул из числа тех, что были использованы при обучении. Оказалось, что и при предъявлении других стимулов, даже относящихся
Успешный перенос на стимулы другой категории свидетельствует об образовании довербального понятия «сходство» или «тождество» т. е. о высокой степени обобщения.
Иони по собственной инициативе использовал принцип выбора по образцу и в жизни, и в играх, вне лабораторной обстановки, в отсутствие направляющей роли экспериментатора. Впоследствии шимпанзе Вики также самостоятельно сортировала фотографии людей и животных, подбирая их по принципу сходства с мысленно выбранным ею образцом. Есть и еще ряд свидетельств того, что понятия «сходство» и «отличие» широко используются в повседневной жизни обезьян. Так, один из шимпанзе в опытах Л. А. Фирсова (1977) применял усвоенный в лаборатории принцип выбора по сходству к естественным предметам окружавшей его на острове природы (см. 2.7).
Изучение этого вида относительных признаков тесно связано с проблемой «счета» у животных разных видов (Koehler, 1956; Davis, Perusse, 1988; Boysen, 1993; Davis, 1993; Dehaene, 1997; Зорина и др., 2001), в том числе и у муравьев (Резникова, Рябко, 1995 а, б).
Одним из первых к этой проблеме обратился О. Келер (Koehler, 1956; см. 2.8). К началу его исследований уже были накоплены наблюдения и отчасти экспериментальные данные, свидетельствующие о способности животных к «счету». Согласно его представлениям животные способны к оценке количественных параметров среды в следующих формах:
1) относительные количественные оценки множеств разной природы по признаку «больше», «меньше» (см. 5.3; 5.5.3);
2) узнавание множеств, содержащих определенное число элементов или событий, независимо от других количественных признаков (см. 5.5.1);
3) «истинный счет» с помощью символов-числительных — одно из проявлений вербального абстрактно-логического мышления; в чистом виде доступен, разумеется, только человеку, однако некоторые его элементы в последние годы обнаружены и у животных (см. 6.2).
Основное внимание в исследованиях О. Келера было уделено второй разновидности счета. Он показал, что голуби могут научиться узнавать множества, состоящие из определенного числа элементов, но не более чем 5±2, тогда как у врановых этот диапазон шире. По его данным, он составляет 7±2 единицы, а по уточненным в настоящее время доходит до 20 и, возможно, выше (Зорина, Смирнова, 1996).
О. Келер показал, что попугаи и врановые могут сформировать обобщенное правило выбора на основе не только абсолютного сходства (или отличия) стимулов (по цвету, форме и т. п.), но и соответствия по числу элементов, входящих в их состав. На рис. 5.1 Б показано, что большинство стимулов в ситуации множественного выбора не имеет прямого сходства с образцом, тогда как один совпадает с ним по числу элементов. О. Келер также установил, что ворон, обученный правилу выбора по соответствию числа элементов в графических множествах, применял это правило к стимулам другой модальности, соответствующим по числу звуковых сигналов (см. также 5.3).
Позднее похожую методику использовали в работе с приматами.
Шимпанзе Вики предъявляли карточку-образец и две карточки для выбора, число точек на одной из них соответствовало числу точек на карточке-образце. При этом варьировали размер точек и паттерны их расположения. Вики уверенно справлялась с задачей, если на образце было множество из трех точек, а на карточках для выбора — множества из трех и четырех точек. Если же на образце было множество из четырех точек, а на карточках для выбора — множества из четырех и пяти точек, точность распознавания сильно снижалась. Вики оказалась не способна перенести навык выбора в новую модальность: она не могла повторить за экспериментатором соответствующее число «стуков» по столу, даже при небольшом их количестве (два или три).
Сходную методику использовали Томас и Чейз (Thomas, Chase, 1980), работая с саймири. В их экспериментах обезьянам предъявляли три стимульные карточки с различным числом элементов на каждой (например: 2, 4 и 6; 3, 5 и 7; 2, 5 и 7). Варьировали размер и паттерны расположения элементов. В ответ на зажигание одной, двух или трех лампочек обезьяны должны были выбирать соответственно карточку с меньшим, средним или большим числом элементов. С поставленной задачей полностью справилась лишь одна из трех саймири, но две другие также были близки к достижению критерия.
Способность формировать обобщение относительного признака
При обучении с черными и белыми карточками, а также с цифрами птицы формировали правило выбора по
Чтобы проверить степень отвлеченности сформированного правила выбора, в тесте на перенос воронам предложили совершенно новые стимулы: цифры и множества в диапазоне от 5 до 8. В первых же предъявлениях все четыре птицы правильно выбирали и новые цифры (выбор по
Успешный перенос правила выбора на новые стимулы двух категорий, включая ранее незнакомые множества, свидетельствует о том, что вороны способны не только к обобщению относительного признака
Животным, у которых сформировано обобщение по признаку
Основу для изучения этого аспекта когнитивной деятельности животных заложили работы Д. Примэка (Gillan et al., 1981; Premack, 1983). Он рассматривал способность к построению аналогий как базовую характеристику
В одном из опытов (рис. 5.5А) ей показывали замок и ключ, рядом располагали банку с гуашью, между ними помещали хорошо знакомый Саре знак тождества, а для выбора предлагали консервный нож и кисть — предметы, которыми она также умела пользоваться. В этом случае она без колебаний выбрала консервный нож, потому что он выполнял функцию, аналогичную ключу — тоже «открывал» (банку). Однако, когда ей продемонстрировали лист бумаги и карандаш, предложив выбрать из тех же двух предметов «подходящий» для банки с гуашью, Сара столь же уверенно указала на кисть, которая по своим функциям в данном сочетании была аналогична карандашу.
Рис. 5.5. Выбор по аналогии (пояснения в тексте). Наряду с выявлением
Шимпанзе, а также макаки обладают способностью к выявлению аналогий; они используют отвлеченные представления о соотношении и функции предметов и составляющих стимулы компонентов. У других животных эта когнитивная функция пока не исследована.
У животных разных видов, начиная с рептилий, обнаружена способность к операциям обобщения и абстрагирования, которая используется в анализе и обработке признаков разного характера и модальностей. Диапазон уровней обобщения и абстрагирования у разных животных также достаточно широк. Существовало две точки зрения по вопросу о том, какие уровни обобщения доступны животным.
*
* Ладыгина-Коте, 1963). Истинная абстракция животным не доступна, поскольку они «не способны к установлению мысленной связи между одними лишь представлениями и их комбинированию в образы» (Фабри, 1976).
*
Вторая точка зрения получает все новые подтверждения в современных исследованиях. Способность к высшим степеням абстрагирования свойственна не только человекообразным обезьянам, но и представителям других отрядов млекопитающих (дельфины), а также некоторым видам птиц (врановые, попугаи). Этот факт подтверждается данными о способности этих животных и к решению ряда элементарных логических задач.
1. Чем различаются применяемые при исследовании процесса обобщения методические приемы и режимы обучения и тестирования?
2. Какие уровни обобщения и абстрагирования доступны животным и как они выражены у представителей разных групп позвоночных?
3. Что такое довербальное понятие и с какими другими когнитивными функциями оно связано?
4. Какие характеристики среды могут оценивать и обобщать животные?
5. Чем отличается способность к обобщению у человекообразных и низших узконосых обезьян?
6. Способность животных к символизации
Долгое время существовало, да и сейчас еще не полностью изжито представление, что между психикой человека, с одной стороны, и психикой животных — его близких и далеких родственников, с другой, лежит непроходимая пропасть и что способность к речи у человека не имеет никаких биологических корней. Такая точка зрения не была единственной, но именно она долгое время господствовала и в отечественной, и в зарубежной науке. Однако постепенно предположение о том, что и животные обладают какими-то, пусть самыми примитивными зачатками этой способности, получало все большее распространение. Этому способствовали уже рассмотренные нами данные (см. гл. 4 и 5) о способности антропоидов к целенаправленному применению и подготовке орудий, о сложности их социального поведения, а также о том, что
В предыдущей главе были рассмотрены свидетельства того, что многие животные способны к осуществлению базовых операций, характерных для мышления человека, — обобщению и абстрагированию. Считается, что этот уровень когнитивной деятельности — основа для возникновения в процессе эволюции речи (Орбели, 1949; Фирсов, 1993). Самый высокий уровень развития этих операций характерен для человека, у которого обобщение и абстрагирование реализуются с помощью символов — слов.
Вопрос о том, есть ли и у животных какие-то зачатки способности к
Перед описанием экспериментальных методов, которые были использованы для анализа этого вопроса, а также результатов таких исследований сопоставим основные свойства языков животных и языка человека.
6.1. Языки животных и язык человека
Языки большинства животных, включая и язык обезьян, — это совокупность
Важная особенность основных видов коммуникации большинства животных — ее
В языках животных сигналы
* сигналы, предназначенные половым партнерам и возможным конкурентам;
* сигналы, которые обеспечивают обмен информацией между родителями и потомством;
* крики тревоги, зачастую имеющие такое же значение для животных других видов;
* сообщения о наличии пищи;
* сигналы, помогающие поддерживать контакт между членами стаи;
* сигналы-«переключатели», чье назначение — подготовить животное к действию последующих стимулов, например известить о намерении играть;
* сигналы-намерения», которые предшествуют какой-то реакции (например, птицы перед взлетом совершают особые движения крыльями);
* сигналы, связанные с выражением агрессии;
* сигналы миролюбия;
* сигналы неудовлетворенности (фрустрации).
Таковы общепринятые представления о структуре видоспецифических языков животных.
Особенности естественных языков высокоорганизованных животных. В настоящее время накапливается все больше сведений о том, что языки приматов и, по-видимому, других высокоорганизованных животных иногда выходят за рамки видоспецифической коммуникационной системы. Известно, например, что в языке верветок, зеленых мартышек имеются звуковые сигналы для обозначения конкретных объектов и явлений, в частности различных видов хищников. Они обозначают не «хищника вообще» как опасность, а конкретно леопарда, змею и др. Точно также есть сигналы для обозначения не любого корма для утоления голода, а определенной пищи (подробнее см.: Зорина и др., 1999; Резникова, 2000).
Звуковые сигналы шимпанзе также бывают не только видоспецифическими, но могут передавать совершенно новую конкретную информацию (Чудолл, 1922). Способность шимпанзе к пониманию синтаксиса, обнаруженную при усвоении языков-посредников и общении с человеком в лабораторных исследованиях, по-видимому, можно увидеть и в естественном поведении этих животных.
Действительно, у приматов существует сложная звуковая коммуникация (наряду с системами сигналов других модальностей). Например, самец шимпанзе пытается кричать «похоже» на ту обезьяну, с которой он в настоящий момент взаимодействует (т. е. воспроизводит акустические характеристики ее криков). Это может служить способом унификации криков членов данной группы (Mitani, Brandt, 1994). Показано, что в «долгих криках» шимпанзе присутствуют вариабельные элементы, которые в разных ситуациях идут в разной последовательности. В формировании индивидуального звукового репертуара каждого самца шимпанзе большое значение имеет
Было даже высказано предположение, что естественная коммуникативная система шимпанзе является промежуточной между языком человека и коммуникативными системами других животных (ее иногда называют
Язык и сигнальные системы, по И. П. Павлову. Системы коммуникации, которыми пользуются животные, И. П. Павлов называл
Язык человека позволяет передавать информацию также в
В отличие от коммуникативных систем животных язык человека служит не только средством передачи информации, но и аппаратом ее переработки. Он необходим для обеспечения высшей когнитивной функции человека — абстрактно-логического (вербального) мышления.
Язык человека — это открытая система, запас сигналов в которой практически неограничен, в то время как число сигналов в репертуаре естественных языков животных невелико.
В настоящее время наличие зачатков второй сигнальной системы исследуют у приматов, а также у некоторых других видов высокоорганизованных животных: дельфинов, попугаев, а также врановых птиц. Существует два подхода к анализу этой проблемы:
• проведение
• обучение животных особым языкам — так называемым языкам-посредникам, которые представляют собой упрощенные аналоги речи человека; языки-посредники в основном воспроизводят его структуру, но реализованы с помощью более доступных для животных и не требующих тонкой артикуляции средств — жестов, выбора жетонов, нажатий на клавиши компьютера и др.
Цель обоих подходов — выяснить, способны ли животные научиться употреблению
Рассмотрим последовательно каждый из этих подходов.
6.2. Исследование способности животных к символизации (на примере «счета») с помощью лабораторных тестов
Символизацией называют установление эквивалентности между нейтральными знаками — символами — и соответствующими предметами, действиями, обобщениями разного уровня и понятиями.
Для изучения этой когнитивной функции у приматов и птиц применяют достаточно разнообразные экспериментальные приемы. Один из них связан с проблемой «счета» у животных. Известно, что животные способны к разным формам оценок количественных параметров среды (см. 2.8; 4.8.3; 5.5.3), включая формирование довербального понятия о «числе» (см. 5.5.4). На следующем этапе анализа выясняют, могут ли животные связывать это понятие с символами (арабскими цифрами), т. е. существуют ли у них зачатки способности к «истинному счету» с помощью числительных, которым в полном объеме владеет только человек.
Вопрос о наличии зачатков «истинного счета» у животных и критериях, которым они должны удовлетворять, составляет предмет острых дискуссий (см.: Davis, Perusse, 1988; Gallistel, 1993). Р. Гельман и К. Галлистель (Gelman, Gallistel, 1978) предложили ряд критериев, которые необходимо учитывать при оценке способности животных использовать символы для маркировки множеств. Наиболее важные из них:
•
•
•
Чтобы выяснить, способны ли животные к символизации и удовлетворяет ли их поведение указанным критериям, необходимо ответить на следующие вопросы:
1) способны ли они
2) способны ли они
3) способны ли они использовать усвоенные символы для нумерации (пересчета) элементов множеств и выполнять число действий в соответствии с предъявленной цифрой?
Одна из первых попыток исследования способности животных к употреблению символов вместо реальных множеств была сделана К. Ферстером (Ferster, 1964). После 500 000 опытов ему удалось обучить двух шимпанзе тому, что определенным множествам соответствуют «цифры» (от 1 до 7), выраженные двоичным кодом (от 000 до 111). Выучив эти комбинации, животные могли располагать их в порядке возрастания, но так и не научились использованию цифр для нумерации конкретных объектов.
Матсузава (Matsuzawa, 1985; Matsuzawa et al., 1986) обучал шимпанзе Аи установлению соответствия между различными множествами и арабскими цифрами от 1 до 6. В качестве образца он предъявлял наборы различных предметов, а для выбора — арабские цифры. В тесте с новыми вариантами множеств того же диапазона обезьяна успешно выбирала соответствующие им цифры («маркировала» множества с помощью символов). Можно было предположить, что ее обучение ограничивалось образованием условной связи (ассоциации) между цифрой и конкретными паттернами расположения элементов в соответствующих множествах, а также простым запоминанием всех использованных комбинаций. Однако в более поздней работе (Murofushi, 1997) было доказано, что дело этим не ограничивается, и Аи действительно связывала знаки с признаком «число» и оперировала ими как символами. Она правильно использовала цифры от 1 до 7 для маркировки разнообразных новых множеств, абстрагируясь от паттернов расположения составляющих их элементов, а также их размера, цвета и формы.
Особый вклад в решение вопроса о способности животных к использованию символов для характеристики множеств внесли работы американской исследовательницы Сары Бойзен и ее коллег (Boysen, Berntson, 1989; 1995; Boysen, 1993). Благодаря приемам, специально акцентирующим внимание животного на признаке числа, и постепенному наращиванию сложности предъявляемых задач, им удалось обнаружить у шимпанзе Шебы практически все элементы «истинного счета».
Сначала шимпанзе обучали класть одну и только одну конфету в каждый из шести отсеков специального подноса. Смыслом этой процедуры была демонстрация соответствия «один к одному» между числом отсеков и числом конфет. Следующая задача предназначалась для оценки прочности выработанного соответствия «один к одному» и обеспечения базы для введения арабских цифр. В ответ на предъявление подноса с одной, двумя или тремя конфетами шимпанзе должна была выбрать одну из трех карточек с изображениями такого же числа кружков Авторы особо подчеркивали значение процедуры опыта: конфеты на поднос помещали всегда по очереди, при этом экспериментатор их вслух пересчитывал (демонстрация первого и второго принципов Гельман и Галлистеля — соответствия «один к одному» и упорядоченности, т. е. ординальности). Постепенно сначала одну, потом две и т. д. карточки с изображениями точек стали заменять карточками с изображениями цифр, так что обезьяна должна была использовать эти ранее индифферентные для нее изображения вместо реальных множеств.
Когда Шеба стала уверенно выбирать все три цифры, соответствующие числу конфет на подносе, обучение продолжили с помощью компьютера. Обезьяне показывали на мониторе одну из цифр, а она должна была выбрать карточку с изображением соответствующего числа точек, т. е. применить символы к множествам другого типа, чем использованные при обучении.
По той же методике Шеба освоила еще два символа: цифры 0 и 4, а впоследствии также 5, 6 и 7. Интересно, что, осваивая новые множества, она сначала по очереди прикасалась к каждой из конфет и только после этого выбирала соответствующую цифру. Дополнительные опыты свидетельствуют, что это не было простым подражанием экспериментатору, а действительно неким способом «пересчета» конфет, а также других предметов (батареек, ложек и т. п.).
Для проверки способности Шебы
Первый авторы назвали
Во втором тесте апельсины заменили карточками с цифрами, которые также помещали в любые два из трех «тайников» — сумма цифр также не превышала 4
Полученные результаты стали убедительным свидетельством способности шимпанзе усваивать
Наряду с этими классическими опытами к настоящему времени предпринято значительное число попыток обучить животных нескольким ассоциациям между цифрами и множествами. Такие опыты важны, но не позволяют решить вопрос о наличии у них элементов «истинного счета».
Для более точного ответа на этот вопрос Д. Рамбо и его коллеги (Rumbaugh et al., 1989; 1993) не просто обучали шимпанзе выбирать множества, эквивалентные цифрам (от 1 до 6), но старались заставить их нумеровать объекты (свойство
Прежде всего шимпанзе научились с помощью джойстика перемещать курсор по экрану монитора. Затем они должны были научиться помещать курсор на арабскую цифру, которая появлялась на соответствующем по счету месте в одной из прямоугольных рамок, размещенных вдоль верхнего края экрана.
В следующей задаче на другом краю экрана появлялись несколько прямоугольных рамок с одной фигуркой внутри каждой. Шимпанзе нужно было передвинуть в верхнюю половину экрана столько прямоугольников, чтобы их число соответствовало значению показанной арабской цифры. После передвижения последней фигурки курсор надо было вернуть на исходную цифру. В начале обучения, как только шимпанзе передвигала очередную фигурку, в верхнем ряду появлялась соответствующая цифра. В тестах же такой «обратной связи» не было. Когда обезьяна помещала курсор на очередную фигурку, та исчезала, и при этом раздавался звуковой сигнал. Для успешного завершения задачи было необходимо «считать» и помнить, сколько фигурок уже исчезло. Шимпанзе успешно справлялись с этой задачей.
В данной ситуации обезьяны продемонстрировали успешное.
В использование принципов
Наиболее убедительные доказательства способности животных представлять упорядоченность (ординальность) в ряду чисел были получены лишь недавно (Brannon, Terrace, 1998). Макаки-резусы, обученные прикасаться в возрастающем порядке к множествам от 1 до 4, могут без дополнительного обучения перенести этот навык на новые множества из диапазона 5–9.
Двух макаков-резусов предварительно обучали прикасаться в определенном порядке к каждому из четырех стимулов, не имеющих отношения к числу. Для этого использовали 11 наборов, включавших по четыре картинки. На чувствительном к прикосновениям мониторе им предъявляли по четыре множества, содержащие от 1 до 4 элементов. Обезьяны должны были по очереди прикоснуться к каждому из этих множеств в возрастающем порядке. По завершении обучения, когда обезьяны усвоили порядок выбора данных четырех множеств, им предъявляли один из 35 новых наборов, где те же множества были расположены в другом порядке. Макаки правильно указывали порядок нарастания величины множеств, но, поскольку каждый набор в этой серии повторялся по нескольку раз, можно было предположить, что животные могли запоминать и использовать какие-то другие его характеристики, кроме собственно числа элементов. Однако на следующей стадии экспериментов такой возможности у обезьян уже не было: им предъявляли 150 новых наборов множеств с числом элементов от 1 до 4, причем каждый показывали лишь один раз.
В тесте на перенос обезьянам предъявляли множества, содержащие от 1 до 9 элементов. Размер фигурок, образующих множества, варьировали. Обезьяны успешно ранжировали новые множества именно до числу элементов в них, используя для этого
Приматы способны распознавать и обобщать признак «число элементов», устанавливать соответствие между этим отвлеченным признаком и ранее нейтральными для них стимулами — арабскими цифрами. Оперируя цифрами как символами, они способны ранжировать множества и упорядочивать их по признаку «число», а также совершать число действий, соответствующее цифре. Наконец, они способны к выполнению операций, изоморфных сложению, но этот вопрос требует более точных исследований.
В предыдущих главах мы неоднократно обращались к описанию когнитивных способностей врановых птиц. Можно с уверенностью говорить, что общепринятое представление об их уме и сообразительности подтверждается высокими показателями решения птицами этого семейства практически всех рассмотренных нами когнитивных тестов. Об этом же говорят и данные орнитологов и экологов о пластичности их поведения в естественной или урбанизированной среде обитания. Способность к решению задачи на экстраполяцию (см. 4.6.2) и оперирование эмпирической размерностью фигур (см. 4.6.3) у них столь же успешна, как у низших узконосых обезьян, и выше, чем хищных млекопитающих.
Наряду с этим они обнаруживают
В основе этого подхода лежали три экспериментальных факта, доказавших способность ворон.
Рис. 6.1. Исследование способности к символизации у ворон. Карточки в центре — образцы, справа и слева — карточки для выбора.
А — установление соответствия между цифрами и множествами;
Б — тест на «сложение»;
В — контрольная серия (пояснения см в тексте).
• к обобщениям по признаку «число» (Зорина, Смирнова, 2000; 2001; Smirnova et al., 2000);
• к оперированию понятиями «соответствие» и «несоответствие» (Смирнова и др., 1998);
• к запоминанию числа дискретных пищевых объектов, связанных с каждым конкретным стимулом, и применению этой информации в новой ситуации (Зорина и др., 1991).
В опытах использовали птиц, ранее обученных отвлеченному правилу выбора по соответствию с образцом и сформировавших довербальное понятие о числе (см. 5.5.4).
В «демонстрационных» сериях (рис. 6.1А) вороны получали информацию о
Для успешного решения задачи в демонстрационных сериях воронам достаточно было использовать ранее усвоенное правило выбора по соответствию с образцом.
В
Для успешного решения такой задачи воронам нужно было не только использовать ранее усвоенное правило выбора по образцу, но и произвести дополнительные операции, мысленно сопоставив ранее полученную информацию. Такой информацией было
Птицы с первых же проб решали задачу правильно: в достоверном большинстве случаев они выбирали цифру, соответствующую изображенному на образце множеству и наоборот.
С Вороны способны к символизации, т. к. без специального обучения, за счет мысленного сопоставления ранее полученной информации, могут установить эквивалентность множеств и исходно индифферентных для них знаков (цифр от 1 до 4).
Предполагается, что механизмом принятия решения в данном случае была операция логического вывода, которую называют
Другие эксперименты впервые показали, что птицы способны оперировать усвоенной информацией — выполнять с цифрами комбинаторную
В отличие от «демонстрационной» серии, в тесте на «сложение» использовали только цифры. Если в качестве образца предъявляли отдельную цифру, то для выбора — две «разделенные» карточки с парой цифр, сумма которых на одной из карточек соответствовала цифре на образце. Если в качестве образца использовали «разделенную» карточку с парой цифр, то для выбора предлагали отдельные цифры.
Птицы успешно справились с этой задачей: в первых же 30 предъявлениях в достоверном большинстве случаев выбирали соответствующую образцу карточку. К началу серии они уже знали, что каждому конкретному графическому множеству и каждой цифре соответствует определенное число личинок,
Такое успешное решение столь сложного теста заставило авторов проанализировать, не связано ли оно с использованием каких-либо «посторонних» признаков (см. 4.3), например обонятельных, акустических или же неосознанных «подсказок» экспериментатора. Поэтому в контрольной серии воронам предлагали задачу, не имевшую логического решения: обе карточки для выбора соответствовали образцу (рис. 6.1В). Подкрепление помещали в одну из кормушек в квазислучайном порядке. Таким образом, если бы в тесте вороны находили кормушку с личинками по каким-либо признакам, не имевшим отношения к логической структуре задачи, то они продолжали бы это делать и в контроле. Однако реально вороны стали выбирать кормушку с кормом на случайном уровне. При этом они выражали недовольство и нежелание работать в такой ситуации.
В Вороны способны сохранять информацию о числовых параметрах стимулов не только в форме образных представлений, но и в некой отвлеченной и обобщенной форме, и могут связывать ее с ранее нейтральными для них знаками — цифрами. Таким образом, не только у высших приматов, но и у некоторых птиц довербальное мышление достигло в своем развитии того промежуточного этапа, который, по мнению Орбели (1949), обеспечивает возможность использования символов вместо реальных объектов и явлений и в эволюции предшествовал формированию второй сигнальной системы. Получает новое подтверждение впервые высказанное Л. В. Крушинским (1986) представление о том, что существует
6.3. Обучение животных языкам-посредникам
Второй важнейший способ изучения способности животных к символизации — попытка обучать их искусственным языкам, в той или иной степени обладающим свойствами человеческой речи. История этого направления в изучении высших когнитивных функций животных была описана в разделе 2.9.2. Оно сыграло и продолжает играть ведущую роль в оценке уровня развития когнитивных процессов — способности к образованию довербальных понятий и использованию символов вместо реальных предметов и явлений.
Исследование поведения животных в процессе обучения языкам-посредникам (как проявления наиболее сложных когнитивных и коммуникативных функций) важно для понимания эволюции поведения. Оно показало, что человекообразные обезьяны, а также дельфины и попугаи могут усваивать языки-посредники, базируясь на высших когнитивных процессах — обобщении, абстрагировании и формировании довербальных понятий, способности к которым были у них выявлены в традиционных лабораторных экспериментах. Эти работы позволяют оценить, какие элементы коммуникативных процессов у животных и в какой степени предшествовали появлению речи человека (подробнее см.: Резникова, 1998; 2000; Зорина и др., 1999).
Известно, что существуют разнообразные определения и критерии языка, выбор которых может зависеть от задачи, стоящей перед исследователем. Рассмотрим, каким критериям должно удовлетворять поведение животного, чтобы можно было считать его действительно овладевшим языком-посредником.
Ключевые свойства языка (по Ч. Хоккету). В связи с проблемой усвоения антропоидами языков-посредников получили известность критерии языка, предложенные американским лингвистом Ч. Хоккетом (Hockett, 1958; см. также: Резникова, 2000). Согласно его представлениям, язык человека обладает семью ключевыми свойствами, часть которых присуща и естественным языкам животных. При анализе «лингвистических» навыков обезьян наиболее важны следующие свойства языка: семян/личность,
Виды языков-посредников. На разных этапах изучения проблемы обезьян обучали ряду искусственных языков. Основная часть экспериментов перечислена в табл. 6.1. Все использованные языки-посредники были построены по правилам английской грамматики, но в качестве «слов» в них использовались разные элементы.
Обучение обезьян и амслену, и йеркишу было успешным. Успех был обеспечен тем, что использованные методы были вполне адекватны для выяснения вопроса, в какой мере такой язык может стать средством коммуникации обезьяны и человека, а также обезьян между собой.
Язык жестов (амслен) | Gardner, Gardner, 1969; 1985 | шимпанзе Уошо, Моджа, Дар и Тату | использование знаков амслена для обозначения новых предметов; степень отвлеченности используемых символов |
Fouts et al., 1975; 1984; 1989 | шимпанзе Люси, шимпанзе Элли, шимпанзе Бруно, Коко, Буи, Лулис и др. | тест на способность к категоризации «перевод» с английского на амслен общение на амслене между обезьянами | |
Patterson, 1978, Terrace, 1979 | горилла Коко шимпанзе Ним | словарь более 500 знаков анализ понимания фраз | |
Пластиковые символы на магнитной доске | Premack D., 1972; 1983; 1994 | шимпанзе Сара | составление сложноподчиненных предложений, построение аналогий |
Язык «йеркиш» | Rumbaugh, et al., 1973; 1984; 1991? Savage-Rumbaugh, et al., 1984; 1993; 1998 | шимпанзе Лана, шимпанзе Шерман, Остин, шимпанзе (бонобо) Кэнзи, Панбониша | понимание и построение предложений, способность к символизации, спонтанное понимание устной речи |
Авторы первого эксперимента — супруги Аллен и Беатрис Гарднер (Gardner, Gardner, 1969; 1985; см. также 2.9.2) выбрали жестовый язык американских глухих — амслен и получили возможность исследовать способности шимпанзе овладевать элементами языка, построенного по правилам английской грамматики.
Не ожидая от своей воспитанницы Уошо особых успехов, они лишь ставили задачу выяснить:
«может ли Уошо запоминать и адекватно использовать жесты;
• сколько жестов может входить в ее «лексикон»;
• может ли обезьяна понимать вопросительные и отрицательные предложения (эти способности подвергались сомнению);
• будет ли она понимать порядок слов в предложении.
Результаты, полученные в первый же период работы с Уошо, а затем и с другими обезьянами, превзошли первоначальные осторожные прогнозы. За 3 года обучения Уошо усвоила 130 знаков, передаваемых сложенными определенным образом пальцами. Другие шимпанзе также активно овладевают обширным запасом жестов, которые они адекватно используют в широком диапазоне ситуаций.
В словарь овладевшего амсленом шимпанзе входят жесты, означающие:
• названия
• обозначения
• обозначения
• обозначения
• обозначения
• обозначение
6.2. Шимпанзе изображает знаки амслена «мячик» и «бэби» (рисунок Т. Никитиной).
Рис.
' Усвоение этого жеста нередко происходило с трудом. Например, Уошо начала им пользоваться только после того, как пригрозили выгнать ее на улицу, где лаяла собака, которой та очень боялась.
Объем словаря антропоидов. Эксперименты, проведенные на разных обезьянах (Patterson, 1978; Gardner et al., 1985), показали, что словарь даже в 400 жестов далеко не исчерпывает их возможностей. При обучении «йеркишу» (см. ниже) животные также усваивали сотни знаков и понимали более 2000 слов устно Следует отметить, что в большинстве случаев опыты проводились на молодых шимпанзе и прекращались самое позднее, когда им было 10 лет. Учитывая, что в неволе шимпанзе могут жить до 50 лет, авторы допускали, что полученные данные отражают далеко не все возможности этих животных.
По окончании экспериментов обезьяны долгие годы помнят усвоенный словарь и навыки обращения с ним Так, Уошо, которую ее воспитатели Гарднеры посетили после семилетнего перерыва, сразу же назвала их по имени и прожестикулировала «Давай обнимемся '».
Сам по себе факт заучивания жестов еще не несет в себе ничего принципиально нового — для этого достаточно простого условно-рефлекторного обучения. Тем не менее ряд особенностей использования шимпанзе «словарного» запаса заставлял предполагать, что употребление знаков основано у них на когнитивных процессах более высокого порядка — на
Рис. 6.3. Знаки гориллы Коко.
А — комбинация знаков «дерево» и «салат» для обозначения побегов бамбука.
Б — знак «фрукты»,
В — Знак «Я» при обнаружении в книге фото обезьяны (рисунок Т Никитиной).
Обезьяны переносят навык называния предмета с единичного образца, использованного при обучении,
Использование знаков в переносном смысле. Ряд данных свидетельствует, что шимпанзе не просто заучивают связь между жестами и обозначаемыми ими предметами и действиями, но
Использование знаков в новых ситуациях. Основные данные о пользовании амсленом получены в контролируемой обстановке эксперимента, когда инструктор работал с обезьяной по определенной программе и ее ответы (правильные или неправильные) были предсказуемы Наряду с этим и Уошо, и ее «коллеги» по собственной инициативе использовали жесты в незапланированных, экстренно сложившихся ситуациях.
Описаны примеры, когда горилла, разглядывая иллюстрированный журнал, жестами комментировала знакомые картинки (см рис 63В) Уошо, известная своей боязнью собак, отчаянно жестикулировала «Собака, уходи '», когда во время прогулки на автомобиле за ним с лаем погнался пес.
Усвоенную ими систему знаков шимпанзе использовали как
Свойства языка шимпанзе и критерии Хоккета. Данные, полученные при обучении обезьян языкам-посредникам, позволяют проанализировать, какие свойства языка человека можно у них обнаружить.
Знаки амслена, которые усваивают шимпанзе, обладают свойством
Свойство
Усвоенная шимпанзе система знаков амслена в некоторой степени обладает свойством «продуктивности».
До недавнего времени считалось, что свойство продуктивности совершенно не характерно для естественных коммуникативных систем животных. Однако упоминавшиеся выше «долгие крики» шимпанзе имеют признаки продуктивности: в зависимости от ситуации последовательность элементов в них бывает разной.
Свойство
* использовать знаки в отсутствие соответствующего объекта;
* передавать информацию о прошлых и будущих событиях;
* передавать информацию, которая может стать известной только в результате употребления знаков.
В работах Р. Футса (Fouts et al., 1984) приведены отдельные наблюдения, свидетельствующие о наличии этого свойства в языке, усвоенном Уошо и Люси. Так, например, когда Люси разлучили с заболевшей собакой — ее любимицей, она постоянно ее вспоминала, называла по имени и объясняла, что той больно.
Для специального анализа этого вопроса Р. Футе провел опыты на шимпанзе Элли. Он обратил внимание, что тот неплохо понимает устную речь окружающих, и, воспользовавшись этим, научил его названиям нескольких предметов. На следующем этапе Элли научили знакам амслена, соответствующим этим словам, но обозначаемых ими предметов при этом не показывали. Во время теста обезьяне предъявляли новые предметы тех же категорий, что и использованные на начальном этапе — при заучивании словесных обозначений. Оказалось, что Элли правильно называл их с помощью жестов, как бы мысленно «переводя» их названия с английского на амслен.
Вопрос о наличии свойства «перемещаемости» в усвоенном шимпанзе языке особенно важен в связи с изучением мышления животных, поскольку
В основе употребления знаков амслена у шимпанзе лежит не | просто образование ассоциаций, но формирование внутренних в представлений о соответствующих им предметах и действиях.
Знаки амслена могут употребляться в отсутствие обозначаемых предметов и наряду с прочими преобразованиями допускают и кроссмодальный перенос от звуковых (словесных) к зрительным (жестовым) знакам.
Наиболее убедительно способность шимпанзе передавать информацию об отсутствующих и недоступных непосредственной сенсорной оценке предметах была продемонстрирована в работах С. Сэведж-Рамбо (Savage-Rumbaugh et al., 1984; 1993).
В естественных коммуникативных системах животных свойство «перемещаемости не обнаружено.
Культурная преемственность — это способность передавать информацию о смысле сигналов из поколения в поколение посредством
Известно по крайней мере три случая, когда Уошо специально учила малыша знакам амслена (пища, жвачка, стул), складывая его пальцы соответствующим образом. Два этих жеста так и вошли в его словарь. Взрослые шимпанзе также в ряде случаев усваивали знаки, подражая «говорящим» сородичам.
Эти данные представляют несомненный интерес, однако они не могут служить достаточно убедительным доказательством наличия культурной преемственности языковых навыков у шимпанзе. Хотя те и пользуются знаками в отсутствие человека, неясно, насколько эти знаки отличаются по своим функциям от естественного языка жестов и телодвижений. Не было проанализировано, о чем обезьяны сигнализируют друг другу и какой тип коммуникации обеспечивается этими жестами. Вместе с тем в природных условиях культурная преемственность, по-видимому, играет определенную роль в создании диалектов естественного языка шимпанзе.
Язык-посредник амслен, который усваивают шимпанзе, обладает не только свойством семантичности, но отчасти свойствами о продуктивности, перемещаемости и культурной преемственности 2.
2 Позднее Гарднеры работали и с другими шимпанзе. Эти и другие опыты подробно и достоверно описаны в популярной книге известного американского журналиста Ю. Линдена (1981; см. также: Ерахтин, Портнов. 1984; Мак-фарленд, 1988; Зорина и др., 1999; Резникова, 2000).
Составление предложений и понимание их структуры. Уже на самых ранних этапах экспериментов выяснилось, что, осваивая амслен, обезьяны комбинировали знаки не только для обозначения новых предметов. Выучив всего 10–15 жестов, они по собственной инициативе объединяли их в 2—4-членные цепочки, напоминавшие предложения, которые произносят начинающие говорить дети. Было похоже, что они понимали не только значение, но и
Это показывает, что обезьяны понимали и передавали информацию о направленности действия, принадлежности предмета и его местонахождении. Они четко различали смысл фраз: «Роджер щекотать Люси» и «Люси щекотать Роджер», «дай мне» и «я дам тебе», «кошка кусает собаку» и «собака кусает кошку» и т. п.
Я Типичные для шимпанзе последовательности знаков обычно | были
На основании этих данных было высказано предположение, что обезьяны овладевают
В ходе дискуссий по этому вопросу выяснилось, что в лингвистике и в детской психологии не существовало критериев того, с какого момента, с какой стадии детский лепет можно считать речью. Это и понятно, поскольку не было такой проблемы: ведь у детей раньше или позже этот лепет обязательно переходил в полноценную речь. Но для строгого сравнительного анализа речи ребенка и шимпанзе такие критерии были необходимы.
Многие критические замечания были направлены на то, что обезьяны вряд ли способны самостоятельно формировать семантически значимые и грамматически правильные предложения. Так, американский исследователь Г. Террес предполагал, что обезьяны могли строить свои фразы просто в подражание воспитателям, на самом деле не понимая их смысла. Веские доказательства того, что шимпанзе действительно могут усваивать общие принципы построения фраз и даже делать это самостоятельно, на основе понимания их смысла, а не просто подражая экспериментатору, были получены только в более поздних опытах в работах Сью Сэведж-Рамбо (Savage-Rumbaugh et al., 1993) в 90-е годы XX в. при обучении шимпанзе другому языку (йеркишу) и в других условиях (см. ниже).
6.4. Понимают ли обезьяны смысл знаков и синтаксис языка-посредника?
Сколь бы ни были убедительны приведенные выше данные о том, что амслен, используемый шимпанзе, действительно близок по ряду свойств языку человека, они тем не менее вызывали ряд возражений и требовали новых доказательств и проверок. Прежде всего это касалось следующих вопросов:
• понимают ли обезьяны смысл жестов и составленных из них «предложений» и не определяется ли их поведение просто подражанием воспитателю?
• действительно ли можно считать
• могут ли обезьяны понимать устную речь человека независимо от контекста?
Ответу на эти вопросы способствовали работы Д. Рамбо. Они были начаты в 70-е годы и продолжают плодотворно развиваться (см. 2.9.2).
Проверка роли подражания человеку и «подсказок» при овладении языком. Разработанный Рамбо язык-посредник «йеркиш» был более формализованным и контролируемым средством общения с обезьяной. «Словами» этого языка служили значки на клавишах компьютера (лексиграммы), которые появлялись на мониторе, когда обезьяна нажимала на клавишу. Процесс обучения происходил как диалог обезьяны с компьютером, а не с человеком. Это обстоятельство представлялось весьма существенным. Оно исключало возможность невольных «подсказок» со стороны экспериментатора. Оно препятствовало также слепому подражанию обезьяны действиям человека, которое предположительно могло играть роль в усвоении амслена.
Первая обезьяна, овладевшая этим языком, — шимпанзе Лана — научилась главным образом тому, чтобы нажимать на соответствующую клавишу компьютера для получения нужного ей предмета. Она продемонстрировала способность выстраивать лексиграммы на мониторе в соответствующем порядке, уверенно задавала вопросы (знак «?» в начале фразы), по собственной инициативе исправляла замеченные ошибки. Но, несмотря на то, что ее обучение было строго формализовано, она, как и обезьяны, «говорившие» на амслене, иногда делала совершенно неожиданные заявления, например просила: «Машина, пощекочи, пожалуйста, Лану».
Поведение Ланы подтвердило данные, полученные при обучении амслену, — было доказано, что обезьяна строит фразы самостоятельно, без «подсказок» и подражания инструктору.
Среда и объем информации, которым оперировала Лана, были ограниченны и практически всегда ее высказывания касались предметов,
Имеют ли знаки «йеркиша» свойства символов? Сэведж-Рамбо привлекла внимание к тому, что, как правило, шимпанзе подают знаки главным образом в присутствии предметов, если они получают за это подкрепление. В то же время
Ввиду этого в ее экспериментах обезьян (как и обучавшихся ранее амслену) воспитывали в полусвободных и обогащенных условиях, в тесном контакте с воспитателями и с другими обезьянами, в отличие от Ланы, которая была ограничена в общении (см. также 2.9.2).
Новая методика С. Сэведж-Рамбо не фокусировала внимания обезьян только на получении объекта. Их побуждали использовать знак-лексиграмму не столько для получения какого-то предмета, сколько для его «наименования». Это происходило в ситуации, где всегда было несколько предметов и воспроизведение знака не было жестко связано с их получением. По этому методу одновременно воспитывали двух шимпанзе Шермана и Остина. Они научились
Обученные по этой системе Шерман и Остин употребляли знаки в гораздо более разнообразных ситуациях, чем их предшественники по изучению йеркиша, особенно Лана. Стремление к «наименованию» предметов обнаруживалось у них спонтанно, без инструкции тренера. Очевидно, что научить этому специально невозможно. Вместо того чтобы ждать, когда тренер даст им или попросит предмет, как это бывало у всех других обезьян, они по собственной инициативе называли их и показывали тренеру, т. е. включили обычно исполняемые тренером функции в собственное поведение. При появлении тренера с набором игрушек они без всякой команды называли их и показывали, вместо того чтобы ждать, когда тот решит играть и даст соответствующую команду.
Рис. 6.4. Использование знаков амслен в общении шимпанзе Бруно и Буи между собой. Буи изображает знак «щекотать», возможно, для того, чтобы отвлечь Бруно от лакомства и самому его съесть (рисунок Т. Никитиной).
Это свойство проявилось и в отношениях между самими шимпанзе. Шерман — доминант — нажимал на соответствующую клавишу и давал Остину кусок апельсина. Оба они нажимали нужную клавишу компьютера прежде, чем взять кусок пищи или игрушку,
Для такого использования знаков (лексиграмм), как средства «называния» предметов, в том числе и в их отсутствие, животное должно понимать соответствие между:
* предметом, который оно выбрало из группы как объект наименования;
* лексиграммой, которую оно нажало на клавиатуре;
* предметом, который оно в конце концов выбрало и передало экспериментатору.
Действительно ли шимпанзе представляют себе все эти соответствия? Наиболее надежная проверка этого предположения — это процедура теста при двойном слепом контроле. В обстановке игры с тренером шимпанзе «называют» один из предметов, но предметы для выбора, тренер, которому их надо показывать, и клавиатура, на которую надо нажимать, расположены далеко друг от друга. Такое «пространственное разнесение» было введено для создания дополнительной нагрузки на образную память, на сохранение представления о выбранном предмете. Решив, какую игрушку он выберет, шимпанзе должен помнить, что именно он выбрал, пока идет к клавиатуре и высвечивает соответствующую лексиграмму в отсутствие реального объекта. Затем, держа в памяти, что именно он высветил на экране (поскольку, уходя от компьютера, он перестает видеть лексиграмму), обезьяна должна взять выбранный предмет и передать его экспериментатору, который сидит У отдельного монитора и видит лексиграмму только после вручения ему выбранного предмета (это делается для того, чтобы он вольно или невольно ничего не мог «подсказать» обезьяне).
Оказалось, что оба шимпанзе правильно называли выбранный предмет практически в 100 %, причем когда Шерман однажды высветил лексиграмму предмета, которого в тот момент в лаборатории не было, то не взял ничего. Эти опыты позволили сделать важное заключение о языковых возможностях шимпанзе.
Стремление Шермана и Остина к
Понимают ли шимпанзе устную речь человека? Итак, было обнаружено, что Шерман и Остин способны употреблять символы для обозначения отсутствующих предметов и в более широком контексте, чем обезьяны, обученные по другим методикам. После этого Сэведж-Рамбо приступила к воспитанию детенышей карликового шимпанзе-бонобо
Она старалась максимально разнообразить условия их содержания, систематически меняя все возможные компоненты среды, позволяла им общаться и с людьми, и с другими обезьянами. Но главной особенностью программы было то, что люди постоянно разговаривали при обезьянах. При этом исследователи не проводили специальной дрессировки на выполнение словесных команд, а лишь создавали для обезьян соответствующую языковую среду —
Одна из особенностей этого долгосрочного эксперимента, продолжающегося уже более 20 лет, состояла в том, что он был начат в раннем возрасте, когда двум карликовым шимпанзе (бонобо) и трем детям было по 10 месяцев. Все они с начала обучения находились в сходных условиях — постоянно слышали устную человеческую речь. При этом обезьян
Первым учеником был Кэнзи, которого научили также общаться с человеком и с другими обезьянами при помощи клавиатуры с лексиграммами. Главным в этой части программы было заставить обезьяну
Оказалось, что в возрасте 5 лет Кэнзи спонтанно начал понимать устную речь, и не только отдельные слова (что отмечалось и раньше у других обезьян), но и целые фразы. Как и обезьяны, общавшиеся с помощью амслена (см. выше), он понимал разницу между фразами «Унеси картошку за дверь» и «Иди за дверь, принеси картошку». Такое же понимание он проявлял и в собственных высказываниях, в зависимости от ситуации делая одни и те же лексиграммы то подлежащим, то дополнением.
«Экзамен», который держал Кэнзи, растянулся на несколько лет. В общей сложности ему было задано 660 вопросов-инструкций, каждый раз новых, не повторяющих друг друга. Чтобы ненароком не повлиять на обезьяну, экзаменатор всегда находился в другой комнате, наблюдая за происходящим через стекло с односторонней видимостью. Вопросы Кэнзи слышал через наушники, причем их задавали разные люди, а иногда применяли даже синтезатор звуков голоса, В подавляющем большинстве случаев без какой-то специальной тренировки он правильно выполнял каждый раз новые инструкции. Часть из них относилась к сфере повседневной активности обезьяны. В них был «задействован» весь набор манипуляций с предметами обихода, которые Кэнзи совершал или в принципе мог совершить, а также разнообразные контакты с окружающими. Полный перечень этих вопросов опубликован (Savage-Rumbaugh et al., 1993), ниже мы приводим типичные примеры:
— положи булку в микроволновку;
— достань сок из холодильника;
— дай черепахе картошки;
— выйди на улицу и найди там морковку;
— вынеси морковь на улицу;
— налей кока-колы в лимонад;
— налей лимонад в кока-колу.
Другие обращенные к нему фразы, напротив, провоцировали совершение мало предсказуемых действий с обычными предметами:
— выдави зубную пасту на гамбургер;
— найди собачку и сделай ей укол;
— нашлепай гориллу открывалкой для банок;
— пусть змея (игрушечная) укусит Линду (сотрудницу) и т. д.
Наконец, Кэнзи справлялся и с заданиями, полученными в непривычной обстановке, например во время прогулки:
— набери сосновых иголок в рюкзак.
Упоминавшиеся выше опыты на других обезьянах позволяли предположить, что они осваивают элементы синтаксиса. Некоторые понимали не только простые фразы, но и более сложные синтаксические конструкции типа: «Если не хочешь яблока, то положи его обратно». Подобные фразы понимала и составляла сама шимпанзе Сара в опытах Примэка (Premack, Premack, 1972; см. 2.9.2). Однако она делала это только после долгой тренировки с каждой конкретной фразой, не понимая их смысла, тогда как Кэнзи усваивал именно общий принцип и без дальнейшей дрессировки с первого же раза правильно реагировал на любые из этих сотен вопросов.
На этом основании представляется более вероятным, что фразы, которые «произносили» обезьяны, обученные языку жестов также были основаны
Как известно, для человека критическим фактором, определяющим формирование способности понимать речь, является возраст когда он начинает ее слышать, и условия, в которых это происходит. В данном случае шимпанзе, которых начали обучать не в 10 месяцев (как Кэнзи), а в 2–3 года, смогли усвоить гораздо меньше навыков и для этого требовалась гораздо более интенсивная и направленная тренировка. Понимать же устную речь столь полно и в таком объеме, как Кэнзи, не мог больше никто.
Эти данные представляются тем более убедительными, что находятся в полном соответствии с особенностями когнитивных способностей высших обезьян, выявленными в ранее рассмотренных нами лабораторных экспериментах (см. также 8.5). В частности, способность шимпанзе к использованию символов для маркировки множеств и умение «складывать» цифры, не видя обозначаемых ими множеств (6.1.2) также отражают тот уровень когнитивных процессов, который обеспечивает свойство «перемещаемости» знаков при использовании языков-посредников. Они совпадают также с появляющимися сведениями о принципиальных особенностях в структуре естественной коммуникационной системы шимпанзе (Ujhelyi, 1996; см. также 6.1).
Эти сенсационные результаты заставили авторов обратиться к исследованию мозга шимпанзе в поисках морфологических основ зачатков речи (см., напр.: Hopkins et al., 1992). С помощью разнообразных новейших методов (гистология, сканирование, позитронно-эмиссионная томография) была обнаружена асимметрия в строении височных областей мозга, причем
Коль скоро мозг шимпанзе наделен «речевыми структурами» и способен их активизировать в соответствующих условиях, можно предположить, что последний общий предок человека и шимпанзе тоже имел эти структуры. Тогда и непосредственные предшественники человека австралопитеки и
6.5. Обучение языкам-посредникам других животных
Наряду с шимпанзе языку жестов успешно обучали также гориллу (Patterson, 1998) и орангутана (Miles, 1983). Вопрос о том, насколько развиты у других животных когнитивные функции, лежащие в основе овладения языками-посредниками у антропоидов, представляет несомненный интерес, и ряд ученых попытался его исследовать.
Обучение дельфинов. Способность морских млекопитающих к овладению языками-посредниками в течение ряда лет изучает американский исследователь Л. Херман (Herman, 1986). В его работах дельфины-афалины должны были сначала усвоить «названия» различных предметов в бассейне и совершаемых с ними действий.
Для одного дельфина (по кличке Акеаками) «словами» служили жестовые сигналы экспериментатора, который стоял на краю бассейна. С другим дельфином (по кличке Феникс) общались с помощью звуковых сигналов, генерируемых компьютером. Животные должны были усвоить связь между объектами в бассейне и обозначающими их знаками, а также между жестами и манипуляциями, которые они должны были совершать.
Постепенно дельфины, повинуясь цепочкам из 2–3 знаков, научились точно следовать инструкциям тренера и выполнять некие комбинации действий с предметами, например: «дотронься хвостом до иллюминатора», «набери воды и облей N», «надень кольцо на палку слева», «просунь палку в кольцо» и т. п. Далее проводились тесты с использованием новых предложений, в которых животных также просили принести или переместить какой-либо предмет либо положить один предмет
В ряде тестов предмет, с которым дельфину нужно было манипулировать, находился вне поля его зрения или же инструкцию подавали за 30–40 с до появления предмета. Дельфины успешно следовали жестам инструктора и в этих условиях, когда их поведение определялось
Поведение дельфинов свидетельствовало также о понимании
Рис. 6.5. Опыты И. Пепперберг по символизации с попугаем Алексом (фото Д. Линдена с любезного разрешения проф. И. Пепперберг, Аризонский университет, США).
Обучение попугая. Несомненный интерес представляют исследования на попугаях. Известно, что представители разных видов могут выучивать и произносить сотни слов варьировать слова в предложениях, составлять фразы адекватно ситуации и вступать в довольно осмысленные диалоги со своими воспитателями. Подробное описание поведения «говорящих» птиц приводится в работе В. Д. Ильичева и О. Л. Силаевой (1990).
Несмотря на важность получения сравнительной характеристики когнитивных способностей этих высокоорганизованных птиц с крупным и тонко дифференцированным мозгом, экспериментального изучения практически не проводится. Исключение составляют только многолетние фундаментальные работы американской исследовательницы Ирэн Пепперберг (Pepperberg, 1981; 1987; 2000). Она разработала оригинальный метод общения с попугаем Алексом (африканским серым жако,
Алекс попал в лабораторию Аризонского университета в возрасте 11 лет, т. е. достаточно взрослым, и сразу же проявил большие способности к обучению. В его присутствии люди беседовали между собой, а попугай ревностно за этим следил и старался вмешиваться в диалог. Разработанный Пепперберг метод отличается тем, что в процессе обучения участвуют одновременно два обучающих человека. Один тренер (основной) обращается одновременно и к человеку (второму тренеру), и к попугаю. Второй тренер является для попугая, с одной стороны, объектом для подражания, а с другой — как бы его соперником. Уроки проходили следующим образом. Один экспериментатор показывал другому яблоко или карандаш, спрашивая: «Что это такое?» Если ответ был правильным (причем человек старался тщательно проговаривать слова), обучающего хвалили и давали названный предмет. Приведем протокол такого опыта: Обучающий: Брюс, что это?
Брюс
Обучающий: Молодец! Возьми пасту
Алекс
Обучающий: Алекс, ты это хочешь? Что это?
Алекс: Папа.
Обучающий: Нет,
Обучающий: Нет, Ирэн, что это? Ирэн: Па..а. Обучающий: Лучше.
Ирэн: Па-ста
Ирэн
Алекс
Ирэн: Лучше! Что это?
Алекс: Па-а.
Ирэн: Еще лучше, Алекс!
Алекс: Па-та.
Ирэн: Ну ладно, ты хорошо постарался, бери пасту.
За 15 лет обучения Алекс освоил около 100 наименований предметов (дерево, кожа, бумага, пробка, орех, банан, куртка, морковь, вишня, ливень, спина и т. д.). Он способен обозначить форму предмета, количество углов, считает до 6, знает названия категорий «форма», «материал», «цвет» и называет 7 цветов. Он активно пользуется словом «хочу», а если ему дают не тот предмет, который он просит, он говорит «нет» и отбрасывает его в сторону.
Кроме того, Алекс
В ответ на предъявление различных множеств (от 2 до 6; в том числе совершенно новых или гетерогенных) Алекс правильно произносил названия числительных. Он верно определял число одинаковых элементов в гетерогенных множествах (Pepperberg, 1987).
Таким образом, продемонстрированные Алексом способности удовлетворяют как большинству из критериев понятия числа, так и некоторым критериям счета (Pepperberg, 1994; см. 6.1).
Поведение попугая в опытах Пепперберг производит глубокое впечатление, хотя уровень его способностей не сравним с тем, который продемонстрировали шимпанзе. Тем не менее именно Пепперберг впервые удалось поставить эксперименты, по результатам которых можно объективно судить о характере когнитивных способностей попугаев. Благодаря этой программе Алекс научился не только называть тестовые предметы, но и определять их форму (треугольная, четырехугольная), цвет и даже указывать материал, из которого они сделаны. Он может отвечать на вопросы типа: «Сколько здесь предметов? Сколько из них круглых? А сколько кожаных? Сколько черных?» У этого попугая удалось установить связь между неприятной для него ситуацией и отрицанием «нет».
Работы по обучению языкам позвоночных-неприматов построены так, что не столько выявляют их коммуникативные способности, сколько характеризуют уровень когнитивной деятельности — способность к обобщению и символизации. Несмотря на немногочисленность и разрозненность таких работ, они убедительно свидетельствуют, что способность к обобщению и абстрагированию, необходимая для обеспечения зачатков процесса символизации, возникает у животных разного уровня филогенетического развития.
Способность животных к обобщению и абстрагированию, которая у наиболее высоко организованных млекопитающих и птиц достигает уровня формирования довербального понятия, позволяет овладевать символами и оперировать ими вместо обозначаемых реальных предметов и понятий. Эта способность выявляется как в традиционных лабораторных экспериментах («счет» у шимпанзе и ворон), так и в ситуации общения человека с антропоидами, дельфинами, а также попугаем с помощью языков-посредников. При определенных методиках воспитания и обучения усвоенные обезьянами знаки действительно используются как символы в широком спектре ситуаций — не только для выражения просьбы о предмете, но для его
Открытие этого уровня когнитивных способностей животных подтверждает гипотезу Л. А. Орбели о наличии переходного этапа между первой и второй сигнальными системами и позволяет уточнить грань между психикой человека и животных. Оно свидетельствует, что и эта высшая когнитивная функция человека имеет биологические предпосылки. Тем не менее даже у наиболее высоко организованных животных — шимпанзе — уровень овладения простейшим вариантом языка человека не превышает способностей 2–2,5-летнего ребенка.
1. Какой уровень довербального мышления животных лежит в основе усвоения символов?
2. У каких животных и в какой форме выявлена способность к усвоению и употреблению символов для маркировки множеств?
3. Что такое языки-посредники, чем они отличаются друг от друга?
4. Какие свойства языка человека доступны животным при овладении языками-посредниками и в чем это проявляется?
5. В каких случаях доказано, что знаки языка-посредника действительно имеют свойства символов?
6. Какие эксперименты доказывают, что шимпанзе понимают значение порядка слов в предложении^
7. Изучение элементов сознания у животных
Сознание человека— наиболее сложная функция его психики. Основные свойства сознания, зачатки которых были исследованы у животных. Наблюдения и экспериментальные доказательства того, что человекообразные обезьяны обладают способностью опознавать себя в зеркале, обнаруживают понимание и прогнозирование действий других особей, а также способны использовать такие знания в своих целях, т. е. манипулировать поведением сородичей.
7.1. Основные характеристики сознания
В этой главе мы обратимся к рассмотрению проблемы, изучение которой считают одной из основных задач зоопсихологии (Фабри, 1976) — предпосылкам и предыстории человеческого сознания.
А. Н. Леонтьев (1972), последовательно анализируя развитие психики в эволюционном ряду, отмечает, что «переход к сознанию представляет собой начало нового, высшего этапа развития психики». Сознательное отражение, в отличие от психического отражения, свойственного животным, — это
Мнения психологов и философов о непосредственных причинах возникновения сознания человека очень разнообразны. Они не являются предметом нашего анализа. Отметим только, что привычное отечественному читателю выражение «труд создал человека», как и целый ряд других, подвергается в настоящее время пересмотру не в последнюю очередь благодаря исследованиям зачатков мышления и сознания у животных.
Долгое время вопрос о наличии у животных сознания был объектом чисто абстрактных рассуждении философов. В конечном итоге все они сводились к тому, что у животных сознания быть не может, «потому что (по А. П. Чехову) не может быть никогда». Действительно, проблема сознания у животных предрасполагает к спекуляциям в связи с трудностью экспериментального изучения этого феномена. Тем не менее в настоящее время в этой области науки имеются реальные достижения. Прежде чем описывать их, перечислим некоторые характеристики
1) Сознание —
2) Сознание определяет
3) Сознание обеспечивает
4) Сознание позволяет человеку отделить «Я» от окружающего мира (от «не-Я»), т. е. обеспечивает
5) Сознание обеспечивает способность оценивать знания, намерения, мысленные процессы у других индивидов («эмпатия»).
В следующих разделах рассматривается вопрос о наличии у животных самоузнавания и способности к пониманию намерений и «мыслей» других особей.
7.2. Способность к самоузнаванию у человекообразных обезьян
Одна из характеристик сознания человека — это присущее ему свойство
Есть ли у животных понятие о собственном «Я»? Это один из самых трудных вопросов, которые пытаются разрешить с помощью объективных экспериментальных методов. Формирование такого понятия требует, чтобы у субъекта (в данном случае — у животного) был
Человек, увидев в зеркале несколько лиц, не колеблясь, понимает, что он — это он (поправляет прическу или сбившийся галстук). Рядом с ним отражается в зеркале другой человек — его спутница (он видит, как она, например, пудрит нос). Ряд авторов ставил задачу выяснить, могут ли животные сходным образом узнавать себя в зеркале и «принимать к сведению» эту информацию.
Первые данные о том, как шимпанзе относятся к своему отражению в зеркале, были получены в наблюдениях Н. Н. Ладыгиной-Коте (1935).
Увидев первый раз свое отражение, ее воспитанник Иони открыл от удивления рот и стал разглядывать его, как бы спрашивая:
«Что там за рожа?» (рис. 7.1А). Его поведение при этом ничем не отличалось от поведения ребенка, также оказавшегося перед зеркалом впервые (рис. 7.1 Б). Постепенно Иони (как и ребенок) освоился со своим отражением, закрыл рот и продолжал пристально себя рассматривать.
Не ограничиваясь этим, он протянул руку, а когда наткнулся на зеркало, то схватил его за край, приблизил к себе и продолжал смотреть (рис. 7.1В).
Рис. 7.1. Реакция на зеркало у детеныша шимпанзе и ребенка (из работы Н. Н. Ладыгиной-Коте).
Когда Надежда Николаевна передвинула зеркало, он пытался вырвать его из рук (рис. 7.1Г), грызть край, старался заглянуть за него, заводил туда руку, нащупывая и пытаясь захватить того, кто там находится. Наткнувшись за зеркалом на руку человека, он попытался подтянуть ее к себе, а встретив сопротивление, впал в агрессию и стал колотить по стеклу сложенными пальцами. Впоследствии, когда зеркало попадалось Иони на глаза, он часто колотил по нему кулаками, впадал в гнев, а когда зеркало убирали, грозил ему вслед (рис. 7.1Д). Такая реакция так и не изменилась до самой гибели животного (его возраст не превышал к тому времени 4 лет).
Рис. 7.2. Подражание действиям человека (см. текст, рисунок Т. Никитиной).
Приблизительно так же реагировали на свое отражение и другие молодые обезьяны, например шимпанзе Гуа, которую американские психологи супруги Келлоги в течение почти года воспитывали вместе с ее ровесником — их собственным сыном Дональдом. Оба годовалых малыша совершенно не понимали, что существа перед ними — это они сами. Даиными более поздних работ, у ребенка способность узнавать себя в зеркале формируется далеко не сразу, проходя целый ряд стадий. у человекообразных обезьян она возникает только в возрасте в 2–2,5 года, а полностью проявляется к 4,5–5 годам (Povinelli et al., 1994).
Способность узнавать себя в зеркале появляется у шимпанзе в том же возрасте, что и целенаправленное употребление орудий, например, в описанном нами опыте с «ловушкой» (см. 4.5.1.3; Bardetal., 1995).
В возрасте 4,5–5 лет многие шимпанзе, гориллы и орангутаны явно могут узнавать себя в зеркале, осознавать свое отличие от окружающих и пользоваться зеркалом во многом так, как это делают люди. Одновременно у них развивается и способность подражать ранее им незнакомым произвольным действиям. Например, шимпанзе Вики, воспитанная американскими психологами супругами Хейс, уже в двухлетнем возрасте, стоя перед зеркалом, мазала помадой губы (рис. 7.2), повторяя все движения, которые обычно делала ее хозяйка. Впоследствии она копировала более 55 поз и гримас, показанных ей на фотографиях, причем некоторые из них она никогда ранее не видела.
В начале XX века (почти одновременно с Н. Н. Ладыгиной-Коте) английский ученый Уильям Фернесс приручил орангутана. Он подробно изучал его психику и пытался научить говорить. В течение 6 месяцев Фернесс ежедневно дрессировал своего питомца, заставляя выговаривать слово «папа» (в то время еще не было известно, что голосовой аппарат обезьян совершенно не приспособлен для столь тонкой артикуляции). Один из приемов обучения состоял в том, что он становился перед зеркалом вместе с орангутаном и многократно повторял это слово. «Подопечный» смотрел в зеркало, следил за губами «учителя» и сравнивал их с движениями собственных губ, т. е. пользовался зеркалом вполне по назначению.
Рис. 7.3. Исследование реакции на зеркало у орангутана в условиях зоопарка. Фотография любезно предоставлена профессором Э. Тобак (Музей Естественной истории, Нью-Йорк, США).
«Говорящие» обезьяны (см гл. 6), впервые увидев себя в зеркале, радостно сигнализировали, что узнали себя. Шимпанзе Уошо (как до этого и Вики) хорошо узнавала себя на фотографиях, а других шимпанзе на фото именовала «черными тварями».
«Говорящая» обезьяна Люси очень любила наблюдать, как ее воспитатель делал вид, что проглатывает очки. Этот несложный фокус приводил Люси в восторг, она следила за человеком с неослабевающим интересом и, похоже, с полным пониманием. Насмотревшись на фокус, обезьяна схватила очки и перемахнула в другой угол комнаты. По дороге она прихватила небольшое зеркало и, зажав его в ногах, несколько раз повторила трюк с очками, пронося их мимо рта со стороны лица, невидимой в зеркале — в точности так, как это делал ее воспитатель. Следует отметить, что для Люси зеркало было привычным и понятным инструментом, которым она адекватно воспользовалась даже в такой необычной ситуации.
Описанные выше опыты и наблюдения проводились на обезьянах, живших в неволе или с очень раннего возраста, или с рождения. На фотографии (рис. 7.3) показана обстановка такого эксперимента. Еще более интересным было наблюдение за реакцией на собственное отражение человекообразных обезьян, живущих на воле.
По наблюдениям Д. Фосси (1990), девятилетний самец гориллы (Диджит), стащив зеркальце, сначала стал обнюхивать его, не прикасаясь пальцами. Когда он увидел свое отражение, губы вытянулись в трубочку, а из груди вырвался глубокий вздох. Некоторое время Диджит с неподдельным удовольствием разглядывал его, а потом протянул руку и стал искать за зеркалом «обезьяну». Ничего не обнаружив, он молча смотрел в него еще минут пять, а потом вздохнул и отодвинулся. Фосси была удивлена, с каким спокойствием Диджит отнесся к зеркалу и с каким неподдельным удовольствием в него смотрелся. Узнал ли он себя, так и осталось для наблюдателя неясным, но поскольку никаких посторонних запахов при этом не было, то, вероятно, понял, что другой гориллы тут нет.
Рис. 7.4. Подросток шимпанзе, выпущенный в природные условия в Псковской области, рассматривает свое отражение в воде (Фирсов, 1977).
По наблюдениям другого знатока поведения обезьян в природе — Дж. Гудолл (1992), многие дикие шимпанзе, в отличие от этой гориллы, при виде своего отражения в зеркале проявляют агрессию. Следует учесть, что возможность видеть свое отражение у живущих на воле обезьян крайне ограниченна. Известно, что шимпанзе не любят воды, а единственный способ видеть свое отражение в природных условиях — наклониться над водной поверхностью. Приведенная на рис. 7.4 фотография подростка шимпанзе, который играет на мелководье, зафиксировала довольно редкий эпизод.
Более убедительный ответ на вопрос, как относятся животные к своему отражению в зеркале, был получен в специально проведенных опытах.
В экспериментах Гордона Гэллопа (Gallop, 1970, 1994) нескольким шимпанзе под легким наркозом наносили небольшие пятнышки краски на одну из бровей и на противоположное ухо. Очнувшись после этой несложной процедуры, они прикасались к окрашенным участкам тела не чаще, чем к остальным, т. е. не ощущали физических последствий этой манипуляции. Однако, увидев себя в зеркале, шимпанзе начинали активно ощупывать окрашенные места. Следовательно, они понимали, что видят в зеркале себя, помнили как выглядели раньше, и осознавали, что в их облике произошли изменения.
Выводы Гэллопа нашли подтверждения в нескольких десятках работ, которые подробно освещены в книге М. То. мазелло и Дж. Колдя (Tomasello, Call, 1998). В них были получены многочисленные подтверждения того, что шимпанзе и другие антропоиды использовали зеркало по назначению: с его помощью чистили те части своего тела, которые другим путем увидеть невозможно. Наряду с этим были получены столь же убедительные свидетельства того, что низшие узконосые обезьяны такими способностями не обладают, т. е. не могут узнавать себя в зеркале.
Эксперименты объективно свидетельствуют, что антропоиды.
В могут рассматривать себя как некий самостоятельный объект, т. е. у них имеются элементы самоузнавания и они могут абстрагировать понятие собственного «Я».
7.3. Самоузнавание и использование другой информации, полученной с помощью зеркала, у животных других видов
Вполне очевидно, что для анализа предыстории человеческого сознания наиболее интересны наблюдения и результаты исследований, проведенных с человекообразными обезьянами. В то же время представлялось необходимым выяснить, есть ли элементы самоузнавания у животных других видов, прежде всего у тех, кто имеет сложный высокодифференцированный мозг.
Об этом известно гораздо меньше, однако, по-видимому, большинство из изученных видов (рыбы, морские львы, собаки, кошки, слоны и попугаи) оказались не способными узнавать себя в зеркале (Povinelly et al., 1993). Эти животные, как правило, реагируют на свое отражение как на другое животное. Характер их реакции зависит от ситуации и настроения. В одних случаях они нападают на отражение, принимая его за соперника. Так ведут себя многие виды рыб, которые сражаются с воображаемым конкурентом. Другие животные, наоборот, начинают «ухаживать» за отражением. Именно так поступают волнистые попугайчики, которым обычно помещают в клетку зеркальце: они воспринимают отражение как сородича, за которым можно ухаживать. Выпущенная полетать, такая птица проводит массу времени около зеркала и исправно «кормит» свое отражение.
Попугаи-жако характеризуются более высоким уровнем структурно-функциональной организации мозга, чем волнистые, а также развитой способностью к обобщению и адекватному использованию символов (см. гл. 6). И. Пепперберг и ее коллеги подробно исследовали обращение с зеркалом у двух молодых (7,5 и 11 месяцев) жако (Pepperberg et al., 1995).
Птицы были выращены в неволе и свое зеркальное отражение могли видеть, лишь когда в раковине в лаборатории собиралась вода. Как и многие другие животные, они реагировали на свое отражение в зеркале на другую особь и в ее поисках, например, заглядывали за зеркало. Зачастую они взъерошивали и чистили перья: такое поведение часто провоцируется простым присутствием другой особи. Неоднократно было замечено, как одна из птиц (самка Ало) располагалась перед зеркалом таким образом, чтобы одновременно видеть и свою ногу, и ее отражение. Вторая птица, самец Кьяро, обращался к зеркалу со словами
И. Пепперберг считает, что неоспоримых свидетельств наличия у жако самоузнавания эти эксперименты не дают, хотя отдельные наблюдения позволяют предположить существование у них такой способности. Более определенный ответ на этот принципиально важный вопрос, по-видимому, могли бы дать опыты на взрослых попугаях, но это пока дело будущего.
В этих экспериментах было четко показано, что попугаи-жако способны использовать информацию, полученную с помощью зеркала, для поиска приманки.
Такую приманку (обычно привлекательную игрушку, реже пищу) прятали в картонную коробку, открытую с одной стороны так, что она была видна только в зеркале. Оказалось, что увидев отражение в зеркале, обе птицы успешно обнаруживали и вытаскивали спрятанные предметы.
У птиц других отрядов способность к самоузнаванию практически не исследовали (это вопрос будущего), однако отдельные наблюдения позволяют ждать интересных результатов.
Например, Е. П. Виноградова (Санкт-Петербург) рассказывает, что выкормленный ею слеток серой вороны считал зеркало своим лучшим развлечением и активно его требовал. Однажды хозяйка прикрепила ему на голову несколько кусочков бумаги, пытаясь воспроизвести упомянутые выше опыты на шимпанзе. Птица не реагировала на эти помехи до тех пор, пока не увидела себя в зеркале, а после этого немедленно от них избавилась, окунув голову в тазик с водой.
Н. Н. Мешкова и Е. Ю. Федорович (1996) описывают случай, когда ворона долго крутилась около автомобиля и разглядывала свое отражение в зеркально блестящем диске колеса.
Разумеется, все это лишь редкие и случайные наблюдения, которые не позволяют делать никаких выводов, однако побуждают к проведению на врановых специальных экспериментов.
По-разному относятся к своему отражению в зеркале собаки. Большинство из них равнодушно проходит мимо, никак не реагируя на собственное отражение, возможно, потому, что видят его постоянно. Некоторые сначала облаивают «чужую собаку», но это быстро проходит, вероятно, потому что такой «враг» ничем не пахнет. Однако не исключено, что отдельные особи все же способны к самоузнаванию, хотя вопрос этот требует специальных исследований.
Известен случай, который дает основания предполагать, что по крайней мере некоторые собаки понимают, что видят в зеркале самих себя, и могут с его помощью оценивать собственную внешность. Бладхаунду. 4-летней Харли, зимой впервые надели свитер В ответ она подошла к зеркалу и уставилась на свое отражение. Следует отметить, что одно из облюбованных Харли кресел находилось как раз напротив этого зеркала и волей-неволей она подолгу могла смотреть на себя. Возможно, благодаря этому она знала, как выглядит обычно, и сообразила, как можно узнать, что же с ней произошло. А другой бладхаунд — Мэтти — обязательно заглядывала в зеркало, когда перед выставкой ей надевали на шею ее многочисленные награды. Однако в этом случае мы не знаем, сама ли она «додумалась» до этого, или хозяева когда-то спровоцировали это поведение.
Д. Повинелли исследовал способность узнавать себя в зеркале многих видов животных, в том числе у двух
Имеются данные, что свое отражение в зеркале узнают
Американские ученые (Menzel et al., 1985) предложили еще один интересный подход к изучению способности животных использовать информацию, полученную с помощью зеркала или другим опосредованным путем. Ранее было показано, что шимпанзе Шерман и Остин (см. гл. 6) хорошо умели пользоваться зеркалом, а увидев на телеэкране свое изображение, узнавали себя и бурно выражали свою радость. В нескольких вариантах опытов они продемонстрировали способность пользоваться информацией, полученной таким опосредованным путем. Например, глядя на монитор, они могли протянуть руку за ширму и взять кусочек лакомства, который они могли увидеть только на экране. Можно утверждать, что их действия направлялись мысленным представлением о том, что отражение в зеркале — это образ реального объекта. Оказалось, что шимпанзе успешно решали этот тест и тогда, когда изображение поворачивали относительно горизонтальной оси, а также после годичного перерыва.
Реакция многих исследованных видов животных на отражение в зеркале свидетельствует о том, что они воспринимают его как образ реально существующего объекта и могут использовать информацию, например, для отыскания спрятанных предметов или пищи.
Способность узнавать в зеркале собственное отражение достоверно доказана только у человекообразных обезьян.
7.4. Способность животных к оценке знаний и намерений других особей
Для решения вопроса о наличии у животных элементов самосознания необходимо выяснить, могут ли они оценивать, какими знаниями обладают другие особи, и понимать, каковы могут быть их ближайшие намерения. Поскольку достаточно наглядно продемонстрировано, что антропоиды способны узнавать себя в зеркале, можно предположить, что они обладают не только понятием собственного «Я», но могут также видеть себя как бы со стороны. Это позволяет поставить вопрос о наличии у них другой связанной с сознанием функции — способности оценивать поведение партнеров не только по их внешнему поведению, но в какой-то мере
О том, что обезьяны, присутствуя при решении задач сородичем или человеком, следят за действиями и могут мысленно «ставить» себя на их место, писал еще в 20-х годах В. Келер. Ему удалось увидеть, что шимпанзе не только наблюдают за действиями другой обезьяны, пытающейся громоздить ящики или соединять палки, чтобы достать банан (см. 4.5.2), но и сами, находясь в стороне, пытаются имитировать нужные действия. При этом они не повторяют движений другой обезьяны, не подражают ей, а самостоятельно «изображают» весь процесс, подсказывая и предвосхищая соответствующие операции.
Одним из первых способность животных «поставить себя на место сородича» экспериментально исследовал американский ученый Д. Примэк (Premack, Woodruff, 1978). В его опытах участвовали двое: «актер» (один из дрессировщиков) и уже известная самка шимпанзе Сара. Обезьяне показывали небольшие видеосюжеты, в которых знакомые ей люди пытались решать задачи, требовавшие элементарной сообразительности. Одному, например, нужно было выбраться из запертой на ключ комнаты или согреться, когда электрокамин стоял рядом, но не был включен в сеть. «Актер» не совершал необходимого действия, а только показывал, что нуждается в его выполнении. По окончании каждого сеанса обезьяне давали на выбор 2 фотографии, причем только на одной из них было показано решение задачи: например, изображен ключ или включенный в сеть обогреватель. Как правило, Сара выбирала нужную фотографию, т. е., наблюдая за действиями человека, она имела четкое представление, что ему нужно делать в данной ситуации, чтобы достичь цели.
Затем задачу усложнили и наряду с фотографиями правильных решений ей предлагали неправильные — сломанные ключи, камин с оборванными проводами и т. п. Из нескольких вариантов решения Сара, как правило, выбирала правильный. Более того, на выбор обезьяны влияло
Шимпанзе обладают не только способностью к самоузнаванию (о чем уже свидетельствовали приведенные выше опыты с зеркалом), но и более сложной когнитивной функцией, позволяющей поставить себя на место
Этот термин прочно вошел в западную литературу Его точный перевод — «теория ума» — не отражает сущности явления, и в русской литературе о поведении и психике животных термин пока не имеет точного эквивалента.
Его можно сопоставить с введенным О. К. Тихомировым (1984) термином «Я мышление> При анализе самосознания человека психологи обычно разделяют образный и понятииный компоненты — «образ Я> и «понятие Я», т. е. образное представление и отвлеченное понятие собственного «Я» Термин введенный Тихомировым подразумевает процесс
Экспериментальное исследование этой когнитивной функции в 90-е годы XX века предпринял Д. Повинелли Он получил ряд новых доказательств того, что животные, узнающие себя в зеркале, способны и к некоторым формам осознания мысленных состояний, намерений и знаний других особей Особенно убедительным представляется следующий эксперимент.
Шимпанзе обучен находить кусочек лакомства, спрятанный под одним из 4 непрозрачных стаканов (см рис 7 5) Перед опытом один из экспериментаторов демонстративно уходит из комнаты (А), а другой прячет (незаметно для обезьяны) приманку под одним из стаканов (Б), но под каким именно она не видит, так как они отгорожены ширмой Ушедший возвращается, и теперь оба человека пытаются подсказать ей, где лакомство, однако при этом указывают на разные стаканы (В) Поскольку обезьяна видела, что один из людей отсутствовал, и
Рис. 7.5. Существует ли у шимпанзе связь между тем, что они видят, и тем, что известно (или неизвестно) другим 9 Пояснения в тексте Фотография любезно предоставлена доктором Д Повинелли (Йельский университет, Коннектикут, США).
Шимпанзе способны мысленно оценить ту информацию, которой обладает (или не обладает) партнер.
Способность человекообразных обезьян
Результаты этих опытов свидетельствуют о коренных различиях человекообразных и низших узконосых обезьян по способности к самоузнаванию, оценке знаний других особей и умению «поставить себя на место сородича».
Это совпадает с ранее описанными данными о более примитивном характере их орудийной деятельности, неспособности планировать результаты своих действий, а также о более низком уровне их способности к обобщению.
Обнаружив столь принципиальные различия поведения человекообразных и мартышковых обезьян в тесте со «сменой ролей» и в других подобных тестах, Д. Повинелли обратился к поиску лежащих в их основе психофизиологических особенностей. Иными словами, почему способность к самоузнаванию присуща только человекообразным обезьянам и ее нет у других приматов? Эти различия нельзя, по-видимому, объяснить сложностью социальной структуры: у многих низших узконосых обезьян сообщества не менее сложны, чем у человекообразных обезьян. Невозможно объяснить такие различия и на основе видовых экологических особенностей, например, способов отыскания пищи определенного типа, поэтому Д. Повинелли (Povinelli, Cant, 1995) приходит к выводу, что причину различий надо искать в другом.
Согласно гипотезе Повинелли, появлению самоузнавания способствует
В свою очередь у макаков локомоция определяется достаточно ригидными и стереотипными движениями, которые близки по своим физиологическим механизмам к видоспецифическим фиксированным комплексам действий (ФКД; см. 2.11.2). У шимпанзе движения значительно сложнее и пластичнее, управление ими базируется на «произвольном» контроле. Появление у человекообразных обезьян произвольного контроля сложных движений и представлений о «схеме тела», высокое развитие сенсомоторной функции обеспечили прогрессивное развитие их психики — способностей к самоузнаванию и к пониманию наличия знаний и намерений у других особей.
Гипотеза Повинелли, несомненно, интересна, но нуждается в более убедительном подтверждении. По нашему мнению, произвольный контроль локомоции нельзя рассматривать в изоляции от других показателей усовершенствования всех двигательных, сенсорных и когнитивных способностей антропоидов, обусловленных прогрессивным усложнением строения и функций их мозга. Известно, что для антропоидов характерны также усиление тенденции к бипедии, совершенствование праксиса, усложнение структуры манипуляционной активности и т. д., которые также могут играть здесь определенную роль.
Закономерно возникает вопрос: существуют ли подобные способности у других млекопитающих, могут ли они подобно антропоидам, учитывать не только внешние проявления поведения других особей, но и их скрытые намерения? Данных, которые позволяли бы точно ответить на этот вопрос, до сих пор практически нет. Не исключено, что какие-то формы такой способности (пусть и совсем элементарные) могут существовать и у более примитивных животных, чем антропоиды. Во всяком случае, такую возможность допускал Л. В. Крушинский (1968). На основе своих наблюдений за медведями в новгородских лесах он пришел к выводу, что при встрече с человеком эти звери строят стратегию отступления, как бы учитывая возможные ответные шаги человека.
Когда медведь встретился с Леонидом Викторовичем почти на гребне лесного бугра, он убежал не назад за этот бугор (откуда он не смог бы видеть действий человека), а стал отступать таким образом, чтобы иметь возможность видеть маневры «противника», т. е. держать его в поле зрения максимально долгое время. Медведь прибегнул к этой тактике несмотря на то, что траектория, по которой он уходил от человека, не была кратчайшей. Анализируя этот случай, Л. В. Крушинский писал:
«Действуя таким образом, медведь, по-видимому, должен был
Это и другие наблюдения привели Крушинского к мысли, что столь высокоорганизованные хищные млекопитающие, как медведи, способны реагировать не только на непосредственные действия других животных и человека, но и оценивать их намерения, предполагая с их стороны возможные «контрдействия», которые в подобных ситуациях совершают сами медведи.
Разумеется, такие наблюдения отрывочны и могут показаться не очень убедительными. В то же время следует отметить, что Л. В. Крушинский обратил внимание на такие явления, описал их и, что самое главное,
В Способность узнавать свое отражение в зеркале, а также оценивать мысленные состояния и намерения других особей и «ставить» себя на их место формируется на «дочеловеческом» этапе эволюции. Эти способности обнаружены только у человекообразных обезьян, тогда как другие приматы ни одной из них не обладают. Узнавать себя шимпанзе начинают в том же возрасте (около 4 лет), когда у них созревают другие высшие когнитивные функции — целенаправленное применение орудий, формирование довербальных понятий и др. Вопрос о возможности самоузнавания высшими позвоночными других таксонов требует специального изучения.
7.5. «Социальные знания» и жизнь в сообществе
Умение оценивать знания и понимать намерения других особей отражает сложность организации психики человекообразных обезьян. Эту способность американские исследователи, следуя психологической терминологии, называют эмпатией. Она обнаруживается не только в экспериментах (см. выше), но и в естественных условиях, когда животному необходимо корректировать свое поведение не только в зависимости от действий партнеров, но и учитывая их намерения и необязательно явные тенденции в поведении.
Как известно, структура сообществ приматов, особенно человекообразных, весьма сложна и поддерживается благодаря разнообразным индивидуализированным контактам, как агрессивным, так и дружеским. Особенности «общественного устройства» у приматов разных видов представляют собой отдельную и очень обширную область этологии (см.: Гудолл, 1992; Резникова, 1998). Показано, что чем выше уровень развития когнитивных способностей вида, тем сложнее уровень организации сообществ. Л. В. Крушинский, оценивая роль рассудочной деятельности в эволюции общественных отношений у животных, пришел к выводу, что между ними, возможно, существовали «взаимостимулирующие отношения», которые привели к прогрессивно нарастающему ускорению развития обоих компонентов такой системы (по принципу положительной обратной связи). Уровень когнитивных способностей как фактор, влияющий на особенности жизни в группе, особенно очевиден при анализе социальных взаимодействий у антропоидов.
Приобретение «социальных знаний». Прямые наблюдения в природе свидетельствуют о важном значении для общественных отношений g группах шимпанзе и горилл
Описаны проявления способности антропоидов
Такие знания накапливаются у обезьян постепенно, начиная с самого рождения, как за счет непосредственного собственного опыта, так и за счет наблюдений за другими членами группы, за их взаимодействием между собой. В результате у обезьяны наряду с «мысленной картой» местности, где она обитает, постепенно складывается и мысленное представление о том, «кто есть кто» в ее сообществе, т. е. своего рода мысленная «социальная карта». Дж. Гудолл подчеркивает, что для формирования у животного представления о своем социальном статусе и его эффективного использования необходимо постоянно «обновлять» запас знаний, внося коррективы в соответствии с изменениями, происходящими в группе. Наконец, необходимость правильно «поставить себя» в каждой новой социальной ситуации требует от обезьяны
Обобщая огромный объем наблюдений за социальными взаимодействиями шимпанзе, Дж. Гудолл пишет, что именно в этой сфере приспособительной деятельности от животного требуется хорошее понимание причинно-следственных связей, мобилизация всех самых сложных познавательных способностей для достижения успеха и поддержания своего социального положения. Так, при возрастных изменениях иерархического статуса самцов в ряде случаев борьба за доминирование напоминает «состязание характеров, в котором большое значение имеют… изобретательность и упорство». Гудолл приводит многочисленные примеры такого поведения.
Низкоранговая особь может достичь желаемой цели с помощью хитроумных обходных маневров, даже при явном неодобрении «старшего по рангу». Для этого необходимо уметь
Шимпанзе оценивают структуру сообщества отнюдь не только по результатам прямых агрессивных взаимодействий. По наблюдениям за контактами сородичей шимпанзе «вычисляет» полную картину отношений и собственное положение в иерархии: «если А гоняет Б, а Б угрожает С, следовательно, С ниже рангом, чем А». Такое поведение некоторые авторы называют «социальные знания»
Соотношение сил в группе шимпанзе постоянно меняется, и каждая особь должна всегда быть настороже, уметь оперативно оценивать особенности сиюминутной ситуации и мгновенно менять в соответствии с ними свое поведение, иначе может последовать суровое возмездие. Гудолл наблюдала, как молодой самец, уже начавший ухаживать за самкой, немедленно останавливался и принимал нейтральную позу, когда появлялся самец более высокого ранга.
Преднамеренное обучение детенышей — одна из важных сторон жизни антропоидов (и других высокоорганизованных животных, в том числе дельфинов). Описано, например, как горилла-мать следила за тем, что ест ее детеныш. Она кормилась, отвернувшись от детеныша, но в тот момент, когда он положил в рот лист несъедобного растения, прекратила есть, силой вынула у него изо рта разжеванную массу и отбросила ее достаточно далеко.
Многие виды обезьян кормятся пальмовыми орехами, предварительно разбивая их камнями. Навык раскалывания орехов молодые обезьяны вырабатывают постепенно. К. Бош (цит. по: Вуте, 1998) наблюдал, как шимпанзе-мать в присутствии детеныша раскалывала орехи нарочито медленно: «показывая», как это делается. При этом она специально следила за направлением взора детеныша и прекращала действия, когда тот отводил взгляд от ее рук. В обычных ситуациях («для себя») взрослые шимпанзе выполняют эти движения с такой скоростью, что за ними трудно уследить. в У человекообразной обезьяны
Эти примеры четко отличаются от достаточно известных проявлений инстинктивной заботы о потомстве у многих видов животных.
Мартышковые обезьяны не делают попыток «исправить» неверные действия малыша, так же как все низшие узконосые обезьяны не делают этого и при использовании орудий (см. 4.5.1).
Для того чтобы выяснить, могут ли мартышковые обезьяны понимать разницу между своими собственными представлениями и знаниями и представлениями других особей, Сифард и Чейни (Seyfarth, Cheney, 1980) провели специальные эксперименты.
Опыт состоял в следующем. Некоторым животным группы (это были макаки-резусы и японские макаки) предоставляли определенную информацию, которой другие не обладали. Например, мать имела возможность сообщить своему детенышу о местоположении пищи или о появлении хищника, о чем тот был не осведомлен. У низших обезьян мать никак не пытается воздействовать на поведение детеныша, и, по-видимому, эти животные не принимают в расчет намерения сородичей. Такая картина вполне соответствует поведению низших обезьян в природе. Например, детеныши восточноафриканских верветок, начиная издавать крики тревоги или реагируя на сигналы других, делают много ошибок. Так, детеныш по ошибке может подать сигнал, означающий появление орла, когда видит пролетающего над головой голубя. В других случаях ошибки могут быть очень опасными, если, например, услышав сигнал о появлении змеи, детеныш будет искать врага где-то вверху. В то же время Сифард и Чейни также не обнаружили доказательств того, что взрослые «исправляют» ошибки детенышей или как-то поощряют поведение тех, кто издает сигналы правильно и адекватно на них реагирует. Детеныши верветок учатся только посредством наблюдения и совершения собственных проб и ошибок. Это может быть связано с неспособностью взрослых особей оценить, что знания детенышей уступают их собственным.
Преднамеренное обучение детенышей, сходное с таковым у человекообразных обезьян, было описано и у дельфинов. Обычно самка дельфина-афалины обучает детенышей издавать «персональный свист»
Эти данные, по мнению Бирна (Вугпе, 1998), могут свиде-I тельствовать о способности дельфинов к оценке мысленных состояний, знаний и намерений других особей
Очевидно, что в основе такого поведения, в особенности умения использовать «социальную» информацию, лежит весьма высокий уровень когнитивной деятельности. Для осуществления подобных действий животные должны уметь постоянно сопоставлять новую и старую информацию, обобщать ее и даже, как предполагает Гудолл, хранить в некой отвлеченной форме.
Отвлеченное представление о структуре сообщества позволяет животному предвидеть поведение сородичей в будущем и планировать, в соответствии с этим, собственные действия.
«Социальное маневрирование и манипулирование». Дж. Гудолл описывает, в частности, такой достаточно типичный пример из жизни группы шимпанзе.
Рис. 7.6. Мать далеко и «приставать» к Б опасно (пояснения см. в тексте, рисунок Т Никитиной).
Рис. 7.7. Эпизод «социального маневрирования» (пояснения см в тексте, рисунок Т. Никитиной)
Детеныш высокоранговой самки (рис. 7.6А) обычно довольно рано начинает замечать, что когда его мать рядом, некоторые животные (Б) ведут себя совершенно иначе, чем когда она далеко. Поэтому ему не следует пытаться отобрать у такого сородича пищу, если мать далеко и не сможет его защитить Позже он обнаруживает, что особенно осторожным ему надо быть в присутствии В — союзника Б, потому что социальный ранг его матери может быть недостаточным для победы над Б+в Однако если рядом с матерью находится ее взрослый сын или дочь, то вместе они могут устрашить и эту пару Усвоив постепенно, каковы их отношения с другими обезьянами, он замечает, как они меняются в зависимости от близости его самого и матери Так мало-помалу детеныш шимпанзе расширяет свои знания о «правилах поведения» в сообществе.
В результате накопления такой информации и непосредственного опыта детеныш в конце концов выучивается «правильно вести себя» в различных ситуациях и предвидеть возможное влияние поведения — его собственного и союзников на других животных. Например, если детеныш видит, что обезьяна В атакует Г, он понимает, что Г может повернуться и напасть на него самого (на рис. 7.7 это изображено как «мысленное представление» у А), т. е. переадресовать агрессию. Если А способен предвидеть такой поворот событий, то он может избежать нападения Г: не попадать под горячую руку. Более того, если А, наблюдая взаимодействия между В и Г, понял, что В старше по рангу, то он сообразит, что В — более выгодный для него союзник против Г, чем Г как союзник против В. Накапливая такой опыт, детеныш шимпанзе приобретает способность ловко лавировать в самых разных ситуациях.
Подобный тип отношений называют
Достоверно описаны ситуации, когда шимпанзе прибегают к некоторым уловкам, чтобы заставить сородича совершить нужное им действие или уклониться от нежелательного контакта или конфликта.
С помощью таких уловок обезьяны достигают успеха в разных ситуациях.
• мать может отвлечь капризного детеныша от опасного действия;
• зачинщик беспорядков переадресует гнев доминанта на ни в чем не повинного сородича, а сам избегает справедливого наказания;
• обезьяна может предупредить конфликт и даже драку, отвлекая внимание соперников с помощью только что придуманной инсценировки.
• обезьяна, знающая источник пищи, может увести от него сородичей и затем воспользоваться им в одиночку и т. п.
Из многих описанных Дж Гудолл случаев упомянем о поведении молодого самца по кличке Фиган, который регулярно прибегал к самым разнообразным формам обмана сородичей в разных ситуациях Особенно ярко проявились его способности, когда шимпанзе, приходивших в лагерь, стали регулярно подкармливать бананами с помощью особой кормушки. Чтобы открыть ее, нужно было отвинтить гайку и освободить рукоятку, тогда натяжение проволоки, фиксирующей крышку, ослабевало и кормушка открывалась. Беда была в том, что рукоятка была удалена от кормушки ' и открывшая ее обезьяна чаще всего не могла воспользоваться добычей, так как ее перехватывали «иждивенцы» — расположившиеся рядом с кормушкой взрослые самцы.
Из двух подростков, овладевших навыком открывания кормушки, только Фиган догадался, как обмануть «иждивенцев» Изображая полное безразличие, он потихоньку откручивал гайку, но делал вид, что не обращает на нее никакого внимания При этом он незаметно придерживал рукой или ногой рукоятку, чтобы крышка не открылась раньше времени Иногда он просиживал так более получаса, дожидаясь, пока разойдутся разочарованные конкуренты, и только тогда отпускал ручку и бежал за бананами Впоследствии он изобретал все новые приемы, чтобы отвлечь остальных обезьян от места, где наблюдатели подкармливали их бананами.
Такое поведение
Примеры того, как антропоиды прибегают к хитростям и обманам, столь многочисленны, что их следует считать не случайностью, а необходимым приемом, повседневным условием существования в сообществе. Именно так считают Р. Бирн и А. Уитен (Byrne, Whiten 1988), изучавшие проявления подобных способностей у шимпанзе *.
* Подобную методику часто применяют для изучения способности животных К совместным действиям при добывании пищи Фирсов использовал сходную установку, чтобы побудить шимпанзе к использованию орудий (см 4 5).
Для описания такого поведения, т. е. способности обезьяны пользоваться в своих
Макиавеллизмом они называют преднамеренное совершение действий, которые вводят в заблуждение «конкурентов» и ведут к получению «обманщиком» прямой выгоды для себя.
В это понятие входит и умение осуществлять разные формы «социального маневрирования»: скрывать свои намерения от окружающих, поддерживать «дружбу» с союзниками «против кого-либо», стремиться к примирению после конфликтов и т. п.
Р. Бирн, анализируя проявления
Характерно, что подобное «политиканство» постоянно прослеживается в социальном поведении шимпанзе, живущих в неволе хотя и на просторных, но все же ограниченных территориях. Здесь оно выражено в большей степени, чем у вольных сородичей. Предполагают, что относительная скученность создает большую напряженность социальных отношений и побуждает к приложению больших усилий для ее урегулирования.
Резюме
В настоящее время разработаны экспериментальные методы объективного изучения способности животных к самоузнаванию как наиболее элементарному (базовому) проявлению сознания.
Способность к самоузнаванию существует у человекообразных обезьян, есть первые данные, что она свойственна также дельфинам.
По способности к самоузнаванию человекообразные и низшие обезьяны различаются столь же четко, как и по способности к планированию своих действий и прогнозированию их результата.
Способность к самоузнаванию окончательно формируется у шимпанзе в том же возрасте, что и наиболее сложные формы овладения языками-посредниками, а также целенаправленные орудийные действия.
Все
1. В какой форме проявляются зачатки самосознания у животных и каким видам это свойственно?
2. Какие методы используются для выявления способности высших животных к оценке «знаний» и «намерений» других особей?
3. Как проявляется в социальном поведении антропоидов их способность к оценке «знаний» и «намерений» сородичей?
8. Сравнительная характеристика и морфофизиоаогические основы мышления животных
Сравнительная характеристика уровня развития элементарного мышления у животных разных таксономических групп. Некоторые показатели уровня развития мозга (относительные размеры его высших отделов, а также сложность нейронного строения и межнейронных связей), которые коррелируют со степенью развития элементарной рассудочной деятельности. Данные о дифференцированном влиянии разрушения одних и тех же структур на рассудочную деятельность и способность к обучению. Показано, что животным, обладающим хорошо развитым мозгом, доступны более сложные по логической структуре и более разнообразные задачи. Характеристики рассудочной деятельности наиболее продвинутых животных, степень их сходства с психикой человека и отличия от психики других животных. Обсуждение параллелизма в развитии рассудочной деятельности представителей разных классов.
Современное исследование любого аспекта поведения только тогда может считаться полноценным, если авторы рассматривают его развитие, механизмы, эволюцию и адаптивное значение, не ограничиваясь наблюдениями и описаниями. В предыдущих главах был рассмотрен практически весь диапазон форм элементарного мышления, доступных животным. Одни формы мышления достаточно примитивны и встречаются у низкоорганизованных животных, другие — более сложные и доступны видам, наиболее продвинутым в эволюционном развитии. Интересно рассмотреть, на каких этапах филогенеза они возникли, как происходило их усложнение в эволюционном ряду, а также выяснить, какие особенности строения мозга обеспечивают проявление того или иного уровня развития рассудочной деятельности.
8.1. «Сложное обучение» и уровень развития животных
В многочисленных исследованиях было неоднократно продемонстрировано, что скорость, прочность и «точность» формирования обычных УР (как классических, так и инструментальных) достаточно близки у позвоночных самого разного филогенетического уровня и практически не зависят от сложности строения мозга. Чтобы оценить степень развития более сложных когнитивных функций, необходимо было разработать другие процедуры обучения животных, которые требовали бы
В лаборатории Л. Г. Воронина в 60-е годы на животных разных таксономических групп (рыбах, пресмыкающихся, птицах и млекопитающих) исследовали скорость формирования «цепных» УР. Оказалось, что «цепи» УР легче вырабатываются и дольше сохраняются у животных с более развитым мозгом.
Методом многократных переделок УР уже в первых работах убедительно показано, что успешность обучения в целом зависит от уровня организации мозга животного, по крайней мере в пределах крупных таксономических групп (Биттерман, 1973; см. 3.3.1). При последовательных переделках сигнального значения стимула формирование каждого следующего УР у многих млекопитающих (в том числе у крыс) и некоторых видов птиц ускоряется, т. е. число ошибок при каждом новом сигнальном значении стимулов
Формирование установки на обучение (см. 3.3.3) также позволило выявить различия в способности к обучению у животных разных видов, коррелирующие с уровнем развития мозга (рис. 8.1).
Как видно из рисунка, у большинства видов приматов установка на обучение формируется после выработки 150–200 дифференцировок. Иными словами, в этот период доля правильных выборов уже при втором предъявлении новых стимулов (т. е. без дополнительного обучения) доходит до 90 %. Несколько больше таких серий обучения требуется беличьим саймири, еще больше — мармозеткам и кошкам. В отличие от них у крыс, кур, голубей и белок правильные ответы при втором предъявлении новой пары стимулов превышали случайный уровень не более чем на 10–15 % даже после выработки 1500 различных дифференцировок. Для крыс этот тест оказался менее доступным, чем многократная переделка УР.
Врановые птицы — американские сойки
Скорость формирования установки на обучение соответствует уровню организации мозга: низкая — у грызунов, выше — у хищных млекопитающих и очень высокая — у приматов в целом.
Рис. 8.1. Сравнительная характеристика способности животных разных видов к формированию установки на обучение.
По оси ординат — доля (%) правильных выборов при второй пробе, по оси абсцисс — предъявление задачи. По Hodos, Campbell, 1979, с дополнениями.
Вместе с тем внутри отряда приматов существуют определенные различия по этому показателю. Наиболее успешно формируют «установку» человекообразные обезьяны, причем шимпанзе опережают в этом отношении других антропоидов, включая горилл, и даже детей с низким коэффициентом интеллектуального развития. Это служит одной из важных иллюстраций широко распространенного представления об исключительной близости шимпанзе к человеку (Rumbaugh et al., 2000).
Наряду со столь очевидными различиями показателей решения, которые обнаружены у шимпанзе и грызунов, во многих случаях животные с заведомо по-разному организованным мозгом (например, кошки и макаки) демонстрируют сходные количественные показатели формирования установки. Однако различия между ними выявляются четко, если обратиться к «качественному» анализу, т. е. к сопоставлению
В таких же опытах
Межвидовые различия обнаруживаются и в скорости обучения
В При сравнении способностей животных разных видов к обучению простым условным рефлексам различий не обнаруживается. В тестах на способность к сложным формам обучения, когда животное должно уловить (понять)
8.2. Сравнительная характеристика уровня элементарной рассудочной деятельности (элементарного мышления) у животных разных таксономических групп
К началу 70-х годов XX в. сформировались экспериментальные подходы, позволившие проводить систематические сравнительные исследования рассудочной деятельности животных. Их особенностью было
Способность к экстраполяции. Наиболее полная сравнительная характеристика рассудочной деятельности была получена с помощью теста на способность к экстраполяции, а также некоторых других элементарных логических задач, разработанных Л. В. Крушинским (1986). Задача межвидовых сравнений облегчалась тем, что существовали методы точной количественной оценки результатов этих тестов (см. гл. 4).
В главе 4 (см. 4.6.2; рис. 4.12) были описаны основные результаты таких опытов, проведенных на представителях всех классов позвоночных: рыбах (4 вида), земноводных (3 вида), пресмыкающихся (5 видов), на 15 видах млекопитающих и 13 видах птиц (см.: Крушинский, 1986)'.
Как показывает рис. 4.12А, способность к экстраполяции имеется у многих животных. Совершенно не способными к решению этой задачи оказались только рыбы и земноводные. По данным Е. И. Очинской (1971), задачу на экстраполяцию успешно решали пресмыкающиеся — черепахи, кайманы и зеленые ящерицы. Отметим, что у черепах была выявлена также способность к
Наличие у пресмыкающихся способности к экстраполяции и обобщению свидетельствует, что зачатки этих форм элементарного мышления сформировались на относительно ранних этапах В филогенеза.
Наиболее полно способность к экстраполяции была охарактеризована у млекопитающих. В пределах этого класса можно наблюдать закономерное улучшение решения большинства тестов на рассудочную деятельность (см. ниже). Так, у грызунов в целом способность к экстраполяции крайне ограниченна, хищные млекопитающие прекрасно экстраполируют, у приматов эта способность не оценивалась, а у дельфинов она высоко развита.
Тесты на оперирование эмпирической размерностью фигур и Ревеша — Крушинского. Согласно взглядам Л. В. Крушинского, способность к экстраполяции направления движения пищевого или другого биологически значимого раздражителя отражает лишь одну из возможных сторон рассудочной деятельности животных. Другой тест — оперирование эмпирической размерностью фигур (см. 4.6.3) — основан на понимании геометрических свойств предметов. Его использование позволило углубить сравнительную характеристику рассудочной деятельности исследованных видов животных. Его могут решить животные лишь немногих видов (см. 4.6.3.1). Удивительно, что с ним не справляются хищные млекопитающие (за исключением медведей). Врановые птицы решали задачу на уровне, близком к обезьянам, медведям и дельфинам. Эти опыты, так же как и результаты исследования способности врановых птиц к обобщению и символизации, свидетельствуют о сходстве уровня рассудочной деятельности этих птиц и приматов.
Тест Ревеша — Крушинского был предназначен для выявления способности животных экстренно определять положение спрятанной приманки на основе информации о ее перемещении, полученной в ходе теста (см. 4.7). Все исследованные виды (крысы, врановые птицы, некоторые виды низших обезьян и человекообразные обезьяны) ведут себя практически одинаково — безошибочно решают задачу лишь в единичных случаях, однако все животные (и крысы, и приматы) способны оптимизировать поиск в пределах первого же теста.
Наряду со способностью к экстренной реорганизации независимых навыков (см. 4.8.1) тест Ревеша — Крушинского — это еще одна форма рассудочной деятельности, доступная низкоорганизеванным животным — крысам.
«Градации» элементарного мышления. Способность к экстраполяции направления движения пищевого раздражителя, исчезающего из поля зрения, обнаружена у представителей пресмыкающихся, млекопитающих и птиц, но выражена в разной степени. На этом основании Л. В. Крушинский выделил несколько градаций в степени ее развития: они различались не только по количественным показателям (от 65 % у некоторых линий мышей до 90 % у хищных млекопитающих), но и по способности решать различные усложненные варианты этой задачи. Появление данных о способности к решению задачи на оперирование эмпирической размерностью фигур позволило дать еще более подробную характеристику уровня развития элементарного мышления (см. ниже).
' Подробное изложение этих данных можно найти в работах Крушинского (1986), Зориной (1997), Очинской (1971), Полетаевой (1998), Флесса и др (1974; 1987).
Л. В. Крушинский высказал гипотезу, что усложнение рассудочной f деятельности животных в процессе эволюции происходило за счет увеличения числа «эмпирических законов», которыми могут оперировать животные, и, следовательно, росло число элементарных логических задач, которые они способны решать.
Исходя из этого, Крушинский полагал, что для сравнительной характеристики рассудочной деятельности животных необходимо использовать батареи разнообразных тестов.
Результаты исследования элементарного мышления животных, накопленные к настоящему времени, показали плодотворность и информативность такого подхода.
В главе 4 уже говорилось, что элементарное мышление животных исследуют с помощью двух групп тестов.
Первая из них оценивает способность животного к решению задачи в экстренно сложившейся обстановке, основанному на понимании логической структуры задачи (к таким задачам относится и тест на экстраполяцию). Л. В. Крушинский предложил набор (или батарею) тестов разной сложности для комплексной оценки элементарной рассудочной деятельности животных. Его работы позволили выявить градации таких способностей в ряду позвоночных.
Вторая группа тестов анализирует способности животных к обобщению и абстрагированию. Данные, полученные в экспериментах по обучению многократным переделкам дифференцировочных УР и «установке на обучение», также выявили градации этих способностей у животных разного уровня организации и показали сходный характер различий между разными таксономическими группами.
Млекопитающие. Грызуны характеризуются низшей градацией элементарного мышления. Способность к экстраполяции обнаружена у диких крыс-пасюков (Крушинский и др., 1975), некоторых генетических групп мышей (Полетаева, 1998; см. 9.2 и рис. 9.1) и бобров (Крушинская и др., 1980), причем в большинстве случаев правильные решения лишь незначительно превышают случайный уровень. Тем не менее эти решения
Следующая градация обнаружена у хищных млекопитающих. Все исследованные виды этого отряда (кошки, собаки, волки, лисы, песцы, медведи) успешно решают задачу на экстраполяцию. Это совпадает с их выраженной способностью к формированию установки на обучение (см. выше) и к достаточно высокому уровню обобщений (см. гл. 5). Вместе с тем важно подчеркнуть, что большинство хищных млекопитающих
Следующую градацию элементарного мышления можно обнаружить у более высокоорганизованных млекопитающих —
Птицы. В пределах класса птиц обнаружены сходные с млекопитающими градации способности к экстраполяции — от полного ее отсутствия у голубей до высокого ее развития (на уровне хищных млекопитающих и дельфинов) у врановых птиц. Хищные птицы
Эта характеристика становится более полной и убедительной в сопоставлении с данными по другим видам элементарного мышления у врановых и голубей.
Врановые птицы достигают уровня развития приматов по следующим видам когнитивных тестов:
* по скорости и стратегии образования установки на обучение;
* по способности к оперированию эмпирической размерностью фигур (см. 4.6.2);
* по возможности образования довербальных понятий (см. 5);
* по способности к употреблению символов (см. гл. 5 и 6).
В отличие от них голуби — значительно более примитивно организованные представители класса птиц. Они не способны к решению элементарных логических задач, к формированию установки на обучение и обладают крайне ограниченной способностью к допонятийному уровню обобщения. Тем не менее даже у них проявляется способность к решению наиболее простой задачи — к экстренной интеграции независимо образованных навыков (см. 4.8.1).
Способность к экстраполяции представляет собой относительно универсальную когнитивную функцию, в той или иной степени доступную широкому диапазону видов позвоночных, начиная с рептилий. Таким образом, самые первые и примитивные биологические предпосылки мышления человека возникли на ранних этапах филогенеза позвоночных.
Более высокоорганизованные животные способны к решению большего числа когнитивных тестов и справляются с более сложными логическими задачами. Это соответствует представлениям Л. В. Крушинского о том, что
8.3. Рассудочная деятельность и сложность строения мозга
Л. В. Крушинский и его сотрудники в 70-е годы XX века предприняли исследование морфофизиологических основ элементарной рассудочной деятельности животных. Эти работы включали сопоставление сложности строения высших ассоциативных структур переднего мозга птиц и млекопитающих с уровнем развития у них способности к рассудочной деятельности. На основе таких сопоставлений была изучена роль отдельных образований мозга в способности к экстраполяции и в способности к обучению. Ряд работ был специально посвящен сравнению способности животных к решению элементарных логических задач и к обучению.
В лаборатории Л. В. Крушинского изучалась связь сложности организации мозга и общего уровня эволюционного развития в классах птиц и млекопитающих. Нейроморфологические данные, накопленные к 70-м годам XX в., свидетельствовали, что индекс цефализации — относительный объем высших отделов мозга (новой коры у млекопитающих и гипер- и неостриатума у птиц) растет по мере повышения уровня эволюционного развития вида. Л. В. Крушинский (1986) показал, что как у птиц, так и у млекопитающих
А. Портман (Portmann, 1946) получил следующие величины индексов относительного объема полушарий птиц: голубь — 4,0; кури-ца — 3,27; утка
У млекопитающих также обнаруживается зависимость между уровнем развития элементарной рассудочной деятельности и относительным размером мозга. Л. В. Крушинский приводит следующие величины квадратического показателя головного мозга (по Я. Я. Рогинскому) для ряда видов млекопитающих: мышь — 0,0088; крыса — 0,0123; кролик — 0,0705; кошка — 0,195; собака — 0,464. Приматы и дельфины обладают наиболее дифференцированным и крупным мозгом среди млекопитающих.
В ряду млекопитающих происходит увеличение площади ассоциативных зон коры больших полушарий, в частности префронтальной (лобной) области. Это тоже является индикатором усложнения строения высших отделов мозга. Такая же закономерность описана и в отношении ассоциативных областей мозга птиц.
В этой связи следует отметить и еще одно немаловажное обстоятельство. Сравнительные исследования Л. В. Крушинского и его сотрудников (1986) показали, что нет прямой и непременной связи между степенью развития элементарной рассудочной деятельности и наличием новой коры. Мозг птиц построен по иному плану, чем мозг млекопитающих. В процессе филогенеза особого развития у них достигли новые, отсутствующие у млекопитающих, отделы стриатума
Наряду с увеличением относительных размеров высших отделов мозга, другим важным фактором, определяющим степень развития рассудочной деятельности, следует считать сложность нейронной организации мозга. В филогенетическом ряду позвоночных наблюдается увеличение разнообразия нейронного строения мозга, с прогрессирующим увеличением числа так называемых звездчатых нейронов (Богословская, Поляков, 1981), а также усложнение систем контактов между нейронами. Были выявлены особенности цитоархитектоники переднего мозга вороны и голубя (Крушинский и др., 1985; Воронов, 1996).
Особенно сложным строением отличаются нейроны гиперстриатума вороны. Они имеют более длинные и более извилистые дендриты, что определяет большее число контактов с другими клетками. Количество шипиков на дендритах также значительно больше, чем на дендритах нейронов мозга голубя.
Специфическая особенность строения мозга птиц — так называние мультинейронные комплексы (Богословская, Поляков, 1981). Это клеточные ассоциации сложной пространственной структуры, состоящие, по-видимому, из функционально связанных нервных элементов. Исследования Д. К. Обухова (Обухов, 1996; Андреева, Обухов, 1999) демонстрируют конкретное строение таких мультинейронных комплексов: у ворон они могут включать до 20 нейронов, у голубей до 10.
В двух классах позвоночных — млекопитающих и птиц — усложнение строения мозга в ряду видов коррелирует с повышением уровня развития их элементарного мышления. Это прослеживается и в увеличении числа тестов, которые более развитые животные способны Г решать, и в повышении уровня сложности этих тестов.
Анализ морфофизиологических основ рассудочной деятельности проводился в 60—70-е годы в лаборатории Л. В. Крушинского. В опытах Д. А. Флесса (1974) был начат
Более подробно была исследована роль различных структур мозга у животных, обладающих разной способностью к экстраполяции, в опытах с их повреждением (удалением, экстирпацией). Для анализа последствий разрушений участков мозга были выбраны представители разных классов, в пределах класса — разные виды, в пределах одного вида — разные группы животных. Часть экспериментов проводили на животных, взятых в опыт впервые, а часть — на животных, имевших до операции опыт решения задачи. Разрушались структуры, ответственные за высшие ассоциативные функции и имеющие тенденцию к развитию и усложнению в пределах своего класса: префронтальная кора млекопитающих, комплекс ядер переднего мозга птиц—
Адрианов, Молодкина и др., 1987; Очинская и др., 1988).
У
У
У
После разрушений участков мозга, имеющих высшие ассоциативные функции, все оперированные животные первое время решали задачу на экстраполяцию чисто случайно. Однако по мере его многократных повторений доля правильных обходов ширмы постепенно увеличивалась, т. е.
Если разрушение производили у животных
В опытах с птицами в качестве «контрольной» структуры, разрушение которой не должно было изменить уровня решения задачи на экстраполяцию, была выбрана старая кора (гиппокамп). В главе 3 (см. 3.4.3) было показано, что повреждение этой структуры у птиц и млекопитающих существенно ухудшает процесс запоминания. В наших опытах при разрушении гиппокампа поведение ворон (не имевших опыта решения задачи до операции) не изменялось ни в первом, ни при повторных предъявлениях теста на экстраполяцию. У кур (низкий уровень рассудочной деятельности) свойственное им постепенное формирование условно-рефлекторного навыка обхода ширмы после разрушения гиппокампа замедлялось, в то время как при разрушении гиперстриатума их поведение не изменялось.
Сходным образом разрушение хвостатого ядра не ухудшало решения задачи на экстраполяцию у кошек, но ослабило эту способность у крыс (выраженную слабо даже в норме).
У представителей млекопитающих, птиц и рептилий выявлены структуры мозга, в наибольшей степени связанные с осуществлением решения задачи на экстраполяцию. Их разрушение практически исключает проявление способности к экстраполяции при первом предъявлении задачи, ухудшает показатели животных, решавших задачу до операции, но не препятствует обучению при многократных предъявлениях. Различие влияний на рассудочную деятельность и на обучение сходным задачам позволяет говорить об участии в этих процессах разных нейрофизиологических механизмов. Сходство эффектов разрушений у представителей всех трех классов отражает общность процессов, лежащих в основе решения этого теста.
Сопоставление решения задачи на экстраполяцию и обучения сходному навыку проводилось и в других экспериментах.
8.4. Сопоставление способности к экстраполяции и к обучению. Роль экологических факторов в успешности решения тестов
Решение элементарных логических задач, даже при их повторных предъявлениях, представляет собой самостоятельный феномен, по своей природе отличный от других форм индивидуально-приспособительного поведения, в частности от инструментального обучения. Об этом свидетельствуют отличия в поведении животных в контрольных тестах, которые по своей структуре сходны с элементарной логической задачей, за исключением того, что в них
В поведении мышей при обучении навыку отыскания исчезнувшего корма и при решении теста на экстраполяцию также выявлены существенные различия (Крушинский и др., 1982). Была обнаружена группа мышей, носителей хромосомной мутации (подробнее см. 9.2 и рис. 9.1), у которых доля правильных решений теста на экстраполяцию достоверно превышала случайный уровень. Их поведение сравнивали с мышами линии СВА, которые решали тест на 50 %-м случайном уровне.
В тесте на экстраполяцию мышь может следить за направлением исчезновения корма, затем она идет либо в «правильном» направлении — в сторону исчезновения корма, к соответствующему боковому отверстию в стенке камеры, либо в противоположном направлении. Контрольный тест на обучение навыку обходить ширму с определенной стороны проводился в той же камере, что и исследование способности к экстраполяции (см. рис. 4.12); он был сходен с тестом на экстраполяцию по структуре. Мышь также начинала пить молоко из поилки, которую от нее закрывали (т. е. как и в основном тесте прекращали доступ к корму), однако никакого движения кормушки в поле зрения мыши не происходило. Подкрепление мышь находила всегда около одного из боковых отверстий. После этого она снова подходила к центральному отверстию и т. д., 10 раз за опытный день.
Уже после трех дней обучения у мышей обеих групп время подхода к поилке сократилось,
Мыши СВА
Мыши с мутацией (успешно усвоившие такой инструментальный навык в специальном тесте на обучение) к третьему опытному дню в тесте на экстраполяцию не стали бегать быстрее. По-видимому, каждое решение задачи у них осуществлялось не на основе выполнения выученного двигательного навыка, а
Прямые свидетельства различий в механизмах обучения и способности к решению элементарных логических задач были получены также в опытах с врановыми птицами. Оказалось, что молодые птицы неспособны к решению задачи на экстраполяцию и ОЭРФ, и такая способность обнаруживается у них не ранее, чем в годовалом возрасте. В то же время способность к обучению — выработке простых и дифференцировочных УР, их сложных «систем» и т. п. — обнаруживается уже у 3-месячных птенцов. Сроки «созревания» способности к элементарному мышлению у ворон совпадают с окончанием процесса миелинизации проводящих путей в переднем мозге и появлением наиболее крупных мультинейронных комплексов (Зорина, Крушинский, 1987; Воронов, 1996).
Особенности экологии вида и способность к элементарному мышлению. При анализе механизмов решения элементарных логических задач неизменно возникал вопрос о том, в какой мере их можно отнести за счет
Рассмотрим некоторые примеры. Одним из аргументов в пользу «экологической» трактовки данных о способности вида к экстраполяции было существование специализации в добыче пищи. В репертуар видоспецифического поведения ряда животных (особенно хищных) входит преследование движущейся добычи. Однако оказалось, что наличие или отсутствие хищнического поведения не является решающим фактором в определении уровня рассудочной деятельности животного. У рыб способности к экстраполяции не обнаружено, хотя тестированы были как хищные виды (цихлидовые), так и травоядные (караси). Напротив, столь же контрастные по способу питания черепахи —
Отметим, что у целого ряда видов существуют видоспецифические механизмы, позволяющие им экстраполировать направление (видимого) движения объектов. Такой механизм обеспечивает добычу пищи у амфибий, которые ловят насекомых на лету, однако не помогает им экстраполировать направление движения скрывшегося корма, так как для решения этой задачи необходимо
Наконец, задачу на экстраполяцию уверенно решают дельфины, хотя ни способ питания, ни весь образ жизни этих животных не создают для этого никаких специальных предпосылок (Флесс и др., 1987).
Особенности врожденного поведения, обеспечивающие кормовую специализацию животных данного вида, не могут быть решающим фактором, обеспечивающим наличие способности к экстраполяции.
Вторым важным подходом к анализу этой проблемы было сопоставление результатов решения тестов, отражающих существование разных форм рассудочной деятельности, помимо способности к экстраполяции. Хищные млекопитающие и врановые птицы успешно справляются с задачей на экстраполяцию, и можно было бы предположить, что общие для экологии этих животных особенности — хищничество и умение осваивать новые виды корма — играют в этом ведущую роль. В то же время и волки, и врановые птицы должны были бы в одинаковой степени быть знакомыми с таким свойством, как «эмпирическая размерность фигур» (наличие в окружающем их мире объемных и плоских предметов). Однако врановые птицы оказались способными решить тест на ОЭРФ (см. 4.6.2.3), тогда как волки его не решали. Таким образом, возможность сравнивать уровень развития элементарной рассудочной деятельности врановых и хищных млекопитающих не только по способности к экстраполяции, но и по другим тестам позволила более полно охарактеризовать этих животных. Наряду с этим она стала веским аргументом против «экологического» объяснения их высокой способности к экстраполяции в пользу другой точки зрения, которую сформулировал Л. В. Крушинский (см. 8. 3).
Уровень развития рассудочной деятельности находится в прямой связи с уровнем структурно-функционального развития мозга и определяет не только способность решать специальные тесты, но также и потенциальные возможности вида к адаптации в меняющейся среде обитания.
8.5. Элементарное мышление человекообразных и низших обезьян
Рассмотренные выше вопросы касались уровня элементарной рассудочной деятельности у животных разного уровня организации мозга — рыб, рептилий, птиц и млекопитающих. Наибольшего развития элементарное мышление достигает у приматов. Исследования психических функций этих животных многочисленны и разносторонни. В то же время и среди представителей этого отряда выделяются человекообразные обезьяны, весь спектр когнитивных способностей которых значительно выше, чем у всех остальных представителей животного мира, в том числе и других приматов.
В какой же степени уровень развития мышления человекообразных обезьян приближается к человеческому? Этот вопрос всегда был предметом ожесточенных дискуссий. Необходимость подчеркивать наличие качественных различий между психикой человека и его ближайших родственников, человекообразных обезьян, составляла один из краеугольных камней и зоопсихологии, и биологии в целом. Такие же соображения заставляли многих авторов отрицать глубокие различия между антропоидами и остальными приматами.
Рассмотренные нами исследования последней трети XX века внесли коррективы в эти представления. Они свидетельствуют о глубоких различиях когнитивных способностей высших и низших приматов, которые прослеживаются на всех изученных в настоящее время уровнях:
• все виды антропоидов достоверно отличаются от остальных видов приматов по скорости формирования установки на обучение (см. рис. 8.1);
• ни у одного вида низших узконосых обезьян не отмечено спонтанного использования орудий при содержании в лабораторных полусвободных условиях (Фирсов, 1973; 1993), тогда как антропоиды (и в природе, и в лаборатории) прибегают к ним постоянно и в самых разнообразных формах (Келер, 1925: Ладыгина-Коте, 1959; Гудолл, 1992 и др.);
• Для человекообразных обезьян характерно целенаправленное применение орудий в соответствии с «мысленным планом» и предвидение результата своих действий, тогда как у низших обезьян преобладает случайное манипулирование ими (Ладыгина-Коте, 1959; Фирсов, 1973; Visalberghi et al., 1995);
• шимпанзе превосходят низших узконосых обезьян по способности к формированию довербальных понятий (Фирсов, 1972;
1987; 1993; Малюкова и др., 1990; 1992), а также к усвоению и использованию символов (Savage — Rumbaugh, et al., 1993).
• шимпанзе способны к самоузнаванию, к оценке и пониманию знаний и намерений других особей (и человека) и могут использовать эти свойства в своих социальных контактах, в том числе для воздействия на других членов сообщества («социальное манипулирование» и «обман»). У низших обезьян все перечисленные элементы практически отсутствуют (Povinelli et al., 1991; 1992;1993; 1994; Tomasello, Call, 1998; см. гл. 7).
Таким образом, согласно современным данным, можно с уверенностью утверждать, что по всем наиболее сложным проявлениям высших когнитивных способностей антропоиды принципиально превосходят других приматов.
Столь же заметные изменения произошли в представлениях о том, в какой степени психика антропоидов приближается к человеческой. Способность шимпанзе к образованию довербальных понятий (гл. 5), а также к использованию символов (гл. 6) позволяет им усваивать простейшие языки для общения с человеком. Присущие знаковым системам, которые они усваивают, свойства перемещаемости и продуктивности (см. гл. 6) свидетельствуют о том, что
Они делают это не за счет «зазубривания» определенных команд, а подобно детям: усваивают значения слов независимо от контекста и связывают их не с конкретным предметом или действием, а с отвлеченным представлением о любых вариантах данного стимула или действия.
Все это свидетельствует о том, что даже высшая форма психики человека — речь, основанная на абстрактно-логическом мышлении имеет биологические предпосылки, и ее зачатки в определенной степени представлены у современных антропоидов.
Принципиальное значение имеет также тот факт, что и способность узнавать себя в зеркале, и «осмысленное» применение орудий и умение предвидеть действия партнера формируются у шимпанзе в возрасте 4–4,5 лет. Именно в этот период достигает своего максимального развития и овладение языками-посредниками.
Элементарное мышление антропоидов (как и более примитивных животных) — это системная функция мозга, которая определяется уровнем его организации и проявляется в разных функциональных сферах и при выполнении различных операций.
Самостоятельный интерес представляет характеристика высших когнитивных функций других высокоорганизованных позвоночных, прежде всего дельфинов. Их поведение и психика сделались объектом внимания психологов и физиологов гораздо позднее, чем большинства лабораторных животных, да и работа с ними требует особых материальных и технических затрат. Тем не менее полученные к настоящему времени данные уверенно позволяют оценить рассудочную деятельность этих животных как одну из самых высоких по степени развития. То же самое (хотя и в меньшей степени), можно сказать и о птицах — врановых и попугаях. Исследований на них пока очень мало, но можно уверенно утверждать, что по уровню развития рассудочной деятельности эти птицы существенно превосходит хищных млекопитающих и достигают уровня низших узконосых обезьян. Опыты И. Пепперберг по обучению попугая общению с человеком, а также использование воронами цифр для маркировки множеств в работе Зориной и Смирновой (2000) позволяют с известной осторожностью предположить, что по способности к простейшей символизации эти птицы приближаются к антропоидам.
Резюме
Рассмотренные вопросы, касающиеся универсальности способности животных к элементарной рассудочной деятельности, особенностей морфофизиологических механизмов этого явления, роли экологической специализации в проявлении способностей к элементарному мышлению, в конечном итоге приводят к заключению, что «…рассудочная
Это фундаментальное заключение, которое следует из огромного числа накопленных наукой фактов, сделал Л. В. Крушинский (1986).
1. Каковы наиболее универсальные проявления элементарной рассудочной деятельности, доступные даже относительно примитивно организованным животным?
2. Как исследуется соотношение между способностью к экстраполяции и обучением?
3. От каких особенностей структурно-функциональной организации мозга зависит уровень рассудочной деятельности вида?
4. Каковы самые сложные формы элементарной рассудочной деятельности и как они представлены у наиболее высокоорганизованных животных — человекообразных обезьян?
5. Какой степени сходства с мышлением человека может достигать мышление человекообразных обезьян?
9. Генетические исследования элементарной рассудочной деятельности и других когнитивных способностей животных
Индивидуальные вариации в проявлении когнитивных способностей животных имеют в качестве одной из причин генетические различия. Описание экспериментов, выявивших различия в способности к экстраполяции у диких и доместицированных форм двух видов животных — лисиц и крыс. Изложение методологии генетики поведения, а также результатов основных модельных экспериментов в генетических исследованиях способности к обучению.
9.1. Индивидуальные различия в проявлении когнитивных способностей животных
Оценивая когнитивные способности животных разных видов (в сравнении с человеком), ученые всегда сталкивались с тем обстоятельством, что их уровень неодинаков даже у представителей одного вида. Это выражалось в
Очевидно, что при исследовании элементарной рассудочной деятельности и когнитивных способностей в целом успешность выполнения теста может зависеть от степени страха, который испытывает животное в обстановке опыта, от его способности преодолеть страх и состояние стресса, от особенностей онтогенеза и, наконец, от генотипа особи.
Исследованием роли генетической изменчивости в формировании поведения занимается
Для понимания генетических основ когнитивных способностей и способности к обучению у животных необходимо прежде всего рассмотреть, как обнаруживается и в чем выражается изменчивость (вариативность) поведения.
Как известно, практически любые признаки организма могут варьировать, обнаруживая
Генетическая изменчивость особей популяции обнаруживается по огромному числу признаков, в число которых входят:
*
*
Отметим, что признак — это некая характеристика организма, которая выбирается в качестве «единицы» при генетических исследованиях. Величина количественных признаков определяется большим числом параллелей, а вклад каждой из них определить достаточно трудно.
Изменчивость признаков поведения, связанная с варьированием аллельного состава генотипа у особей данной популяции или группы, — основной предмет генетики поведения (Эрман, Парсонс, 1984).
Роль отдельных генов в контроле поведения анализируется с помощью
Помимо изменчивости в пределах характерной для данного генотипа нормы реакции и генетической изменчивости, связанной с гетерогенностью аллельного состава данной популяции, для признаков поведения характерна еще одна,
9.2. Роль генотипа в формировании способности к рассудочной деятельности
При тестировании элементарной рассудочной деятельности были получены многочисленные свидетельства вариативности (изменчивости) уровня выполнения этого теста среди животных одного вида. Л. В. Крушинский и его сотрудники в 60-70-е годы XX века проанализировали способность животных многих видов к экстраполяции направления движения стимула, т. е. их умение оперировать закономерностями перемещения предметов (см. гл. 4).
Сравнительные исследования поведения животных разных видов позволили сделать заключение, что уровень рассудочной деятельности тем выше, чем сложнее мозг животного (см. гл. 8). Однако для изучения физиолого-генетических основ этого феномена было необходимо исследовать животных одного вида, и наиболее подходящими объектами такой работы казались лабораторные грызуны, хорошо изученные как в физиологических, так и в генетических аспектах. Но именно у грызунов способность к экстраполяции оказалась развита слабо, в частности у лабораторных крыс и мышей она обнаруживалась далеко не всегда.
Экспериментальные данные о существовании генетических различий в способности животных к решению элементарных логических задач были получены в лаборатории Л. В. Крушинского при сравнении способности к экстраполяции у диких и доместицированных (одомашненных) форм лисицы и серой крысы. Дикие «красные» лисицы отличались высоким уровнем правильных решений теста на экстраполяцию. В то же время одомашненные черно-серебристые лисицы, в том числе и мутантные по цвету шерсти, разводившиеся в неволе в течение многих десятков поколений, выполняли этот тест с достоверно более низкими показателями, чем их дикие сородичи.
Рисунок 9.1А показывает успешность решения данного теста лисицами обеих групп. Доля правильных решений (на рисунке — высота столбиков) была выше у диких (1) лисиц, по сравнению с одомашненными (2–5). Очень высокий уровень правильных решений теста на экстраполяцию (даже при его первом предъявлении) наблюдали у прирученных диких крыс-пасюков, хотя эти показатели быстро снижались уже в течение первого опытного дня (т. е. при 6–8 предъявлениях теста). Лабораторные же крысы (линии Крушинского — Молодкиной /KM), Wag, August и их гибриды между собой) оказались вообще неспособными к решению задачи на экстраполяцию. Доля правильных решений у них не превышала 50 %-го уровня, т. е. они выбирали направление обхода ширмы чисто случайно, не руководствуясь информацией о направлении перемещения корма. В то же время гибриды первого поколения от скрещивания диких крыс с лабораторными обнаружили высокий уровень решения этой задачи, достоверно превышающий случайный уровень (Крушинский, 1986). Эти соотношения можно видеть на рис. 9.1 Б, где 1 и 2 — показатели диких крыс и их гибридов, 3–6 — соответственно крысы линий KM, WAG, Aug и гибридов KM x Aug.
И лабораторные крысы, и черно-серебристые лисицы, хотя и ведут свое происхождение от соответствующих диких форм, в течение многих поколений разведения в неволе не испытывали действия естественного отбора. Иными словами, в популяциях таких животных не было «выживания наиболее приспособленных», и соответственно доля животных, способных к быстрым адекватным реакциям на меняющиеся внешние условия, оказалась уменьшенной. Отражением этого можно считать снижение доли правильных решений теста на элементарную рассудочную деятельность.
Л. В. Крушинский (1986) предполагал, что в случае прекращения действия естественного отбора при размножении животных в неволе разрушаются сложные полигенные системы (или «коадаптированные комплексы»), которые в естественных условиях обеспечивают приспособление животных (через механизмы поведения) к изменяющимся и часто неблагоприятным внешним условиям.
Среди лабораторных мышей также были обнаружены генетические группы, у которых доля правильных решений задачи достоверно превышала случайную. Это были мыши с
Рис. 9.1. Успешность решения теста на экстраполяцию животными разных генетических групп (пояснения в тексте).
А — решение теста лисицами;
Б — крысами;
В — мышами.
Высота столбца соответствует доле правильных решений задачи при первом (ближний ряд) и многократных (дальний ряд) предъявлениях задачи.
Мыши с этой хромосомной мутацией, в течение более 20 лет разводившиеся в нашей лаборатории, устойчиво показывали отличный от случайного уровень решения задачи на экстраполяцию. Позднее мы исследовали этот вопрос с использованием уникальной генетической модели — мышей 4 инбредных линий, которые попарно различались либо по генотипу (СВА и C57BL/6J), либо по наличию или отсутствию этой транслокации (Полетаева, 1998).
Эксперименты с животными этих линий показали, что усиление способности к решению теста на экстраполяцию и другие особенности поведения, а также особенности обмена катехоламинов у этих мышей связаны именно с наличием в их кариотипе С данной робертсоновской транслокации.
Возможно, что причиной, лежащей в основе этих изменений в функции ЦНС при данной хромосомной перестройке, могут быть изменения в пространственном расположении генетического материала в интерфазном ядре, возникшие как следствие слияния хромосом.
Данные по различиям способности к экстраполяции у животных, отличающихся друг от друга генетически, естественно, не стоят особняком, а являются частью огромной «базы данных», созданной к сегодняшнему дню учеными, работающими в области
Генетические исследования затрагивают практически все формы поведения, в том числе и способность к обучению, и способность к формированию пространственных представлений. Для того чтобы вкратце познакомиться с этим материалом, необходимо сначала дать краткий очерк основных методологических особенностей данного направления. Далее приводятся примеры использования генетических методов для изучения когнитивных способностей животных, а также краткое описание исследований генетических закономерностей психических способностей человека.
9.3. Методы и объекты генетики поведения
Генетические подходы к исследованию поведения позволяют выяснить, с чем именно связана изменчивость интересующего нас признака, т. е. в какой степени она связана с изменчивостью генотипов данной группы животных, а в какой — с внешними по отношению к генотипу событиями, воздействующими на ЦНС, а следовательно, и на поведение. В таких исследованиях важную роль играет использование так называемых
Данные такого
Современный этап развития науки обогатил генетику поведения новыми методами. К их числу относятся:
* метод рекомбинантных инбредных линий (см.: Nesbitt, 1992);
* метод
* создание и исследование мозаичных и химерных животных (МакЛарен, 1979);
* создание трансгенных организмов и животных-нокаутов (см.: Jones, Mormede, 1999).
Нейрогенетика и генетика поведения сформировались в большой степени благодаря работам на
9.4. Изменчивость поведения и выявление роли генотипа
Традиционный вопрос, стоящий перед исследователями в области генетики поведения, — это выяснение роли генетических факторов в определении особенностей поведения.
Задачи генетики поведения:
*
*
* механизмы
*
Вторая и третья проблемы нередко выделяются в направление, получившее название
Общая задача генетики поведения — это интеграция целостного, «организменного» и молекулярно-биологического подходов для создания возможно более полной картины роли генотипа в формировании мозга, в развитии его отдельных реакций и поведения.
В настоящее время генетические исследования поведения и лежащих в его основе нейрофизиологических процессов проводятся по нескольким направлениям. Условно обычно выделяют два основных подхода:
*
*
Выбор признаков поведения. Несомненно, что для успеха генетического исследования, например способности животного к обучению, необходимо выбрать такой поведенческий признак, который представлял бы собой естественную «единицу» той или иной формы поведения. Как уже упоминалось, в генетических исследованиях поведения наиболее часто используют линии лабораторных грызунов — крыс и мышей. Очевидно, что для проведения исследований по генетике поведения мышей и крыс следует быть основательно знакомым с их поведением. Кроме того, важно помнить, что в основе генетического подхода лежит
Суть генетического подхода состоит в оценке размаха изменчивости признака у данного вида, популяции или группы особей и в анализе происхождения этой изменчивости.
В период накопления фактов в генетике поведения внимание исследователей привлекали разные признаки, характеризующие поведение: предрасположенность к судорогам, общая возбудимость, локомоторная активность, ориентировочно-исследовательские реакции, разные аспекты репродуктивного поведения, классические и инструментальные условные реакции, чувствительность к действию фармакологических веществ. Опыт, накопленный в первый период развития генетики поведения, можно суммировать следующим образом.
Для исследования роли генотипа в формировании поведения следует выбирать:
• признаки, которые легко поддаются количественному учету (например, четкие видоспецифические движения — чистка шерсти или «стойки» у грызунов);
• признаки, которые легко измерить по степени выраженности (например, уровень локомоторной активности, измеряемый по длине пройденного животным пути за фиксированное время опыта).
Многие признаки поведения сильно зависят от ряда внешних по отношению к нервной системе факторов, например от сезона года и/или от гормонального фона. Это вызывает дополнительные трудности при проведении генетических исследований.
G Какую именно генетическую модель необходимо выбрать для исследования поведения, определяется конкретными целями и спецификой изучаемого фенотипического признака.
Одним из важных вопросов генетики поведения является разработка теоретической концепции и методических приемов определения относительной роли генотипа и среды в формировании признаков поведения. Этот вопрос неотделим от проблемы формирования поведения в онтогенезе, т. е. проблемы
Накопление информации об особенностях развития поведения животных разных видов, успехи генетики поведения и генетики развития позволили сформулировать ряд общих правил, помогающих определять относительную роль того и другого компонента в формировании конкретного поведенческого акта. Эти правила учитывают особенности поведения данного вида животных, степени жесткости или, наоборот, пластичности основных компонентов его поведения, а также иногда прямую информацию о генетическом контроле его особенностей.
В 1965 г. К. Лоренц достаточно четко сформулировал некоторые общие положения о соотношении врожденных и приобретенных компонентов в эволюционных преобразованиях поведения животных. Этому вопросу посвящена актуальная и по сей день его книга «Эволюция и модификация поведения» (Lorenz, 1965).
Лоренц предположил, что совершенствование поведения в эволюции может идти двумя путями:
• «первый из них связан с повышением в репертуаре поведения «удельного веса»
• второй путь эволюционного совершенствования поведения — это усиление
По представлениям Лоренца, усиление специализации поведения, наличие жестких программ поведения, пусть даже предусматривающих широкий диапазон реакций, ограничивают возможности отдельных особей в приспособлении к новым условиям. Эволюция по второму пути создает широкие возможности для EJ индивидуального приспособления к разнообразным ситуациям.
В целом можно сказать, что эволюция поведения беспозвоночных (например, насекомых) шла в основном по пути усложнения и совершенствования фиксированных комплексов действий с жесткой внутренней программой, т. е. по первому пути. В то же время эволюция поведения позвоночных шла по пути повышения способности к быстрым адаптациям — за счет усовершенствования поискового поведения, т. е. за счет расширения возможностей осуществлять поведенческие акты по лабильной индивидуальной программе.
В начале 70-х годов XX в. эти представления развил Э. Майр, изложив их в терминах, более близких генетике. Он постулировал существование
Как известно, история биологии, и в частности биологии развития, прошла этап бурных дебатов, которые получили название
Суть эпигенетической концепции заключается в следующем. Формирование мозга в онтогенезе — нейрогенез — представляет собой непрерывный процесс, в ходе которого происходит взаимодействие сигналов, поступающих из внешней среды, и информации, считывающейся с генома.
' В первоначальной форме эта концепция рассматривает роль генотипа и средовых влияний в эмбриогенезе, однако в принципе применима и к рассмотрению природы разного типа влияний на формирование признаков поведения взрослого животного.
В схематической форме, однако, нельзя обойтись без условного деления процесса развития на стадии. При этом последовательные стадии развития можно представить в виде схем, в которые входит ряд компонентов. Успех каждой стадии развития обеспечивается наличием следующих компонентов: фенотипа
где
* экспрессируются в дифференцирующихся нейронах;
* в нейронах иных групп, нежели данная;
* в глиальных клетках;
* гены, обнаруживающие свое влияние на уровне целого организма (например, гены, кодирующие белки — предшественники гормонов).
Одна из важных причин появления разногласий в определении роли врожденного и приобретенного в поведении заключалась в том, что разные исследователи ставили перед собой разные цели. Целью одних работ было изучение внешних, средовых влияний на поведение, целью других — изучение наследственных задатков или нейрофизиологических механизмов реакций организмов. Очевидно, что разные цели исследований определяли и выбор видов животных и разные формы их поведения, а это, естественно, могло вести к появлению достаточно контрастных результатов. Одна из причин таких контрастов —
Согласно современным представлениям, все признаки организма (в том числе и признаки поведения) генетически детерминированы, однако степень их генетической обусловленности признаков (т. е. жесткость соответствующей генетической программы) варьирует в широких пределах. В одних случаях развитие признака полностью контролируется внутренней программой, и воздействия внешних факторов в процессе онтогенеза могут изменить его лишь в очень малой степени. В других случаях программа записана только «в общих чертах», и формирование признака подвержено разнообразным влияниям.
Степень изменчивости признака в пределах, задаваемых его генетической программой, и представляет собой, как уже говорилось выше, норму реакции.
Как и любые другие,
Каждый признак поведения формируется как результат взаимодействия этих двух источников изменчивости. В соответствии с это-логической схемой акта поведения (см. 2.11.2), можно сказать, что действия, относящиеся к поисковой фазе поведенческого акта, имеют широкую норму реакции, тогда как реакции типа завершающих актов — узкую.
Так, например, осуществляя поиск пищи, животное может обучиться доставать ее из ранее недоступных ему мест, используя для этого разнообразные движения. Однако умерщвление добычи оно может осуществить с помощью
Очевидно, что для четкого описания зависимости данного поведения от внешних влияний и/или от врожденных задатков необходимо искусственно выращивать животных в условиях, где внешняя стимуляция строго «дозируется».
9.5. Генетические исследования способности к обучению
Методы анализа. Как известно,
Как известно, влияние генов на фенотипические признаки может быть и непосредственным, и опосредованным, т. е. достаточно «далеким». Например, первичная структура белка есть непосредственное отражение последовательности нуклеотидов в данном гене. Другие признаки, более сильно отдаленные от первичного действия гена, как правило, испытывают влияние других генетических элементов. Рассмотрим случай, когда признак отдален от первичного эффекта гена несколькими «ярусами» биохимических процессов. Эти биохимические процессы, как правило, влияют не только на интересующий нас признак, но и на многие другие. В подобных случаях этот ген может обнаруживать влияние не только на исследуемый признак, но и на
Широко известны многочисленные плейотропные эффекты
К плейотропным эффектам следует отнести множественные отклонения от нормы в развитии мозга мышей
Драматическими примерами сложных плейотропных влияний одиночных генов может служить ряд других мутаций человека. Например, синдром Леш-Нихана связан с дефектом гена, ответственного за синтез гипоксантингуанинфосфорибозилтрансферазы. При этой мутации обнаруживаются тяжелые расстройства — от подагры и заболевания почек до аномального поведения. Дети, пораженные этим заболеванием, обладают сниженным интеллектом и склонны к «самоистязанию», повреждая себе (часто необратимо) губы и пальцы. Характерно, что они испытывают при этом страдания, поскольку болевая чувствительность у них не изменена (см.: Эрман, Парсонс, 1984; Фогель, Мотульский, 1990).
В то же время огромное большинство признаков поведения отличаются плавной, непрерывной (недискретной) изменчивостью, которая связана с работой значительного числа генов (так называемые
Специальные биометрические методы позволяют определить, какая доля общей изменчивости приходится соответственно на генетический и средовой компоненты, а также на эффекты взаимодействия генетических и средовых факторов (Мазер и Джинкс, 1985 и др.). В применении к генетическим исследованиям поведения примеры таких расчетов и пояснения к ним можно найти в руководстве Эрман и Парсонса (1984).
Селекция крыс на способность к обучению. Первый успешный эксперимент по селекции лабораторных крыс на способность к обучению был проведен американским исследователем Р. Трайоном (Тгуоп, 1940). Он проводил селекцию крыс на большую и меньшую успешность обучения животных в сложном лабиринте. Для получения каждого следующего поколения в скрещивание брали животных, давших самые высокие («умная» линия) и самые низкие («глупая» линия) показатели обучаемости. Критерием успешности обучения было число ошибок (заходов в тупиковые отсеки лабиринта). Созданные Трайоном линии крыс, действительно различающиеся по способности к ассоциативному обучению, продолжают существовать и исследоваться поныне. Это означает, что возникшие в результате селекции различия в поведении сохранились при последующем разведении этих животных без селекции в течение многих десятилетий (т. е. теперь уже в сотнях поколений).
Эксперимент Трайона показал, что
Более подробное исследование поведения и физиологии крыс трайоновских линий продемонстрировало практически все трудности, подстерегающие исследователя на этом пути. К числу таких трудностей относится проблема выбора признака для анализа. Число ошибочных реакций как показатель научения крыс в этом эксперименте нельзя назвать удачным, поскольку на путь животного в лабиринте и на заходы его в тупики, помимо способности к обучению, могут влиять и уровень страха, и тенденция бегать около стенок и т. п. Кроме того, селекция на высокие или низкие величины какого-либо признака поведения может сопровождаться появлением различий и по другим признакам. Эти «другие» признаки могут быть причинно связанными с исходно выбранным для селекции, но могут быть результатом и случайной их ассоциации. Сходные проблемы могут обнаружиться при любом селекционном эксперименте, связанном с физиологическими признаками и поведением, и при планировании подобных исследований следует учитывать возможность получения таких результатов.
При отборе животных из небольшой исходной выборки в две «противоположные» группы могут случайно попасть особи, контрастные не только по признаку, который был целью селекции, но и по другим, с ним не связанным. Причинную связь таких
Для этого существуют два основных приема:
• можно проанализировать, сохраняется ли такая корреляция у гибридов второго (и последующих) поколений между представителями селектированных линий; если ассоциация сохраняется достоверно, следовательно, оба признака причинно связаны друг с другом, т. е. имеют общие физиологические механизмы (или же соответствующие гены расположены на соседних участках хромосомы); если же ассоциация случайна, то у гибридов корреляции признаков не обнаружится;
• можно провести селекционный эксперимент повторно: если у обоих признаков имеется общая физиологическая основа, то у новых селектированных линий корреляция появится снова, и наоборот.
Для крыс трайоновских линий повторного селекционного эксперимента не проводилось ни автором, ни последующими исследователями, но количество коррелированных признаков, выявленных при подробном сравнении их поведения, оказалось очень велико.
Тестирование трайоновских крыс в лабиринтах других конструкций показало, что исходные межлинейные различия сохраняются не всегда. Например, крысы «умной» линии (ТМВ — Tryon maze bright) обучались существенно лучше и в исходном 17-тупиковом лабиринте, и в более простом, 14-тупиковом. В то же время при обучении в 16- и 6-тупиковых лабиринтах показатели этой линии были не выше, чем у «тупой» линии (TMD — Tryon maze dull). В дальнейшем было показано, что ТМВ лучше обучались реакции активного избегания в челночной камере, где, спасаясь от удара тока крысы должны были научиться по сигналу переходить из одного отделения камеры в другое (см. гл. 3).
В Более высокие показатели обучаемости крыс «умной» линии в тестах, где использовали
Однако на самом деле картина межлинейных различий оказалась более сложной. Так, не в пример обучению реакции избегания тока в
В настоящее время исследователи приходят к выводу, что крысы линии ТМВ лучше решают тесты, связанные с ориентацией в пространстве, тогда как TMD — успешнее обучаются при использовании зрительных раздражителей. Можно полагать, что отбор на разную степень успеха обучения в лабиринте способствовал формированию генотипов, у которых особенности процесса восприятия, параметры пространственной памяти, мотивация и другие фенотипические признаки оказались в одном случае оптимальными, а в другом — субоптимальными для выполнения данной реакции.
В начале 60-х годов на основе популяции крыс
Исследование крыс Римских линий с помощью практически всех существующих методик оценки поведения дало основание считать, что наиболее сильные межлинейные различия у
Эти линии тем не менее все же различаются и по способности к ассоциативному обучению как таковой.
В 70-е годы путем селекции были созданы еще две линии крыс — Сиракузские
В Возможно, что менее эффективное обучение реакции избегания, общее для линий
В соответствии с традиционно принятой в нейрофизиологии логикой исследований функциональную роль того или иного отдела мозга в формировании поведения обычно анализировали путем оценки последствий его разрушения, а также электрической и/или фармакологической стимуляции.
К началу 70-х годов считалось установленным, что одна из функций гиппокампа (рис. 9.2А) — мощное модулирующее влияние на процессы обучения, в частности торможение инструментальных условно-рефлекторных реакций (Виноградова, 1975).
Американские исследователи Р. и Ц. Ваймеры и Т. Родерик выполнили исследование, в котором анализировалась роль генотипических особенностей в обеспечении функции гиппокампа. Способность мышей генетически гетерогенной популяции к обучению пассивной реакции избегания удара электрического тока (при однократном его применении) авторы сопоставили с общим объемом гиппокампа, который определяли после окончания экспериментов. Для этого на срезах мозга каждого животного, прошедшего тест на обучение, определили площадь, занимаемую гиппокампом, а затем в соответствии с существующими морфометрическими правилами вычислили его суммарный объем (Wimer et al., 1971). в Сопоставление результатов опытов с поведением и данными подсчетов показало, что
Коэффициенты корреляции достоверно свидетельствовали о том, что размер гиппокампа (а возможно, какого-то из его отделов) определяет особенности выполнения выученного навыка (т. е. обучения как такового). Очень важно, что такая корреляция была получена в эксперименте без применения инвазивных методов, т. е.
Рис. 9.2. Роль размера проекционной зоны iipMF гиппокампа мышей в формировании пространственного навыка поиска пищи в радиальном лабиринте.
А — схема строения гиппокампа; толстой стрелкой показана зона окончания
Б — слева: схема последовательных посещений мышью лучей радиального лабиринта, содержащих приманку, с небольшим числом повторных, ошибочных заходов; справа: график, отражающий зависимость между числом ошибочных заходов на 5-й день теста у мышей ряда инбредных линий, различающихся (нижняя схема) по относительному размеру проекции
Е На большом и разнообразном экспериментальном материале было показано, что
Напомним, что выработка навыка избегания наказания в челночной камере — это типично лабораторный тест, аналога которому в естественном поведении грызунов практически нет. Его отрицательная корреляция с размером определенного отдела мозга еще ничего не говорит о функциональной значимости этой структуры. В этом отношении значительно больший интерес представляло исследование таких же корреляций в тестах, более адекватных экологической специализации крыс и мышей.
Для выяснения
Тесты на способность к обучению на основе формирования представления о пространстве и о своем положении в нем животные усваивают тем успешнее, чем больше у них размер проекции мшистых волокон гранулярных клеток на базальных дендритах пирамидных нейронов поля
Были проанализированы корреляции успешности выполнения «пространственных» и непространственных тестов с размерами и других областей гиппокампа (не только с
Итак, обнаруженные нейроморфологические и поведенческие корреляции дают основание утверждать, что данная область синаптических окончаний (соединяющая гиппокамп с областью энторинальной коры и с новой корой) играет принципиально важную, ключевую роль в осуществлении и/или модуляции процессов обучения разных типов.
Эти результаты были получены благодаря широкому использованию в лабораторных тестах генетически охарактеризованных животных, а также применению основных методов анализа генетических различий. В настоящее время исследование когнитивных способностей животных в этом тесте является одним из ведущих подходов в оценке особенностей поведения трансгенных животных и мышей-нокаутов. Детальнее с этими вопросами можно познакомиться в работе Lipp, Wolfer (1998), а также в материалах симпозиума
Использование трансгенных мышей при исследовании роли генотипа в процессах обучения и памяти. Методы генной инженерии и молекулярной биологии сделали возможным получение так называемых
Выделенный фрагмент ДН К вводится в геном на ранней стадии эмбрионального развития. С методами введения можно ознакомиться в специальных руководствах. В результате соответствующих манипуляций формируются так называемые химерные животные. Нередко оказывается, что гомозиготные по новой мутации особи (мыши с обоими мутантными аллеями) нежизнеспособны, и ее удается поддерживать только в гетерозиготном состоянии. Однако чаще всего популяция трансгенных мышей представляет собой смесь из животных дикого типа (гомозиготных по нормальному аллелю гена), гетерозиготных особей (имеющих один нормальный и один мутантный аллель) и гомозиготных по мутантному аллелю. Генотип каждого животного можно определить методом полимеразной цепной реакции или иным методом, подвергнув анализу небольшой кусочек ткани животного (обычно для этого отрезают кончик хвоста). Иногда гомозиготные носители нового гена внешне отличаются от нормальных собратьев.
Специальные молекулярно-биологические приемы должны обеспечить достаточно надежную экспрессию новой ДНК в геноме реципиента. В противном случае введенный в геном фрагмент может сохраняться в латентном виде, не обнаруживая себя.
Наиболее часто эксперименты по получению искусственных мутантов или животных-нокаутов проводятся с целью выяснить роль в организме того или иного белка, чаще всего обладающего ферментативной активностью, или белков-рецепторов клеточной поверхности. При работе с нейрогенами, т. е. с генами, которые экспрессируются («работают») в мозге, наибольшее число исследований проведено с выключением белков-рецепторов, избирательно связывающихся с нейромедиаторами и другими молекулами, влияющими на режим синаптической передачи в нейронах разных структур мозга. В настоящее время насчитывается много сотен мышей-нокаутов с инактивированными генами разных функциональных групп, и их число продолжает расти.
Рассмотрим результаты наиболее известных исследований, в которых оценивали влияние выключения нейрогенов на процессы обучения и памяти.
Экспериментальные схемы обучения, которые используются для тестирования запоминания у лабораторных мышей и крыс, позволяют с большой надежностью проанализировать влияние какого-либо фактора на краткосрочную или долгосрочную память и на процесс собственно усвоения навыка. В качестве «навыка» обычно выбирают выполнение животным простой двигательной реакции или, наоборот, невыполнение (торможение) такой реакции. В целях большей четкости эксперимент строят таким образом, чтобы усвоение навыка происходило при единственном сочетании условного и безусловного раздражителей. Достаточно популярны в таких исследованиях оценка синаптической проводимости гиппокампа электрофизиологическими методами и формирования пространственного навыка в тесте Морриса.
Долговременная посттетаническая потенциация. Важным модельным объектом для изучения процесса обучения стала так называемая долговременная
LTP — это одно из проявлений синаптической пластичности (т. е. изменения проводимости синапсов), происходящее в результате длительной бомбардировки слоя пирамидных нейронов гиппокампа (область
Подобные эксперименты в большинстве случаев проводятся на так называемых
• активация так называемых
•
• участие ряда ключевых ферментов (протеинкиназа- С, Са^-калмодулинзависимая протеинкиназаII —
Течение LTP в гиппокампе мышей-нокаутов с выключенными генами, кодирующими такие белки, сильно видоизменялось, однако она полностью не исчезала. Одновременно у этих мышей было нарушено формирование пространственного навыка в тесте g Морриса.
Гистологическое исследование гиппокампа показало у них нарушения в расположении гранулярных клеток зубчатой фасции, т. е. тех нейронов, аксоны которых образуют
I) Мыши с искусственной мутацией гена Со
К тому же у них при ритмическом электрическом раздражении гиппокампа с частотой 5—10 в сек (т. е. с частотой тета-ритма, как правило, присутствующего в суммарной электрической активности гиппокампа при исследовательском поведении) LTP не наступала, в то время как при высокочастотном раздражении она развивалась нормально. В норме у мышей могут развиваться обе формы LTP.
Можно проанализировать, как сказывается на процессе обучения противоположное генетическое изменение —
Сверхпродукция белка
Мутантные мыши
Известно, что формирование памяти — это ступенчатый процесс.
На животных разного филогенетического уровня показано, что в этом процессе выделяются по меньшей мере две четкие стадии:
* краткосрочная память, которая не страдает от введения веществ подавляющих синтез белка или образование молекул РНК;
* долгосрочная память — ее формирование может быть блокировано введением этих веществ.
Переход от краткосрочной памяти к долгосрочной —
Считается установленным, что долговременная память связана с
Одним из наиболее известных примеров таких изменений у мышей-нокаутов является выключение гена, кодирующего белок
Мыши-нокауты по гену
Кроме этого,
Совокупность данных, полученных на животных разного уровня развития, позволяет в настоящее время считать, что
9.6. Психогенетика человека и генетика поведения животных
В этом разделе пойдет речь о том, как исследуется роль генотипа в формировании высших психических функций человека. Этот краткий очерк необходим, по нашему мнению, для того, чтобы можно было увидеть — изменчивость даже интеллекта человека имеет генетический компонент. Как между интеллектом человека и мыслительными способностями животных существуют большие различия, но существуют и черты сходства, так и в анализе генетических основ интеллекта человека можно найти не только черты различия, но и черты сходства с закономерностями наследования поведения животных.
Трудности, успехи и достижения генетики поведения животных, особенно в части исследования способности к обучению и других сложных проявлений их психики, разделяла в течение всего XX в. и генетика поведения человека — направление, которое, по мнению авторитетных специалистов, правильнее называть
Индивидуальные особенности в проявлении любых признаков, в частности признаков, связанных с функцией ЦНС, складываются из двух главных компонентов: особенностей генотипа индивида и тех влияний, которые оказывают на него внешние условия на всех этапах онтогенеза.
О возможности передачи особенностей поведения от родителей к потомкам человеку было известно давно, причем не только из наблюдений за сельскохозяйственными и домашними животными, но и на основании «собственного опыта». Люди видели, что семейное сходство между родителями, детьми, внуками, братьями и другими родственниками обнаруживается не только во внешности и физических данных, но и в характере, темпераменте, привычках и пристрастиях, особенностях мимики и движений, в склонности к некоторым психическим заболеваниям.
Каково же соотношение влияний среды и наследственности в формировании личности человека? Что понимать под «влиянием средовых условий», когда речь идет о таких сложных психологических признаках, как, например, темперамент? Как можно изучать эти сложные феномены?
На эти и на ряд других вопросов отвечает возникшее в начале XX в. и активно развивающееся в последние десятилетия направление, получившее в русской литературе название «психогенетика». Это научное направление, которое, как и генетика поведения, развивается на базе психологии, психофизиологии, генетики и биологии развития 2.
2 В 1999 г. увидел свет учебник «Психогенетика» (Равич-Щербо и др., 1999), который представляет собой не только ценнейшее учебное пособие, но и современную сводку по генетическим исследованиям психики человека. В книге даны основные сведения по общей генетике, методам психогенетики, подходам к оценке относительной роли генотипа и среды в изменчивости психологических признаков, по генетической психофизиологии и возрастным аспектам психогенетики.
В наши задачи не входит изложение основ психогенетики, мы ограничимся лишь упоминанием ее нескольких положений, которые важны в связи с проблемой генетических основ когнитивной деятельности животных.
Использование методов анализа родословных, близнецового метода и др. генетических методов позволяет определять вклад генетического и средового компонентов в изменчивость признаков, связанных с характеристикой интеллекта человека. Практически не существует достаточно общепризнанного определения понятия «интеллект». К характеристикам интеллекта некоторые исследователи относят лишь такие «компоненты высшего уровня», как способность
Основной методический подход при исследовании роли генотипа и среды в формировании когнитивных функций человека традиционно состоит в предъявлении испытуемым (с разной степенью родства) наборов тестов (или «вопросников»). Однако любая тестовая оценка отражает только результат некоторого процесса решения данной задачи, а пути ее решения (и психологические механизмы) могут быть совсем разными.
Комплексные оценки когнитивных функций человека дают некий набор показателей, интерпретация которых в большой степени зависит от теоретической платформы исследователей. Часть ученых постулирует существование так называемого
Генетические влияния отвечают примерно за 50 % изменчивости признаков, характеризующих когнитивные способности (от 40 до 80 % различий между людьми по когнитивным способностям объясняется различиями, связанными с генетической изменчивостью).
Приведем только один пример из этой области (табл. 9.1), который показывает, что величины коэффициентов корреляции между показателями ряда психологических тестов на «интеллект» у людей с разной степенью родства сильно различаются. Горизонтальные линии в столбце «Коэффициенты корреляции» располагаются под величинами этих индексов, полученных в разных исследованиях. Таким образом, длина такой линии характеризует разброс данных, полученных в разных работах для определенной категории родственников. Как мы видим, степень сходства в показателях этих тестов наиболее высока у монозиготных близнецов даже в случаях, когда они росли врозь. Она значительно выше, чем у всех других групп родственников. Из этой сводки также видно, что общность (или различия) средовых условий (выросшие врозь — выросшие вместе) также влияет на эти показатели не только у близнецов, но и у сибсов.
9.1. Корреляции когнитивных характеристик испытуемых с разной степенью родства и сходства условий среды
(из Равич-Щербо и др., 1999; по Plomin, DeFries, 1980).
Одна из задач психогенетики (как и в генетике поведения) — анализ средовой «составляющей» общей изменчивости признаков, по которым судят о степени развития интеллекта человека. Показано, например, что общесемейная среда, т. е. параметры среды, одинаковые для членов каждой семьи, но варьирующие между семьями, объясняет 10–40 % межиндивидуальной изменчивости по признаку «общий интеллект».
Истинные психогенетические исследования показывают, в какой степени и с помощью каких психофизиологических механизмов генетически детерминированные особенности личности и/или интеллектуальные способности человека (например, особенности темперамента, степень развития специальных способностей, вербальный интеллект и др.) могут быть ответственными за стиль поведения и деятельности.
В то же время сложные аспекты личности, определяющие, например, этичность или неэтичность поступков, асоциальность поведения и т. п., нельзя напрямую связывать с генотипическими особенностями данного индивида и даже с генетически детерминированными особенностями влияния на него определенных средовых факторов. Эти аспекты личности связаны с существованием человека в социуме и с действием на него негенетических социальных факторов.
Генетические, а тем более расовые или этнические особенности психики и поведения разных групп людей должны трактоваться с особенно большой осторожностью.
Генетическая психофизиология как раздел психогенетики занимается проблемами генетической обусловленности особенностей реакций нервной системы человека на внешние (или внутренние) стимулы. Речь идет об исследовании большого числа показателей работы вегетативной нервной системы, ЭКГ, ЭЭГ, кожно-гальванической реакции и др.
Многие характеристики суммарной ЭЭГ, а также вызванных потенциалов в ответ на разные внешние раздражения показывают значительную долю генетической изменчивости. Показано, например, что амплитуда потенциала лобно-теменных отделов мозга, вызванного выполнением простого действия — нажатия пальцем на кнопку, имеет
Резюме
Приведенный материал демонстрирует, с одной стороны, методологическое сходство проблем, которые стоят перед психогенетикой человека и генетикой поведения животных, а с другой — показывает, что генетические основы интеллекта (когнитивных способностей) — будь это человек или экспериментальное животное — базируются на широкой биологической основе, изучение которой может дать человеку более глубокие знания о своей природе.
1. Какими методами исследуют роль генотипа в формировании поведения?
2. Существуют ли мутации, влияющие на строение и/или биохимию мозга?
3 С какими различиями в строении мозга могут быть связаны различия в ассоциативном обучении и обучении пространственным навыкам?
Заключение
Приведенный материал свидетельствует, что у животных действительно существуют зачатки мышления как самостоятельная форма когнитивной деятельности. Доказано, что они имеют особую природу и по своим механизмам отличаются от обучения сходным навыкам. Элементы мышления проявляются у животных в
На протяжении XX века представления о зачатках разума у животных постоянно обсуждались и пересматривались. К настоящему времени голоса скептиков звучат все слабее. Многообразие методических приемов позволило выявить тот простейший уровень рассудочной деятельности, который доступен и низкоорганизованным животным. Можно считать установленным, что даже они способны решать возникшие перед ними задачи только на базе ранее усвоенной сходной информации и специально сформированных навыков, тогда как у более «продвинутых» представителей млекопитающих и птиц диапазон ситуаций, в которых они могут проявлять эту способность, несоизмеримо более широк.
Способность рептилий, а также наиболее примитивных млекопитающих и птиц решать простейшие логические задачи имеет особое значение для проблемы возникновения мышления, т. к. свидетельствуют, что его зачатки возникли на достаточно ранних этапах эволюции.
Разнообразие форм рассудочной деятельности даже у животных, не относящихся к приматам, позволило Л. В. Крушинскому в 70-е годы высказать гипотезу о связи уровня развития вида и степени сложности свойственного ему элементарного мышления, которая предвосхитила современное развитие этого направления науки.
Одна из задач исследований элементарного мышления животных — показать, какой степени сходства достигают наиболее сложные когнитивные функции у человекообразных обезьян и человека, действительно ли между ними существует резкая грань и даже непроходимая пропасть. Современная наука заставляет ответить на этот последний вопрос отрицательно:
Высокий уровень интеллектуальных способностей, проявленный при решении разного рода лабораторных тестов, реализуется и в способности антропоидов к освоению и адекватному использованию языков-посредников. Это открытие подтвердило представления Л. А. Орбели, О. Келера, Р. Иеркса, Л. С. Выготского и других о том, что на ранних этапах эволюции существовали промежуточные стадии в развитии сигнальных систем животных.
Особенно сложны проявления мышления животных в социальной жизни шимпанзе. Л. В. Крушинский еще в 60-е годы сформулировал представление о том, что высокий уровень развития рассудочной деятельности определяет характер и сложность структуры сообществ. Новейшие данные убедительно подтвердили его правоту. Современные наблюдения сообществ шимпанзе и горилл в природе позволили обнаружить, что уровень их взаимодействий более сложен, чем это можно было предположить еще несколько десятилетий назад. В своих социальных контактах шимпанзе способны ориентироваться не только на уже состоявшиеся акты поведения сородичей, но также и на их скрытые намерения. Это подтверждает наличие у шимпанзе не только способности к самоузнаванию (еще недавно такая возможность даже не допускалась), но и умения поставить себя на место сородича, оценить его намерения (theory of mind). Шимпанзе умеют мысленно «проиграть» возможный ход событий, обмануть партнера или заставить его вести себя так, как им это нужно. Эта сфера их интеллектуальных способностей получила даже особое название — «макиавеллевский ум».
Тем не менее, сколь бы ни были высоки интеллектуальные способности антропоидов, речь может идти только о зачатках мышления, ведь никто из них не вышел за рамки возможностей 2,5-летнего ребенка.
Вместе с тем современный язык описания «социальных знаний» высших животных временами может заставить читателя заподозрить их авторов в возвращении к антропоморфизму, к простому приписыванию обезьянам человеческих свойств. Следует, однако, заметить, что логика построения современных экспериментов, а также разносторонние подходы к анализу их результатов учитывают такую «опасность»: они строятся на многократно проверенном материале объективных это-логических наблюдений и промоделированы в лабораторных условиях. Это позволяет утверждать, что обвинения в антропоморфизме неправомерны.
Примечательно, что в процессе развития исследований элементарного мышления происходило закономерное и необходимое изменение методологии. В середине XX века на смену простой констатации фактов и качественным описаниям пришел эксперимент с объективной регистрацией и скрупулезно точными количественными оценками всех параметров поведения. В конце XX века логика исследований вернула ученых к необходимости проводить не только количественный, но и качественный анализ наблюдаемых явлений, заставила учитывать результаты природных наблюдений. Большая заслуга в возвращении исследований элементарного мышления животных в «биологическое русло» принадлежит этологии, которая позволяет более надежно отличать истинно разумные акты от внешне «осмысленных» видоспецифических (инстинктивных) действий.
Представление о том, что животным доступны разумные поступки, распространено достаточно широко, и именно оно явилось одним из стимулов, побуждавших к исследованию этой проблемы. Однако при трактовке даже самых убедительных на первый взгляд свидетельств очевидцев надо помнить о необходимости применения «канона Ллойда Моргана», т. е. анализировать, не лежат ли в основе предположительно разумного акта какие-то более простые механизмы. Тем не менее пренебрегать даже случайными наблюдениями было бы неправильно. Такой точки зрения придерживается, в частности, Дж. Гудолл (1992), которая писала: «Умное» поведение шимпанзе области Гомбе наблюдали многократно. Но как часто приходится иметь дело с рассказами случайных очевидцев! И хотя я твердо уверена, что такие рассказы при их осторожной оценке могут дать многое для понимания сложного поведения шимпанзе, все равно испытываешь облегчение, когда та или иная когнитивная способность, якобы наблюдавшаяся в природных условиях, выявляется и в строгих лабораторных опытах».
В заключение приведем пример, когда наблюдение в природе послужило стимулом к проведению экспериментов и получило в них надежное и многократное подтверждение. Вот как Л. В. Крушинский (1968) описывает эпизод, благодаря которому он обратился к исследованию мышления животных: «Хорошо помню тот давний тихий августовский вечер, когда на берегу Волги мой пойнтер сделал стойку у края кустов. Подойдя к собаке, я увидел, что почти из-под самого ее носа быстро побежал под кустами молодой тетерев. Собака не бросилась за ним, а моментально, повернувшись на 180 градусов, обежала кусты и снова встала в стойку, почти над самым тетеревом. Поведение собаки носило строго направленный и наиболее целесообразный в данной ситуации характер: уловив направление бега тетерева, собака перехватила его. Это был случай, который вполне подходил под определение разумного акта поведения, проявившегося в экстраполяции траектории движения птицы». Это и подобные наблюдения послужили Л. В. Крушинскому основой для разработки методов изучения элементарной рассудочной деятельности животных, которые составили основу этой книги. Отмеченный им факт был не случаен — об этом свидетельствуют результаты тридцати лет исследований.
Итак, чтобы глубоко понять поведение животного, тем более столь сложную его функцию, как зачатки мышления, целесообразно анализировать его как можно в более широком диапазоне ситуаций. Тенденция будущих исследований элементарного мышления животных состоит во все более тщательном анализе природы предположительно разумных актов. В этой связи ученые вновь и вновь возвращаются к вопросу о соотношении наблюдения и эксперимента в исследованиях проблемы мышления животных и на каждом следующем этапе решают его на новом уровне.
Глоссарий
Аллель — одно из возможных структурных состояний гена. Аллели, распространенные в природных популяциях вида, называются аллелями дикого типа, а происходящие от них вследствие мутаций — мутантными аллелями.
Вторичные посредники — группа функционально связанных друг с другом внутриклеточных соединений, с помощью которых сигнал, полученный постсинаптической мембраной, передается внутри клетки системам, обеспечивающим ее реакцию. Система вторичных посредников участвует в передаче сигнала от постсинаптической мембраны к ядру и другим частям клетки.
Ген — функционально неделимая единица генетического материала, участок ДНК, кодирующих первичную структуру белка.
Генная инженерия — совокупность современных методических приемов, позволяющих манипулировать строением генома. Эти приемы основаны на особых свойствах нуклеиновых кислот (ДНК и РНК) и ферментов, участвующих в их синтезе. Совокупность методов генной инженерии позволяет осуществлять прицельное «вырезание» из генома определенных участков (генов), их последующее клонирование в микроорганизмах (с возможным видоизменением последовательности оснований), введение в геном другого (или того же самого) вида, а также оценку и регуляцию экспрессии этих генов. Эти методы обеспечивают искусственное целенаправленное изменение некоторых генов. В нейрогенетике исследовано значительное число таких искусственных мутантов, полученных у животных разного уровня развития (мышь, дрозофила, нематода
Генетический анализ, классический — исследование особенностей наследования признака при скрещивании генотипов, различающихся по аллелям того или иного гена. Анализ основан на установленных Менделем закономерностях — единообразии гибридов первого поколения, расщеплении признака у гибридов второго и последующего поколений, наличии групп сцепления и др.
Генотип — генетическая (наследственная) конституция организма, совокупность наследственных задатков данной клетки или организма, включая аллели генов и характер их расположения на хромосомах; это единая система генетических элементов, взаимодействующих на разных уровнях (аллельные и неаллельные взаимодействия). Генотип контролирует формирование фенотипа, т. е. совокупности всех признаков организма.
Гиппокамп — крупный отдел переднего мозга, который относится к так называемой старой коре и имеет слоистую структуру. В мозге птиц также имеется старая кора, но расположение этого отдела в мозге птиц отличается от его положения в мозге млекопитающих.
Изменчивость — свойство живых организмов существовать в различных формах. Фенотипическая изменчивость, т. е. реально обнаруживаемая «неодинаковость» определенных признаков или свойств организма, складывается, по существующим представлениям, из изменчивости наследственной (или генотипической) и средовой. Генотипическая изменчивость обусловлена различиями в наборе генов, т. е. в строении генотипа, тогда как средовая (или модификационная) изменчивость определяется реакцией данного организма на воздействия внешних условий. Пределы (или размах) средовой изменчивости определяются нормой реакции.
Иибредные линии — это специально выведенные группы родственных особей, гомозиготные по всем локусам генома, т. е. практически полностью идентичные друг другу по генотипу.
Инсайт (от англ.
Инстинкт (от лат.
Интеллект человека — общая познавательная способность, определяющая готовность к усвоению и использованию знаний и опыта, а также к разумному поведению в проблемных ситуациях.
Искусственный отбор — выбор человеком (в частности, в экспериментальных целях) особей животных и растений, обладающих интересующими его признаками, с целью скрещивания и последующего получения от них потомства. При выведении линий (животных или растений) для генетических исследований отбирают особей с высокими и низкими значениями интересующего признака, формируя генотипы, контрастные по нему.
Катехоламииергическая система мозга — система нейронов мозга, в которых синаптическая передача осуществляется катехоламинами (норадреналином и дофамином). Блокада катехоламинергических синапсов веществами-блокаторами вызывает в первую очередь нарушения мотивационной и эмоциональной сферы.
Когнитивные (от лат.
Кроссмодальный перенос — перенос реакции (например, дифференцировочного условного рефлекса), сформированной с применением стимулов одной модальности (т. е., например, зрительных, слуховых, тактильных), на стимулы другой, имеющие сходные характеристики (например, частоту применения, число стимулов и т. п.). В кроссмодальном переносе участвуют не только непосредственно органы чувств, но и соответствующие отделы центральной нервной системы, анализаторы, в которые входят сенсорные (релейные) ядра, например латеральное коленчатое тело, и соответствующие (проекционные) области коры.
Межсигнальные реакции — это выполнение животным условно-рефлектор-ной реакции не в ответ на условные сигналы, а в интервале между их применениями.
Мыши-нокауты — искусственные мутанты, у которых с помощью методов генной инженерии полностью выключена функция какого-либо гена. Исследование поведения и физиологических признаков таких животных может пролить свет на функции этого гена в развитии нервной системы, а также на компенсаторные возможности генома.
Мышление — это опосредованное и обобщенное отражение действительности, в основе которого лежит произвольное оперирование образами и которое дает знание о наиболее существенных свойствах, связях и отношениях объективного мира. Это наиболее сложная форма высшей нервной деятельности, по своим механизмам, функциям и приспособительному значению отличная от инстинктов и обучения. Мышление животных обычно называют элементарным или довербальным, подчеркивая, что это лишь зачатки тех сложнейших функций, которые составляют мышление человека. Именно поэтому Л. В. Крушинский для обозначения элементарного мышления животных предложил специальный термин «рассудочная деятельность».
Нейромедиаторы — низкомолекулярные соединения, участвующие в передаче возбуждения в синапсе. Описано несколько десятков нейромедиаторов, наиболее хорошо изученными являются ацетилхолин, глутамат, нор-адреналин, дофамин, гамма-аминомасляная кислота, глицин и др.
Норма реакции — пределы, в которых может изменяться фенотип без изменения генотипа. Предел нормы реакции, ее «размах» у особей какого-либо вида зависят и от уровня его организации, и от экологических особенностей, и от особенностей изучаемого признака, а также от генотипа особи.
Обобщение — мысленное объединение предметов и явлений по их общим и существенным признакам.
Обучение — процесс, состоящий в появлении адаптивных изменений индивидуального поведения в результате приобретения опыта (Thorpe, 1963).
«Открытое поле», тест, заключается в помещении животного (используется практически только для грызунов) на открытую освещенную площадку и в регистрации ряда параметров его поведения — уровня локомоторной и исследовательской активности, эмоциональной реактивности и т. п.
Память — способность к воспроизведению прошлого индивидуального опыта. Свойство нервной системы, выражающееся в способности длительно хранить и периодически использовать информацию о событиях внешнего мира и реакциях организма. Выделяют две формы памяти, соответствующие этапам ее формирования, —
Плейотропия — множественные проявления действия какого-либо гена, связанные с вовлечением в реализацию его эффекта значительного числа систем.
Поведение — один из важнейших способов активного приспособления животных к многообразию условий окружающей среды. Оно обеспечивает выживание и успешное воспроизведение как отдельной особи, так и вида в целом.
Полимеразная цепная реакция — ПЦР
Понятие — форма мышления, отражающая существенные свойства, связи и отношения предметов и явлений. Основная логическая функция понятия — выделение общего, которое достигается посредством отвлечения от всех особенностей отдельных предметов данного класса. В зависимости от типа абстракции и обобщения, лежащих в его основе, понятие может быть теоретическим или эмпирическим. Во втором случае оно фиксирует одинаковые предметы (или стимулы) в каждом отдельном классе предметов (или стимулов) на основе операции сравнения.
Посттетаническая иотеициация — изменение синаптических свойств нейронной сети в результате предварительного длительного (тетанического) раздражения, выражающееся в увеличении возбудимости мембран нейронов.
Представление — форма индивидуального чувственного отражения, благодаря которой возникают образы ранее воспринятого предмета или явления. В отличие от восприятия представление объединяет единичные объекты и связывает их с понятием. Существует в виде следов памяти, а также в виде образов, созданных воображением. У человека представления опосредованы словом, осмысленны и осознаны, у животных они также могут быть не только образными, но и отвлеченными, создавая основу для образования довербальных понятий.
Разум, разумное поведение — синоним терминов «мышление» и «рассудочная деятельность». Употребляется также и в более широком смысле как альтернатива инстинкта.
Рассудочная деятельность — синоним термина «мышление», предложенный Л. В. Крушинским и обозначающий «способность животного улавливать эмпирические законы, связывающие предметы и явления внешнего мира, и оперировать этими законами в новой для него ситуации для построения программы адаптивного поведенческого акта» (Крушинский, 1986). Крушинский считал это определение рабочим. Оно, с одной стороны, подчеркивает специфику определенных актов поведения животных, их отличие от инстинктов и обучения, а с другой — четко отграничивает от высших психических функций человека.
Робертсоновская транслокация — это слияние двух акроцентрических (т. е. палочковидных) хромосом с образованием одной мета- или субметацентрической. Цитогенетические исследования показывают, что заметного изменения количества генетического материала при этих транслокациях не происходит(хотя область околоцентромерного гетерохроматина, по некоторым данным, оказывается измененной).
Символизация — установление эквивалентности между нейтральными знаками (символами) и предметами, действиями, обобщениями разного уровня и понятиями.
Символы — это знаки, связанные с представлениями, которые в отличие от конкретных форм образного мышления отображают не только непосредственные стимулы, но и довербальные понятия, возникшие благодаря операциям обобщения и абстрагирования.
Стресс-реактивность — способность организма более или менее успешно формировать реакцию на действие сильных вредящих или угрожающих раздражителей. Эта реакция вовлекает гипоталамо-гипофиз-надпочечниковую систему и заключается в мобилизации защитных ресурсов организма.
Таксономическая группа (таксой) — группа организмов (животных и растений), связанных той или иной степенью родства, обособленных от других в той степени, чтобы им можно было присвоить ранг вида, рода, отряда, класса и т. п.
Факторы транскрипции — белковые молекулы, функция которых связываться с ДНК и регулировать экспрессию генов.
Фенотип — совокупность всех признаков и свойств особи, формирующихся в процессе взаимодействия ее генетической структуры (генотипа) и внешней по отношению к ней среды. Однозначного соответствия между генотипом и фенотипом нет: изменения генотипа не всегда сопровождаются изменением фенотипа, и наоборот, изменения фенотипа не обязательно связаны с изменением генотипа.
Холинолитические препараты — вещества, блокирующие синаптическую передачу в нейронах, где нейромедиатором является ацетилхолин. Ацетилхолинергические нейроны содержатся в большом количестве в переднем мозге, а их разрушение вызывает нарушения и обучения, и других когнитивных функций. Нарушения в холинергической системе нейронов мозга ответственны за нарушения памяти и интеллекта при болезни Альцгеймера.
Цепные условные рефлексы — условные рефлексы, выработанные таким образом, что выполнение одного из них является условием выполнения следующего. Например, двигательный инструментальный навык у крысы формируют таким образом, что после первого выученного (инструментального) движения, например прыжка на полку, следует переход животного в другую часть камеры и нажатие на рычаг, затем еще 1–2 сходных движения, после которых животное получает подкрепление.
Цефализация (или энцефализация) — увеличение отношения массы головного мозга к массе тела животного в сравнительном ряду позвоночных. Среди птиц степень цефализации наиболее высока у попугаев, врановых и сов, среди млекопитающих — у китообразных и приматов, особенно у человека.
Цитоархитектоника — клеточное строение нервной ткани, учитывающее разнообразие типов нейронов, связи между нейронами определенных групп и количественные соотношения нейронов разных типов.
Эвристические процессы — деятельность, приводящая к внезапному решению задачи.
Эмпатия — сочувствие, сопереживание, умение поставить себя на место другого, в том числе понимание знаний и намерений других индивидов.
Предметный указатель
Абстрагирование 38, 208, 222.
Амслен —
Антропоморфизм 20, 28, 59
Бихевиоризм 8, 28–29, 48, 76–77.
Большее множество, признак 171.
«Больше, чем», признак 158–159, 170–171, 175.
Видоспецифическое поведение 21, 51–55, 135–137, 194, 237, 273.
Вторая сигнальная система 47, 193, 194, 196.
Выбор по аналогии 190–191.
Выбор по образцу 36, 43, 102–103, 163–164, 168, 187, 203, 249.
Генетика поведения 9, 264 — вариации строения мозга 282–288.
Генетические модели 10.
Генетический анализ 265–266.
Гештальтпсихология 9.
Гиппокамп 98-100, 282–283, 297.
«Доставание банана», тест 156–157.
Дрессировка 20, 61, 78.
Естественные категории и понятия 175, 179-183.
Зоопсихология 8, 32.
Индивидуальное поведение (классификация) 10–11.
Инсайт 39, 40, 84, 104, 107.
Инстинкт 20–23, 33, 52–54, 135–137.
Интеллект 15, 56, 62–63, 290.
Использование орудий
Иеркиш
Канон Ллойда-Моргана 24, 56, 80, 105, 112, 137, 183.
Категоризация 181.
Кедровки 99-100.
Когнитивные процессы 29, 85 — тесты 113–116.
Коммуникация, вариабельность сигналов 195.
Конструктивная деятельность 122, 124.
Критерий обученности, условный 164
Кроссмодальный перенос 168.
Лабиринты 89–90, 95-98.
Мотивация 68,114–115.
Мысленный план 87. 89–91, 94–96, 97, 101, 128, 140.
Мышление 14 — довербальное 44-45 — животных 107–111, 134 — индуктивное 191 — классификация 117 — элементарное, градации 251— 257.
Навыки, независимо приобретенные — у крыс 156 — у птиц 158–159.
Новизна, признак 186.
Обобщение 38, 161–169, 184–189, 208, 222 — довербальные понятия 174 — допонятийный уровень 173 — категоризация 183 — опознание предметов по изображениям 172 — оценка уровня 166–169.
Образы 87, 90, 110.
Обучение 64, 135 — вторичное 162, 174 — генетические различия 278-288 — морфологические корреляции 282-283 — первичное 162.
Ориентация в пространстве 93.
Орудийная деятельность 11.
— капуцинов 126
— «тушение огня» 130-131 — человекообразных обезьян 118–127, 134 -135 — шимпанзе Тарас 122 — шимпанзе Лада и Нева 133.
Отсроченные реакции 87-88.
Память 88, 93–94, 96, 97, 99, 101, 161-162.
Перенос, тест 165–170, 201.
Поведение 52—55 — классификации 10 — поисковое 54–55.
Подсказки экспериментатора
Понятия 173 — довербальные 188 — о числе 188.
Предложение, понимание структуры 211–212.
Представления 86–87, 94, 102–103, 210 — константность свойств 88 — отвлеченные 261.
Привыкание 66–67.
Признаки — абсолютные 177
— «больше, чем» 158-159 — относительные 164, 168, 185— 186 — соответствие 164, 187, 189 — сходство 167, 187–188.
Психофизиология 9
Разум 23.
Рассудочная деятельность 139-141 — определение 108 — тесты 113–116.
Ревеша — Крушинского тест 251.
Рефлекторный принцип 25.
Речь 47, 193, 194, 261–262,
— возраст формирования 218 — понимание обезьянами 210, 216-218 — представительство в мозге 218.
Символизация 193—194 — тесты 197-198 — врановые птицы 201—204 — приматы 198-201.
Сложение, арифметическая операция 203–204.
Сознание 223—225 — знания о намерениях других особей 232 — признаки сознания у животных 225 — самоузнавание у человекообразных обезьян 225-229 — у других видов 230–232.
Соответствие, признак 164, 187, 189.
Социальное поведение 11.
Социальное сознание 110, 233—237 — обман 243 — преднамеренное обучение детенышей 240 — социальное маневрирование 241 — социальные «знания» 238–239.
Сравнительный подход 23, 48, 170.
Стимулы, режимы предъявления 163–164, 170.
Стратегии поиска 97, 248.
Сходство, признак 167, 187–188.
Счет 44 — мысленная операция 199—200.
Теория «стимул-реакция» 29–30.
Транзитивное заключение — 85, 203.
«Ужение» термитов — 135.
«Умный Ганс» 78–79
Условные рефлексы 25, 61 — дифференцировочные 80–86, 149–151,163-164, 185 — многократные переделки 83, 185, 247 — инструментальные 29, 67, 73-80 — метод последовательного приближения 77–78, 157 — самоформирование 77 — классические 67, 74 — угашение 69 — цепные 247.
Установка на обучение 83–84, 92, 138, 140, 247-249.
Физиология высшей нервной деятельности 8, 25–26, 40–43, 70-72.
Число, признак 177.
Эволюция психики 59–63.
Эвристические решения 162.
Экстраполяция — способность 115, 249 — методика 142-143 — повреждение мозга 255— 257 — сравнительные исследования 249-250 — экологические сопоставления 258–260.
Элементарная логическая задача 139-148.
Эмпирическая размерность, тест 145-148 — контрольный опыт 148-151 — способность 250.
Эмпирические законы 89, 139.
Этология 7, 9, 48, 51-55.
Языки — естественные 194-196 — человека 196 — свойства, по Хоккету 205.
Языки-посредники 48, 205-206 — амслен 48, 206-212 — йеркиш 48, 213 — категоризация 181 — обучение дельфинов 219 — попугая 220-221 — синтакисис 216 — свойства 209-212 — язык жестов (амслен) 47
Литература1
1
Психологический словарь/Ред. В. П. Зинченко, Б. Г. Мещеряков. М.: Педагогика-Пресс, 1996.
Хрестоматия по зоопсихологии и сравнительной психологии: Уч. пособие/Ред. Н. Н. Мешкова, Е. Ю. Федорович. М.: Росс. психол. об-во, 1997.
Этология человека на пороге 21 века: новые данные и старые проблемы/Ред. М. Л. Бутовская. М.: Старый Сад, 1999.
***
Gardner В. Т., Gardner R. A. Signs of intelligence in cross-fostered chimpanzees// Phil. Trans. R. Soc. 1985. London. B308. P. 159–176.
Hodos W., Campbell С. В. G. Scala Natura: Why there is no theory in comparative psychology?//Psychol. Rev. 1969. V. 76. P. 337–350.
Premack D Levels of causal understanding in chimpanzees and children//Cognition 1994 V 50 № 1–3 P 347-362.
Оглавление
Предисловие З
Глава 1
Введение 7
1 1 Основные направления науки о поведении животных 7
12 Классификации основных форм поведения 10
13 Мышление человека определения и классификация 14
Глава 2 История исследований мышления животных 19
2 1 Донаучный период накопления знаний Представления о «разуме» и «инстинкте» животных в трудах естествоиспытателей XVIII — первой половины XIX века 19
22 Ф Кювье об «уме» и инстинкте животных 21
2 3 Влияние эволюционного учения Ч Дарвина на исследования поведения Книга Дж Роменса «Канон Ллойда-Моргана» 22
2 4 Объективные методы изучения поведения и психики животных 25
241 И П Павлов — основоположник учения о высшей нервной деятельности 25
242 Сравнительная характеристика обучения животных методом «проб и ошибок» в исследованиях Торндайка 26
243 Бихевиоризм Работы Дж Уотсона, Б Скиннера и других 28
244 Когнитивные процессы у животных Исследования Э Толмена и И С Бериташвили 30
2 5 Сравнительная психология и зоопсихология в России 32
2 5 1 «Объективный биологический метод» изучения поведения животных в трудах В А Вагнера 32
252 Зоопсихочогические исследования Н Н Ладыгиной-Коте 34
253 Исследования поведения и психики приматов в СССР 38
2 6 Описание «инсайта» в опытах В Келера 38
2 7 Учение о высшей нервной деятельности и проблема мышления животных 40
2 8 Исследование зачатков мышления у животных-неприматов в первой половине XX века Работы Н Майера и О Келера 43
2 9 Исследования высших когнитивных функций животных во второй половине XX века 45
2 9 1 Концепция Л В Крушинского о физиолого-генетических основах рассудочной деятельности 46
292 «Говорящие» обезьяны и проблема происхождения второй сигнальной системы 47
210 Генетика поведения 49 2 11 Этология 51
2111 Основные направления этологических исследований 52
2112 Основные положения этологии 54
2113 Значение работ этологов для оценки рассудочной деятельности животных 56
2114 Исследование поведения человекообразных обезьян в естественной среде обитания 56 2 12 Основные гипотезы об эволюции психики 59
Глава 3. Индивидуально-приспособительная деятельность животных: ассоциативное обучение, когнитивные процессы………………………… 64
3.1. Обучение и пластичность………………………………………………………….. 64
3.2. Классификация форм индивидуально-приспособителъной деятельности…………………………………………………………………………….. 65
3.2.1. Неассоциативное обучение (привыкание)……………………………….66
3.2.2. Ассоциативное обучение…………………………………………………………67
3.3. Дифференцировочные условные рефлексы…………………………………. 80
3.3.1. Последовательные переделки сигнального значения дифференцировочных стимулов……………………………………………… 83
3.3.2. Формирование «установки на обучение»…………………………………83
3.3.3. Формирование «систем» дифференцировочных условных рефлексов……………………………………………………………….. 85
3.4. Когнитивные (познавательные) процессы………………………………….. 86
3.4.1. Общая характеристика……………………………………………………………86
3.4.2. Латентное обучение………………………………………………………………..92
3.4.3. Пространственное обучение. Современная теория «когнитивных карт»……………………………….. 93
3.4.4. Обучение и память животных в ситуациях, приближенных к естественным……………………………………………….98
3.4.5. Обучение «выбору по образцу»…………………………………………….. 102
3.4.6. Заучивание последовательностей стимулов…………………………… 104
3.4.7. Инсайт-обучение………………………………………………………………….. 104
Глава 4. Элементарное мышление или рассудочная деятельность животных: основные понятия и методы изучения………………………………………. 106
4.1. Определения понятия «мышление животных»………………………….. 106
4.2. Основные направления изучения элементов мышления у животных. Экспериментальные модели………………………………….. 111
4.3. Каким требованиям должны удовлетворять тесты на рассудочную деятельность……………………………………………………….. 113
4.4. Классификация тестов, применяемых для изучения рассудочной деятельности (мышления) животных…………………… 116
4.5. Способность к достижению приманки, находящейся в поле зрения………………………………………………………………………….. 118
4.5.1. Достижение приманки с помощью орудий…………………………… 118
4.5.2. Достижение приманки с помощью сооружения «пирамид» («вышек»)…………………………………………………………………………….. 128
4.5.3. Использование орудий в опыте с «тушением огня» и в других ситуациях……………………………………………………………. 130
4.5.4. Орудийные действия антропоидов в естественной среде обитания…………………………………………………………………….. 134
4.5.5. Орудийные действия у позвоночных, не относящихся к приматам…………………………………………………………………………. 135
4.6. Методики, разработанные Л. В. Крушинским для изучения способности животных к поиску приманки, исчезающей из поля зрения………………………………………………………………………… 138
4.6.1. Понятие об «эмпирических законах» и элементарной логической задаче………………………………………………………………… 139
4.6.2. Методика изучения способности животных к экстраполяции направления движения пищевого раздражителя, исчезающего из поля зрения («задача на экстраполяцию»)…………. 141
4.6.3. Методики изучения способности животных к оперированию пространственно-геометрическими признаками предметов…………………………………………………………………………….. 145
4.7. Изучение способности животных к экстренному определению алгоритма изменений положения скрытой приманки. Тест Ревеша — Крушинского…………………………………………………….. 152
4.8. Изучение способности к экстренной интеграции ранее образованных независимых навыков………………………………………… 155
4.8.1. Способность к «рассуждению» у крыс…………………………………… 156
4.8.2. Задача для голубей на «доставание банана……………………………. 156
4.8.3. Тест на экстренное сопоставление стимулов, ранее связанных с разным числом единиц подкрепления: выбор по признаку «больше, чем»……………………………………….. 158
Глава 5. Изучение способности животных к обобщению и абстрагированию………………………………………………………………….. 161
5.1. Общие сведения………………………………………………………………………. 161
5.2. Методические основы экспериментов по изучению операций обобщения и абстрагирования…………………………………………………. 163
5.3. Оценка уровня обобщения и абстрагирования в тестах на перенос……………………………………………………………………………….. 166
5.4. Уровни обобщения и абстрагирования, доступные животным…….. 173
5.5. Признаки, доступные обобщению животных……………………………. 175
5.5.1. Обобщение абсолютных признаков………………………………………. 177
5.5.2. Естественные стимулы и «естественные» (перцептивные) понятия……………………………………………………… 179
5.5.3. Обобщение относительных признаков «больше», «правее»……. 184
5.5.4. Обобщение относительных признаков «сходство» и «соответствие»……………………………………………………………………187
5.5.5. Выбор стимулов по аналогии……………………………………………….. 190
Глава 6.Способность животных к символизации……………………………………. 193
6.1. Языки животных и язык человека…………………………………………….. 194
6.2. Исследование способности животных к символизации (на примере «счета») с помощью лабораторных тестов…………….. 197
6.2.1. Способность к символизации у приматов……………………………… 198
6.2.2. Способность к символизации у птиц семейства врановых…….. 201
6.3. Обучение животных языкам-посредникам………………………………… 205
6.3.1. Какими свойствами должны обладать языки-посредники?……. 205
6.3.2. Обучение человекообразных обезьян амслену……………………….. 207
6.4. Понимают ли обезьяны смысл знаков и синтаксис языка-посредника?……………………………………………………………………………. 213
6.5. Обучение языкам-посредникам других животных……………………… 219
Глава 7. Изучение элементов сознания у животных………………………………… 223
7.1. Основные характеристики сознания…………………………………………. 223
7.2. Способность к самоузнаванию у человекообразных обезьян………. 225
7.3. Самоузнавание и использование другой информации, полученной с помощью зеркала, у животных других видов………. 230
7.4. Способность животных к оценке знаний и намерений других особей
7.5. «Социальные знания» и жизнь в сообществе…………………………….. 238
Глава 8. Сравнительная характеристика и морфофизиологические основы мышления животных…………………………………………………… 246
8.1. «Сложное обучение» и уровень развития животных…………………… 246
8.2. Сравнительная характеристика уровня элементарной рассудочной деятельности (элементарного мышления) у животных разных таксономических групп……………………………… 249
8.3. Рассудочная деятельность и сложность строения мозга……………… 253
8.3.1. «Цефализация», сложность нейронного строения и уровень рассудочной деятельности……………………………………………………. 253
8.3.2. Повреждение участков мозга и способность к экстраполяции…………………………………………………………………..255
8.4. Сопоставление способности к экстраполяции и к обучению. Роль экологических факторов в успешности решения тестов……… 257
8.5. Элементарное мышление человекообразных и низших обезьян…………………………………………………………………………………… 260
Глава 9. Генетические исследования элементарной рассудочной деятельности и других когнитивных способностей животных…….. 264
9.1. Индивидуальные различия в проявлении когнитивных способностей животных………………………………………………………….. 264
9.2. Роль генотипа в формировании способности к рассудочной деятельности…………………………………………………………………………… 266
9.3. Методы и объекты генетики поведения…………………………………… 269
9.4. Изменчивость поведения и выявление роли генотипа………………. 271
9.5. Генетические исследования способности к обучению………………. 277
9.6. Психогенетика человека и генетика поведения животных………… 288
Заключение…………………………………………………………………………………………. 294
Глоссарий……………………………………………………………………………………………. 297
Предметный указатель…………………………………………………………………………. 301
Литература………………………………………………………………………………………….. 304
Зоя Александровна Зорина Инга Игоревна Полетаева
Зоопсихология. Элементарное мышление животных.
Редактор Г. Г. Есакова Корректор А. А. Баринова Художник Д. А. Сенчагов Компьютерная верстка С. А. Артемьевой
ИД № 00287 от 14.10.99
Подписано к печати 24.12.2001. Формат 60x901/l6. Гарнитура Таймс. Печать офсетная. Усл. печ. л. 20. Тираж 5 000. Заказ № 5198
Издательство «Аспект Пресс» 111398 Москва, ул. Плеханова, д. 23, корп. 3. e-mail: info@aspectpress.ru
Тел. 309-11-66, 309-36-00
Отпечатано в полном соответствии с качеством предоставленных диапозитивов в ОАО «Можайский полиграфический комбинат» 143200, г. Можайск, ул. Мира, 93.