Deutsch’s pioneering and accessible book integrates recent advances in theoretical physics and computer science to explain and connect many topics at the leading edge of current research and thinking, such as quantum computers, and physics of time travel, and the ultimate fate of the universe.
PENGUIN BOOKS
THE FABRIC OF REALITY
Born in Haifa, Israel, David Deutsch was educated at Cambridge University and Oxford University. He is a member of the Quantum Computation and Cryptography Research Group at the Clarendon Laboratory, Oxford University. His papers on quantum computation laid the foundations for that field, and he is an authority on the theory of parallel universes.
Praise for
“Full of refreshingly oblique, provocative insights … Quantum mechanics, Deutsch insists, must be taken not just as a predictive tool, but as an explanation for how the world really works.”
“David Deutsch is a deeply knowledgeable professional physicist who has no truck with mystical false analogies … [he] has become the most eloquent spokesman of the Many Universes interpretation of quantum behavior, and [
“In the library of physics for laypeople, Deutsch’s book is unique. Correction: it is multiversal, existing in innumerable universes that Deutsch argues exist alongside the ‘real’ universe that people perceive. Explaining that, and persuading the reader of its scientific truth, makes this work unique … the confidence with which Deutsch presents his views, and the absence of condescension in his style, accesses nonscientists to his seemingly alien world(s).”
“David Deutsch is one of Britain’s most original thinkers. In this major work he confronts the deepest questions of existence head on, challenging traditional notions of reality with a new worldview that interweaves physics, biology, computing, and philosophy. I haven’t been so inspired since I read Douglas Hofstadter’s
“Deutsch provides a model of reality that is as provocative as it is complex. … An intellectually stimulating read for the science-literate and motivated layperson.… The author exhibits… a thorough knowledge of his subject matter. … In a field where scientific inquiry challenges not only our imagination but basic assumptions about our physical world, this volume provides the essential information needed for future debates.”
Dedicated to the memory of Karl Popper, Hugh Everett and Alan Turing, and to Richard Dawkins. This book takes their ideas seriously.
If there is a single motivation for the world-view set out in this book, it is that thanks largely to a succession of extraordinary scientific discoveries, we now possess some extremely deep theories about the structure of reality. If we are to understand the world on more than a superficial level, it must be through those theories and through reason, and not through our preconceptions, received opinion or even common sense. Our best theories are not only truer than common sense, they make far more sense than common sense does. We must take them seriously, not merely as pragmatic foundations for their respective fields but as explanations of the world. And I believe that we can achieve the greatest understanding if we consider them not singly but jointly, for they are inextricably related.
It may seem odd that this suggestion — that we should try to form a rational and coherent world-view on the basis of our best, most fundamental theories — should be at all novel or controversial. Yet in practice it is. One reason is that each of these theories has, when it is taken seriously, very counter-intuitive implications. Consequently, all sorts of attempts have been made to avoid facing those implications, by making
The development of the ideas in this book was greatly assisted by conversations with Bryce DeWitt, Artur Ekert, Michael Lockwood, Enrico Rodrigo, Dennis Sciama, Frank Tipler, John Wheeler and Kolya Wolf.
I am grateful to my friends and colleagues Ruth Chang, Artur Ekert, David Johnson-Davies, Michael Lockwood, Enrico Rodrigo and Kolya Wolf, to my mother Tikvah Deutsch, and to my editors Caroline Knight and Ravi Mirchandani (of Penguin Books) and John Woodruff, and especially to Sarah Lawrence, for their thorough, critical reading of earlier drafts of this book, and for suggesting many corrections and improvements. I am also grateful to those who have read and commented on parts of the manuscript, including Harvey Brown, Steve Graham, Rossella Lupaccini, Svein Olav Nyberg, Oliver and Harriet Strimpel, and especially Richard Dawkins and Frank Tipler.
1
The Theory of Everything
I remember being told, when I was a small child, that in ancient times it was still possible for a very learned person to know
It was not that I wanted to memorize all the facts that were listed in the world’s encyclopaedias: on the contrary, I hated memorizing facts. That is not the sense in which I expected it to be possible to know everything that was known. It would not have disappointed me to be told that more publications appear every day than anyone could read in a lifetime, or that there are 600,000 known species of beetle. I had no wish to track the fall of every sparrow. Nor did I imagine that an ancient scholar who supposedly knew everything that was known would have known everything of that sort. I had in mind a more discriminating idea of what should count as being known. By ‘known’, I meant
The idea that one person might understand everything that is understood may still seem fantastic, but it is distinctly less fantastic than the idea that one person could memorize every known fact. For example, no one could possibly memorize all known observational data on even so narrow a subject as the motions of the planets, but many astronomers
Being able to predict things or to describe them, however accurately, is not at all the same thing as understanding them. Predictions and descriptions in physics are often expressed as mathematical formulae. Suppose that I memorize the formula from which I could, if I had the time and the inclination, calculate any planetary position that has been recorded in the astronomical archives. What exactly have I gained, compared with memorizing those archives directly? The formula is easier to remember — but then, looking a number up in the archives may be even easier than calculating it from the formula. The real advantage of the formula is that it can be used in an infinity of cases beyond the archived data, for instance to predict the results of future observations. It may also yield the historical positions of the planets more accurately, because the archived data contain observational errors. Yet even though the formula summarizes infinitely more facts than the archives do, knowing it does not amount to understanding planetary motions. Facts cannot be understood just by being summarized in a formula, any more than by being listed on paper or committed to memory. They can be understood only by being explained. Fortunately, our best theories embody deep explanations as well as accurate predictions. For example, the general theory of relativity explains gravity in terms of a new, four-dimensional geometry of curved space and time. It explains precisely how this geometry affects and is affected by matter. That explanation is the entire content of the theory; predictions about planetary motions are merely some of the consequences that we can deduce from the explanation.
What makes the general theory of relativity so important is not that it can predict planetary motions a shade more accurately than Newton’s theory can, but that it reveals and explains previously unsuspected aspects of reality, such as the curvature of space and time. This is typical of scientific explanation. Scientific theories explain the objects and phenomena of our experience in terms of an underlying reality which we do not experience directly. But the ability of a theory to explain what we experience is not its most valuable attribute. Its most valuable attribute is that it explains the fabric of reality itself. As we shall see, one of the most valuable, significant and also useful attributes of human thought generally is its ability to reveal and explain the fabric of reality.
Yet some philosophers — and even some scientists — disparage the role of explanation in science. To them, the basic purpose of a scientific theory is not to explain anything, but to predict the outcomes of experiments: its entire content lies in its predictive formulae. They consider that any consistent explanation that a theory may give for its predictions is as good as any other — or as good as no explanation at all — so long as the predictions are true. This view is called
The important thing is to be able to make predictions about images on the astronomers’ photographic plates, frequencies of spectral lines, and so on, and it simply doesn’t matter whether we ascribe these predictions to the physical effects of gravitational fields on the motion of planets and photons [as in pre-Einsteinian physics] or to a curvature of space and time. (
Weinberg and the other instrumentalists are mistaken. What we ascribe the images on astronomers’ photographic plates to
Similarly, in scientific research the oracle would not provide us with any new theory. Not until we already had a theory, and had thought of an experiment that would test it, could we possibly ask the oracle what would happen if the theory were subjected to that test. Thus, the oracle would not be replacing theories at all: it would be replacing experiments. It would spare us the expense of running laboratories and particle accelerators. Instead of building prototype spaceships, and risking the lives of test pilots, we could do all the testing on the ground with pilots sitting in flight simulators whose behaviour was controlled by the predictions of the oracle.
The oracle would be very useful in many situations, but its usefulness would always depend on people’s ability to solve scientific problems in just the way they have to now, namely by devising explanatory theories. It would not even replace all experimentation, because its ability to predict the outcome of a particular experiment would in practice depend on how easy it was to describe the experiment accurately enough for the oracle to give a useful answer, compared with doing the experiment in reality. After all, the oracle would have to have some sort of ‘user interface’. Perhaps a description of the experiment would have to be entered into it, in some standard language. In that language, some experiments would be harder to specify than others. In practice, for many experiments the specification would be too complex to be entered. Thus the oracle would have the same general advantages and disadvantages as any other source of experimental data, and it would be useful only in cases where consulting it happened to be more convenient than using other sources. To put that another way: there already is one such oracle out there, namely the physical world. It tells us the result of any possible experiment if we ask it in the right language (i.e. if we do the experiment), though in some cases it is impractical for us to ‘enter a description of the experiment’ in the required form (i.e. to build and operate the apparatus). But it provides no explanations.
In a few applications, for instance weather forecasting, we may be almost as satisfied with a purely predictive oracle as with an explanatory theory. But even then, that would be strictly so only if the oracle’s weather forecast were complete and perfect. In practice, weather forecasts are incomplete and imperfect, and to make up for that they include explanations of how the forecasters arrived at their predictions. The explanations allow us to judge the reliability of a forecast and to deduce further predictions relevant to our own location and needs. For instance, it makes a difference to me whether today’s forecast that it will be windy tomorrow is based on an expectation of a nearby high-pressure area, or of a more distant hurricane. I would take more precautions in the latter case. Meteorologists themselves also need explanatory theories about weather so that they can guess what approximations it is safe to incorporate in their computer simulations of the weather, what additional observations would allow the forecast to be more accurate and more timely, and so on.
Thus the instrumentalist ideal epitomized by our imaginary oracle, namely a scientific theory stripped of its explanatory content, would be of strictly limited utility. Let us be thankful that real scientific theories do not resemble that ideal, and that scientists in reality do not work towards that ideal.
An extreme form of instrumentalism, called
To say that prediction is the purpose of a scientific theory is to confuse means with ends. It is like saying that the purpose of a spaceship is to burn fuel. In fact, burning fuel is only one of many things a spaceship has to do to accomplish its real purpose, which is to transport its payload from one point in space to another. Passing experimental tests is only one of many things a theory has to do to achieve the real purpose of science, which is to explain the world.
As I have said, explanations are inevitably framed partly in terms of things we do not observe directly: atoms and forces; the interiors of stars and the rotation of galaxies; the past and the future; the laws of nature. The deeper an explanation is, the more remote from immediate experience are the entities to which it must refer. But these entities are not fictional: on the contrary, they are part of the very fabric of reality.
Explanations often yield predictions, at least in principle. Indeed, if something is, in principle, predictable, then a sufficiently complete explanation must, in principle, make complete predictions (among other things) about it. But many intrinsically unpredictable things can also be explained and understood. For example, you cannot predict what numbers will come up on a fair (i.e. unbiased) roulette wheel. But if you understand what it is in the wheel’s design and operation that makes it fair, then you can explain why predicting the numbers is impossible. And again, merely knowing that the wheel is fair is not the same as understanding what makes it fair.
It is understanding, and not mere knowing (or describing or predicting), that I am discussing. Because understanding comes through explanatory theories, and because of the generality that such theories may have, the proliferation of recorded facts does not necessarily make it more difficult to understand everything that is understood. Nevertheless most people would say — and this is in effect what was being said to me on the occasion I recalled from my childhood — that it is not only recorded facts which have been increasing at an overwhelming rate, but also the number and complexity of the theories through which we understand the world. Consequently (they say), whether or not it was ever possible for one person to understand everything that was understood at the time, it is certainly not possible now, and it is becoming less and less possible as our knowledge grows. It might seem that every time a new explanation or technique is discovered that is relevant to a given subject, another theory must be added to the list that anyone wishing to understand that subject must learn; and that when the number of such theories in any one subject becomes too great, specializations develop. Physics, for example, has split into the sciences of astrophysics, thermodynamics, particle physics, quantum field theory, and many others. Each of these is based on a theoretical framework at least as rich as the whole of physics was a hundred years ago, and many are already fragmenting into sub-specializations. The more we discover, it seems, the further and more irrevocably we are propelled into the age of the specialist, and the more remote is that hypothetical ancient time when a single person’s understanding might have encompassed all that was understood.
Confronted with this vast and rapidly growing menu of the collected theories of the human race, one may be forgiven for doubting that an individual could so much as taste every dish in a lifetime, let alone, as might once have been possible, appreciate all known recipes. Yet explanation is a strange sort of food — a larger portion is not necessarily harder to swallow. A theory may be superseded by a new theory which explains more, and is more accurate, but is also easier to understand, in which case the old theory becomes redundant, and we gain more understanding while needing to learn less than before. That is what happened when Nicolaus Copernicus’s theory of the Earth travelling round the Sun superseded the complex Ptolemaic system which had placed the Earth at the centre of the universe. Or a new theory may be a simplification of an existing one, as when the Arabic (decimal) notation for numbers superseded Roman numerals. (The theory here is an implicit one. Each notation renders certain operations, statements and thoughts about numbers simpler than others, and hence it embodies a theory about which relationships between numbers are useful or interesting.) Or a new theory may be a unification of two old ones, giving us more understanding than using the old ones side by side, as happened when Michael Faraday and James Clerk Maxwell unified the theories of electricity and magnetism into a single theory of electromagnetism. More indirectly, better explanations in any subject tend to improve the techniques, concepts and language with which we are trying to understand other subjects, and so our knowledge as a whole, while increasing, can become structurally more amenable to being understood.
Admittedly, it often happens that even when old theories are thus subsumed into new ones, the old ones are not entirely forgotten. Even Roman numerals are still used today for some purposes. The cumbersome methods by which people once calculated that XIX times XVII equals CCCXXIII are never applied in earnest any more, but they are no doubt still known and understood somewhere — by historians of mathematics for instance. Does this mean that one cannot understand ‘everything that is understood’ without knowing Roman numerals and their arcane arithmetic? It does not. A modern mathematician who for some reason had never heard of Roman numerals would nevertheless already possess in full the understanding of their associated mathematics. By learning about Roman numerals, that mathematician would be acquiring no new understanding, only new facts — historical facts, and facts about the properties of certain arbitrarily defined symbols, rather than new knowledge about numbers themselves. It would be like a zoologist learning to translate the names of species into a foreign language, or an astrophysicist learning how different cultures group stars into constellations.
It is a separate issue whether knowing the arithmetic of Roman numerals might be necessary in the understanding of
In continually drawing a distinction between understanding and ‘mere’ knowing, I do not want to understate the importance of recorded, non-explanatory information. This is of course essential to everything from the reproduction of a micro-organism (which has such information in its DNA molecules) to the most abstract human thinking. So what distinguishes understanding from mere knowing? What is an explanation, as opposed to a mere statement of fact such as a correct description or prediction? In practice, we usually recognize the difference easily enough. We know when we do not understand something, even if we can accurately describe and predict it (for instance, the course of a known disease of unknown origin), and we know when an explanation helps us to understand it better. But it is hard to give a precise definition of ‘explanation’ or ‘understanding’. Roughly speaking, they are about ‘why’ rather than ‘what’; about the inner workings of things; about how things really are, not just how they appear to be; about what must be so, rather than what merely happens to be so; about laws of nature rather than rules of thumb. They are also about coherence, elegance and simplicity, as opposed to arbitrariness and complexity, though none of those things is easy to define either. But in any case, understanding is one of the higher functions of the human mind and brain, and a unique one. Many other physical systems, such as animals’ brains, computers and other machines, can assimilate facts and act upon them. But at present we know of nothing that is capable of understanding an explanation — or of wanting one in the first place — other than a human mind. Every discovery of a new explanation, and every act of grasping an existing explanation, depends on the uniquely human faculty of creative thought.
One can think of what happened to Roman numerals as a process of ‘demotion’ of an explanatory theory to a mere description of facts. Such demotions happen all the time as our knowledge grows. Originally, the Roman system of numerals did form part of the conceptual and theoretical framework through which the people who used them understood the world. But now the understanding that used to be obtained in that way is but a tiny facet of the far deeper understanding embodied in modern mathematical theories, and implicitly in modern notations.
This illustrates another attribute of understanding. It is possible to understand something without knowing that one understands it, or even without having specifically heard of it. This may sound paradoxical, but of course the whole point of deep, general explanations is that they cover unfamiliar situations as well as familiar ones. If you were a modern mathematician encountering Roman numerals for the first time, you might not instantly realize that you already understood them. You would first have to learn the facts about what they are, and then think about those facts in the light of your existing understanding of mathematics. But once you had done that, you would be able to say, in retrospect, ‘Yes, there is nothing new to me in the Roman system of numerals, beyond mere facts.’ And that is what it means to say that Roman numerals, in their explanatory role, are fully obsolete.
Similarly, when I say that I understand how the curvature of space and time affects the motions of planets, even in other solar systems I may never have heard of, I am not claiming that I can call to mind, without further thought, the explanation of every detail of the loops and wobbles of any planetary orbit. What I mean is that I understand the theory that contains all those explanations, and that I could therefore produce any of them in due course, given some facts about a particular planet. Having done so, I should be able to say in retrospect, ‘Yes, I see nothing in the motion of that planet, other than mere facts, which is not explained by the general theory of relativity.’ We understand the fabric of reality only by understanding theories that explain it. And since they explain more than we are immediately aware of, we can understand more than we are immediately aware that we understand.
I am not saying that when we understand a theory it
So, even though our stock of known theories is indeed snowballing, just as our stock of recorded facts is, that still does not necessarily make the whole structure harder to understand than it used to be. For while our specific theories are becoming more numerous and more detailed, they are continually being ‘demoted’ as the understanding they contain is taken over by deep, general theories. And those theories are becoming fewer, deeper and more general. By ‘more general’ I mean that each of them says more, about a wider range of situations, than several distinct theories did previously. By ‘deeper’ I mean that each of them explains more — embodies more understanding — than its predecessors did, combined.
Centuries ago, if you had wanted to build a large structure such as a bridge or a cathedral you would have engaged a master builder. He would have had some knowledge of what it takes to give a structure strength and stability with the least possible expense and effort. He would not have been able to express much of this knowledge in the language of mathematics and physics, as we can today. Instead, he relied mainly on a complex collection of intuitions, habits and rules of thumb, which he had learned from his apprentice-master and then perhaps amended through guesswork and long experience. Even so, these intuitions, habits and rules of thumb were in effect
Progress to our current state of knowledge was not achieved by accumulating more theories of the same kind as the master builder knew. Our knowledge, both explicit and inexplicit, is not only much greater than his but structurally different too. As I have said, the modern theories are fewer, more general and deeper. For each situation that the master builder faced while building something in his repertoire — say, when deciding how thick to make a load-bearing wall — he had a fairly specific intuition or rule of thumb, which, however, could give hopelessly wrong answers if applied to novel situations. Today one deduces such things from a theory that is general enough for it to be applied to walls made of any material, in all situations: on the Moon, underwater, or wherever. The reason why it is so general is that it is based on quite deep explanations of how materials and structures work. To find the proper thickness of a wall that is to be made from an unfamiliar material, one uses the same theory as for any other wall, but starts the calculation by assuming different facts — by using different numerical values for the various parameters. One has to look up those facts, such as the tensile strength and elasticity of the material, but one needs no additional understanding.
That is why, despite understanding incomparably more than an ancient master builder did, a modern architect does not require a longer or more arduous training. A typical theory in a modern student’s syllabus may be harder to understand than any of the master builder’s rules of thumb; but the modern theories are far fewer, and their explanatory power gives them other properties such as beauty, inner logic and connections with other subjects which make them easier to learn. Some of the ancient rules of thumb are now known to be erroneous, while others are known to be true, or to be good approximations to the truth, and we know why that is so. A few are still in use. But none of them is any longer the source of anyone’s understanding of what makes structures stand up.
I am not, of course, denying that specialization is occurring in many subjects in which knowledge is growing, including architecture. This is not a one-way process, for specializations often disappear too: wheels are no longer designed or made by wheelwrights, nor ploughs by ploughwrights, nor are letters written by scribes. It is nevertheless quite evident that the deepening, unifying tendency I have been describing is not the only one at work: a continual
The science of medicine is perhaps the most frequently cited case of increasing specialization seeming to follow inevitably from increasing knowledge, as new cures and better treatments for more diseases are discovered. But even in medicine the opposite, unifying tendency is also present, and is becoming stronger. Admittedly, many functions of the body are still poorly understood, and so are the mechanisms of many diseases. Consequently some areas of medical knowledge still consist mainly of collections of recorded facts, together with the skills and intuitions of doctors who have experience of particular diseases and particular treatments, and who pass on these skills and intuitions from one generation to the next. Much of medicine, in other words, is still in the rule-of-thumb era, and when new rules of thumb are discovered there is indeed more incentive for specialization. But as medical and biochemical research comes up with deeper explanations of disease processes (and healthy processes) in the body, understanding is also on the increase. More general concepts are replacing more specific ones as common, underlying molecular mechanisms are found for dissimilar diseases in different parts of the body. Once a disease can be understood as fitting into a general framework, the role of the specialist diminishes. Instead, physicians coming across an unfamiliar disease or a rare complication can rely increasingly on explanatory theories. They can look up such facts as are known. But then they may be able to apply a general theory to work out the required treatment, and expect it to be effective even if it has never been used before.
Thus the issue of whether it is becoming harder or easier to understand everything that is understood depends on the overall balance between these two opposing effects of the growth of knowledge: the increasing
It is not that we shall soon understand
It will not, of course, be the last such theory, only the first. In science we take it for granted that even our best theories are bound to be imperfect and problematic in some ways, and we expect them to be superseded in due course by deeper, more accurate theories. Such progress is not brought to a halt when we discover a universal theory. For example, Newton gave us the first universal theory of gravity and a unification of, among other things, celestial and terrestrial mechanics. But his theories have been superseded by Einstein’s general theory of relativity which additionally incorporates geometry (formerly regarded as a branch of mathematics) into physics, and in so doing provides far deeper explanations as well as being more accurate. The first fully universal theory — which I shall call the Theory of Everything — will, like all our theories before and after it, be neither perfectly true nor infinitely deep, and so will eventually be superseded. But it will not be superseded through unifications with theories about other subjects, for it will already be a theory of all subjects. In the past, some great advances in understanding came about through great unifications. Others came through structural changes in the way we were understanding a particular subject — as when we ceased to think of the Earth as being the centre of the universe. After the first Theory of Everything, there will be no more great unifications. All subsequent great discoveries will take the form of changes in the way we understand the world as a whole: shifts in our world-view. The attainment of a Theory of Everything will be the last great unification, and at the same time it will be the first across-the-board shift to a new world-view. I believe that such a unification and shift are now under way. The associated world-view is the theme of this book. I must stress immediately that I am not referring merely to the ‘theory of everything’ which some particle physicists hope they will soon discover.
But prediction is not explanation. The hoped-for ‘theory of everything’, even if combined with a theory of the initial state, will at best provide only a tiny facet of a real Theory of Everything. It may
Figure 1.1.
The reductionist conception leads naturally to a classification of objects and theories in a hierarchy, according to how close they are to the ‘lowest-level’ predictive theories that are known. In this hierarchy, logic and mathematics form the immovable bedrock on which the edifice of science is built. The foundation stone would be a reductive ‘theory of everything’, a universal theory of particles, forces, space and time, together with some theory of what the initial state of the universe was. The rest of physics forms the first few storeys. Astrophysics and chemistry are at a higher level, geology even higher, and so on. The edifice branches into many towers of increasingly high-level subjects like biochemistry, biology and genetics. Perched at the tottering, stratospheric tops are subjects like the theory of evolution, economics, psychology and computer science, which in this picture are almost inconceivably derivative. At present, we have only approximations to a reductive ‘theory of everything’. These can already predict quite accurate laws of motion for individual subatomic particles. From these laws, present-day computers can calculate the motion of any isolated group of a few interacting particles in some detail, given their initial state. But even the smallest speck of matter visible to the naked eye contains trillions of atoms, each composed of many subatomic particles, and is continually interacting with the outside world; so it is quite infeasible to predict its behaviour particle by particle. By supplementing the exact laws of motion with various approximation schemes, we can predict some aspects of the gross behaviour of quite large objects — for instance, the temperature at which a given chemical compound will melt or boil. Much of basic chemistry has been reduced to physics in this way. But for higher-level sciences the reductionist programme is a matter of principle only. No one expects actually to deduce many principles of biology, psychology or politics from those of physics. The reason why higher-level subjects can be studied at all is that under special circumstances the stupendously complex behaviour of vast numbers of particles resolves itself into a measure of simplicity and comprehensibility. This is called
By the way, the opposite of reductionism,
A reductionist thinks that science is about analysing things into components. An instrumentalist thinks that it is about predicting things. To either of them, the existence of high-level sciences is merely a matter of convenience. Complexity prevents us from using fundamental physics to make high-level predictions, so instead we guess what those predictions would be if we could make them — emergence gives us a chance of doing that successfully — and supposedly that is what the higher-level sciences are about. Thus to reductionists and instrumentalists, who disregard both the real structure and the real purpose of scientific knowledge, the base of the predictive hierarchy of physics is by definition the ‘theory of everything’. But to everyone else scientific knowledge consists of explanations, and the structure of scientific explanation does not reflect the reductionist hierarchy. There are explanations at every level of the hierarchy. Many of them are autonomous, referring only to concepts at that particular level (for instance, ‘the bear ate the honey because it was hungry’). Many involve deductions in the opposite direction to that of reductive explanation. That is, they explain things not by analysing them into smaller, simpler things but by regarding them as components of larger, more complex things — about which we nevertheless have explanatory theories. For example, consider one particular copper atom at the tip of the nose of the statue of Sir Winston Churchill that stands in Parliament Square in London. Let me try to explain why that copper atom is there. It is because Churchill served as prime minister in the House of Commons nearby; and because his ideas and leadership contributed to the Allied victory in the Second World War; and because it is customary to honour such people by putting up statues of them; and because bronze, a traditional material for such statues, contains copper, and so on. Thus we explain a low-level physical observation — the presence of a copper atom at a particular location — through extremely high-level theories about emergent phenomena such as ideas, leadership, war and tradition. There is no reason why there should exist, even in principle, any lower-level
In the reductionist world-view, the laws governing subatomic particle interactions are of paramount importance, as they are the base of the hierarchy of all knowledge. But in the real structure of scientific knowledge, and in the structure of our knowledge generally, such laws have a much more humble role.
What is that role? It seems to me that none of the candidates for a ‘theory of everything’ that has yet been contemplated contains much that is new by way of explanation. Perhaps the most innovative approach from the explanatory point of view is
There are two theories in physics which are considerably deeper than all others. The first is the general theory of relativity, which as I have said is our best theory of space, time and gravity. The second,
Before I say what the other three strands are, I must mention another way in which reductionism misrepresents the structure of scientific knowledge. Not only does it assume that explanation always consists of analysing a system into smaller, simpler systems, it also assumes that all explanation is of later events in terms of earlier events; in other words, that the only way of explaining something is to state its
A ‘theory of everything’ which excludes a specification of the initial state of the universe is not a complete description of physical reality because it provides only laws of motion; and laws of motion, by themselves, make only conditional predictions. That is, they never state categorically what happens, but only what will happen at one time given what was happening at another time. Only if a complete specification of the initial state is provided can a complete description of physical reality in principle be deduced. Current cosmological theories do not provide a complete specification of the initial state, even in principle, but they do say that the universe was initially very small, very hot and very uniform in structure. We also know that it cannot have been perfectly uniform because that would be incompatible, according to the theory, with the distribution of galaxies we observe across the sky today. The initial variations in density, ‘lumpiness’, would have been greatly enhanced by gravitational clumping (that is, relatively dense regions would have attracted more matter and become denser), so they need only have been very slight initially. But, slight though they were, they are of the greatest significance in any reductionist description of reality, because almost everything that we see happening around us, from the distribution of stars and galaxies in the sky to the appearance of bronze statues on planet Earth, is, from the point of view of fundamental physics, a consequence of those variations. If our reductionist description is to cover anything more than the grossest features of the observed universe, we need a theory specifying those all-important initial deviations from uniformity.
Let me try to restate this requirement without the reductionist bias. The laws of motion for any physical system make only conditional predictions, and are therefore compatible with many possible histories of that system. (This issue is independent of the limitations on predictability that are imposed by quantum theory, which I shall discuss in the next chapter.) For instance, the laws of motion governing a cannon-ball fired from a gun are compatible with many possible trajectories, one for every possible direction and elevation in which the gun could have been pointing when it was fired (Figure 1.2). Mathematically, the laws of motion can be expressed as a set of equations called the
FIGURE 1.2.
Similarly, the laws of motion for physical reality as a whole would have many solutions, each corresponding to a distinct history. To complete the description, we should have to specify which history is the one that has actually occurred, by giving enough supplementary data to yield one of the many solutions of the equations of motion. In simple cosmological models at least, one way of giving such data is to specify the initial state of the universe. But alternatively we could specify the final state, or the state at any other time; or we could give some information about the initial state, some about the final state, and some about states in between. In general, the combination of enough supplementary data of any sort with the laws of motion would amount to a complete description, in principle, of physical reality.
For the cannon-ball, once we have specified, say, the final state it is straightforward to calculate the initial state, and vice versa, so there is no practical difference between different methods of specifying the supplementary data. But for the universe most such calculations are intractable. I have said that we infer the existence of ‘lumpiness’ in the initial conditions from observations of ‘lumpiness’ today. But that is exceptional: most of our knowledge of supplementary data — of what specifically happens — is in the form of high-level theories about emergent phenomena, and is therefore by definition not practically expressible in the form of statements about the initial state. For example, in most solutions of the equations of motion the initial state of the universe does not have the right properties for life to evolve from it. Therefore our knowledge that life
Even in the domain of fundamental physics, the idea that theories of the initial state contain our deepest knowledge is a serious misconception. One reason is that it logically excludes the possibility of explaining the initial state itself — why the initial state was what it was — but in fact we have explanations of many aspects of the initial state. And more generally, no theory of
Thus the character of many of our descriptions, predictions and explanations of reality bear no resemblance to the ‘initial state plus laws of motion’ picture that reductionism leads to. There is no reason to regard high-level theories as in any way ‘second-class citizens’. Our theories of subatomic physics, and even of quantum theory or relativity, are in no way privileged relative to theories about emergent properties. None of these areas of knowledge can possibly subsume all the others. Each of them has logical implications for the others, but not all the implications can be stated, for they are emergent properties of the other theories’ domains. In fact, the very terms ‘high level’ and ‘low level’ are misnomers. The laws of biology, say, are high-level, emergent consequences of the laws of physics. But logically, some of the laws of physics are then ‘emergent’ consequences of the laws of biology. It could even be that, between them, the laws governing biological and other emergent phenomena would entirely determine the laws of fundamental physics. But in any case, when two theories are logically related, logic does not dictate which of them we ought to regard as determining, wholly or partly, the other. That depends on the explanatory relationships between the theories. The truly privileged theories are not the ones referring to any particular scale of size or complexity, nor the ones situated at any particular level of the predictive hierarchy — but the ones that contain the deepest explanations. The fabric of reality does not consist only of reductionist ingredients like space, time and subatomic particles, but also of life, thought, computation and the other things to which those explanations refer. What makes a theory more fundamental, and less derivative, is not its closeness to the supposed predictive base of physics, but its closeness to our deepest explanatory theories.
Quantum theory is, as I have said, one such theory. But the other three main strands of explanation through which we seek to understand the fabric of reality are all ‘high level’ from the point of view of quantum physics. They are the
What conclusion, then, would I address to my younger self, who rejected the proposition that the growth of knowledge was making the world ever less comprehensible? I would agree with him, though I now think that the important issue is not really whether what our particular species understands can be understood by
epistemology The study of the nature of knowledge and the processes that create it.
explanation (roughly) A statement about the nature of things and the reasons for things.
instrumentalism The view that the purpose of a scientific theory is to predict the outcomes of experiments.
positivism An extreme form of instrumentalism which holds that all statements other than those describing or predicting observations are meaningless. (This view is itself meaningless according to its own criterion.)
reductive A reductive explanation is one that works by analysing things into lower-level components.
reductionism The view that scientific explanations are inherently reductive.
holism The idea that the only legitimate explanations are in terms of higher-level systems; the opposite of reductionism.
emergence An emergent phenomenon is one (such as life, thought or computation) about which there are comprehensible facts or explanations that are not simply deducible from lower-level theories, but which may be explicable or predictable by higher-level theories referring directly to that phenomenon.
Scientific knowledge, like all human knowledge, consists primarily of explanations. Mere facts can be looked up, and predictions are important only for conducting crucial experimental tests to discriminate between competing scientific theories that have already passed the test of being good explanations. As new theories supersede old ones, our knowledge is becoming both broader (as new subjects are created) and deeper (as our fundamental theories explain more, and become more general). Depth is winning. Thus we are not heading away from a state in which one person could understand everything that was understood, but towards it. Our deepest theories are becoming so integrated with one another that they can be understood only jointly, as a single theory of a unified fabric of reality. This Theory of Everything has a far wider scope than the ‘theory of everything’ that elementary particle physicists are seeking, because the fabric of reality does not consist only of reductionist ingredients such as space, time and subatomic particles, but also, for example, of life, thought and computation. The
2
Shadows
There is no better, there is no more open door by which you can enter into the study of natural philosophy, than by considering the physical phenomena of a candle.
In his popular Royal Institution lectures on science, Michael Faraday used to urge his audiences to learn about the world by considering what happens when a candle burns. I am going to consider an electric torch (or flashlight) instead. This is quite fitting, for much of the technology of an electric torch is based on Faraday’s discoveries.
I am going to describe some experiments which demonstrate phenomena that are at the core of quantum physics. Experiments of this sort, with many variations and refinements, have been the bread and butter of quantum optics for many years. There is no controversy about the results, yet even now some of them are hard to believe. The basic experiments are remarkably austere. They require neither specialized scientific instruments nor any great knowledge of mathematics or physics — essentially, they involve nothing but casting shadows. But the patterns of light and shadow that an ordinary electric torch can cast are very strange. When considered carefully they have extraordinary ramifications. Explaining them requires not just new physical laws but a new
Imagine an electric torch switched on in an otherwise dark room. Light emanates from the filament of the torch’s bulb and fills out part of a cone. In order not to complicate the experiment with reflected light, the walls of the room should be totally absorbent, matt black. Alternatively, since we are only imagining these experiments, we could imagine a room of astronomical size, so that there is no time for any light to reach the walls and return before the experiment is completed. Figure 2.1 illustrates the situation. But it is somewhat misleading: if we were observing the torch from the side we should be able to see neither it nor, of course, its light. Invisibility is one of the more straightforward properties of light. We see light only if it enters our eyes (though we usually speak of seeing the object in our line of sight that last affected that light).
FIGURE 2.1
We cannot see light that is just passing by. If there were a reflective object in the beam, or even some dust or water droplets to scatter the light, we could see where it was. But there is nothing in the beam, and we are observing from outside it, so none of its light reaches us. An accurate representation of what we should see would be a completely black picture. If there were a second source of light we might be able to see the torch, but still not its light. Beams of light, even the most intense light that we can generate (from lasers), pass through each other as if nothing were there at all.
Figure 2.1 does show that the light is brightest near the torch, and gets dimmer farther away as the beam spreads out to illuminate an ever larger area. To an observer within the beam, backing steadily away from the torch, the reflector would appear ever smaller and then, when it could only be seen as a single point, ever fainter. Or would it? Can light really be spread more and more thinly without limit? The answer is no. At a distance of approximately ten thousand kilometres from the torch, its light would be too faint for the human eye to detect and the observer would see nothing. That is, a human observer would see nothing; but what about an animal with more sensitive vision? Frogs’ eyes are several times more sensitive than human eyes — just enough to make a significant difference in this experiment. If the observer were a frog, and it kept moving ever farther away from the torch, the moment at which it entirely lost sight of the torch would never come. Instead, the frog would see the torch begin to flicker. The flickers would come at irregular intervals that would become longer as the frog moved farther away. But the brightness of the individual flickers would not diminish. At a distance of one hundred million kilometres from the torch, the frog would see on average only one flicker of light per day, but that flicker would be as bright as any that it observed at any other distance.
Frogs cannot tell us what they see. So in real experiments we use photomultipliers (light detectors which are even more sensitive than frogs’ eyes), and we thin out the light by passing it through dark filters, rather than by observing it from a hundred million kilometres away. But the principle is the same, and so is the result: neither apparent darkness nor uniform dimness, but flickering, with the individual flickers equally bright no matter how dark a filter we use. This flickering indicates that there is a limit to how thinly light can be evenly spread. Borrowing the terminology of goldsmiths, one might say that light is not infinitely ‘malleable’. Like gold, a small amount of light can be evenly spread over a very large area, but eventually if one tries to spread it out further it gets lumpy. Even if gold atoms could somehow be prevented from clumping together, there is a point beyond which they cannot be subdivided without ceasing to be gold. So the only way in which one can make a one-atom-thick gold sheet even thinner is to space the atoms farther apart, with empty space between them. When they are sufficiently far apart it becomes misleading to think of them as forming a continuous sheet. For example, if each gold atom were on average several centimetres from its nearest neighbour, one might pass one’s hand through the ‘sheet’ without touching any gold at all. Similarly, there is an ultimate lump or ‘atom’ of light, a
This property of appearing only in lumps of discrete sizes is called
FIGURE 2.2
Is the boundary between the light and the shadow perfectly sharp, or is there a grey area? There is usually a fairly wide grey area, and one reason for this is shown in Figure 2.3. There is a dark region (called the
However, the size of the filament is not the only reason why real torchlight casts penumbras. The light is affected in all sorts of other ways by the reflector behind the bulb, by the glass front of the torch, by various seams and imperfections, and so on. So we expect quite a complicated pattern of light and shadow from a real torch, just because the torch itself is quite complicated. But the incidental properties of torches are not the subject of these experiments. Behind our question about torchlight there is a more fundamental question about light in general: is there, in principle, any limit on how sharp a shadow can be (in other words, on how narrow a penumbra can be)? For instance, if the torch were made of perfectly black (non-reflecting) material, and if one were to use smaller and smaller filaments, could one then make the penumbra narrower and narrower, without limit?
FIGURE 2.3
Figure 2.3 makes it look as though one could: if the filament had no size, there would be no penumbra. But in drawing Figure 2.3 I have made an assumption about light, namely that it travels only in straight lines. From everyday experience we know that it does, for we cannot see round corners. But careful experiments show that light does not always travel in straight lines. Under some circumstances it bends.
This is hard to demonstrate with a torch alone, just because it is difficult to make very tiny filaments and very black surfaces. These practical difficulties mask the limits that fundamental physics imposes on the sharpness of shadows. Fortunately, the bending of light can also be demonstrated in a different way. Suppose that the light of a torch passes through two successive small holes in otherwise opaque screens, as shown in Figure 2.4, and that the emerging light falls on a third screen beyond. Our question now is this: if the experiment is repeated with ever smaller holes and with ever greater separation between the first and second screens, can one bring the umbra — the region of total darkness — ever closer, without limit, to the straight line through the centres of the two holes? Can the illuminated region between the second and third screens be confined to an arbitrarily narrow cone? In goldsmiths’ terminology, we are now asking something like ‘how “ductile” is light’ — how fine a thread can it be drawn into? Gold can be drawn into threads one ten-thousandth of a millimetre thick.
FIGURE 2.4
It turns out that light is not as ductile as gold! Long before the holes get as small as a ten-thousandth of a millimetre, in fact even with holes as large as a millimetre or so in diameter, the light begins noticeably to rebel. Instead of passing through the holes in straight lines, it refuses to be confined and spreads out after each hole. And as it spreads, it ‘frays’. The smaller the hole is, the more the light spreads out from its straight-line path. Intricate patterns of light and shadow appear. We no longer see simply a bright region and a dark region on the third screen, with a penumbra in between, but instead concentric rings of varying thickness and brightness. There is also colour, because white light consists of a mixture of photons of various colours, and each colour spreads and frays in a slightly different pattern. Figure 2.5 shows a typical pattern that might be formed on the third screen by white light that has passed through holes in the first two screens. Remember, there is nothing happening here but the casting of a shadow. Figure 2.5 is just the shadow that would be cast by the second screen in Figure 2.4. If light travelled only in straight lines, there would only be a tiny white dot (much smaller than the central bright spot in Figure 2.5), surrounded by a very narrow penumbra. Outside that there would be pure umbra — total darkness.
FIGURE 2.5
Puzzling though it may be that light rays should bend when passing through small holes, it is not, I think, fundamentally disturbing. In any case, what matters for our present purposes is that it does bend. This means that shadows in general need not look like silhouettes of the objects that cast them. What is more, this is not just a matter of blurring, caused by penumbras. It turns out that an obstacle with an intricate pattern of holes can cast a shadow of an entirely different pattern.
Figure 2.6 shows, at roughly its actual size, a part of the pattern of shadows cast three metres from a pair of straight, parallel slits in an otherwise opaque barrier. The slits are one-fifth of a millimetre apart, and illuminated by a parallel-sided beam of pure red light from a laser on the other side of the barrier. Why laser light and not torchlight? Only because the precise shape of a shadow also depends on the colour of the light in which it is cast; white light, as produced by a torch, contains a mixture of all visible colours, so it can cast shadows with multicoloured fringes. Therefore in experiments about the precise shapes of shadows we are better off using light of a single colour. We could put a coloured filter (such as a pane of coloured glass) over the front of the torch, so that only light of that colour would get through. That would help, but filters are not all that discriminating. A better method is to use laser light, for lasers can be tuned very accurately to emit light of whatever colour we choose, with almost no other colour present.
FIGURE 2.6
If light travelled in straight lines, the pattern in Figure 2.6 would consist simply of a pair of bright bands one-fifth of a millimetre apart (too close to distinguish on this scale), with sharp edges and with the rest of the screen in shadow. But in reality the light bends in such a way as to make many bright bands and dark bands, and no sharp edges at all. If the slits are moved sideways, so long as they remain within the laser beam, the pattern also moves by the same amount. In this respect it behaves exactly like an ordinary large-scale shadow. Now, what sort of shadow is cast if we cut a second, identical pair of slits in the barrier, interleaved with the existing pair, so that we have four slits at intervals of one-tenth of a millimetre? We might expect the pattern to look almost exactly like Figure 2.6. After all, the first pair of slits, by itself, casts the shadows in Figure 2.6, and as I have just said, the second pair, by itself, would cast the same pattern, shifted about a tenth of a millimetre to the side — in almost the same place. We even know that light beams normally pass through each other unaffected. So the two pairs of slits together should give essentially the same pattern again, though twice as bright and slightly more blurred.
In reality, though, what happens is nothing like that. The real shadow of a barrier with four straight, parallel slits is shown in Figure 2.7(a). For comparison I have repeated, below it, the illustration of the two-slit pattern (Figure 2.7(b)). Clearly, the four-slit shadow is not a combination of two slightly displaced two-slit shadows, but has a new and more complicated pattern. In this pattern there are places, such as the point marked X, which are dark on the four-slit pattern, but bright on the two-slit pattern. These places were bright when there were two slits in the barrier, but
So, adding two more light sources darkens the point X; removing them illuminates it again. How? One might imagine two photons heading towards X and bouncing off each other like billiard balls. Either photon alone would have hit X, but the two together interfere with each other so that they both end up elsewhere. I shall show in a moment that this explanation cannot be true. Nevertheless, the basic idea of it is inescapable:
FIGURE 2.7
First, the four-slit pattern of Figure 2-7(a) appears only if all four slits are illuminated by the laser beam. If only two of them are illuminated, a two-slit pattern appears. If three are illuminated, a three-slit pattern appears, which looks different again. So whatever causes the interference is in the light beam. The two-slit pattern also reappears if two of the slits are filled by anything opaque, but not if they are filled by anything transparent. In other words, the interfering entity is obstructed by anything that obstructs light, even something as insubstantial as fog. But it can penetrate anything that allows light to pass, even something as impenetrable (to matter) as diamond. If complicated systems of mirrors and lenses are placed anywhere in the apparatus, so long as light can travel from each slit to a particular point on the screen, what will be observed at that point will be part of a four-slit pattern. If light from only two slits can reach a particular point, part of a two-slit pattern will be observed there, and so on.
So, whatever causes interference behaves like light. It is found everywhere in the light beam and nowhere outside it. It is reflected, transmitted or blocked by whatever reflects, transmits or blocks light. You may be wondering why I am labouring this point. Surely it is obvious that it
What should we expect to happen when these experiments are performed
Yet that is exactly what we do observe. However sparse the photons are, the shadow pattern remains the same. Even when the experiment is done with one photon at a time, none of them is ever observed to arrive at X when all four slits are open. Yet we need only close two slits for the flickering at X to resume.
Could it be that the photon splits into fragments which, after passing through the slits, change course and recombine? We can rule that possibility out too. If, again, we fire one photon through the apparatus, but use four detectors, one at each slit, then at most one of them ever registers anything. Since in such an experiment we never observe two of the detectors going off at once, we can tell that the entities that they detect are not splitting up.
So, if the photons do not split into fragments, and are not being deflected by other photons, what does deflect them? When a single photon at a time is passing through the apparatus, what can be coming through the other slits to interfere with it?
Let us take stock. We have found that when one photon passes through this apparatus,
it passes through one of the slits, and then something interferes with it, deflecting it in a way that depends on what other slits are open;
the interfering entities have passed through some of the other slits;
the interfering entities behave exactly like photons …
… except that they cannot be seen.
I shall now start calling the interfering entities ‘photons’. That is what they are, though for the moment it does appear that photons come in two sorts, which I shall temporarily call
Thus we have inferred the existence of a seething, prodigiously complicated, hidden world of shadow photons. They travel at the speed of light, bounce off mirrors, are refracted by lenses, and are stopped by opaque barriers or filters of the wrong colour. Yet they do not trigger even the most sensitive detectors. The only thing in the universe that a shadow photon can be observed to affect is the tangible photon that it accompanies. That is the phenomenon of interference. Shadow photons would go entirely unnoticed were it not for this phenomenon and the strange patterns of shadows by which we observe it.
Interference is not a special property of photons alone. Quantum theory predicts, and experiment confirms, that it occurs for every sort of particle. So there must be hosts of shadow neutrons accompanying every tangible neutron, hosts of shadow electrons accompanying every electron, and so on. Each of these shadow particles is detectable only indirectly, through its interference with the motion of its tangible counterpart.
It follows that reality is a much bigger thing than it seems, and most of it is invisible. The objects and events that we and our instruments can directly observe are the merest tip of the iceberg.
Now, tangible particles have a property that entitles us to call them, collectively, a
For similar reasons, we might think of calling the shadow particles, collectively, a
A remark about terminology. The word ‘universe’ has traditionally been used to mean ‘the whole of physical reality’. In that sense there can be at most one universe. We could stick to that definition, and say that the entity we have been accustomed to calling ‘the universe’ — namely, all the directly perceptible matter and energy around us, and the surrounding space — is not the whole universe after all, but only a small portion of it. Then we should have to invent a new name for that small, tangible portion. But most physicists prefer to carry on using the word ‘universe’ to denote the same entity that it has always denoted, even though that entity now turns out to be only a small part of physical reality. A new word,
Single-particle interference experiments such as I have been describing show us that the multiverse exists and that it contains many counterparts of each particle in the tangible universe. To reach the further conclusion that the multiverse is roughly partitioned into parallel universes, we must consider interference phenomena involving more than one tangible particle. The simplest way of doing this is to ask, by way of a ‘thought experiment’, what must be happening at the microscopic level when shadow photons strike an opaque object. They are stopped, of course: we know that because interference ceases when an opaque barrier is placed in the paths of shadow photons. But why? What stops them? We can rule out the straightforward answer — that they are absorbed, like tangible photons would be, by the tangible atoms in the barrier. For one thing, we know that shadow photons do not interact with tangible atoms. For another, we can verify by measuring the atoms in the barrier (or more precisely, by replacing the barrier by a detector) that they neither absorb energy nor change their state in any way unless they are struck by tangible photons. Shadow photons have no effect.
To put that another way, shadow photons and tangible photons are affected in identical ways when they reach a given barrier, but the barrier itself is not identically affected by the two types of photon. In fact, as far as we can tell, it is not affected by shadow photons at all. That is indeed the defining property of shadow photons, for if any material were observably affected by them, that material could be used as a shadow-photon detector and the entire phenomenon of shadows and interference would not be as I have described it.
Hence there is some sort of shadow barrier at the same location as the tangible barrier. It takes no great leap of imagination to conclude that this shadow barrier is made up of the
For the same reason, each shadow atom in the barrier can be interacting with only a small proportion of the other shadow atoms in its vicinity, and the ones it does interact with form a barrier much like the tangible one. And so on. All matter, and all physical processes, have this structure. If the tangible barrier is the frog’s retina, then there must be many shadow retinas, each capable of stopping only one of the shadow-counterparts of each photon. Each shadow retina only interacts strongly with the corresponding shadow photons, and with the corresponding shadow frog, and so on. In other words, particles are grouped into parallel universes. They are ‘parallel’ in the sense that within each universe particles interact with each other just as they do in the tangible universe, but each universe affects the others only weakly, through interference phenomena.
Thus we have reached the conclusion of the chain of reasoning that begins with strangely shaped shadows and ends with parallel universes. Each step takes the form of noting that the behaviour of objects that we observe can be explained only if there are unobserved objects present, and if those unobserved objects have certain properties. The heart of the argument is that single-particle interference phenomena unequivocally rule out the possibility that the tangible universe around us is all that exists. There is no disputing the fact that such interference phenomena occur. Yet the existence of the multiverse is still a minority view among physicists. Why?
The answer, I regret to say, does not reflect well upon the majority. I shall have more to say about this in Chapter 13, but for the moment let me point out that the arguments I have presented in this chapter are compelling only to those who seek explanations. Those who are satisfied with mere prediction, and who have no strong desire to understand how the predicted outcomes of experiments come about, may if they wish simply deny the existence of anything other than what I have been calling ‘tangible’ entities. Some people, such as instrumentalists and positivists, take this line as a matter of philosophical principle. I have already said what I think of such principles, and why. Other people just don’t want to think about it. After all, it is such a
‘Why can’t we just say,’ some pragmatic physicists ask, ‘that photons behave
The reason why interference effects are usually so weak and hard to detect can be found in the quantum-mechanical laws that govern them. Two particular implications of those laws are relevant. First, every subatomic particle has counterparts in other universes, and is interfered with only by those counterparts. It is not directly affected by any other particles in those universes. Therefore interference is observed only in special situations where the paths of a particle and its shadow counterparts separate and then reconverge (as when a photon and shadow photon are heading towards the same point on the screen). Even the timing must be right: if one of the two paths involves a delay, the interference is reduced or prevented. Second, the detection of interference between any two universes requires an interaction to take place between
It seems to me that this question, and therefore the whole prevailing tone of the debate on this issue, is wrong-headed. Admittedly, it is right and proper for theoretical physicists such as myself to devote a great deal of effort to trying to understand the formal structure of quantum theory, but not at the expense of losing sight of our primary objective, which is to understand reality. Even if the predictions of quantum theory could, somehow, be made without referring to more than one universe, individual photons would still cast shadows in the way I have described. Without knowing anything of quantum theory, one can see that those shadows could not be the result of any single history of the photon as it travels from the torch to the observer’s eye. They are incompatible with any explanation in terms of only the photons that we see. Or in terms of only the barrier that we see. Or in terms of only the universe that we see. Therefore, if the best theory available to physics did not refer to parallel universes, it would merely mean that we needed a better theory, one that did refer to parallel universes, in order to explain what we see.
So, does accepting the predictions of quantum theory force us to accept the existence of parallel universes? Not in itself. We can always reinterpret any theory along instrumentalist lines so that it does not force us to accept anything about reality. But that is beside the point. As I have just said, we do not need deep theories to tell us that parallel universes exist — single-particle interference phenomena tell us that. What we need deep theories for is to explain and predict such phenomena: to tell us what the other universes are like, what laws they obey, how they affect one another, and how all this fits in with the theoretical foundations of other subjects. That is what quantum theory does. The quantum theory of parallel universes is not the problem, it is the solution. It is not some troublesome, optional interpretation emerging from arcane theoretical considerations. It is the explanation — the only one that is tenable — of a remarkable and counter-intuitive reality.
So far, I have been using temporary terminology which suggests that one of the many parallel universes differs from the others by being ‘tangible’. It is time to sever that last link with the classical, single-universe conception of reality. Let us go back to our frog. We have seen that the story of the frog that stares at the distant torch for days at a time, waiting for the flicker that comes on average once a day, is not the whole story, because there must also be shadow frogs, in shadow universes that co-exist with the tangible one, also waiting for photons. Suppose that our frog is trained to jump when it sees a flicker. At the beginning of the experiment, the tangible frog will have a large set of shadow counterparts, all initially alike. But shortly afterwards they will no longer all be alike. Any particular one of them is unlikely to see a photon immediately. But what is a rare event in any one universe is a common event in the multiverse as a whole. At any instant, somewhere in the multiverse, there are a few universes in which one of the photons is currently striking the retina of the frog in that universe. And that frog jumps.
Why exactly does it jump? Because within its universe it obeys the same laws of physics as tangible frogs do, and its shadow retina has been struck by a shadow photon belonging to that universe. One of the light-sensitive shadow molecules in that shadow retina has responded by undergoing complex chemical changes, to which the shadow frog’s optic nerve has in turn responded. It has transmitted a message to the shadow frog’s brain, and the frog has consequently experienced the sensation of seeing a flicker.
Or should I say ‘the
Not only do none of the copies of an object have any privileged position in the explanation of shadows that I have just outlined, neither do they have a privileged position in the full mathematical explanation provided by quantum theory. I may feel subjectively that I am distinguished among the copies as the ‘tangible’ one, because I can directly perceive myself and not the others, but I must come to terms with the fact that all the others feel the same about themselves.
Many of those Davids are at this moment writing these very words. Some are putting it better. Others have gone for a cup of tea.
photon A particle of light.
tangible/shadow For the purposes of exposition in this chapter only, I called particles in this universe
multiverse The whole of physical reality. It contains many parallel universes.
parallel universes They are ‘parallel’ in the sense that within each universe particles interact with each other just as they do in the tangible universe, but each universe affects the others only weakly, through interference phenomena.
quantum theory The theory of the physics of the multiverse.
quantization The property of having a discrete (rather than continuous) set of possible values. Quantum theory gets its name from its assertion that all measurable quantities are quantized. However, the most significant quantum effect is not quantization but interference.
interference The effect of a particle in one universe on its counterpart in another. Photon interference can cause shadows to be much more complicated than mere silhouettes of the obstacles causing them.
In interference experiments there can be places in a shadow-pattern that go dark when new openings are made in the barrier casting the shadow. This remains true even when the experiment is performed with individual particles. A chain of reasoning based on this fact rules out the possibility that the universe we see around us constitutes the whole of reality. In fact the whole of physical reality, the multiverse, contains vast numbers of parallel universes.
3
Problem-solving
I do not know which is stranger — the behaviour of shadows itself, or the fact that contemplating a few patterns of light and shadow can force us to revise so radically our conception of the structure of reality. The argument I have outlined in the previous chapter is, notwithstanding its controversial conclusion, a typical piece of scientific reasoning. It is worth reflecting on the character of this reasoning, which is itself a natural phenomenon at least as surprising and full of ramifications as the physics of shadows.
To those who would prefer reality to have a more prosaic structure, it may seem somehow out of proportion — unfair, even — that such momentous consequences can flow from the fact that a tiny spot of light on a screen should be
Successive explanations of the motions of planets have played an important role in the history of science. Copernicus’s
As astronomical predictions became more accurate, the differences between what successive theories predicted about the appearance of the night sky diminished. Ever more powerful telescopes and measuring instruments have had to be constructed to detect the differences. However, the explanations underlying these predictions have not been converging. On the contrary, as I have just outlined, there has been a succession of revolutionary changes. Thus observations of ever smaller physical effects have been forcing ever greater changes in our world-view. It may therefore seem that we are inferring ever grander conclusions from ever scantier evidence. What justifies these inferences? Can we be sure that just because a star appeared millimetrically displaced on Eddington’s photographic plate, space and time must be curved; or that because a photodetector at a certain position does not register a ‘hit’ in weak light, there must be parallel universes?
Indeed, what I have just said understates both the fragility and the indirectness of all experimental evidence. For we do not directly perceive the stars, spots on photographic plates, or any other external objects or events. We see things only when images of them appear on our retinas, and we do not perceive even those images until they have given rise to electrical impulses in our nerves, and those impulses have been received and interpreted by our brains. Thus the physical evidence that directly sways us, and causes us to adopt one theory or world-view rather than another, is less than millimetric: it is measured in thousandths of a millimetre (the separation of nerve fibres in the optic nerve), and in hundredths of a volt (the change in electric potential in our nerves that makes the difference between our perceiving one thing and perceiving another).
However, we do not accord equal significance to all our sensory impressions. In scientific experiments we go to great lengths to bring to our perceptions those aspects of external reality that we think might help us to distinguish between rival theories we are considering. Before we even make an observation, we decide carefully where and when we should look, and what we should look for. Often we use complex, specially constructed instruments, such as telescopes and photomultipliers. Yet however sophisticated the instruments we use, and however substantial the external causes to which we attribute their readings, we perceive those readings exclusively through our own sense organs. There is no getting away from the fact that we human beings are small creatures with only a few inaccurate, incomplete channels through which we receive all information from outside ourselves. We interpret this information as evidence of a large and complex external universe (or multiverse). But when we are weighing up this evidence, we are literally contemplating nothing more than patterns of weak electric current trickling through our own brains.
What justifies the inferences we draw from these patterns? It is certainly not a matter of logical deduction. There is no way of
Since solipsism, and an infinity of related theories, are logically consistent with your perceiving any possible observational evidence, it follows that you can logically deduce nothing about reality from observational evidence. How, then, could I say that the observed behaviour of shadows ‘rules out’ the theory that there is only one universe, or that eclipse observations make the Newtonian world-view ‘rationally untenable’? How can that be so? If ‘ruling out’ does not mean ‘disproving’, what does it mean? Why should we feel compelled to change our world-view, or indeed any opinion at all, on account of something being ‘ruled out’ in that sense? This critique seems to cast doubt on the whole of science — on any reasoning about external reality that appeals to observational evidence. If scientific reasoning does not amount to sequences of logical deductions from the evidence, what does it amount to? Why should we accept its conclusions?
This is known as the ‘problem of induction’. The name derives from what was, for most of the history of science, the prevailing theory of how science works. The theory was that there exists, short of mathematical proof, a lesser but still worthy form of justification called
The inductivist analysis of my discussion of shadows would therefore go something like this: ‘We make a series of observations of shadows, and see interference phenomena (stage 1). The results conform to what would be expected if there existed parallel universes which affect one another in certain ways. But at first no one notices this. Eventually (stage 2) someone forms the generalization that interference will
It is hard to know where to begin in criticizing the inductivist conception of science — it is so profoundly false in so many different ways. Perhaps the worst flaw, from my point of view, is the sheer
FIGURE 3.1
Furthermore, even mere predictions can never be justified by observational evidence, as Bertrand Russell illustrated in his story of the chicken. (To avoid any possible misunderstanding, let me stress that this was a metaphorical, anthropomorphic chicken, representing a human being trying to understand the regularities of the universe.) The chicken noticed that the farmer came every day to feed it. It predicted that the farmer would continue to bring food every day. Inductivists think that the chicken had ‘extrapolated’ its observations into a theory, and that each feeding time added justification to that theory. Then one day the farmer came and wrung the chicken’s neck. The disappointment experienced by Russell’s chicken has also been experienced by trillions of other chickens. This inductively justifies the conclusion that induction cannot justify any conclusions!
However, this line of criticism lets inductivism off far too lightly. It does illustrate the fact that repeated observations cannot
The fact that the same observational evidence can be ‘extrapolated’ to give two diametrically opposite predictions according to which explanation one adopts, and cannot justify either of them, is not some accidental limitation of the farmyard environment: it is true of all observational evidence under all circumstances. Observations could not possibly play either of the roles assigned to them in the inductivist scheme, even in respect of mere predictions, let alone genuine explanatory theories. Admittedly, inductivism is based on the common-sense theory of the growth of knowledge — that we learn from experience — and historically it was associated with the liberation of science from dogma and tyranny. But if we want to understand the true nature of knowledge, and its place in the fabric of reality, we must face up to the fact that inductivism is false, root and branch. No scientific reasoning, and indeed no successful reasoning of any kind, has ever fitted the inductivist description.
What, then,
Fortunately, the prevailing theory of scientific knowledge, which in its modern form is due largely to the philosopher Karl Popper (and which is one of my four ‘main strands’ of explanation of the fabric of reality), can indeed be regarded as a theory of explanations in this sense. It regards science as a
This last type of problem resembles stage 1 of the inductivist scheme, but only superficially. For an unexpected observation never initiates a scientific discovery unless the pre-existing theories already contain the seeds of the problem. For example, clouds wander even more than planets do. This unpredictable wandering was presumably familiar long before planets were discovered. Moreover, predicting the weather would always have been valuable to farmers, seafarers and soldiers, so there would always have been an incentive to theorize about how clouds move. Yet it was not meteorology that blazed the trail for modern science, but astronomy. Observational evidence about meteorology was far more readily available than in astronomy, but no one paid much attention to it, and no one induced any theories from it about cold fronts or anticyclones. The history of science was not crowded with disputes, dogmas, heresies, speculations and elaborate theories about the nature of clouds and their motion. Why? Because under the established explanatory structure for weather, it was perfectly comprehensible that cloud motion should be unpredictable. Common sense suggests that clouds move with the wind. When they drift in other directions, it is reasonable to surmise that the wind can be different at different altitudes, and is rather unpredictable, and so it is easy to conclude that there is no more to be explained. Some people, no doubt, took this view about planets, and assumed that they were just glowing objects on the celestial sphere, blown about by high-altitude winds, or perhaps moved by angels, and that there was no more to be explained. But others were not satisfied with that, and guessed that there were deeper explanations behind the wandering of planets. So they searched for such explanations, and found them. At various times in the history of astronomy there appeared to be a mass of unexplained observational evidence; at other times only a scintilla, or none at all. But always, if people had chosen what to theorize about according to the cumulative number of observations of particular phenomena, they would have chosen clouds rather than planets. Yet they chose planets, and for diverse reasons. Some reasons depended on preconceptions about how cosmology ought to be, or on arguments advanced by ancient philosophers, or on mystical numerology. Some were based on the physics of the day, others on mathematics or geometry. Some have turned out to have objective merit, others not. But every one of them amounted to this: it seemed to someone that the existing explanations could and should be improved upon.
One solves a problem by finding new or amended theories, containing explanations which do not have the deficiencies, but do retain the merits, of existing explanations (Figure 3.2). Thus, after a problem presents itself (stage 1), the next stage always involves
FIGURE 3.2
What I have described so far applies to all problem-solving, whatever the subject-matter or techniques of rational criticism that are involved.
If a theory about observable events is untestable — that is, if no possible observation would rule it out — then it cannot by itself explain why those events happen in the way they are observed to and not in some other way. For example, the ‘angel’ theory of planetary motion is untestable because no matter how planets moved, that motion could be attributed to angels; therefore the angel theory cannot explain the particular motions that we see, unless it is supplemented by an independent theory of how angels move. That is why there is a methodological rule in science which says that once an experimentally testable theory has passed the appropriate tests, any
FIGURE 3.3
I have already remarked that even in science most criticism does not consist of experimental testing. That is because most scientific criticism is directed not at a theory’s predictions but directly at the underlying explanations. Testing the predictions is just an indirect way (albeit an exceptionally powerful one, when available) of testing the explanations. In Chapter 1, I gave the example of the ‘grass cure’ — the theory that eating a kilogram of grass is a cure for the common cold. That theory and an infinity of others of the same ilk are readily testable. But we can criticize and reject them without bothering to do any experiments, purely on the grounds that they explain no more than the prevailing theories which they contradict, yet make new, unexplained assertions.
The stages of a scientific discovery shown in Figure 3.3 are seldom completed in sequence at the first attempt. There is usually repeated backtracking before each stage is completed — or rather,
Similarly, if our criticisms at stage 3 fail to distinguish between rival theories, we try to invent new methods of criticism. If that does not seem to work we may backtrack to stage 2 and try to sharpen our proposed solutions (and existing theories) so as to get more explanations and predictions out of them and make it easier to find fault with them. Or we may again backtrack to stage 1 and try to find better criteria for the explanations to meet. And so on.
Not only is there constant backtracking, but the many sub-problems all remain simultaneously active and are addressed opportunistically. It is only when the discovery is complete that a fairly sequential argument, in a pattern something like Figure 3.3, can be presented. It can begin with the latest and best version of the problem; then it can show how some of the rejected theories fail criticism; then it can set out the winning theory, and say why it survives criticism; then it can explain how one copes without the superseded theory; and finally it can point out some of the new problems that this discovery creates or allows for.
While a problem is still in the process of being solved we are dealing with a large, heterogeneous set of ideas, theories, and criteria, with many variants of each, all competing for survival. There is a continual turnover of theories as they are altered or replaced by new ones. So all the theories are being subjected to
For this reason, Popper has called his theory that knowledge can grow only by conjecture and refutation, in the manner of Figure 3.3, an
Both in science and in biological evolution, evolutionary success depends on the creation and survival of
We can now begin to see what justifies the inferences that we draw from observations. We never draw inferences from observations alone, but observations can become significant in the course of an argument when they reveal deficiencies in some of the contending explanations. We choose a scientific theory because arguments, only a few of which depend on observations, have satisfied us (for the moment) that the explanations offered by all known rival theories are less true, less broad or less deep.
Take a moment to compare Figures 3.1 and 3.3. Look how different these two conceptions of the scientific process are. Inductivism is observation- and prediction-based, whereas in reality science is problem- and explanation-based. Inductivism supposes that theories are somehow extracted or distilled from observations, or are justified by them, whereas in fact theories begin as unjustified conjectures in someone’s mind, which typically
When we succeed in solving a problem, scientific or otherwise, we end up with a set of theories which, though they are not problem-free, we find preferable to the theories we started with. What new attributes the new theories will have therefore depends on what we saw as the deficiencies in our original theories — that is, on what the problem was. Science is characterized by its problems as well as by its method. Astrologers who solve the problem of how to cast more intriguing horoscopes without risking being proved wrong are unlikely to have created much that deserves to be called scientific knowledge, even if they have used genuine scientific methods (such as market research) and are themselves quite satisfied with the solution. The problem in genuine science is always to understand some aspect of the fabric of reality, by finding explanations that are as broad and deep, and as true and specific, as possible.
When we think that we have solved a problem, we naturally adopt our new set of theories in preference to the old set. That is why science, regarded as explanation-seeking and problem-solving, raises no ‘problem of induction’. There is no mystery about why we should feel compelled tentatively to accept an explanation when it is the best explanation we can think of.
solipsism The theory that only one mind exists and that what appears to be external reality is only a dream taking place in that mind.
problem of induction Since scientific theories cannot be logically justified by observation, what does justify them?
induction A fictitious process by which general theories were supposed to be obtained from, or justified by, accumulated observations.
problem A problem exists when it seems that some of our theories, especially the explanations they contain, seem inadequate and worth trying to improve.
criticism Rational criticism compares rival theories with the aim of finding which of them offers the best explanations according to the criteria inherent in the problem.
science The
experimental test An experiment whose outcome may falsify one or more of a set of rival theories.
In fundamental areas of science, observations of ever smaller, more subtle effects are driving us to ever more momentous conclusions about the nature of reality. Yet these conclusions cannot be deduced by pure logic from the observations. So what makes them compelling? This is the ‘problem of induction’. According to inductivism, scientific theories are discovered by extrapolating the results of observations, and justified when corroborating observations are obtained. In fact, inductive reasoning is invalid, and it is impossible to extrapolate observations unless one already has an explanatory framework for them. But the refutation of inductivism, and also the real solution of the problem of induction, depends on recognizing that science is a process not of deriving predictions from observations, but of finding explanations. We seek explanations when we encounter a problem with existing ones. We then embark on a problem-solving process. New explanatory theories begin as unjustified conjectures, which are criticized and compared according to the criteria inherent in the problem. Those that fail to survive this criticism are abandoned. The survivors become the new prevailing theories, some of which are themselves problematic and so lead us to seek even better explanations. The whole process resembles biological evolution.
4
Criteria for Reality
The great physicist Galileo Galilei, who was arguably also the first physicist in the modern sense, made many discoveries not only in physics itself but also in the methodology of science. He revived the ancient idea of expressing general theories about nature in mathematical form, and improved upon it by developing the method of systematic experimental testing, which characterizes science as we know it. He aptly called such tests
The result was silence among Catholic scientists everywhere from then on … The effect of the trial and of the imprisonment was to put a total stop to the scientific tradition in the Mediterranean. (
How could a dispute about the layout of the solar system have such far-reaching consequences, and why did the participants pursue it so passionately? Because the real dispute was not about whether the solar system had one layout rather than another: it was about Galileo’s brilliant advocacy of a new and dangerous way of thinking about reality. Not about the existence of reality, for both Galileo and the Church believed in
Galileo understood that if his method was indeed reliable, then wherever it was applicable its conclusions had to be preferable to those obtained by any other method. Therefore he insisted that scientific reasoning took precedence not only over intuition and common sense, but also over religious doctrine and revelation. It was specifically that idea, and not the heliocentric theory as such, that the authorities considered dangerous. (And they were right, for if any idea can be said to have initiated the scientific revolution and the Enlightenment, and to have provided the secular foundation of modern civilization, it is that one.) It was forbidden to ‘hold or defend’ the heliocentric theory
It is an interesting historical footnote that in Galileo’s time it was not yet indisputable that the heliocentric theory gave better predictions than the geocentric theory. The available observations were not very accurate.
Their world-view was false, but it was not illogical. Admittedly they believed in revelation and traditional authority as sources of reliable knowledge. But they also had an independent reason for criticizing the reliability of knowledge obtained by Galileo’s methods. They could simply point out that no amount of observation or argument can ever prove that one explanation of a physical phenomenon is true and another false. As they would put it, God could produce the same observed effects in an infinity of different ways, so it is pure vanity and arrogance to claim to possess a way of knowing, merely through one’s own fallible observation and reason, which way He chose.
To some extent they were merely arguing for modesty, for a recognition of human fallibility. And if Galileo was claiming that the heliocentric theory was somehow proven, or nearly so, in some inductive sense, they had a point. If Galileo thought that his methods could confer on any theory an authority comparable to that which the Church claimed for its doctrines, they were right to criticize him as arrogant (or, as they would have put it, blasphemous), though of course by the same standard they were much more arrogant themselves.
So how can we defend Galileo against the Inquisition? What should Galileo’s defence have been in the face of this charge of claiming too much when he claimed that scientific theories contain reliable knowledge of reality? The Popperian defence of science as a process of problem-solving and explanation-seeking is not sufficient in itself. For the Church too was primarily interested in explanations and not predictions, and it was quite willing to let Galileo solve problems using any theory he chose. It was just that they did not accept that Galileo’s solutions (which they would call mere ‘mathematical hypotheses’) had any bearing on external reality. Problem-solving, after all, is a process that takes place entirely within human minds. Galileo may have seen the world as a book in which the laws of nature are written in mathematical symbols. But that is strictly a metaphor; there are no explanations in orbit out there with the planets. The fact is that all our problems and solutions are located within ourselves, having been created by ourselves. When we solve problems in science we arrive through argument at theories whose explanations seem best to us. So, without in any way denying that it is right and proper, and useful, for us to solve problems, the Inquisition and modern sceptics might legitimately ask what scientific problem-solving has to do with reality. We may find our ‘best explanations’ psychologically satisfying. We may find them helpful in making predictions. We certainly find them essential in every area of technological creativity. All this does justify our continuing to seek them and to use them in those ways. But why should we be obliged to take them as fact? The proposition that the Inquisition forced Galileo to endorse was in effect this: that the Earth is in fact at rest, with the Sun and planets in motion around it; but that the paths on which these astronomical bodies travel are laid out in a complex way which, when viewed from the vantage-point of the Earth, is also consistent with the Sun being at rest and the Earth and planets being in motion. Let me call that the ‘Inquisition’s theory’ of the solar system. If the Inquisition’s theory were true, we should still expect the heliocentric theory to make accurate predictions of the results of all Earth-based astronomical observations, even though it would be factually false. It would therefore seem that any observations that appear to support the heliocentric theory lend equal support to the Inquisition’s theory.
One could extend the Inquisition’s theory to account for more detailed observations that support the heliocentric theory, such as observations of the phases of Venus, and of the small additional motions (called ‘proper motions’) of some stars relative to the celestial sphere. To do this one would have to postulate even more complex manoeuvrings in space, governed by laws of physics very different from those that operate on our supposedly stationary Earth. But they would be different in precisely such a way as to remain observationally consistent with the Earth being in motion and the laws being the same out there as they are here. Many such theories are possible. Indeed, if making the right predictions were our only constraint, we could invent theories which say that anything we please is going on in space. For example, observations alone can never rule out the theory that the Earth is enclosed in a giant planetarium showing us a simulation of a heliocentric solar system; and that outside the planetarium there is anything you like, or nothing at all. Admittedly, to account for present-day observations the planetarium would also have to redirect our radar and laser pulses, capture our space probes, and indeed astronauts, send back fake messages from them and return them with appropriate moonrock samples, altered memories, and so on. It may be an absurd theory, but the point is that it cannot be ruled out by experiment. Nor is it valid to rule out any theory solely on the grounds that it is ‘absurd’: the Inquisition, together with most of the human race in Galileo’s time, thought it the epitome of absurdity to claim that the Earth is moving. After all, we cannot feel it moving, can we? When it does move, as in an earthquake, we feel that unmistakably. It is said that Galileo delayed publicly advocating the heliocentric theory for some years, not for fear of the Inquisition but simply for fear of ridicule.
To us, the Inquisition’s theory looks hopelessly contrived. Why should we accept such a complicated and
But is there? Does the Inquisition’s theory really provide alternative explanations without having to introduce the counter-intuitive ‘complication’ of the heliocentric system? Let us take a closer look at how the Inquisition’s theory explains things. It explains the apparent stationarity of the Earth by saying that it
The heliocentric theory explains them by saying that the planets are seen to move in complicated loops across the sky because they are really moving in simple circles (or ellipses) in space, but the Earth is moving as well. The Inquisition’s explanation is that the planets are seen to move in complicated loops because they really are moving in complicated loops in space;
To understand planetary motions in terms of the Inquisition’s theory, it is essential that one should understand this principle, for the constraints it imposes are the basis of every detailed explanation that one can make under the theory. For example, if one were asked why a planetary conjunction occurred on such-and-such a date, or why a planet backtracked across the sky in a loop of a particular shape, the answer would always be ‘because that is how it would look if the heliocentric theory were true’. So here is a cosmology — the Inquisition’s cosmology — that can be understood only in terms of a different cosmology, the heliocentric cosmology that it contradicts but faithfully mimics.
If the Inquisition had seriously tried to understand the world in terms of the theory they tried to force on Galileo, they would also have understood its fatal weakness, namely that it fails to solve the problem it purports to solve. It does
Therefore we are right to regard the Inquisition’s theory as a convoluted elaboration of the heliocentric theory, rather than vice versa. We have arrived at this conclusion not by judging the Inquisition’s theory against modern cosmology, which would have been a circular argument, but by insisting on taking the Inquisition’s theory seriously, in its own terms, as an explanation of the world. I have mentioned the grass-cure theory, which can be ruled out without experimental testing because it contains no explanation. Here we have a theory which can also be ruled out without experimental testing, because it contains a bad explanation — an explanation which, in its own terms, is worse than its rival.
As I have said, the Inquisition were realists. Yet their theory has this in common with solipsism: both of them draw an arbitrary boundary beyond which, they claim, human reason has no access — or at least, beyond which problem-solving is no path to understanding. For solipsists, the boundary tightly encloses their own brains, or perhaps just their abstract minds or incorporeal souls. For the Inquisition, it enclosed the entire Earth. Some present-day Creationists believe in a similar boundary, not in space but in time, for they believe that the universe was created only six thousand years ago, complete with misleading evidence of earlier events.
There is a large class of related theories here, but we can usefully regard them all as variants of solipsism. They differ in where they draw the boundary of reality (or the boundary of that part of reality which is comprehensible through problem-solving), and they differ in whether, and how, they seek knowledge outside that boundary. But they all consider scientific rationality and other problem-solving to be inapplicable outside the boundary — a mere game. They might concede that it can be a satisfying and useful game, but it is nevertheless only a game from which no valid conclusion can be drawn about the reality outside.
They are also alike in their basic objection to problem-solving as a means of creating knowledge, which is that it does not deduce its conclusions from any ultimate source of justification. Within the respective boundaries that they choose, the adherents of all these theories do rely on the methodology of problem-solving, confident that seeking the best available explanation is also the way of finding the truest available theory. But for the truth of what lies outside those boundaries, they look elsewhere, and what they all seek is a source of ultimate justification. For religious people, divine revelation can play that role. Solipsists trust only the direct experience of their own thoughts, as expressed in Rene Descartes’s classic argument
Despite Descartes’s desire to base his philosophy on this supposedly firm foundation, he actually allowed himself many other assumptions, and he was certainly no solipsist. Indeed, there can have been very few, if any, genuine solipsists in history. Solipsism is usually defended only as a means of attacking scientific reasoning, or as a stepping-stone to one of its many variants. By the same token, a good way of defending science against a variety of criticisms, and of understanding the true relationship between reason and reality, is to consider the argument against solipsism.
There is a standard philosophical joke about a professor who gives a lecture in defence of solipsism. So persuasive is the lecture that as soon as it ends, several enthusiastic students hurry forward to shake the professor’s hand. ‘Wonderful. I agreed with every word,’ says one student earnestly. ‘So did I,’ says another. ‘I am very gratified to hear it,’ says the professor. ‘One so seldom has the opportunity to meet fellow solipsists.’
Implicit in this joke there is a genuine argument against solipsism. One could put it like this. What, exactly, was the theory that the students in the story were agreeing with? Was it the professor’s theory, that they themselves do not exist because only the professor exists? To believe that, they would first have had to find some way round Descartes’s
This argument is trying to show that solipsism is literally indefensible, because by accepting such a defence one is implicitly contradicting it. But our solipsistic professor could try to evade that argument by saying something like this: ‘I can and do consistently defend solipsism. Not against other people, for there are no other people, but against opposing arguments. These arguments come to my attention through dream-people, who behave as if they were thinking beings whose ideas often oppose mine. My lecture and the arguments it contains were not intended to persuade these dream-people, but to persuade myself — to help me to clarify my ideas.’
However, if there are sources of ideas that behave as
Moreover, this outer region is amenable to scientific study, using the methods of Galileo. Because I have now been forced to define that region as part of myself, solipsism no longer has any argument against the validity of such study, which is now defined as no more than a form of introspection. Solipsism allows, indeed assumes, that knowledge of oneself can be obtained through introspection. It cannot declare the entities and processes being studied to be unreal, since the reality of the self is its basic postulate.
Thus we see that if we take solipsism seriously — if we assume that it is true and that all valid explanations must scrupulously conform to it — it self-destructs. How exactly does solipsism, taken seriously, differ from its common-sense rival, realism? The difference is based on no more than a renaming scheme. Solipsism insists on referring to objectively different things (such as external reality and my unconscious mind, or introspection and scientific observation) by the same names. But then it has to reintroduce the distinction through explanations in terms of something like the ‘outer part of myself.’ But no such extra explanations would be necessary without its insistence on an inexplicable renaming scheme. Solipsism must also postulate the existence of an additional class of processes — invisible, inexplicable processes which give the mind the illusion of living in an external reality. The solipsist, who believes that nothing exists other than the contents of one mind, must also believe that that mind is a phenomenon of greater multiplicity than is normally supposed. It contains other-people-like thoughts, planet-like thoughts and laws-of-physics-like thoughts. These thoughts are real. They develop in a complex way (or pretend to), and they have enough autonomy to surprise, disappoint, enlighten or thwart that other class of thoughts which call themselves ‘I.’ Thus the solipsist’s explanation of the world is in terms of interacting thoughts rather than interacting objects. But those thoughts are real, and interact according to the same rules that the realist says govern the interaction of objects. Thus solipsism, far from being a world-view stripped to its essentials, is actually just realism disguised and weighed down by additional unnecessary assumptions — worthless baggage, introduced only to be explained away.
By this argument we can dispense with solipsism and all the related theories. They are all indefensible. Incidentally, we have already rejected one world-view on these grounds, namely positivism (the theory that all statements other than those describing or predicting observations are meaningless). As I remarked in Chapter 1, positivism asserts its own meaninglessness, and therefore cannot be consistently defended.
So we can continue, reassured, with common-sense realism and the pursuit of explanations by scientific methods. But in the light of this conclusion, what can we say about the arguments that made solipsism and its relatives superficially plausible, namely that they could neither be proved false nor ruled out by experiment? What is the status of those arguments now? If we have neither proved solipsism false nor ruled it out by experiment, what
There is an assumption built into this question. It is that theories can be classified in a hierarchy, ‘mathematical’ —> ‘scientific’ —> ‘philosophical’, of decreasing intrinsic reliability. Many people take the existence of this hierarchy for granted, despite the fact that these judgements of comparative reliability depend entirely on philosophical arguments, arguments that classify themselves as quite unreliable! In fact, the idea of this hierarchy is a cousin of the reductionist mistake I discussed in Chapter 1 (the theory that microscopic laws and phenomena are more fundamental than emergent ones). The same assumption occurs in inductivism, which supposes that we can be absolutely certain of the conclusions of mathematical arguments because they are deductive, reasonably sure of scientific arguments because they are ‘inductive’, and forever undecided about philosophical arguments, which it sees as little more than matters of taste.
But none of that is true. Explanations are not justified by the means by which they were derived; they are justified by their superior ability, relative to rival explanations, to solve the problems they address. That is why the argument that a theory is
Nor is there that hierarchy of reliability from mathematical to scientific to philosophical arguments. Some philosophical arguments, including the argument against solipsism, are far more compelling than any scientific argument. Indeed, every scientific argument assumes the falsity not only of solipsism, but also of other philosophical theories including any number of variants of solipsism that might contradict specific parts of the scientific argument. I shall also show (in Chapter 10) that even purely mathematical arguments derive their reliability from the physical and philosophical theories that underpin them, and therefore that they cannot, after all, yield absolute certainty.
Having embraced realism, we are continually faced with decisions as to whether entities referred to in competing explanations are real or not. Deciding that they are not real — as we did in the case of the ‘angel’ theory of planetary motion — is equivalent to rejecting the corresponding explanation. Thus, in searching for and judging explanations, we need more than just a refutation of solipsism. We need to develop reasons for accepting or rejecting the existence of entities that may appear in contending theories; in other words, we need a criterion for reality. We should not, of course, expect to find a final or an infallible criterion. Our judgements of what is or is not real always depend on the various explanations that are available to us, and sometimes change as our explanations improve. In the nineteenth century, few things would have been regarded more confidently as real than the force of gravity. Not only did it figure in Newton’s then-unrivalled system of laws, but everyone could feel it, all the time, even with their eyes shut — or so they thought. Today we understand gravity through Einstein’s theory rather than Newton’s, and we know that no such force exists. We do
Not only do explanations change, but our criteria and ideas about what should count as an explanation are gradually changing (improving) too. So the list of acceptable modes of explanation will always be open-ended, and consequently the list of acceptable criteria for reality must be open-ended too. But what is it about an explanation — given that, for whatever reasons, we find it satisfactory — that should make us classify some things as real and others as illusory or imaginary?
James Boswell relates in his
But Dr Johnson’s idea is more than a refutation of solipsism. It also illustrates the criterion for reality that is used in science, namely,
By the way, Dr Johnson did not directly kick the rock either. A person is a mind, not a body. The Dr Johnson who performed the experiment was a mind, and that mind directly ‘kicked’ only some nerves, which transmitted signals to muscles, which propelled his foot towards the rock. Shortly afterwards, Dr Johnson perceived being ‘kicked back’ by the rock, but again only indirectly, after the impact had set up a pressure pattern in his shoe, and then in his skin, and had then led to electrical impulses in his nerves, and so forth. Dr Johnson’s mind, like Galileo’s and everyone else’s, ‘kicked’ nerves and ‘was kicked back’ by nerves, and inferred the existence and properties of reality from those interactions alone.
My discussion of shadows and parallel universes in Chapter 2 revolved around questions of what does or does not exist, and implicitly around what should or should not count as evidence of existence. I used Dr Johnson’s criterion. Consider again the point X on the screen in Figure 2.7 (p. 41), which is illuminated when only two slits are open but goes dark when two further slits are opened. I said that it is an ‘inescapable’ conclusion that
Can we likewise conclude from Dr Johnson’s criterion that ‘planets move as if they were being pushed by angels; therefore angels exist’? No, but only because we have a better explanation. The angel theory of planetary motion is not
Similarly, to postulate that angels come through the other slits and deflect our photons would be better than nothing. But we can do better than that. We know exactly how those angels would have to behave: very much like photons. So we have a choice between an explanation in terms of invisible angels pretending to be photons, and one in terms of invisible photons. In the absence of an independent explanation for why angels should pretend to be photons, that latter explanation is superior.
We do not feel the presence of our counterparts in other universes. Nor did the Inquisition feel the Earth moving beneath their feet. And yet, it moves! Now, consider what it would feel like if we did exist in multiple copies, interacting only through the imperceptibly slight effects of quantum interference. This is the equivalent of what Galileo did when he analysed how the Earth would feel to us if it were moving in accordance with the heliocentric theory. He discovered that the motion would be imperceptible. Yet perhaps ‘imperceptible’ is not quite the right word here. Neither the motion of the Earth nor the presence of parallel universes is directly perceptible, but then neither is anything else (except perhaps, if Descartes’s argument holds, your own bare existence). But both things
It is not how hard something kicks back that makes the theory of its existence compelling. What matters is its role in the explanations that such a theory provides. I have given examples from physics where very tiny ‘kicks’ lead us to momentous conclusions about reality because we have no other explanation. The converse can also happen: if there is no clear-cut winner among the contending explanations, then even a very powerful ‘kick’ may not convince us that the supposed source has independent reality. For example, you may one day see terrifying monsters attacking you — and then wake up. If the explanation that they originated within your own mind seems adequate, it would be irrational for you to conclude that there really are such monsters out there. If you feel a sudden pain in your shoulder as you walk down a busy street, and look around, and see nothing to explain it, you may wonder whether the pain was caused by an unconscious part of your own mind, or by your body, or by something outside. You may consider it
Whenever I have used Dr Johnson’s criterion to argue for the reality of something, one attribute in particular has always been relevant, namely
Thus the observed complexity in the structure or behaviour of an entity is part of the evidence that that entity is real. But it is not sufficient evidence. We do not, for example, deem our reflections in a mirror to be real people. Of course, illusions themselves are real physical processes. But the illusory entities they show us need not be considered real, because they derive their complexity from somewhere else. They are not
If, according to the simplest explanation, an entity is complex and autonomous, then that entity is real.
Computational
If a substantial amount of computation would be required to give us the illusion that a certain entity is real, then that entity is real.
If Dr Johnson’s leg invariably rebounded when he extended it, then the source of his illusions (God, a virtual-reality machine, or whatever) would need to perform only a simple computation to determine when to give him the rebounding sensation (something like ‘if leg-is-extended then rebound …’). But to reproduce what Dr Johnson experienced in a realistic experiment it would be necessary to take into account where the rock is, and whether Dr Johnson’s foot is going to hit or miss it, and how heavy, how hard and how firmly lodged it is, and whether anyone else has just kicked it out of the way, and so on — a vast computation.
Physicists trying to cling to a single-universe world-view sometimes try to explain quantum interference phenomena as follows: ‘No shadow photons exist,’ they say, ‘and what carries the effect of the distant slits to the photon we see is — nothing. Some sort of Action at a distance (as in Newton’s law of gravity) simply makes photons change course when a distant slit is opened.’ But there is nothing ‘simple’ about this supposed action at a distance. The appropriate physical law would have to say that a photon is affected by distant objects exactly
The physicist David Bohm constructed a theory with predictions identical to those of quantum theory, in which a sort of wave accompanies every photon, washes over the entire barrier, passes through the slits and interferes with the photon that we see. Bohm’s theory is often presented as a single-universe variant of quantum theory. But according to Dr Johnson’s criterion, that is a mistake. Working out what Bohm’s invisible wave will do requires the same computations as working out what trillions of shadow photons will do. Some parts of the wave describe us, the observers, detecting and reacting to the photons; other parts of the wave describe other versions of us, reacting to photons in different positions. Bohm’s modest nomenclature — referring to most of reality as a ‘wave’ — does not change the fact that in his theory reality consists of large nets of complex entities, each of which can perceive other entities in its own set, but can only indirectly perceive entities in other sets. These sets of entities are, in other words, parallel universes.
I have described Galileo’s new conception of our relationship with external reality as a great methodological discovery. It gave us a new, reliable form of reasoning involving observational evidence. That is indeed one aspect of his discovery: scientific reasoning is reliable, not in the sense that it certifies that any particular theory will survive unchanged, even until tomorrow, but in the sense that we are right to rely on it. For we are right to seek solutions to problems rather than sources of ultimate justification. Observational evidence is indeed evidence, not in the sense that any theory can be deduced, induced or in any other way inferred from it, but in the sense that it can constitute a genuine reason for preferring one theory to another.
But there is another side to Galileo’s discovery which is much less often appreciated. The reliability of scientific reasoning is not just an attribute of
Galileo may have thought this self-evident, but it is not. It is a substantive assertion about what physical reality is like. Logically, reality need not have had this science-friendly property, but it does — and in abundance. Galileo’s universe is saturated with evidence. Copernicus had assembled evidence for his heliocentric theory in Poland. Tycho Brahe had collected his evidence in Denmark, and Kepler had in Germany. And by pointing his telescope at the skies over Italy, Galileo gained greater access to the same evidence. Every part of the Earth’s surface, on every clear night, for billions of years, has been deluged with evidence about the facts and laws of astronomy. For many other sciences evidence has similarly been on display, to be viewed more clearly in modern times by microscopes and other instruments. Where evidence is not already physically present, we can bring it into existence with devices such as lasers and pierced barriers — devices which it is open to anyone, anywhere and at any time, to build. And the evidence will be the same, regardless of who reveals it. The more fundamental a theory is, the more readily available is the evidence that bears upon it (to those who know how to look), not just on Earth but throughout the multiverse.
Thus physical reality is
heliocentric theory The theory that the Earth moves round the Sun, and spins on its own axis.
geocentric theory The theory that the Earth is at rest and other astronomical bodies move around it.
realism The theory that an external physical universe exists objectively and affects us through our senses.
Occam’s razor (My formulation)
Dr Johnson’s criterion (My formulation)
self-similarity Some parts of physical reality (such as symbols, pictures or human thoughts) resemble other parts. The resemblance may be concrete, as when the images in a planetarium resemble the night sky; more importantly, it may be abstract, as when a statement in quantum theory printed in a book correctly explains an aspect of the structure of the multiverse. (Some readers may be familiar with the geometry of fractals; the notion of self-similarity defined here is much broader than the one used in that field.)
complexity theory The branch of computer science concerned with what resources (such as time, memory capacity or energy) are required to perform given classes of computations.
Although solipsism and related doctrines are logically self-consistent, they can be comprehensively refuted simply by taking them seriously as explanations. Although they all claim to be simplified world-views, such an analysis shows them to be indefensible over-elaborations of realism. Real entities behave in a complex and autonomous way, which can be taken as the criterion for reality: if something ‘kicks back’, it exists. Scientific reasoning, which uses observation not as a basis for extrapolation but to distinguish between otherwise equally good explanations, can give us genuine knowledge about reality.
5
Virtual Reality
The theory of computation has traditionally been studied almost entirely in the abstract, as a topic in pure mathematics. This is to miss the point of it. Computers are physical objects, and computations are physical processes. What computers can or cannot compute is determined by the laws of physics alone, and not by pure mathematics. One of the most important concepts of the theory of computation is
The best-known physical manifestation of universality is an area of technology that has been mooted for decades but is only now beginning to take off, namely
Since we experience our environment through our senses, any virtual-reality generator must be able to manipulate our senses, overriding their normal functioning so that we can experience the specified environment instead of our actual one. This may sound like something out of Aldous Huxley’s
I shall use the term
Present-day video games do allow interaction between the player and the game objects, but usually only a small fraction of the user’s sensory range is covered. The rendered ‘environment’ consists of images on a small screen, and a proportion of the sounds that the user hears. But virtual-reality video games more worthy of the term do already exist. Typically, the user wears a helmet with built-in headphones and two television screens, one for each eye, and perhaps special gloves and other clothing lined with electrically controlled effectors (pressure-generating devices). There are also sensors that detect the motion of parts of the user’s body, especially the head. The information about what the user is doing is passed to a computer, which calculates what the user should be seeing, hearing and feeling, and responds by sending appropriate signals to the image generators (Figure 5.1). When the user looks to the left or right, the pictures on the two television screens pan, just as a real field of view would, to show whatever is on the user’s left or right in the simulated world. The user can reach out and pick up a simulated object, and it feels real because the effectors in the glove generate the ‘tactile feedback’ appropriate to whatever position and orientation the object is seen in.
Game-playing and vehicle simulation are the main uses of virtual reality at present, but a plethora of new uses is envisaged for the near future. It will soon be commonplace for architects to create virtual-reality prototypes of buildings in which clients can walk around and try out modifications at a stage when they can be implemented relatively effortlessly. Shoppers will be able to walk (or indeed fly) around in virtual-reality supermarkets without ever leaving home, and without ever encountering crowds of other shoppers or listening to music they don’t like. Nor will they necessarily be alone in the simulated supermarket, for any number of people can go shopping together in virtual reality, each being provided with images of the others as well as of the supermarket, without any of them having to leave home. Concerts and conferences will be held without venues; not only will there be savings on the cost of the auditorium, and on accommodation and travel, but there is also the benefit that all the participants could be allowed to sit in the best seats simultaneously.
FIGURE 5.1
If Bishop Berkeley or the Inquisition had known of virtual reality, they would probably have seized upon it as the perfect illustration of the deceitfulness of the senses, backing up their arguments against scientific reasoning. What would happen if the pilot of a flight simulator tried to use Dr Johnson’s test for reality? Although the simulated aircraft and its surroundings do not really exist, they do ‘kick back’ at the pilot just as they would if they did exist. The pilot can open the throttle and hear the engines roar in response, and feel their thrust through the seat, and see them through the window, vibrating and blasting out hot gas, in spite of the fact that there are no engines there at all. The pilot may experience flying the aircraft through a storm, and hear the thunder and see the rain driving against the windscreen, though none of those things is there in reality. What is outside the cockpit in reality is just a computer, some hydraulic jacks, television screens and loudspeakers, and a perfectly dry and stationary room.
Does this invalidate Dr Johnson’s refutation of solipsism? No. His conversation with Boswell could just as well have taken place inside a flight simulator. ‘I refute it
Nevertheless, the feasibility of virtual reality may seem an uncomfortable fact for those of us whose world-view is based on science. Just think what a virtual-reality generator is, from the point of view of physics. It is of course a physical object, obeying the same laws of physics as all other objects do. But it can ‘pretend’ otherwise. It can pretend to be a completely different object, obeying false laws of physics. Moreover, it can pretend this in a complex and autonomous way. When the user kicks it to test the reality of what it purports to be, it kicks back as if it really were that other, non-existent object, and as if the false laws were true. If we had only such objects to learn physics from, we would learn the wrong laws. (Or would we? Surprisingly, things are not as straightforward as that. I shall return to this question in the next chapter, but first we must consider the phenomenon of virtual reality more carefully.)
On the face of it, Bishop Berkeley would seem to have a point, that virtual reality is a token of the coarseness of human faculties — that its feasibility should warn us of inherent limitations on the capacity of human beings to understand the physical world. Virtual-reality rendering might seem to fall into the same philosophical category as illusions, false trails and coincidences, for these too are phenomena which seem to show us something real but actually mislead us. We have seen that the scientific world-view can accommodate — indeed, expects — the existence of highly misleading phenomena. It is
These may seem rather lofty claims to make on behalf of flight simulators and video games. But it is the phenomenon of virtual reality in general that occupies a central place in the scheme of things, not any particular virtual-reality generator. So I want to consider virtual reality in as general a way as possible. What, if any, are its ultimate limits? What sorts of environment can in principle be artificially rendered, and with what accuracy? By ‘in principle’ I mean ignoring transient limitations of technology, but taking into account all limitations that may be imposed by the principles of logic and physics.
The way I have defined it, a virtual-reality generator is a machine that gives the user experiences of some real or imagined environment (such as an aircraft) which is, or seems to be, outside the user’s mind. Let me call those
One can conceive of a technology beyond virtual reality, which could also induce specified
Another type of experience which certainly cannot be artificially rendered is a
Having excluded logically impossible experiences and internal experiences, we are left with the vast class of
I define the
Virtual reality always involves the creation of artificial sense-impressions — image generation — so let us begin there. What constraints do the laws of physics impose on the ability of image generators to create artificial images, to render detail and to cover their respective sensory ranges? There are obvious ways in which the detail rendered by a present-day flight simulator could be improved, for example by using higher-definition televisions. But can a realistic aircraft and its surroundings be rendered, even in principle, with the ultimate level of detail — that is, with the greatest level of detail the pilot’s senses can resolve? For the sense of hearing, that ultimate level has almost been achieved in hi-fi systems, and for sight it is within reach. But what about the other senses? Is it obvious that it is physically possible to build a general-purpose chemical factory that can produce any specified combination of millions of different odoriferous chemicals at a moment’s notice? Or a machine which, when inserted into a gourmet’s mouth, can assume the taste and texture of any possible dish — to say nothing of creating the hunger and thirst that precede the meal and the physical satisfaction that follows it? (Hunger and thirst, and other sensations such as balance and muscle tension, are perceived as being internal to the body, but they are external to the mind and are therefore potentially within the scope of virtual reality.)
table 5.1
The difficulty of making such machines may be merely technological, but what about this: suppose that the pilot of a flight simulator aims the simulated aircraft vertically upwards at high speed and then switches off the engines. The aircraft should continue to rise until its upward momentum is exhausted, and then begin to fall back with increasing speed. The whole motion is called
Could one remedy this deficiency in flight simulators by giving them the capacity to simulate free fall on the ground (in which case they could also be used as
However, to simulate free fall a flight simulator would not have to provide real weightlessness, only the experience of weightlessness, and various techniques which do not involve free fall have been used to approximate that. For example, astronauts train under water in spacesuits that are weighted so as to have zero buoyancy. Another technique is to use a harness that carries the astronaut through the air under computer control to mimic weightlessness. But these methods are crude, and the sensations they produce could hardly be mistaken for the real thing, let alone be indistinguishable from it. One is inevitably supported by forces on one’s skin, which one cannot help feeling. Also, the characteristic sensation of falling, experienced through the sense organs in the inner ear, is not rendered at all. One can imagine further improvements: the use of supporting fluids with very low viscosity; drugs that create the sensation of falling. But could one ever render the experience perfectly, in a flight simulator that remained firmly on the ground? If not, then there would be an absolute limit on the fidelity with which flying experiences can ever be rendered artificially. To distinguish between a real aircraft and a simulation, a pilot would only have to fly it in a free-fall trajectory and see whether weightlessness occurred or not.
Stated generally, the problem is this. To override the normal functioning of the sense organs, we must send them images resembling those that would be produced by the environment being simulated. We must also intercept and suppress the images produced by the user’s actual environment. But these image manipulations are physical operations, and can be performed only by processes available in the real physical world. Light and sound can be physically absorbed and replaced fairly easily. But as I have said, that is not true of gravity: the laws of physics do not happen to permit it. The example of weightlessness seems to suggest that accurate simulation of a weightless environment by a machine that was not actually in flight might violate the laws of physics.
But that is not so. Weightlessness and all other sensations can, in principle, be rendered artificially. Eventually it will become possible to bypass the sense organs altogether and directly stimulate the nerves that lead from them to the brain.
So, we do not need general-purpose chemical factories or impossible artificial-gravity machines. When we have understood the olfactory organs well enough to crack the code in which they send signals to the brain when they detect scents, a computer with suitable connections to the relevant nerves could send the brain the same signals. Then the brain could experience the scents without the corresponding chemicals ever having existed. Similarly, the brain could experience the authentic sensation of weightlessness even under normal gravity. And of course, no televisions or headphones would be needed either.
Thus the laws of physics impose no limit on the range accuracy of image generators. There is no possible sensation, or sequence of sensations, that human beings are capable of experiencing that could not in principle be rendered artificially. One day, as a generalization of movies, there will be what Aldous Huxley in
That every possible sensation can be artificially rendered is one thing; that it will one day be possible, once and for all, to build a tingle machine that can render any possible sensation calls for something extra: universality. A feelie machine with that capability would be a
The possibility of a universal image generator forces us to change our perspective on the question of the ultimate limits of feelie technology. At present, progress in such technology is all about inventing more diverse and more accurate ways of stimulating sense organs. But that class of problems will disappear once we have cracked the codes used by our sense organs, and developed a sufficiently delicate technique for stimulating nerves. Once we can artificially generate nerve signals accurately enough for the brain not to be able to perceive the difference between those signals and the ones that our sense organs would send, increasing the accuracy of this technique will no longer be relevant. At that point the technology will have come of age, and the challenge for further improvement will be not how to render given sensations, but which sensations to render. In a limited domain this is happening today, as the problem of how to get the highest possible fidelity of sound reproduction has come close to being solved with the compact disc and the present generation of sound-reproduction equipment. Soon there will no longer be such a thing as a hi-fi enthusiast. Enthusiasts for sound reproduction will no longer be concerned with how accurate the reproduction is — it will routinely be accurate to the limit of human discrimination — but only with what sounds should be recorded in the first place.
If an image generator is playing a recording taken from life, its
A universal image generator does not of course contain recordings of all possible images. What makes it universal is that, given a recording of any possible image, it can evoke the corresponding sensation in the user. With a universal auditory sensation generator — the ultimate hi-fi system — the recording might be given in the form of a compact disc. To accommodate auditory sensations that last longer than the disc’s storage capacity allows, we must incorporate a mechanism that can feed any number of discs consecutively into the machine. The same proviso holds for all other universal image generators, for strictly speaking an image generator is not universal unless it includes a mechanism for playing recordings of unlimited duration. Furthermore, when the machine has been playing for a long time it will require maintenance, otherwise the images it generates will become degraded or may cease altogether. These and similar considerations are all connected with the fact that considering a single physical object in isolation from the rest of the universe is always an approximation. A universal image generator is universal only in a certain external context, in which it is assumed to be provided with such things as an energy supply, a cooling mechanism and periodic maintenance. That a machine has such external needs does not disqualify it from being regarded as a ‘single, universal machine’ provided that the laws of physics do not forbid these needs from being met, and provided that meeting those needs does not necessitate changing the machine’s design.
Now, as I have said, image generation is only one component of virtual reality: there is the all-important interactive element as well. A virtual-reality generator can be thought of as an image generator whose images are not wholly specified in advance but depend partly on what the user chooses to do. It does not play its user a predetermined sequence of images, as a movie or a feelie would. It composes the images as it goes along, taking into account a continuous stream of information about what the user is doing. Present-day virtual-reality generators, for instance, keep track of the position of the user’s head, using motion sensors as shown in Figure 5.1. Ultimately they will have to keep track of everything the user does that could affect the subjective appearance of the emulated environment. The environment may include the user’s own body: since the body is external to the mind, the specification of a virtual-reality environment may legitimately include the requirement that the user’s body should seem to have been replaced by a new one with specified properties.
The human mind affects the body and the outside world by emitting nerve impulses. Therefore a virtual-reality generator can in principle obtain all the information it needs about what the user is doing by intercepting the nerve signals coming from the user’s brain. Those signals, which would have gone to the user’s body, can instead be transmitted to a computer and decoded to determine exactly how the user’s body would have moved. The signals sent back to the brain by the computer can be the same as those that would have been sent by the body if it were in the specified environment. If the specification called for it, the simulated body could also react differently from the real one, for example to enable it to survive in simulations of environments that would kill a real human body, or to simulate malfunctions of the body.
I had better admit here that it is probably too great an idealization to say that the human mind interacts with the outside world
From the foregoing discussion it seems that any virtual-reality generator must have at least three principal components:
a set of sensors (which may be nerve-impulse detectors) to detect what the user is doing,
a set of image generators (which may be nerve-stimulation devices), and
a computer in control.
My account so far has concentrated on the first two of these, the sensors and the image generators. That is because, at the present primitive state of the technology, virtual-reality research is still preoccupied with image generation. But when we look beyond transient technological limitations, we see that image generators merely provide the interface — the ‘connecting cable’ — between the user and the true virtual-reality generator, which is the computer. For it is entirely within the computer that the specified environment is simulated. It is the computer that provides the complex and autonomous ‘kicking back’ that justifies the word ‘reality’ in ‘virtual reality’. The connecting cable contributes nothing to the user’s perceived environment, being from the user’s point of view ‘transparent’, just as we naturally do not perceive our own nerves as being part of our environment. Thus virtual-reality generators of the future would be better described as having only one principal component, a computer, together with some trivial peripheral devices.
FIGURE 5.2.
I do not want to understate the practical problems involved in intercepting all the nerve signals passing into and out of the human brain, and in cracking the various codes involved. But this is a finite set of problems that we shall have to solve once only. After that, the focus of virtual-reality technology will shift once and for all to the computer, to the problem of programming it to render various environments. What environments we shall be able to render will no longer depend on what sensors and image generators we can build, but on what environments we can specify. ‘Specifying’ an environment will mean supplying a program for the computer, which is the heart of the virtual-reality generator.
Because of the interactive nature of virtual reality, the concept of an accurate rendering is not as straightforward for virtual reality as it is for image generation. As I have said, the accuracy of an image generator is a measure of the closeness of the rendered images to the intended ones. But in virtual reality there are usually no particular
The number of possible tennis games that can be played in a single environment — that is, rendered by a single program — is very large. Consider a rendering of the Centre Court at Wimbledon from the point of view of a player. Suppose, very conservatively, that in each second of the game the player can move in one of two perceptibly different ways (perceptibly, that is, to the player). Then after two seconds there are four possible games, after three seconds, eight possible games, and so on. After about four minutes the number of possible games that are perceptibly different from one another exceeds the number of atoms in the universe, and it continues to rise exponentially. For a program to render that one environment accurately, it must be capable of responding in any one of those myriad, perceptibly different ways, depending on how the player chooses to behave. If two programs respond in the same way to every possible action by the user, then they render the same environment; if they would respond perceptibly differently to even one possible action, they render different environments.
That remains so even if the user never happens to perform the action that shows up the difference. The environment a program renders (for a given type of user, with a given connecting cable) is a logical property of the program, independent of whether the program is ever executed. A rendered environment is accurate in so far as it
This gives rise to an important difference between image generation and virtual-reality generation. The accuracy of an image generator’s rendering can in principle be experienced, measured and certified by the user, but the accuracy of a virtual-reality rendering never can be. For example, if you are a music-lover and know a particular piece well enough, you can listen to a performance of it and confirm that it is a perfectly accurate rendering, in principle down to the last note, phrasing, dynamics and all. But if you are a tennis fan who knows Wimbledon’s Centre Court perfectly, you can never confirm that a purported rendering of it is accurate. Even if you are free to explore the rendered Centre Court for however long you like, and to ‘kick’ it in whatever way you like, and even if you have equal access to the real Centre Court for comparison, you cannot ever certify that the program does indeed render the real location. For you can never know what would have happened if only you had explored a little more, or looked over your shoulder at the right moment. Perhaps if you had sat on the rendered umpire’s chair and shouted ‘fault!’, a nuclear submarine would have surfaced through the grass and torpedoed the Scoreboard.
On the other hand, if you find even one difference between the rendering and the intended environment, you can immediately certify that the rendering is inaccurate. Unless, that is, the rendered environment has some intentionally unpredictable features. For example, a roulette wheel is designed to be unpredictable. If we make a film of roulette being played in a casino, that film may be laid to be accurate if the numbers that are shown coming up in the film are the same numbers that actually came up when the film was made. The film will show the same numbers every time it is played: it is totally predictable. So an accurate
How do we recognize unpredictable environments, and how do we confirm that purportedly random numbers are distributed fairly? We check whether a rendering of a roulette wheel meets its specifications in the same way that we check whether the real thing does: by kicking (spinning) it, and seeing whether it responds as advertised. We make a large number of similar observations and perform statistical tests on the outcomes. Again, however many tests we carry out, we cannot certify that the rendering is accurate, or even that it is probably accurate. For however randomly the numbers seem to come up, they may nevertheless fall into a secret pattern that would allow a user in the know to predict them. Or perhaps if we had asked out loud the date of the battle of Waterloo, the next two numbers that came up would invariably show that date: 18, 15. On the other hand, if the sequence that comes up looks unfair, we cannot know for sure that it is, but we might be able to say that the rendering is
When discussing image generators, I said that the accuracy of a rendered image depends on the sharpness and other attributes of the user’s senses. With virtual reality that is the least of our problems. Certainly, a virtual-reality generator that renders a given environment perfectly for humans will not do so for dolphins or extraterrestrials. To render a given environment for a user with given types of sense organs, a virtual-reality generator must be physically adapted to such sense organs and its computer must be programmed with their characteristics. However, the modifications that have to be made to accommodate a given species of user are finite, and need only be carried out once. They amount to what I have called constructing a new ‘connecting cable’. As we consider environments of ever greater complexity, the task of rendering environments for a given type of user becomes dominated by writing the programs for calculating what those environments will do; the species-specific part of the task, being of fixed complexity, becomes negligible by comparison. This discussion is about the ultimate limits of virtual reality, so we are considering arbitrarily accurate, long and complex renderings. That is why it makes sense to speak of ‘rendering a given environment’ without specifying who it is being rendered for.
We have seen that there is a well-defined notion of the accuracy of a virtual-reality rendering: accuracy is the closeness, as far as is perceptible, of the rendered environment to the intended one. But it must be close for every possible way in which the user might behave, and that is why, no matter how observant one is when experiencing a rendered environment, one cannot certify that it is accurate (or probably accurate). But experience can sometimes show that a rendering is inaccurate (or probably inaccurate).
This discussion of accuracy in virtual reality mirrors the relationship between theory and experiment in science. There too, it is possible to confirm experimentally that a general theory is false, but never that it is true. And there too, a short-sighted view of science is that it is all about predicting our sense-impressions. The correct view is that, while sense-impressions always play a role, what science is about is understanding the whole of reality, of which only an infinitesimal proportion is ever experienced.
The program in a virtual-reality generator embodies a general, predictive theory of the behaviour of the rendered environment. The other components deal with keeping track of what the user is doing and with the encoding and decoding of sensory data; these, as I have said, are relatively trivial functions. Thus if the environment is physically possible, rendering it is essentially equivalent to finding rules for predicting the outcome of every experiment that could be performed in that environment. Because of the way in which scientific knowledge is created, ever more accurate predictive rules can be discovered only through ever better explanatory theories. So accurately rendering a physically possible environment depends on understanding its physics.
The converse is also true: discovering the physics of an environment depends on creating a virtual-reality rendering of it. Normally one would say that scientific theories only describe and explain physical objects and processes, but do not render them. For example, an explanation of eclipses of the Sun can be printed in a book. A computer can be programmed with astronomical data and physical laws to predict an eclipse, and to print out a description of it. But rendering the eclipse in virtual reality would require both further programming and further hardware. However, those are already present in our brains! The words and numbers printed by the computer amount to ‘descriptions’ of an eclipse only because someone knows the meanings of those symbols. That is, the symbols evoke in the reader’s mind some sort of likeness of some predicted effect of the eclipse, against which the real appearance of that effect will be tested. Moreover, the ‘likeness’ that is evoked is interactive. One can observe an eclipse in many ways: with the naked eye, or by photography, or using various scientific instruments; from some positions on Earth one will see a total eclipse of the Sun, from other positions a partial eclipse, and from anywhere else no eclipse at all. In each case an observer will experience different images, any of which can be predicted by the theory. What the computer’s description evokes in a reader’s mind is not just a single image or sequence of images, but a general method of creating many different images, corresponding to the many ways in which the reader may contemplate making observations. In other words, it is a virtual-reality rendering. Thus, in a broad enough sense, taking into account the processes that must take place inside the scientist’s mind, science and the virtual-reality rendering of physically possible environments are two terms denoting the same activity.
Now, what about the rendering of environments that are not physically possible? On the face of it, there are two distinct types of virtual-reality rendering: a minority that depict physically possible environments, and a majority that depict physically impossible environments. But can this distinction survive closer examination? Consider a virtual-reality generator in the act of rendering a physically impossible environment. It might be a flight simulator, running a program that calculates the view from the cockpit of an aircraft that can fly faster than light. The flight simulator is
So, which physically impossible environments can be rendered in virtual reality? Precisely those that are not perceptibly different from physically possible environments. Therefore the connection between the physical world and the worlds that are renderable in virtual reality is far closer than it looks. We think of some virtual-reality renderings as depicting fact, and others as depicting fiction, but the fiction is always an interpretation in the mind of the beholder. There is no such thing as a virtual-reality environment that the user would be compelled to interpret as physically impossible.
We might choose to render an environment as predicted by some ‘laws of physics’ that are different from the true laws of physics. We may do this as an exercise, or for fun, or as an approximation because the true rendering is too difficult or expensive. If the laws we are using are as close as we can make them to real ones, given the constraints under which we are operating, we may call these renderings ‘applied mathematics’ or ‘computing’. If the rendered objects are very different from physically possible ones, we may call the rendering ‘pure mathematics’. If a physically impossible environment is rendered for fun, we call it a ‘video game’ or ‘computer art’. All these are interpretations. They may be useful interpretations, or even essential in explaining our motives in composing a particular rendering. But as far as the rendering itself goes there is always an alternative interpretation, namely that it accurately depicts some physically possible environment.
It is not customary to think of mathematics as being a form of virtual reality. We usually think of mathematics as being about abstract entities, such as numbers and sets, which do not affect the senses; and it might therefore seem that there can be no question of artificially rendering their effect on us. However, although mathematical entities do not affect the senses, the experience of doing mathematics is an external experience, no less than the experience of doing physics is. We make marks on pieces of paper and look at them, or we imagine looking at such marks — indeed, we cannot do mathematics without imagining abstract mathematical entities. But this means imagining an environment whose ‘physics’ embodies the complex and autonomous properties of those entities. For example, when we imagine the abstract concept of a line segment which has no thickness, we may imagine a line that is visible but imperceptibly wide. That much may, just about, be arranged in physical reality. But mathematically the line must continue to have no thickness when we view it under arbitrarily powerful magnification. That is not a property of any physical line, but it can easily be achieved in the virtual reality of our imagination.
Imagination is a straightforward form of virtual reality. What may not be so obvious is that our ‘direct’ experience of the world through our senses is virtual reality too. For our external experience is never direct; nor do we even experience the signals in our nerves directly — we would not know what to make of the streams of electrical crackles that they carry. What we experience directly is a virtual-reality rendering, conveniently generated for us by our unconscious minds from sensory data plus complex inborn and acquired theories (i.e. programs) about how to interpret them.
We realists take the view that reality is out there: objective, physical and independent of what we believe about it. But we never experience that reality directly. Every last scrap of our external experience is of virtual reality. And every last scrap of our knowledge — including our knowledge of the non-physical worlds of logic, mathematics and philosophy, and of imagination, fiction, art and fantasy — is encoded in the form of programs for the rendering of those worlds on our brain’s own virtual-reality generator.
So it is not just science — reasoning about the physical world — that involves virtual reality. All reasoning, all thinking and all external experience are forms of virtual reality. These things are physical processes which so far have been observed in only one place in the universe, namely the vicinity of the planet Earth. We shall see in Chapter 8 that all living processes involve virtual reality too, but human beings in particular have a special relationship with it. Biologically speaking, the virtual-reality rendering of their environment is the characteristic means by which human beings survive. In other words, it is the reason why human beings exist. The ecological niche that human beings occupy depends on virtual reality as directly and as absolutely as the ecological niche that koala bears occupy depends on eucalyptus leaves.
image generator A device that can generate specifiable sensations for a user.
universal image generator An image generator that can be programmed to generate any sensation that the user is capable of experiencing.
external experience An experience of something outside one’s own mind.
Internal experience An experience of something within one’s own mind.
physically possible Not forbidden by the laws of physics. An environment is physically possible if and only if it exists somewhere in the multiverse (on the assumption that the initial conditions and all other supplementary data of the multiverse are determined by some as yet unknown laws of physics).
logically possible Self-consistent.
virtual reality Any situation in which the user is given the experience of being in a specified environment.
repertoire The repertoire of a virtual-reality generator is the set of environments that the generator can be programmed to give the user the experience of.
image Something that gives rise to sensations.
accuracy An image is accurate in so far as the sensations it generates are close to the intended sensations. A rendered environment is accurate in so far as it would respond in the intended way to every possible action of the user.
perfect accuracy Accuracy so great that the user cannot distinguish the image or rendered environment from the intended one.
Virtual reality is not just a technology in which computers simulate the behaviour of physical environments. The fact that virtual reality is possible is an important fact about the fabric of reality. It is the basis not only of computation, but of human imagination and external experience, science and mathematics, art and fiction.
6
Universality and the Limits of Computation
The heart of a virtual-reality generator is its computer, and the question of what environments can be rendered in virtual reality must eventually come down to the question of what computations can be performed. Even today, the repertoire of virtual-reality generators is limited as much by their computers as by their image generators. Whenever a new, faster computer, with more memory and better image-processing hardware, is incorporated into a virtual-reality generator, the repertoire is enlarged. But will this always be so, or will we eventually encounter full universality, as I have argued we should expect to in the case of image generators? In other words, is there a single virtual-reality generator, buildable once and for all, that could be programmed to render any environment that the human mind is capable of experiencing?
Just as with image generators, we do not mean by this that it single virtual-reality generator might contain within itself the specifications of all logically possible environments. We mean only that for every logically possible environment it would be possible lo program the generator to render that environment. We can envisage encoding the programs on, for example, magnetic disks. The more complex the environment, the more disks may be needed in store the corresponding program. So to render complex environments the machine must have a mechanism, just as I have described for the universal image generator, that can read unlimited numbers of disks. Unlike an image generator, a virtual-reality generator may need a growing amount of ‘working memory’ to store the intermediate results of its calculations. We may envisage this as being provided in the form of blank disks. Once again, the fact that a machine needs to be supplied with energy, blank disks and maintenance does not prevent us from regarding it as a ‘single machine’, provided that these operations are not tantamount to changing the machine’s design, and are not forbidden by the laws of physics.
In this sense, then, a computer with an effectively unlimited memory capacity can be envisaged in principle. But a computer with an unlimited speed of computation cannot. A computer of given design will always have a fixed maximum speed, which only design changes can increase. Therefore a given virtual-reality generator will not be able to perform unlimited amounts of computation per unit time. Will this not limit its repertoire? If an environment is so complex that the computation of what the user should be seeing one second from now takes the machine more than one second to compute, how can the machine possibly render that environment accurately? To achieve universality, we need a further technological trick.
To extend its repertoire as far as is physically possible, a virtual-reality generator would have to take control of one further attribute of the user’s sensory system, namely the processing speed of the user’s brain. If the human brain were like an electronic computer, this would simply be a matter of changing the rate at which its ‘clock’ emits synchronizing pulses. No doubt the brain’s ‘clock’ will not be so easily controlled. But again this presents no problem of principle. The brain is a finite physical object, and all its functions are physical processes which in principle can be slowed down or stopped. The ultimate virtual-reality generator would have to be capable of doing that.
To achieve a perfect rendering of environments which call for a lot of computation, a virtual-reality generator would have to operate in something like the following way. Each sensory nerve is physically capable of relaying signals at a certain maximum rate, because a nerve cell which has fired cannot fire again until about one millisecond later. Therefore, immediately after a particular nerve has fired, the computer has at least one millisecond to decide whether, and when, that nerve should fire again. If it has computed that decision within, say, half a millisecond, no tampering with the brain’s speed is necessary, and the computer merely fires the nerve at the appropriate times. Otherwise, the computer causes the brain slow down (or, if necessary, to stop) until the calculation of what should happen next is complete; it then restores the brain’s normal speed. What would this feel like to the user? By definition, like nothing. The user would experience only the environment specified in the program, without any slowing down, stopping or restarting. Fortunately it is never necessary for a virtual-reality generator to make the brain operate
This method allows us to specify in advance an arbitrarily complicated environment whose simulation requires any finite amount of computation, and to experience that environment at any subjective speed and level of detail that our minds are capable of assimilating. If the requisite calculations are too numerous for the computer to perform within the subjectively perceived time, the experience will be unaffected, but the user will pay for its complexity in terms of externally elapsed time. The user might emerge from the virtual-reality generator after what seemed subjectively like a five-minute experience, to find that years had passed in physical reality.
A user whose brain is switched off, for however long, and then switched on again will have an uninterrupted experience of some environment. But a user whose brain is switched off for ever has no experiences at all from that moment on. This means that a program which might at some point switch the user’s brain off, and never switch it on again, does not generate an environment for the user to experience and therefore does not qualify as a valid program for a virtual-reality generator. But a program which, eventually, always switches the user’s brain back on causes the virtual-reality generator to render some environment. Even a program which emits no nerve signals at all renders the dark, silent environment of perfect sensory isolation.
In our search for the ultimate in virtual-reality we have strayed a very long way from what is feasible today, or even from what is on any foreseeable technological horizon. So let me stress again that for our present purposes technological obstacles are irrelevant. We are not investigating what sorts of virtual-reality generator can be built, or even, necessarily, what sorts of virtual-reality generator will ever be built, by human engineers. We are investigating what the laws of physics do and do not allow in the way of virtual reality. The reason why this is important has nothing to do with the prospects for making better virtual-reality generators. It is that the relation ship between virtual reality and ‘ordinary’ reality is part of the deep, unexpected structure of the world, which this book is about.
By considering various tricks — nerve stimulation, stopping and starting the brain, and so on — we have managed to envisage a physically possible virtual-reality generator whose repertoire covers the entire sensory range, is fully interactive, and is not constrained by the speed or memory capacity of its computer. Is there anything outside the repertoire of such a virtual-reality generator? Would its repertoire be the set of all logically possible environments? It would not. Even this futuristic machine’s repertoire is drastically circumscribed by the mere fact of its being a physical object. It does not even scratch the surface of what is logically possible, as I shall now show.
The basic idea of the proof — known as a
Each environment in our machine’s repertoire is generated by some program for its computer. Imagine the set of all valid programs for this computer. From a physical point of view, each such program specifies a particular set of values for physical variables, on the disks or other media, that represent the computer’s program. We know from quantum theory that all such variables are quantized, and therefore that, no matter how the computer works, the set of possible programs is discrete. Each program can therefore be expressed as a finite sequence of symbols in a discrete code or computer language. There are infinitely many such programs, but each one can contain only a finite number of symbols. That is because symbols are physical objects, made of matter in recognizable configurations, and one could not manufacture an infinite number of them. As I shall explain in Chapter 10, these intuitively obvious physical requirements — that the programs must be quantized, and that each of them must consist of a finite number of symbols and can be executed in a sequence of steps — are more substantive than they seem. They are the only consequences of the laws of physics that are needed as input for the proof, but they are enough to impose drastic restrictions on the repertoire of any physically possible machine. Other physical laws may impose even more restrictions, but they would not affect the conclusions of this chapter.
Now let us imagine this infinite set of possible programs arranged in an infinitely long list, and numbered Program 1, Program 2, and on. They could, for instance, be arranged in ‘alphabetical’ order with respect to the symbols in which they are expressed. Because each program generates an environment, this list can also be regarded as a list of all the environments in the machine’s repertoire; we may call them Environment 1, Environment 2, and so on. It could be that some of the environments are repeated in the list, because two different programs might in effect perform the same calculations, but that will not affect the argument. What is important is that each environment in our machine’s repertoire should appear at least once in the list.
A simulated environment may be limited or unlimited in apparent physical size and apparent duration. An architect’s simulation of a house, for example, can be run for an unlimited time, but will probably cover only a limited volume. A video game might allow the user only a finite time for play before the game ends, or it might render a game-universe of unlimited size, allow an unlimited amount of exploration and end only when the user deliberately ends it. To make the proof simpler, let us consider only programs that continue to run for ever. That is not much of a restriction, because if a program halts we can always choose to regard its lack of response as being the response of a sensory-isolation environment.
Let me define a class of logically possible environments which I shall call
Now, since a Cantgotu environment does not behave exactly like Environment 1, it cannot
Clearly there are enormously many Cantgotu environments, because the definition leaves enormous freedom in choosing how they should behave, the only constraint being that during each minute they should not behave in one particular way. It can be proved that, for every environment in the repertoire of a given virtual-reality generator, there are infinitely many Cantgotu environments that it cannot render. Nor is there much scope for extending the repertoire by using a range of different virtual-reality generators. Suppose that we had a hundred of them, each (for the sake of argument) with a different repertoire. Then the whole collection, combined with the programmable control system that determines which of them shall be used to run a given program, is just a larger virtual-reality generator. That generator is subject to the argument I have given, so for every environment it can render there will be infinitely many that it cannot. Furthermore, the assumption that different virtual-reality generators might have different repertoires turns out to be over-optimistic. As we shall see in a moment, all sufficiently sophisticated virtual-reality generators have essentially the same repertoire.
Thus our hypothetical project of building the ultimate virtual-reality generator, which had been going so well, has suddenly run into a brick wall. Whatever improvements may be made in the distant future, the repertoire of the entire technology of virtual reality will never grow beyond a certain fixed set of environments. Admittedly this set is infinitely large, and very diverse by comparison with human experience prior to virtual-reality technology. Nevertheless, it is only an infinitesimal fraction of the set of all logically possible environments.
What would it feel like to be in a Cantgotu environment? Although the laws of physics do not permit us to be in one, it is still logically possible and so it is legitimate to ask what it would feel like. Certainly, it could give us no new
Sooner or later you will have to bring the test to a close. At that point you may well decide to concede the genie’s claim. That is nor to say that you could ever
Anyway, there are no such genies, and no such environments. So we must conclude that physics does not allow the repertoire of a virtual-reality generator to be anywhere near as large as logic alone would allow. How large can it be?
Since we cannot hope to render all logically possible environments, let us consider a weaker (but ultimately more interesting) sort of universality. Let us define a
As I have said, this sort of universality was first studied not by physicists but by mathematicians. They were trying to make precise the intuitive notion of ‘computing’ (or ‘calculating’ or ‘proving’) something in mathematics. They did not take on board the fact that mathematical calculation is a physical process (in particular, as I have explained, it is a virtual-reality rendering process), so it is impossible to determine by mathematical reasoning what can or cannot be calculated mathematically. That depends entirely on the laws of physics. But instead of trying to deduce their results from physical laws, mathematicians postulated abstract models of ‘computation’, and
Turing’s model of computation, and his conception of the nature of the problem he was solving, was the closest to being physical. His abstract computer, the
But mathematicians are rather untypical physical objects. Why should we assume that rendering them in the act of performing calculations is the ultimate in computational tasks? It turns out that it is not. As I shall explain in Chapter 9,
(for abstract computers simulating physical objects)
Turing believed that the ‘universal computer’ in question was the universal Turing machine. To take account of the wider repertoire of quantum computers, I have stated the principle in a form that does not specify which particular ‘abstract computer’ does the job. The proof I have given of the existence of Cantgotu environments is essentially due to Turing. As I said, he was not thinking explicitly in terms of virtual reality, but an ‘environment that can be rendered’ does correspond to a class of mathematical questions whose answers can be calculated. Those questions are
In virtual-reality terms: no physically possible virtual-reality generator can render an environment in which answers to non-computable questions are provided to the user on demand. Such environments are of the Cantgotu type. And conversely, every Cantgotu environment corresponds to a class of mathematical questions (‘what would happen next in an environment defined in such-and-such a way?’) which it is physically impossible to answer.
Although non-computable questions are infinitely more numerous than computable ones, they tend to be more esoteric. That is no accident. It is because the parts of mathematics that we tend to consider the least esoteric are those we see reflected in the behaviour of physical objects in familiar situations. In such cases we can often use those physical objects to answer questions about the corresponding mathematical relationships. For example, we can count on our fingers because the physics of fingers naturally mimics the arithmetic of the whole numbers from zero to ten.
The repertoires of the three very different abstract computers defined by Turing, Church and Post were soon proved to be identical. So have the repertoires of all abstract models of mathematical computation that have since been proposed. This is deemed to lend support to the Church-Turing conjecture and to the universality of the universal Turing machine. However, the computing power of
(for physical computers simulating each other)
It follows that if a universal image generator were controlled by a universal computer, the resulting machine would be a universal virtual-reality generator. In other words, the following principle also holds:
(for virtual-reality generators rendering each other)
Now, any environment can be rendered by a virtual-reality generator of
This is the strongest form of the Turing principle. It not only tells us that various parts of reality can resemble one another. It tells us that a single physical object, buildable once and for all (apart from maintenance and a supply of additional memory when needed), can perform with unlimited accuracy the task of describing or mimicking any other part of the multiverse. The set of all behaviours and responses of that one object exactly mirrors the set of all behaviours and responses of all other physically possible objects and processes.
This is just the sort of self-similarity that is necessary if, according to the hope I expressed in Chapter 1, the fabric of reality is to be truly unified and comprehensible. If the laws of physics as they apply to any physical object or process are to be comprehensible, they must be capable of being embodied in another physical object — the knower. It is also necessary that processes capable of creating such knowledge be physically possible. Such processes are called science. Science depends on experimental testing, which means physically rendering a law’s predictions and comparing it with (a rendering of) reality. It also depends on explanation, and that requires the abstract laws themselves, not merely their predictive content, to be capable of being rendered in virtual reality. This is a tall order, but reality does meet it. That is to say, the laws of physics meet it. The laws of physics, by conforming to the Turing principle, make it physically possible for those same laws to become known to physical objects. Thus, the laws of physics may be said to mandate their own comprehensibility.
Since building a universal virtual-reality generator is physically possible, it must actually
Now I return to the question I posed in the previous chapter, namely whether, if we had only a virtual-reality rendering based on the wrong laws of physics to learn from, we should expect to learn the wrong laws. The first thing to stress is that we
We are embarked upon solving problems about physical reality. If it turns out that all this time we have merely been studying the programming of a cosmic planetarium, then that would merely mean that we have been studying a smaller portion of reality than we thought. So what? Such things have happened many times in the history of science, as our horizons have expanded beyond the Earth to include the solar system, our Galaxy, other galaxies, clusters of galaxies and so on, and, of course, parallel universes. Another such broadening may happen tomorrow; indeed, it may happen according to any one of an infinity of possible theories — or it may never happen. Logically, we must concede to solipsism and related doctrines that the reality we are learning about
However, there is a question we can still ask. Suppose that someone were imprisoned in a small, unrepresentative portion of our own reality — for instance, inside a universal virtual-reality generator that was programmed with the wrong laws of physics. What could such prisoners learn about our external reality? At first sight, it seems impossible that they could discover anything at all about it. It may deem that the most they could discover would be the laws of operation, i.e. the program, of the computer that operated their prison.
But that is not so! Again, we must bear in mind that if the prisoners are scientists, they will be seeking explanations as well as predictions. In other words, they will not be content with merely knowing the program that operates their prison: they will want to explain the origin and attributes of the various entities, including themselves, that they observe in the reality they inhabit. But in most virtual-reality environments no such explanation exists, for the rendered objects do not originate there but have been designed in the external reality. Suppose that you are playing a virtual-reality video game. For the sake of simplicity, suppose that the game is essentially chess (a first-person-perspective version perhaps, in which you adopt the persona of the king). You will use the normal methods of science to discover this environment’s ‘laws of physics’ and their emergent consequences. You will learn that checkmate and stalemate are ‘physically’ possible events (i.e. possible under your best understanding of how the environment works), but that a position with nine white pawns is not ‘physically’ possible. Once you had understood the laws sufficiently well, you would notice that the chessboard is too simple an object to have, for instance, thoughts, and consequently that your own thought-processes can not be governed by the laws of chess alone. Similarly, you could tell that during any number of games of chess the pieces can never evolve into self-reproducing configurations. And if life cannot evolve on the chessboard, far less can intelligence evolve. Therefore you would also infer that your own thought-processes could not have originated in the universe in which you found yourself. So even if you had lived within the rendered environment all your life, and did not have your own memories of the outside world to account for as well, your knowledge would not be confined to that environment. You would know that, even though the universe seemed to have a certain layout and obey certain laws, there must be a wider universe outside it, obeying different laws of physics. And you could even guess some of the ways in which these wider laws would have to differ from the chessboard laws.
Arthur C. Clarke once remarked that ‘any sufficiently advanced technology is indistinguishable from magic’. This is true, but slightly misleading. It is stated from the point of view of a pre-scientific thinker, which is the wrong way round. The fact is that to anyone who understands what virtual reality is, even genuine magic would be indistinguishable from technology, for there is no room for magic in a comprehensible reality. Anything that seems incomprehensible is regarded by science merely as evidence that there is something we have not yet understood, be it a conjuring trick, advanced technology or a new law of physics.
Reasoning from the premise of one’s own existence is called ‘anthropic’ reasoning. Although it has some applicability in cosmology, it usually has to be supplemented by substantive assumptions about the nature of ‘oneself’ before it yields definite conclusions. But anthropic reasoning is not the only way in which the inmates of our hypothetical virtual-reality prison could gain knowledge of an outside world.
In the Popperian scheme of things, explanations always lead to new problems which in turn require further explanations. If the prisoners fail, after a while, to improve upon their existing explanations, they may of course give up, perhaps falsely concluding that there are no explanations available. But if they do not give up they will be thinking about those aspects of their environment that seem inadequately explained. Thus if the high-technology jailers wanted to be confident that their rendered environment would forever fool their prisoners into thinking that there is no outside world, they would have their work cut out for them. The longer they wanted the illusion to last, the more ingenious the program would have to be. It is not enough that the inmates be prevented from observing the outside. The rendered environment would also have to be such that no explanations of anything inside would ever require one to postulate an outside. The environment, in other words, would have to be self-contained as regards explanations. But I doubt that any part of reality, short of the whole thing, has that property.
Universal virtual-reality generator One whose repertoire contains every physically possible environment.
Cantgotu environments Logically possible environments which cannot be rendered by any physically possible virtual-reality generator.
diagonal argument A form of proof in which one imagines listing a set of entities, and then uses the list to construct a related entity that cannot be on the list.
Turing machine One of the first abstract models of computation.
universal Turing machine A Turing machine with the combined repertoire of all other Turing machines.
Turing principle (in its strongest form) It is physically possible to build a universal virtual-reality generator.
On the assumptions I have been making, this implies that there is no upper bound on the universality of virtual-reality generators that will actually be built somewhere in the multiverse.
The diagonal argument shows that the overwhelming majority of logically possible environments cannot be rendered in virtual reality. I have called them Cantgotu environments. There is nevertheless a comprehensive self-similarity in physical reality that is expressed in the Turing principle:
7
A Conversation About Justification
I think that I have solved a major philosophical problem: the problem of induction.
As I explained in the Preface, this book is not primarily a defence of the fundamental theories of the four main strands; it is an investigation of what those theories say, and what sort of reality they describe. That is why I do not address opposing theories in any depth. However, there is one opposing theory — namely, common sense — which reason requires me to refute in detail wherever it seems to conflict with what I am asserting. Hence in Chapter 2 I presented a root-and-branch refutation of the common-sense idea that there is only one universe. In Chapter 11 I shall do the same for the common-sense idea that time ‘flows’, or that our consciousness ‘moves’ through time. In Chapter 3 I criticized inductivism, the common-sense idea that we form theories about the physical world by generalizing the results of observations, and that we justify our theories by repeating those observations. I explained that inductive generalization from observations is impossible, and that inductive justification is invalid. I explained that inductivism rests upon a mistaken idea of science as seeking predictions on the basis of observations, rather than as seeking explanations in response to problems. I also explained (following Popper) how science does make progress, by conjecturing new explanations and then choosing between the best ones by experiment. All this is largely accepted by scientists and philosophers of science. What is not accepted by most philosophers is that this process is
Science seeks better explanations. A scientific explanation accounts for our observations by postulating something about what reality is like and how it works. We deem an explanation to be better if it leaves fewer loose ends (such as entities whose properties are themselves unexplained), requires fewer and simpler postulates, is more general, meshes more easily with good explanations in other fields and so on. But why should a better
This is the modern form of the ‘problem of induction’. Most philosophers are now content with Popper’s contention that new theories are not inferred from anything, but are merely hypotheses. They also accept that scientific progress is made through conjectures and refutations (as described in Chapter 3), and that theories are accepted when all their rivals are refuted, and not by virtue of numerous confirming instances. They accept that the knowledge obtained in this way tends, in the event, to be reliable. The problem is that they do not see why it should be. Traditional inductivists tried to formulate a ‘principle of induction’, which said that confirming instances made a theory more likely, or that ‘the future will resemble the past’, or some such statement. They also tried to formulate an inductive scientific methodology, laying down rules for what sort of inferences one could validly draw from ‘data’. They all failed, for the reasons I have explained. But even if they had succeeded, in the sense of constructing a scheme that could be followed successfully to create scientific knowledge, this would not have solved the problem of induction as it is nowadays understood. For in that case ‘induction’ would simply be another possible way of choosing theories, and the problem would remain of
Philosophers today yearn for this missing justification. They no longer believe that induction would provide it, yet they have an induction-shaped gap in their scheme of things, just as religious people who have lost their faith suffer from a ‘God-shaped gap’ in
Most contemporary philosophers are crypto-inductivists. What makes matters worse is that (like many scientists) they grossly underrate the role of explanation in the scientific process. So do most Popperian anti-inductivists, who are thereby led to deny that there is any such thing as justification (even tentative justification). This opens up a new explanatory gap in
I believe that we can justify our expectation that the Floater would be killed. The justification (always tentative, of course) comes from the explanations provided by the relevant scientific theories. To the extent that those explanations are good, it is rationally justified to rely on the predictions of corresponding theories. So, in reply to Worrall, I now present a dialogue of my own, set in the same place.
DAVID: Since I read what Popper has to say about induction, I have believed that he did indeed, as he claimed, solve the problem of induction. But few philosophers agree. Why?
CRYPTO-INDUCTIVIST: Because Popper never addressed the problem of induction as we understand it. What he did was present a critique of
DAVID: One doesn’t need to.
CRYPTO-INDUCTIVIST: But one does. This is what is so irritating about you Popperians: you deny the obvious. Obviously the reason why you are not even now leaping over this railing is, in part, that you consider it
DAVID: Yes, I would consider it justified to rely on that theory. According to Popperian methodology, one should in these cases rely on the
CRYPTO-INDUCTIVIST: You say ‘one
DAVID: Well, not more likely than
CRYPTO-INDUCTIVIST: Now look. Please let’s agree not to trip each other up with quibbles that do not bear on the substance of what we are discussing.
DAVID: Yes.
CRYPTO-INDUCTIVIST: So to summarize, you believe that the evidence currently available to you justifies the prediction that you would be killed if you leapt over the railing.
DAVID: No, it doesn’t.
CRYPTO-INDUCTIVIST: But dammit, you are contradicting yourself. Just now you said that that prediction
DAVID: It is justified. But it was not justified by the evidence, if by ‘the evidence’ you mean all the experiments whose outcomes the theory correctly predicted in the past. As we all know, that evidence is consistent with an infinity of theories, including theories predicting every logically possible outcome of my jumping over the railing.
CRYPTO-INDUCTIVIST: So in view of that, I repeat, the whole problem is to find what does justify the prediction. That is the problem of induction.
DAVID: Well, that is the problem that Popper solved.
CRYPTO-INDUCTIVIST: That’s news to me, and I’ve studied Popper extensively. But anyway, what is the solution? I’m eager to hear it. What justifies the prediction, if it isn’t the evidence?
DAVID: Argument.
CRYPTO-INDUCTIVIST: Argument?
DAVID: Only argument ever justifies anything — tentatively, of course. All theorizing is subject to error, and all that. But still, argument can sometimes justify theories. That is what argument is for.
CRYPTO-INDUCTIVIST: I think this is another of your quibbles. You can’t mean that the theory was justified by
DAVID: Of course. This is an empirical theory, so, according to Popperian scientific methodology, crucial experiments play a pivotal role in deciding between it and its rivals. The rivals were refuted; it survived.
CRYPTO-INDUCTIVIST: And in consequence of that refuting and surviving, all of which happened in the past, the practical use of the theory to predict the future is now justified.
DAVID: I suppose so, though it seems misleading to say ‘in consequence of’ when we are not talking about a logical deduction.
CRYPTO-INDUCTIVIST: Well that’s the whole point again:
DAVID: Yes.
CRYPTO-INDUCTIVIST: So what exactly was it about those actual past outcomes that justified the prediction, as opposed to other possible past outcomes which might well have justified the contrary prediction?
DAVID: It was that the actual outcomes refuted all the rival theories, and corroborated the theory that now prevails.
CRYPTO-INDUCTIVIST: Good. Now listen carefully, because you have just said something which is not only provably untrue, but which you yourself conceded was untrue only moments ago. You say that the outcomes of experiments ‘refuted all the rival theories’. But you know very well that no set of outcomes of experiments can refute all possible rivals to a general theory. You said yourself that any set of past outcomes is (I quote) ‘consistent with an infinity of theories, including theories predicting every logically possible outcome of my jumping over the railing’. It follows inexorably that the prediction you favour
DAVID: I’m glad I listened carefully, as you asked, for now I see that at least part of the difference between us has been caused by a misunderstanding over terminology. When Popper speaks of ‘rival theories’ to a given theory, he does not mean the set of all logically possible rivals: he means only the actual rivals, those proposed in the course of a rational controversy. (That includes theories ‘proposed’ purely mentally, by one person, in the course of a ‘controversy’ within one mind.)
CRYPTO-INDUCTIVIST: I see. Well, I’ll accept your terminology. But incidentally (I don’t think it matters, for present purposes, but I’m curious), isn’t it a strange assertion you are attributing to Popper, that the reliability of a theory depends on the accident of what
DAVID: Not really. Even you inductivists speak of…
CRYPTO-INDUCTIVIST: I am
DAVID: Yes you are.
CRYPTO-INDUCTIVIST: Hmph! Once again, I shall accept your terminology if you insist. But you may as well call me a porcupine. It really is perverse to call a person an ‘inductivist’ if that person’s whole thesis is that the
DAVID: I don’t think so. I think that that thesis is what defines, and always has defined, an inductivist. But I see that Popper has at least achieved one thing: ‘inductivist’ has become a term of abuse! Anyway, I was explaining why it’s not so strange that the reliability of a theory should depend on what false theories people have proposed in the past. Even inductivists speak of a theory being reliable or not, given certain ‘evidence’. Well, Popperians might speak of a theory being the best available for use in practice, given a certain
CRYPTO-INDUCTIVIST: Very interesting. I now understand the role of a theory’s refuted rivals in the justification of its predictions. Under inductivism, observation was supposed to be primary. One imagined a mass of past observations from which the theory was supposed to be induced, and observations also constituted the evidence which somehow justified the theory. In the Popperian picture of scientific progress, it is not observations but problems, controversies, theories and criticism that are primary. Experiments are designed and performed only to resolve controversies. Therefore only experimental results that actually do refute a theory — and not just any theory, it must have been a genuine contender in a rational controversy — constitute ‘corroboration’. And so it is only those experiments that provide evidence for the reliability of the winning theory.
DAVID: Correct. And even then, the ‘reliability’ that corroboration confers is not absolute but only relative to the other contending theories. That is, we expect the strategy of relying on corroborated theories to select the best theories from those that are proposed. That is a sufficient basis for action. We do not need (and could not validly get) any assurance about
CRYPTO-INDUCTIVIST: Quite so. I am glad to have learned something about scientific methodology. But now — and I hope you don’t think me impolite — I must draw your attention yet again to the question I have been asking all along. Suppose that a theory has passed through this whole process. Once upon a time it had rivals. Then experiments were performed and all the rivals were refuted. But it itself was not refuted. Thus it was corroborated.
DAVID: Since all its rivals have been refuted, they are no longer rationally tenable. The corroborated theory is the only rationally tenable theory remaining.
CRYPTO-INDUCTIVIST: But that only shifts the focus from the future import of past corroboration to the future import of past refutation. The same problem remains. Why, exactly, is an experimentally refuted theory ‘not rationally tenable’? Is it that having even one false consequence implies that it cannot be true?
DAVID: Yes.
CRYPTO-INDUCTIVIST: But surely, as regards the future applicability of the theory, that is not a logically relevant criticism. Admittedly, a refuted theory cannot be true
DAVID: This ‘true in the past’ and ‘true in the future’ terminology is misleading. Each specific prediction of a theory is either true or false; that cannot change. What you really mean is that though the refuted theory is strictly false, because it makes some false predictions, all its predictions about the future might nevertheless be true. In other words, a
CRYPTO-INDUCTIVIST: If you like. So instead of asking why a refuted theory is not rationally tenable, I should, strictly speaking, have asked this: why does the refutation of a theory also render untenable every variant of the theory that agrees with it about the future — even a variant that has not been refuted?
DAVID: It is not that refutation
CRYPTO-INDUCTIVIST: What do you mean, ‘no one has yet thought of such a theory’? I could easily think of one right now.
DAVID: I very much doubt that you can.
CRYPTO-INDUCTIVIST: Of course I can. Here it is. ‘Whenever you, David, jump from high places in ways that would, according to the prevailing theory, kill you, you float instead. Apart from that, the prevailing theory holds universally.’ I put it to you that every past test of your theory was also necessarily a test of mine, since all the predictions of your theory and mine regarding past experiments are identical. Therefore your theory’s refuted rivals were also my theory’s refuted rivals. And therefore my new theory is exactly as corroborated as your prevailing theory. How, then, can my theory be ‘untenable’? What faults could it possibly have that are not shared by your theory?
DAVID: Just about every fault in the Popperian book! Your theory is constructed from the prevailing one by appending an unexplained qualification about me floating. That qualification is, in effect, a new theory, but you have given no argument either against the prevailing theory of my gravitational properties, or in favour of the new one. You have subjected your new theory to no criticism (other than what I am giving it now) and no experimental testing. It does not solve — or even purport to solve — any current problem, nor have you suggested a new, interesting problem that it could solve. Worst of all, your qualification explains nothing, but
CRYPTO-INDUCTIVIST: Couldn’t I say exactly the same thing about your theory? Your theory differs from mine only by the same minor qualification, but in reverse. You think I ought to have explained my qualification. But why are our positions not symmetrical?
DAVID: Because your theory does not come with an explanation of its predictions, and mine does.
CRYPTO-INDUCTIVIST: But if my theory had been proposed first, it would have been your theory that appeared to contain an unexplained qualification, and it would be your theory that would be ‘summarily rejected’.
DAVID: That is simply untrue. Any rational person who was comparing your theory with the prevailing one, even if yours had been proposed first, would immediately reject your theory in favour of the prevailing one. For the fact that your theory is an unexplained modification of another theory is manifest in your very statement of it.
CRYPTO-INDUCTIVIST: You mean that my theory has the form ‘such-and-such a theory holds universally, except in such-and-such a situation’, but I don’t explain why the exception holds?
DAVID: Exactly.
CRYPTO-INDUCTIVIST: Aha! Well, I think I can prove you wrong here (with the help of the philosopher Nelson Goodman). Consider a variant of the English language that has no verb ‘to fall’. Instead it has a verb ‘to x-fall’ which means ‘to fall’ except when applied to you, in which case it means ‘to float’. Similarly, ‘to x-float’ means ‘to float’ except when applied to you, in which case it means ‘to fall’. In this new language I could express my theory as the unqualified assertion ‘all objects x-fall if unsupported’. But the prevailing theory (which in English says ‘all objects fall if unsupported’) would, in the new language, have to be qualified: ‘all objects x-fall when unsupported,
DAVID: In form, yes. But that is a triviality. Your theory contains,
CRYPTO-INDUCTIVIST: I don’t see why. You yourself used the
DAVID: So it does. But not all languages are equal.
CRYPTO-INDUCTIVIST: I accept that.
DAVID: Thus it is no accident when a language chooses to cover the conceptual ground with one set of concepts rather than another. It reflects the current state of the speakers’ problem-situation. That is why the form of your theory,
CRYPTO-INDUCTIVIST: You may have a point there. But could you elaborate? In what way does my theory exacerbate the problem-situation, and why would this be obvious even to a native speaker of my hypothetical language?
DAVID: Your theory asserts the existence of a physical
CRYPTO-INDUCTIVIST: That’s true. Just because the same word ‘x-falling’ describes your response to gravity and mine, I wouldn’t think that the actual response is the same. On the contrary, being a fluent speaker of this supposed language, I’d know very well that ‘x-falling’ was physically different for you and for me, just as a native English speaker knows that the words ‘being drunk’ mean something physically different for a person and for a glass of water. I wouldn’t think, ‘if this had happened to David, he’d be x-falling just as I am’. I’d think, ‘if this had happened to David, he’d x-fall and survive, while I shall x-fall and die.’
DAVID: Moreover, despite your being sure that I would float,
CRYPTO-INDUCTIVIST: Could it be that there is a solution of the problem of induction lurking here after all? Let me see. How does this insight about language change things? My argument relied upon an apparent symmetry between your position and mine. We both adopted theories that were consistent with existing experimental results, and whose rivals (except each other) had been refuted. You said that I was being irrational because my theory involved an unexplained assertion, but I countered by saying that in a different language it would be your theory that contained such an assertion, so the symmetry was still there. But now you have pointed out that languages are theories, and that the combination of my proposed language and theory assert the existence of an objective, physical anomaly, as compared with what the combination of the English language and the prevailing theory assert. This is where the symmetry between our positions, and the argument I was putting forward, break down hopelessly.
DAVID: Indeed they do.
CRYPTO-INDUCTIVIST: Let me see if I can clarify this a little further. Are you saying that it is a principle of rationality that a theory which asserts the existence of an objective, physical anomaly is, other things being equal, less likely to make true predictions than one that doesn’t?
DAVID: Not quite. Theories postulating anomalies
CRYPTO-INDUCTIVIST: Now that I understand that there really is an objective difference between theories which make unexplained predictions and theories which don’t, I must admit that this does look promising as a solution of the problem of induction. You seem to have discovered a way of justifying your future reliance on the theory of gravity, given only the past problem-situation (including past observational evidence) and the distinction between a good explanation and a bad one. You do not have to make any assumption such as ‘the future is likely to resemble the past’.
DAVID: It was not I who discovered this.
CRYPTO-INDUCTIVIST: Well, I don’t think Popper did either. For one thing, Popper did not think that scientific theories could be
DAVID: I don’t think he said that, exactly. If he did, he didn’t really mean it.
CRYPTO-INDUCTIVIST:
DAVID: Or if he did mean it, he was mistaken. Why are you so upset? It is perfectly possible for a person to discover a new theory (in this case Popperian epistemology) but nevertheless to continue to hold beliefs that contradict it. The more profound the theory is, the more likely this is to happen.
CRYPTO-INDUCTIVIST: Are you claiming to understand Popper’s theory better than he did himself?
DAVID: I neither know nor care. The reverence that philosophers show for the historical sources of ideas is very perverse, you know. In science we do not consider the discoverer of a theory to have any special insight into it. On the contrary, we hardly ever consult original sources. They invariably become obsolete, as the problem-situations that prompted them are transformed by the discoveries themselves. For example, most relativity theorists today understand Einstein’s theory better than he did. The founders of quantum theory made a complete mess of understanding their own theory. Such shaky beginnings are to be expected; and when we stand upon the shoulders of giants, it may not be all that hard to see further than they did. But in any case, surely it is more interesting to argue about what the truth is, than about what some particular thinker, however great, did or did not think.
CRYPTO-INDUCTIVIST: All right, I agree. But wait a moment, I think I spoke too soon when I said that you were not postulating any sort of principle of induction. Look: you have justified a theory about the future (the prevailing theory of gravity) as being more reliable than another theory (the one I proposed), even though they are both consistent with all currently known observations. Since the prevailing theory applies both to the future and to the past, you have justified the proposition that, as regards gravity,
DAVID: Oh dear! This inductivism really is a virulent disease. Having gone into remission for only a few seconds, it now returns more violently than before.
CRYPTO-INDUCTIVIST: Does Popperian rationalism justify
DAVID: I apologize. Let me go straight to the substance of what you said. Yes, I have justified an assertion about the future. You say this implies that ‘the future resembles the past’. Well, vacuously, yes, inasmuch as
CRYPTO-INDUCTIVIST: Couldn’t we derive, from the ‘explanation principle’, a form of the principle of induction that
DAVID: No. Our justification does not depend on whether a particular anomaly happens in the past. It has to do with whether there is an explanation for the existence of that anomaly.
CRYPTO-INDUCTIVIST: All right then, let me formulate it more carefully: ‘if, in the present, there is no explanatory theory predicting that a particular anomaly will happen in the future, then that anomaly is unlikely to happen in the future’.
DAVID: That may well be true. I, for one, believe that it is. However, it is not of the form ‘the future is likely to resemble the past’. Moreover, in trying to make it look as much like that as possible, you have specialized it to cases ‘in the present’, ‘in the future’, and to the case of an ‘anomaly’. But it is just as true without these specializations. It is just a general statement about the efficacy of argument. In short, if there is no argument in favour of a postulate, then it is not reliable. Past, present or future. Anomaly or no anomaly. Period.
CRYPTO-INDUCTIVIST: Yes, I see.
DAVID: Nothing in the concepts of ‘rational argument’ or ‘explanation’ relates the future to the past in any special way. Nothing is postulated about anything ‘resembling’ anything. Nothing of that sort would help if it were postulated. In the vacuous sense in which the very concept of ‘explanation’ implies that the future ‘resembles the past’, it nevertheless implies nothing specific about the future, so it is not a principle of induction. There is no principle of induction. There is no process of induction. No one ever uses them or anything like them. And there is no longer a problem of induction. Is that clear now?
CRYPTO-INDUCTIVIST: Yes. Please excuse me for a few moments while I adjust my entire world-view.
DAVID: To assist you in that exercise, I think you should consider your alternative ‘theory of gravity’ more closely.
CRYPTO-INDUCTIVIST: …
DAVID: As we have agreed, your theory consists objectively of a theory of gravity (the prevailing theory), qualified by an unexplained prediction about me. It says that I would float, unsupported. ‘Unsupported’ means ‘without any upward force acting’ on me, so the suggestion is that I would be immune to the ‘force’ of gravity which would otherwise pull me down. But according to the general theory of relativity, gravity is not a force but a manifestation of the curvature of spacetime. This curvature explains why unsupported objects, like myself and the Earth, move closer together with time. Therefore, in the light of modern physics your theory is presumably saying that there
CRYPTO-INDUCTIVIST: …
DAVID: For that matter, what defines where
CRYPTO-INDUCTIVIST: …
DAVID: I could go on like this
CRYPTO-INDUCTIVIST: …
DAVID: So your additional postulate is not just superfluous, it is positively bad. In general, perverse but unrefuted theories which one can propose off the cuff fall roughly into two categories. There are theories that postulate unobservable entities, such as particles that do not interact with any other matter. They can be rejected for solving nothing (‘Occam’s razor’, if you like). And there are theories, like yours, that predict unexplained observable anomalies. They can be rejected for solving nothing
CRYPTO-INDUCTIVIST: I see that. Now, will you give me some help in adjusting my world-view?
DAVID: Well, have you read my book,
CRYPTO-INDUCTIVIST: I certainly plan to, but for the moment the help that I was asking for concerns a very specific difficulty.
DAVID: Go ahead.
CRYPTO-INDUCTIVIST: The difficulty is this. When I rehearse the discussion we have been having, I am entirely convinced that your prediction of what would happen if you or I jumped off this tower was not derived from any inductive hypothesis such as ‘the future resembles the past’. But when I step back and consider the overall logic of the situation, I fear I still cannot understand how that can be. Consider the raw materials for the argument. Initially, I assumed that past observations and deductive logic are our only raw material. Then I admitted that the current problem-situation is relevant too, because we need justify our theory only as being more reliable than existing rivals. And then I had to take into account that vast classes of theories can be ruled out by argument alone, because they are bad explanations, and that the principles of rationality can be included in our raw material. What I cannot understand is where in that raw material —
DAVID: No, there is no logical gap. What you call our ‘raw material’ does indeed include assertions about the future. The best existing theories, which cannot be abandoned lightly because they are the solutions of problems, contain predictions about the future. And these predictions cannot be severed from the theories’ other content, as you tried to do, because that would spoil the theories’ explanatory power. Any new theory we propose must therefore
CRYPTO-INDUCTIVIST: So we have no principle of reasoning which says that the future will resemble the past, but we do have actual theories which say that. So do we have actual theories which imply a limited form of inductive principle?
DAVID: No. Our theories simply assert something about the future. Vacuously, any theory about the future implies that the future will ‘resemble the past’ in some ways. But we only find out in what respects the theory says that the future will resemble the past after we have the theory. You might as well say that since our theories hold certain features of reality to be the same throughout
CRYPTO-INDUCTIVIST: I am convinced on that point. Let me try one last argument. We have seen that future predictions can be justified by appeal to the principles of rationality. But what justifies those? They are not, after all, truths of pure logic. So there are two possibilities: either they are unjustified, in which case conclusions drawn from them are unjustified too; or they are justified by some as yet unknown means. In either case there is a missing justification. I no longer suspect that this is the problem of induction in disguise. Nevertheless, having exploded the problem of induction, have we not revealed another fundamental problem, also concerning missing justification, beneath?
DAVID: What justifies the principles of rationality? Argument, as usual. What, for instance, justifies our relying on the laws of
CRYPTO-INDUCTIVIST: That doesn’t seem a very secure foundation for pure logic.
DAVID: It is not perfectly secure. Nor should we expect it to be, for logical reasoning is no less a physical process than scientific reasoning is, and it is inherently fallible. The laws of logic are not self-evident. There are people, the mathematical ‘intuitionists’, who disagree with the conventional laws of deduction (the logical ‘rules of inference’). I discuss their strange world-view in Chapter 10 of
CRYPTO-INDUCTIVIST: So you don’t think that there is a ‘problem of deduction’, then?
DAVID: No. I don’t think that there is a problem with any of the usual ways of justifying conclusions in science, philosophy or mathematics. However, it is an interesting
CRYPTO-INDUCTIVIST: But how do we know that the Turing principle is
DAVID: We don’t, of course … But you are afraid, aren’t you, that if we can’t justify the Turing principle, then we shall once again have lost our justification for relying on scientific predictions?
CRYPTO-INDUCTIVIST: Er, yes.
DAVID: But we have now moved on to a completely different question! We are now discussing an apparent
CRYPTO-INDUCTIVIST: Now my arguments are exhausted. Intellectually, I am convinced. Yet I must confess that I still feel what I can only describe as an ‘emotional doubt’.
DAVID: Perhaps it will help if I make one last comment, not about any of the specific arguments you have raised, but about a misconception that seems to underlie many of them. You know that it is a misconception; yet you may not yet have incorporated the ramifications of that into your world-view. Perhaps that is the source of your ‘emotional doubt’.
CRYPTO-INDUCTIVIST: Fire away.
DAVID: The misconception is about the very nature of argument and explanation. You seem to be assuming that arguments and explanations, such as those that justify acting on a particular theory, have the form of mathematical proofs, proceeding from assumptions to conclusions. You look for the ‘raw material’ (axioms) from which our conclusions (theorems) are derived. Now, there is indeed a logical structure of this type associated with every successful argument or explanation. But the process of argument does not begin with the ‘axioms’ and end with the ‘conclusion’. Rather, it starts in the middle, with a version that is riddled with inconsistencies, gaps, ambiguities and irrelevancies. All these faults are criticized. Attempts are made to replace faulty theories. The theories that are criticized and replaced usually include some of the ‘axioms’. That is why it is a mistake to assume that an argument begins with, or is justified by, the theories that eventually serve as its ‘axioms’. The argument ends — tentatively — when it seems to have shown that the associated explanation is satisfactory. The ‘axioms’ adopted are not ultimate, unchallengeable beliefs. They are tentative, explanatory theories.
CRYPTO-INDUCTIVIST: I see. Argument is not the same species of thing as deduction, or the non-existent induction. It is not based on anything or justified by anything. And it
DAVID: Welcome to the club.
CRYPTO-INDUCTIVIST: All these years I have felt so secure in my great Problem. I felt so superior both to the ancient inductivists, and to the upstart Popper. And all the time, without even knowing it, I was a crypto-inductivist myself! Inductivism is indeed a disease. It makes one blind.
DAVID: Don’t be too hard on yourself. You are cured now. If only your fellow-sufferers were as amenable to being cured by mere argument!
EX-INDUCTIVIST: But how could I have been so blind? To think that I once nominated Popper for the Derrida Prize for Ridiculous Pronouncements, while all the time he had solved the problem of induction!
DAVID: Surely that is not called for. We Popperians believe in letting our theories die in our place. Just throw
EX-INDUCTIVIST: I will, I will!
crypto-inductivist Someone who believes that the invalidity of inductive reasoning raises a serious philosophical problem, namely the problem of how to justify relying on scientific theories.
8
The Significance of Life
From ancient times until about the nineteenth century, it was taken for granted that some special animating force or factor was required to make the matter in living organisms behave so noticeably differently from other matter. This would mean in effect that there were two types of matter in the universe:
To Aristotle and other ancient philosophers, the most conspicuous feature of animate matter was its ability to initiate motion. They thought that when inanimate matter, such as a rock, has come to rest, it never moves again unless something kicks it. But animate matter, such as a hibernating bear, can be at rest and then begin to move without being kicked. With the benefit of modern science we can easily pick holes in these generalizations, and the very idea of ‘initiating motion’ now seems misconceived: we know that the bear wakes up because of electrochemical processes in its body. These may be initiated by external ‘kicks’ such as rising temperature, or by an internal biological clock which uses slow chemical reactions to keep time. Chemical reactions are nothing more than the motion of atoms, so the bear never is entirely at rest. On the other hand a uranium nucleus, which is certainly not alive, may remain unchanged for billions of years and then, without any stimulus at all, suddenly and violently disintegrate. So the nominal content of Aristotle’s idea is worthless today. But he did get one important thing right which most modern thinkers have got wrong. In trying to associate life with a basic physical concept (albeit the wrong one, motion), he recognized that life is a fundamental phenomenon of nature.
A phenomenon is ‘fundamental’ if a sufficiently deep understanding of the world depends on understanding that phenomenon. Opinions differ, of course, about what aspects of the world are worth understanding, and consequently about what is deep or fundamental. Some would say that love is the most fundamental phenomenon in the world. Others believe that when one has learned certain sacred texts by heart, one understands everything that is worth understanding. The understanding that I am talking about is expressed in laws of physics, and in principles of logic and philosophy. A ‘deeper’ understanding is one that has more generality, incorporates more connections between superficially diverse truths, explains more with fewer unexplained assumptions. The most fundamental phenomena are implicated in the explanation of many other phenomena, but are themselves explained only by basic laws and principles.
Not all fundamental phenomena have large physical effects. Gravitation does, and is indeed a fundamental phenomenon. But the direct effects of quantum interference, such as the shadow patterns described in Chapter 2, are not large. It is quite hard even to detect them unambiguously. Nevertheless, we have seen that quantum interference is a fundamental phenomenon. Only by understanding it can we understand the basic fact about physical reality, namely the existence of parallel universes.
It was obvious to Aristotle that life is theoretically fundamental;
These spectacular successes of science, and the great generality of Newtonian and subsequent physics in particular, did much to make reductionism attractive. Since faith in revealed truth had been found to be incompatible with rationality (which requires an openness to criticism), many people nevertheless yearned for an ultimate foundation to things in which they could believe. If they did not yet have a reductive ‘theory of everything’ to believe in, then at least they aspired to one. It was taken for granted that a reductionist hierarchy of sciences, based on subatomic physics, was integral to the scientific world-view, and so it was criticized only
My classmates and I had to learn by heart a number of ‘characteristics of living things’. These were merely descriptive. They made little reference to fundamental concepts. Admittedly, (loco)
The reason why both Aristotle’s view and that of my school textbooks failed to capture even a good taxonomic distinction between living and non-living things, let alone anything deeper, is that they both miss the point about what living things are (a mistake more forgivable in Aristotle because in his day no one knew any better). Modern biology does not try to define life by some characteristic physical attribute or substance — some living ‘essence’ — with which only animate matter is endowed. We no longer expect there to be any such essence, because we now know that ‘animate matter’, matter in the form of living organisms, is not the basis of life. It is merely one of the effects of life, and the basis of life is molecular. It is the fact that there exist molecules which cause certain environments to make copies of those molecules.
Such molecules are called
Genes are in effect computer programs, expressed as sequences of A, C, G and T symbols in a standard language called the
Typically, a gene is chemically ‘switched on’ in certain cells of the body, and then instructs those cells to manufacture the corresponding protein. For example, the hormone insulin, which controls blood sugar levels in vertebrates, is such a protein. The gene for manufacturing it is present in almost every cell of the body, but it is switched on only in certain specialized cells in the pancreas, and then only when it is needed. At the molecular level, this is all that any gene can program its cellular computer to do: manufacture a certain chemical. But genes succeed in being replicators because these low-level chemical programs add up, through layer upon layer of complex control and feedback, to sophisticated high-level instructions. Jointly, the insulin gene and the genes involved in switching it on and off amount to a complete program for the regulation of sugar in the bloodstream.
Similarly, there are genes which contain specific instructions for how and when they and other genes are to be copied, and instructions for the manufacture of further organisms of the same species, including the molecular computers which will execute all these instructions again in the next generation. There are also instructions for how the organism as a whole should respond to stimuli — for instance, when and how it should hunt, eat, mate, fight or run away. And so on.
A gene can function as a replicator only in certain environments. By analogy with an ecological ‘niche’ (the set of environments in which an organism can survive and reproduce), I shall also use the term
Not everything that can be copied is a replicator. A replicator
Along with genes,
Actually, that is an exaggeration. Anything that is copied must have made at least some causal contribution to that copying. Junk DNA sequences, for instance, are made of DNA, which allows the cellular computer to copy them. It cannot copy molecules other than DNA. It is not usually illuminating to consider something as a replicator if its causal contribution to its own replication is small, though strictly speaking being a replicator is a matter of degree. I shall define the
Notice that to quantify degrees of adaptation, we have to consider not only the replicator in question but also a range of variants of it. The more sensitive the copying in a given environment is to the replicator’s exact physical structure, the more adapted the replicator is to that environment. For highly adapted replicators (which are the only ones worth calling replicators) we need consider only fairly small variations, because under most large variations they would no longer be replicators. So we are contemplating replacing the replicator by broadly similar objects. To quantify the degree of adaptation to a niche, we have to consider the replicator’s degree of adaptation to each environment of the niche. We must therefore consider variants of the environment as well as of the replicator. If most variants of the replicator fail to cause most environments of its niche to copy them, then it would follow that our replicator’s form is a significant cause of its own copying in that niche, which is what we mean by saying that it is highly adapted to the niche. On the other hand, if most variants of the replicator would be copied in most of the environments of the niche, then the form of our replicator makes little difference, in that copying would occur anyway. In that case, our replicator makes little causal contribution to its copying, and it is not highly adapted to that niche.
So the degree of adaptation of a replicator depends not only on what that replicator does in its actual environment, but also on what a vast number of other objects, most of which do not exist,
The most important factor determining a gene’s niche is usually that the gene’s replication depends on the presence of other genes. For example, the replication of a bear’s insulin gene depends not only on the presence, in the bear’s body, of all its other genes, but also on the presence, in the external environment, of genes from other organisms. Bears cannot survive without food, and the genes for manufacturing that food exist only in other organisms.
Different types of gene which need each other’s cooperation to replicate often live joined together in long DNA chains, the DNA of an
In everyday parlance we speak of organisms ‘reproducing themselves’; indeed, this was one of the supposed ‘characteristics of living things’. In other words, we think of organisms as replicators. But this is inaccurate. Organisms
So an organism is the immediate environment which copies the real replicators: the organism’s genes. Traditionally, a bear’s nose and its den would have been classified as living and non-living entities, respectively. But that distinction is not rooted in any significant difference. The role of the bear’s nose is fundamentally no different from that of its den. Neither is a replicator, though new instances of them are continually being made. Both the nose and the den are merely parts of the environment which the bear’s genes manipulate in the course of getting themselves replicated.
This gene-based understanding of life — regarding organisms as part of the environment of genes — has implicitly been the basis of biology since Darwin, but it was overlooked until at least the 1960s, and not fully understood until Richard Dawkins published
I now return to the question whether life is a fundamental phenomenon of nature. I have warned against the reductionist assumption that emergent phenomena, such as life, are necessarily less fundamental than microscopic physical ones. Nevertheless, everything I have just been saying about what life is seems to point to its being a mere side-effect at the end of a long chain of side-effects. For it is not merely the
As for the physical impact of life, the conclusion is the same: the effects of life seem negligibly small. For all we know, the planet Earth is the only place in the universe where life exists. Certainly we have seen no evidence of its existence elsewhere, so even if it in quite widespread its effects are too small to be perceptible to us. What we do see beyond the Earth is an active universe, seething with diverse, powerful but totally inanimate processes. Galaxies revolve. Stars condense, shine, flare, explode and collapse. High-energy particles and electromagnetic and gravitational waves scream in all directions. Whether life is or is not out there among all those titanic processes seems to make no difference. It seems that none of them would be in the slightest way affected if life
Thus the prevailing view today is that life, far from being central, either geometrically, theoretically or practically, is of almost inconceivable insignificance. Biology, in this picture, is a subject with the same status as geography. Knowing the layout of the city of Oxford is important to those of us who live there, but unimportant to those who never visit Oxford. Similarly, it seems that life is a property of some parochial area, or perhaps areas, of the universe, fundamental to us because we are alive, but not at all fundamental either theoretically or practically in the larger scheme of things.
But remarkably, this appearance is misleading, It is simply not true that life is insignificant in its physical effects, nor is it theoretically derivative.
As a first step to explaining this, let me explain my earlier remark that life is a form of virtual-reality generation. I have used the word ‘computers’ for the mechanisms that execute gene programs inside living cells, but that is slightly loose terminology. Compared with the general-purpose computers that we manufacture artificially, they do more in some respects and less in others. One could not easily program them to do word processing or to factorize large numbers. On the other hand, they exert exquisitely accurate, interactive control over the responses of a complex environment (the organism) to everything that may happen to it. And this control is directed towards causing the environment to act back upon the genes in a specific way (namely, to replicate them) such that the net effect on the genes is as independent as possible of what may be happening outside. This is more than just computing. It is virtual-reality rendering.
The analogy with the human technology of virtual reality is no perfect. First, although genes are enveloped, just as a user of virtual reality is, in an environment whose detailed constitution and behaviour are specified by a program (which the genes themselves embody), the genes do not
However, these differences are unimportant. As I have said,
So living processes and virtual-reality renderings are, superficial differences aside, the same sort of process. Both involve the physical embodying of general theories about an environment. In both cases these theories are used to realize that environment and to control, interactively, not just its instantaneous appearance but also its detailed response to general stimuli.
When the manufacture of these artificial organisms ceased, the number of instances of each non-replicating gene could never again increase. But nor would it decrease, so long as the knowledge it contained was sufficient for it to enact its survival strategy in the niche it occupied. Eventually a sufficiently large change in the habitat, or attrition caused by accidents, might wipe out the species, but it might well survive for as long as many a naturally occurring species. The genes of such species share all the properties of real genes except replication. In particular, they embody the knowledge necessary to render their organisms in just the way that real genes do.
It is the
I think it would be perverse to call the organisms of these hypothetical species ‘inanimate’, but the terminology is not really important. The point is that although all known life is based on replicators, what the phenomenon of life is really about is knowledge. We can give a definition of adaptation directly in terms of knowledge: an entity is adapted to its niche if it embodies knowledge that causes the niche to keep that knowledge in existence. Now we are getting closer to the reason why life is fundamental. Life is about the physical embodiment of knowledge, and in Chapter 6 we came across a law of physics, the Turing principle, which is also about the physical embodiment of knowledge. It says that it is possible to embody the laws of physics, as they apply to every physically possible environment, in programs for a virtual-reality generator. Genes are such programs. Not only that, but all other virtual-reality programs that physically exist, or will ever exist, are direct or indirect effects of life. For example, the virtual-reality programs that run on our computers and in our brains are indirect effects of human life. So life is the means — presumably a necessary means — by which the effects referred to in the Turing principle have been implemented in nature.
This is encouraging, but it is not quite sufficient to establish that life is a fundamental phenomenon. For I have not yet established that the Turing principle itself has the status of a fundamental law. A sceptic might argue that it does not. It is a law about the physical embodiment of knowledge, and the sceptic might take the view that knowledge is a parochial, anthropocentric concept rather than a fundamental one. That is, it is one of those things which is significant to us because of what we are — animals whose ecological niche depends on creating and applying knowledge — but not significant in an absolute sense. To a koala bear, whose ecological niche depends on eucalyptus leaves, eucalyptus is significant; to the knowledge-wielding ape
But the sceptic would be wrong. Knowledge is significant not only to
We can use the theory to predict the future development of the Sun. It says that the Sun will continue to shine with great stability for another five billion years or so; then it will expand to about a hundred times its present diameter to become a red giant star; then it will pulsate, flare into a nova, collapse and cool, eventually becoming a black dwarf. But will all this really happen to the Sun? Has
If the Sun does become a red giant, it will engulf and destroy the Earth. If any of our descendants, physical or intellectual, are still on the Earth at that time, they might not want that to happen. They might do everything in their power to prevent it.
Is it obvious that they will not be able to? Certainly, our present technology is far too puny to do the job. But neither our theory of stellar evolution nor any other physics we know gives any reason to believe that the task is impossible. On the contrary, we already know, in broad terms, what it would involve (namely, removing matter from the Sun). And we have several billion years to perfect our half-baked plans and put them into practice. If, in the event, our descendants do succeed in saving themselves in this way, then our present theory of stellar evolution, when applied to one particular star, the Sun, gives entirely the wrong answer. And the reason why it gives the wrong answer is that it does not take into account the effect of life on stellar evolution. It takes into account such fundamental physical effects as nuclear and electromagnetic forces, gravity, hydrostatic pressure and radiation pressure — but not life.
It seems likely that the knowledge required to control the Sun in this way could not evolve by natural selection alone, so it must specifically be
I am sure that this pessimism is misguided, and, as I shall explain in Chapter 14, there is every reason to conjecture that our descendants will eventually control the Sun and much more. Admittedly, we can foresee neither their technology nor their wishes. They may choose to save themselves by emigrating from the solar system, or by refrigerating the Earth, or by any number of methods, inconceivable to us, that do not involve tampering with the Sun. On the other hand, they may wish to control the Sun much sooner than would be required to prevent it from entering its red giant phase (for example to harness its energy more efficiently, or to quarry it for raw materials to construct more living space for themselves), However, the point I am making here does not depend on our being able to predict what will happen, but only on the proposition that what will happen will depend on what knowledge our descendants have, and on how they choose to apply it. Thus one cannot predict the future of the Sun without taking a position on the future of life on Earth, and in particular on the future of knowledge. The colour of the Sun ten billion years hence depends on gravity and radiation pressure, on convection and nucleosynthesis. It does not depend at all on the geology of Venus, the chemistry of Jupiter, or the pattern of craters on the Moon. But it does depend on what happens to intelligent life on the planet Earth. It depends on politics and economics and the outcomes of wars. It depends on what people do: what decisions they make, what problems they solve, what values they adopt, and on how they behave towards their children.
One cannot avoid this conclusion by adopting a pessimistic theory of the prospects for our survival. Such a theory does not follow from the laws of physics or from any other fundamental principle that we know, and can be justified only in high-level, human terms (such as ‘scientific knowledge has outrun moral knowledge’, or whatever). So, in arguing from such a theory one is implicitly conceding that theories of human affairs are necessary for making astrophysical predictions. And even if the human race will in the event fail in its efforts to survive, does the pessimistic theory apply to every extraterrestrial intelligence in the universe? If not — if some intelligent life, in some galaxy, will ever succeed in surviving for billions of years — then life is significant in the gross physical development of the universe.
Throughout our Galaxy and the multiverse, stellar evolution depends on whether and where intelligent life has evolved, and if so, on the outcomes of
It is worth reflecting on where we went astray in underestimating the physical impact of life. It was by being too parochial. (That is ironic, because the ancient consensus happened to avoid our mistake by being even more parochial.) In the universe
The conventional argument for the insignificance of life gives too much weight to bulk quantities like size, mass and energy. In the parochial past and present these were and are good measures of astrophysical significance, but there is no reason within physics why that should continue to be so. Moreover, the biosphere itself already provides abundant counter-examples to the general applicability of such measures of significance. In the third century BC, for instance, the mass of the human race was about ten million tonnes. One might therefore conclude that it is unlikely that physical processes occurring in the third century BC and involving the motion of many times that mass could have been significantly affected by the presence or absence of human beings. But the Great Wall of China, whose mass is about three hundred million tonnes, was built at that time. Moving millions of tonnes of rock is the sort of thing that human beings do all the time. Nowadays it takes only a few dozen humans to excavate a million-tonne railway cutting or tunnel. (The point is made even more strongly if we make a fairer comparison, between the mass of rock shifted and the mass of that tiny part of the engineer’s, or emperor’s, brain that embodies the ideas, or memes, that cause the rock to be shifted.) The human race as a whole (or, if you like, its stock of memes) probably already has enough knowledge to destroy whole planets, if its survival depended on doing so. Even non-intelligent life has grossly transformed many times its own mass of the surface and atmosphere of the Earth. All the oxygen in our atmosphere, for instance about a thousand trillion tonnes — was created by plants and was therefore a side-effect of the replication of genes, i.e. molecules, which were descendants of a single molecule. Life achieves its effects not by being larger, more massive or more energetic than other physical processes, but by being more knowledgeable. In terms of its gross effect on the outcomes of physical processes, knowledge is at least as significant as any other physical quantity.
But is there, as the ancients assumed there must be in the case of life, a basic physical difference between knowledge-bearing and non-knowledge-bearing objects, a difference that depends neither on the objects’ environments nor on their effects on the remote future, but only on the objects’ immediate physical attributes? Remarkably, there is. To see what it is, we must take the multiverse view.
Consider the DNA of a living organism, such as a bear, and suppose that somewhere in one of its genes we find the sequence TCGTCGTTTC. That particular string of ten molecules, in the special niche consisting of the rest of the gene and
It can, because these two segments are not really identical. They only look identical when viewed from some universes, such as ours. Let us look at them again, as they appear in other universes. We cannot directly observe other universes, so we must use theory.
We know that DNA in living organisms is naturally subject to random variations —
When we are considering what a particular object may look like in other universes, we must not look so far afield in the multiverse that it is impossible to identify a counterpart, in the other universe, of that object. Take a DNA segment, for instance. In some universes there are no DNA molecules at all. Some universes containing DNA are so dissimilar to ours that there is no way of identifying which DNA segment in the other universe corresponds to the one we are considering in this universe. It is meaningless to ask what our particular DNA segment looks like in such a universe, so we must consider only universes that are sufficiently similar to ours for this ambiguity not to arise. For instance, we could consider only those universes in which bears exist, and in which a sample of DNA from a bear has been placed in an analysing machine, which has been programmed to print out ten letters representing the structure at a specified position relative to certain landmarks on a specified DNA strand. The following discussion would be unaffected if we were to choose any other reasonable criterion for identifying corresponding segments of DNA in nearby universes.
By any such criterion, the bear’s gene segment must have the same sequence in almost all nearby universes as it does in ours. That is because it is presumably highly adapted, which means that most variants of it would not succeed in getting themselves copied in most variants of their environment, and so could not appear at that location in the DNA of a living bear. In contrast, when the non-knowledge-bearing DNA segment undergoes almost any mutation, the mutated version is still capable of being copied. Over generations of replication many mutations will have occurred, and most of them will have had no effect on replication. Therefore the junk-DNA segment, unlike its counterpart in the gene, will be thoroughly heterogeneous in different universes. It may well be that every possible variation of its sequence is equally represented in the multiverse (that is what we should mean by its sequence being strictly random).
So the multiverse perspective reveals additional physical structure in the bear’s DNA. In this universe, it contains two segments with the sequence TCGTCGTTTC. One of them is part of a gene while the other is not part of any gene. In most other nearby universes, the first of the two segments has the same sequence, TCGTCGTTTC, as it does in our universe, but the second segment varies greatly between nearby universes. So from the multiverse perspective the two segments are not even remotely alike (Figure 8.1).
Again we were too parochial, and were led to the false conclusion: that knowledge-bearing entities can be physically identical to non knowledge-bearing ones; and this in turn cast doubt on the fundamental status of knowledge. But now we have come almost full circle. We can see that the ancient idea that living matter has special physical properties was almost true: it is not living matter but
So knowledge is a fundamental physical quantity after all, and the phenomenon of life is only slightly less so.
Imagine looking through an electron microscope at a DNA molecule from a bear’s cell, and trying to distinguish the genes from the non-gene sequences and to estimate the degree of adaptation of each gene. In any one universe, this task is impossible. The property of being a gene — that is, of being highly adapted — is, in so far as it can be detected within one universe, overwhelmingly complicated. It is an emergent property. You would have to make many copies of the DNA, with variations, use genetic engineering to create many bear embryos for each variant of the DNA, allow the bears to grow up and live in a variety of environments representative of the bear’s niche, and see which bears succeed in having offspring.
FIGURE 8.1
But with a magic microscope that could see into other universes (which, I stress, is not possible: we are using theory to imagine — or render — what we know must be there) the task would be easy. As in Figure 8.1, the genes would stand out from the non-genes just as cultivated fields stand out from a jungle in an aerial photograph, or like crystals that have precipitated from solution. They are regular across many nearby universes, while all the non-gene, junk-DNA segments are irregular. As for the degree of adaptation of a gene, this is almost as easy to estimate. The better-adapted genes will have the same structure over a wider range of universes — they will have bigger ‘crystals’.
Now go to an alien planet, and try to find the local life-forms, if any. Again, this is a notoriously difficult task. You would have to perform complex and subtle experiments whose infinite pitfalls have been the subject of many a science-fiction story. But if only you could observe through a multiverse telescope, life and its consequences would be obvious at a glance. You need only look for complex structures that seem irregular in any one universe, but are identical across many nearby universes. If you see any, you will have found some physically embodied knowledge. Where there is knowledge, there must have been life, at least in the past.
Compare a living bear with the Great Bear constellation. The living bear is anatomically very similar in many nearby universes. It is not only its genes that have that property, but its whole body (though other attributes of its body, such as its weight, vary much more than the genes; that is because, for example, in different universes the bear has been more or less successful in its recent search for food). But in the Great Bear constellation there is no such regularity from one universe to another. The shape of the constellation is a result of the initial conditions in the galactic gas from which the stars formed. Those conditions were random — very diverse in different universes, at a microscopic level — and the process of the formation of stars from that gas involved various instabilities which amplified the scale of the variations. As a result, the pattern of stars that we see in the constellation exists in only a very narrow range of universes. In most nearby variants of our universe there are also constellations in the sky, but they look different.
Finally, let us look around the universe in a similar way. What will catch our magically enhanced eye? In a single universe the most striking structures are galaxies and clusters of galaxies. But those objects have no discernible structure across the multiverse. Where there is a galaxy in one universe, a myriad galaxies with quite different geographies are stacked in the multiverse. And so it is everywhere in the multiverse. Nearby universes are alike only in certain gross features, as required by the laws of physics, which apply to them all. Thus most stars are quite accurately spherical everywhere in the multiverse, and most galaxies are spiral or elliptical. But nothing extends far into other universes without its detailed structure changing unrecognizably. Except, that is, in those few places where there is embodied knowledge. In such places, objects extend recognizably across large numbers of universes. Perhaps the Earth is the only such place in our universe, at present. In any case, such places stand out, in the sense I have described, as the location of the processes — life, and thought — that have generated the largest distinctive structures in the multiverse.
replicator An entity that causes certain environments to make copies of it.
gene A molecular replicator. Life on Earth is based on genes that are DNA strands (RNA in the case of some viruses).
meme An idea that is a replicator, such as a joke or a scientific theory.
niche The niche of a replicator is the set of all possible environments in which the replicator would cause its own replication. The niche of an organism is the set of all possible environments and life-styles in which it could live and reproduce.
adaptation The degree to which a replicator is adapted to a niche is the degree to which it causes its own replication in that niche. More generally, an entity is adapted to its niche to the extent that it embodies knowledge that causes the niche to keep that knowledge in existence.
Scientific progress since Galileo has seemed to refute the ancient idea that life is a fundamental phenomenon of nature. It has revealed the vast scale of the universe, compared with the Earth’s biosphere. Modern biology seems to have confirmed this refutation, by explaining living processes in terms of molecular replicators, genes, whose behaviour is governed by the same laws of physics as apply to inanimate matter. Nevertheless, life
9
Quantum Computers
To anyone new to the subject,
Quantum computation is more than just a faster, more miniaturized technology for implementing Turing machines. A
Let me elaborate that claim. The earliest inventions for harnessing nature were tools powered by human muscles. They revolutionized our ancestors’ situation, but they suffered from the limitation that they required continuous human attention and effort during every moment of their use. Subsequent technology overcame that limitation: human beings managed to domesticate certain animals and plants, turning the biological adaptations in those organisms to human ends. Thus the crops could grow, and the guard dogs could watch, even while their owners slept. Another new type of technology began when human beings went beyond merely exploiting existing adaptations (and existing non-biological phenomena such as fire), and created completely new adaptations in the world, in the form of pottery, bricks, wheels, metal artefacts and machines. To do this they had to think about, and understand, the natural laws governing the world — including, as I have explained, not only its superficial aspects but the underlying fabric of reality. There followed thousands of years of progress in this type of technology — harnessing some of the
I have already mentioned the significance of computational universality — the fact that a single physically possible computer can, given enough time and memory, perform any computation that any other physically possible computer can perform. The laws of physics as we currently know them do admit computational universality. However, to be at all useful or significant in the overall scheme of things, universality as I have defined it up to now is not sufficient. It merely means that the universal computer can
Thus the fact that there
So, the laws of physics not only permit (or, as I have argued,
Just how efficiently can given aspects of reality be rendered? What computations, in other words, are practicable in a given time and under a given budget? This is the basic question of computational complexity theory which, as I have said, is the study of the resources that are required to perform given computational tasks. Complexity theory has not yet been sufficiently well integrated with physics to give many quantitative answers. However, it has made a fair amount of headway in defining a useful, rough-and-ready distinction between
What counts for ‘tractability’, according to the standard definitions, is not the actual time taken to multiply a particular pair of numbers, but the fact that the time does not increase too sharply when we apply the same method to ever larger numbers. Perhaps surprisingly, this rather indirect way of defining tractability work very well in practice for many (though not all) important classes of computational tasks. For example, with multiplication we can easily see that the standard method can be used to multiply numbers that are, say, about ten times as large, with very little extra work. Suppose, for the sake of argument, that each elementary multiplication of one digit by another takes a certain computer one microsecond (including the time taken to perform the additions, shift and other operations that follow each elementary multiplication. When we are multiplying the seven-digit numbers 4,220,851 an 2,594,209, each of the seven digits in 4,220,851 has to be multiplied by each of the seven digits in 2,594,209. So the total time require for the multiplication (if the operations are performed sequential) will be seven times seven, or 49 microseconds. For inputs rough ten times as large as these, which would have eight digits each, the time required to multiply them would be 64 microseconds, an increase of only 31 per cent.
Clearly, numbers over a huge range — certainly including any numbers that have ever been measured as the values of physical variables — can be multiplied in a tiny fraction of a second. So multiplication is indeed tractable for all purposes within physics (or, at least, within existing physics). Admittedly, practical reasons for multiplying much larger numbers can arise outside physics. For instance, products of prime numbers of 125 digits or so are of great interest to cryptographers. Our hypothetical machine could multiply two such prime numbers together, making a 250-digit product, in just over a hundredth of a second. In one second it could multiply two 1000-digit numbers, and real computers available today can easily improve upon those timings. Only a few researchers in esoteric branches of pure mathematics are interested in performing such incomprehensibly vast multiplications, yet we see that even they have no reason to regard multiplication as intractable.
By contrast,
The most obvious method of factorization is to divide the input number by all possible factors, starting with 2 and continuing with every odd number, until one of them divides the input exactly. At least one of the factors (assuming the input is not a prime) can be no larger than the input’s square root, and that provides an estimate of how long the method might take. In the case we are considering, our computer would find the smaller of the two factors, 2,594,209, in just over a second. However, an input ten times as large would have a square root that was about three times as large, so factorizing it by this method would take up to three times as long. In other words, adding one digit to the input would now
The method can be improved upon, but
At least, no one
In 1982 the physicist Richard Feynman considered the computer simulation of quantum-mechanical objects. His starting-point was something that had already been known for some time without its significance being appreciated, namely that predicting the behaviour of quantum-mechanical systems (or, as we can describe it, rendering quantum-mechanical environments in virtual reality) is in general an intractable task. One reason why the significance of this had not been appreciated is that no one expected the computer prediction of interesting physical phenomena to be especially easy. Take weather forecasting or earthquake prediction, for instance. Although the relevant equations are known, the difficulty of applying them in realistic situations is notorious. This has recently been brought to public attention in popular books and articles on
Chaos theory is about limitations on predictability in classical physics, stemming from the fact that almost all classical systems are inherently unstable. The ‘instability’ in question has nothing to do with any tendency to behave violently or disintegrate. It is about an extreme sensitivity to initial conditions. Suppose that we know the present state of some physical system, such as a set of billiard balls rolling on a table. If the system obeyed classical physics, as it does to a good approximation, we should then be able to determine its future behaviour — say, whether a particular ball will go into a pocket or not — from the relevant laws of motion, just as we can predict an eclipse or a planetary conjunction from the same laws. But in practice we are never able to measure the initial positions and velocities perfectly. So the question arises, if we know them to some reasonable degree of accuracy, can we also predict to a reasonable degree of accuracy how they will behave in the future? And the answer is, usually, that we cannot. The difference between the real trajectory and the predicted trajectory, calculated from slightly inaccurate data, tends to grow exponentially and irregularly (‘chaotically’) with time, so that after a while the original, slightly imperfectly known state is no guide at all to what the system is doing. The implication for computer prediction is that planetary motions, the epitome of classical predictability, are untypical classical systems. In order to predict what a typical classical system will do after only a moderate period, one would have to determine its initial state to an impossibly high precision. Thus it is said that in principle, the flap of a butterfly’s wing in one hemisphere of the planet could cause a hurricane in the other hemisphere. The infeasibility of weather forecasting and the like is then attributed to the impossibility of accounting for every butterfly on the planet.
However, real hurricanes and real butterflies obey quantum theory, not classical mechanics. The instability that would rapidly amplify slight mis-specifications of an initial classical state is simply not a feature of quantum-mechanical systems. In quantum mechanics, small deviations from a specified initial state tend to cause only small deviations from the predicted final state. Instead, accurate prediction is made difficult by quite a different effect.
The laws of quantum mechanics require an object that is initially at a given position (in all universes) to ‘spread out’ in the multiverse sense. For instance, a photon and its other-universe counterparts all start from the same point on a glowing filament, but then move in trillions of different directions. When we later make a measurement of what has happened, we too become differentiated as each copy of us sees what has happened in our particular universe. If the object in question is the Earth’s atmosphere, then a hurricane may have occurred in 30 per cent of universes, say, and not in the remaining 70 per cent. Subjectively we perceive this as a single, unpredictable or ‘random’ outcome, though from the multi-verse point of view all the outcomes have actually happened. This parallel-universe multiplicity is the real reason for the unpredictability of the weather. Our inability to measure the initial conditions accurately is completely irrelevant. Even if we knew the initial conditions perfectly, the multiplicity, and therefore the unpredictability of the motion, would remain. And on the other hand, in contrast to the classical case, an imaginary multiverse with only slightly different initial conditions would not behave very differently from the real multiverse: it might suffer hurricanes in 30.000001 per cent of its universes and not in the remaining 69.999 999 per cent.
The flapping of butterflies’ wings does not, in reality, cause hurricanes because the classical phenomenon of chaos depends on perfect determinism, which does not hold in any single universe. Consider a group of identical universes at an instant at which, in all of them, a particular butterfly’s wings have flapped up. Consider a second group of universes which at the same instant are identical to the first group, except that in them the butterfly’s wings are down. Wait for a few hours. Quantum mechanics predicts that, unless there are exceptional circumstances (such as someone watching the butterfly and pressing a button to detonate a nuclear bomb if it flaps its wings), the two groups of universes, nearly identical at first, are still nearly identical. But each group, within itself, has become greatly differentiated. It includes universes with hurricanes, universes without hurricanes, and even a very tiny number of universes in which the butterfly has spontaneously changed its species through an accidental rearrangement of all its atoms, or the Sun has exploded because all its atoms bounced by chance towards the nuclear reaction at its core. Even so, the two groups still resemble each other very closely. In the universes in which the butterfly raised its wings and hurricanes occurred, those hurricanes were indeed unpredictable; but the butterfly was not causally responsible, for there were near-identical hurricanes in universes where everything else was the same but the wings were lowered.
It is perhaps worth stressing the distinction between
Quantum theory is often presented as making only probabilistic predictions. For example, in the perforated-barrier-and-screen type of interference experiment described in Chapter 2, the photon can be observed to arrive anywhere in the ‘bright’ part of the shadow pattern. But it is important to understand that for many other experiments quantum theory predicts a single, definite outcome. In other words, it predicts that all universes will end up with the same outcome, even if the universes differed at intermediate stages of the experiment, and it predicts what that outcome will be. In such cases we observe
FIGURE 9.1
FIGURE 9.2
A single photon enters the interferometer at the top left, as shown in Figure 9.3. In all the universes in which the experiment is done, the photon and its counterparts are travelling towards the interferometer along the same path. These universes are therefore identical. But as soon as the photon strikes the semi-silvered mirror, the initially identical universes become differentiated. In half of them, the photon passes straight through and travels along the top side of the interferometer. In the remaining universes, it bounces off the mirror and travels down the left side of the interferometer. The versions of the photon in these two groups of universes then strike and bounce off the ordinary mirrors at the top right and bottom left respectively. Thus they end up arriving simultaneously at the semi-silvered mirror on the bottom right, and interfere with one another. Remember that we have allowed only one photon into the apparatus, and in each universe there is still only one photon in here. In all universes, that photon has now struck the bottom-right mirror. In half of them it has struck it from the left, and in the other half it has struck it from above. The versions of the photon in these two groups of universes interfere strongly. The net effect depends on the exact geometry of the situation, but Figure 9.3 shows the case where in all universes the photon ends up taking the rightward-pointing path through the mirror, and in no universe is it transmitted or reflected downwards. Thus all the universes are identical at the end of the experiment, just as they were at the beginning. They were differentiated, and interfered with one another, only for a minute fraction of a second in between.
FIGURE 9.3
This remarkable non-random interference phenomenon is just as inescapable a piece of evidence for the existence of the multiverse as is the phenomenon of shadows. For the outcome that I have described is incompatible with
Since there are only two different kinds of universe in this experiment, the calculation of what will happen takes only about twice as long as it would if the particle obeyed classical laws — say, if we were computing the path of a billard ball. A factor of two will hardly make such computations intractable. However, we have already seen that multiplicity of a much larger degree is fairly easy to achieve. In the shadow experiments, a single photon passes through a barrier in which there are some small holes, and then falls on a screen. Suppose that there are a thousand holes in the barrier. There are places on the screen where the photon can fall (
The complexity of this sort of computation shows us that there is a lot more happening in a quantum-mechanical environment than — literally — meets the eye. And I have argued, expressing Dr Johnson’s criterion for reality in terms of computational complexity, that this complexity is the core reason why it does not make sense to deny the existence of the rest of the multiverse. But far higher multiplicities are possible when there are two or more interacting particles involved in an interference phenomenon. Suppose that each of two interacting particles has (say) a thousand paths open to it. The pair can then be in a million different states at an intermediate stage of the experiment, so there can be up to a million universes that differ in what this
This is the intractability that was exercising Feynman. We see that it has nothing to do with unpredictability: on the contrary, it is most clearly manifested in quantum phenomena that are highly predictable. That is because in such phenomena the same, definite outcome occurs in all universes, but that outcome is the result of interference between vast numbers of universes that were different during the experiment. All this is in principle predictable from quantum theory and is not overly sensitive to the initial conditions. What makes it hard to
Intractability is in principle a greater impediment to universality than unpredictability could ever be. I have already said that a perfectly accurate rendering of a roulette wheel need not — indeed should not — give the same sequence of numbers as the real one. Similarly, we cannot prepare in advance a virtual-reality rendering of tomorrow’s weather. But we can (or shall, one day, be able to) make a rendering of
It might seem natural to conclude that reality does not, after all, display genuine computational universality, because interference phenomena cannot be usefully rendered. Feynman, however, correctly drew the opposite conclusion! Instead of regarding the intractability of the task of rendering quantum phenomena as an obstacle Feynman regarded it as an opportunity. If it requires so much computation to work out what will happen in an interference experiment, then the very act of setting up such an experiment and measuring its outcome is tantamount to performing a complex computation. Thus, Feynman reasoned, it might after all be possible to render quantum environments efficiently, provided the computer were allowed to perform experiments on a real quantum-mechanical object. The computer would choose what measurements to make on an auxiliary piece of quantum hardware as it went along, and would incorporate the results of the measurements into its computations.
The auxiliary quantum hardware would in effect be a computer too. For example, an interferometer could act as such a device and, like any other physical object, it can be thought of as a computer. We would nowadays call it a
Using a quantum auxiliary device in this way might be considered cheating, since
But it was not a single machine, as it would have to be in order to qualify as a universal computer. The interactions that the simulator’s atoms would have to undergo could not be fixed once and for all, as in a universal computer, but would have to be re-engineered for the simulation of each target environment. But the point of universality is that it should be possible to program single machine, specified once and for all, to perform any possible computation, or render any physically possible environment. In 1985 I proved that under quantum physics there is a
The classical theory of computation, which was the unchallenged foundation of computing for half a century, is now obsolete except, like the rest of classical physics, as an approximation scheme.
Let us start by imagining some parallel universes stacked like a pack of cards, with the pack as a whole representing the multiverse. (Such a model, in which the universes are arranged in a sequence, greatly understates the complexity of the multiverse, but it suffices to illustrate my point here.) Now let us alter the model to take account of the fact that the multiverse is not a discrete set of universes but a continuum, and that not all the universes are different. In fact, for each universe that is present there is also a continuum of identical universes present, comprising a certain tiny but non-zero proportion of the multiverse. In our model, this proportion may be represented by the thickness of a card, where each card now represents all the universes of a given type. However, unlike the thickness of a card, the proportion of each type of universe changes with time under quantum-mechanical laws of motion. Consequently, the proportion of universes having a given property also changes, and it changes continuously. In the case of a discrete variable changing from 0 to 1, suppose that the variable has the value 0 in all universes before the change begins, and that after the change, it has the value 1 in all universes. During the change, the proportion of universes in which the value is 0 falls smoothly from 100 per cent to zero, and the proportion in which the value is 1 rises correspondingly from zero to 100 per cent. Figure 9.4 shows a multiverse view of such a change.
It might seem from Figure 9.4 that, although the transition from 0 to 1 is objectively continuous from the multiverse perspective, it remains subjectively discontinuous from the point of view of any individual universe — as represented, say, by a horizontal line halfway up Figure 9.4. However, that is merely a limitation of the diagram, and not a real feature of what is happening. Although the diagram makes it seem that there is at each instant a particular universe that ‘has just changed’ from 0 to 1 because it has just ‘crossed the boundary’, that is not really so. It cannot be, because such a universe is strictly identical with every other universe in which the bit has value 1 at that time. So if the inhabitants of one of them were experiencing a discontinuous change, then so would the inhabitants of all the others. Therefore none of them can have such an experience. Note also that, as I shall explain in Chapter 11, the idea of anything
FIGURE 9.4
Another way in which quantum physics is implicit in classical computation is that all practical implementations of Turing-type computers rely on such things as solid matter or magnetized materials, which could not exist in the absence of quantum-mechanical effects. For example, any solid body consists of an array of atoms, which are themselves composed of electrically charged particles (electrons, and protons in the nuclei). But because of classical chaos, no array of charged particles could be stable under classical laws of motion. The positively and negatively charged particles would simply move out of position and crash into each other, and the structure would disintegrate. It is only the strong quantum interference between the various paths taken by charged particles in parallel universes that prevents such catastrophes and makes solid matter possible.
Building a universal quantum computer is well beyond present technology. As I have said, detecting an interference phenomenon always involves setting up an appropriate interaction between
Thus the race is on to engineer sub-microscopic systems in which information-carrying variables interact among themselves, but affect their environment as little as possible. Another novel simplification, unique to the quantum theory of computation, partly offsets the difficulties caused by decoherence. It turns out that, unlike classical computation, where one needs to engineer specific classical logic elements such as
Interference phenomena involving vast numbers of particles, such I as superconductivity and superfluidity, are known, but it seems that none of them can be used to perform any interesting computations. At the time of writing, only single-bit quantum computations can be easily performed in the laboratory. Experimentalists are confident, however, that two- and higher-bit
The fact that the repertoire of the universal quantum computer contains environments whose rendering is classically intractable implies that new classes of purely mathematical computations must have become tractable too. For the laws of physics are, as Galileo said, expressed in mathematical language, and rendering an environment is tantamount to evaluating certain mathematical functions. And indeed, many mathematical tasks have now been discovered which could be efficiently performed by quantum computation where all known classical methods are intractable. The most spectacular of these is the task of factorizing large numbers. The method, known as
Shor’s algorithm is extraordinarily simple and requires far more modest hardware than would be needed for a universal quantum computer. It is likely, therefore, that a
As I have said, there is no practical prospect of factorizing 250-digit numbers by classical means. But a quantum factorization engine running Shor’s algorithm could do it using only a few thousand arithmetic operations, which might well take only a matter of minutes. So anyone with access to such a machine would easily be able to read any intercepted message that had been encrypted using the RSA cryptosystem.
It would do the cryptographers no good to choose larger numbers as keys because the resources required by Shor’s algorithm increase only slowly with the size of the number being factorized. In the quantum theory of computation, factorization is a very tractable task. It is thought that, in the presence of a given level of decoherence, there would again be a practical limit on the size of number that could be factorized, but there is no known lower limit on the rate of decoherence that can be technologically achieved. So we must conclude that one day in the future, at a time that cannot now be predicted, the RSA cryptosystem with any given length of key may become insecure. In a certain sense, that makes it insecure even today. For anyone, or any organization, that records an RSA-encrypted message today, and waits until they can buy a quantum factorization engine with low enough decoherence, will be able to decode the message. That may not happen for centuries, or it may be only decades — perhaps less, who can tell? But the likelihood that it will be rather a long time is all that now remains of the former complete security of the RSA system.
When a quantum factorization engine is factorizing a 250-digit number, the number of interfering universes will be of the order of 10500 — that is, ten to the power of 500. This staggeringly large number is the reason why Shor’s algorithm makes factorization tractable. I said that the algorithm requires only a few thousand arithmetic operations. I meant, of course, a few thousand operations
You may be wondering how we can persuade our counterparts in 10500-odd universes to start working on our factorization task. Will they not have their own agendas for the use of their computers? No — and no persuasion is necessary. Shor’s algorithm operates initially only on a set of universes that are
The argument of Chapter 2, applied to
I have been discussing traditional types of mathematical task that quantum computers would be able to perform more quickly than existing machines. But there is an additional class of new tasks open to quantum computers that no classical computer could perform at all. By a strange coincidence, one of the first of these tasks to be discovered also concerns public-key cryptography. This time it is not a matter of breaking an existing system, but of implementing a new, absolutely secure system of
In Bennett and Brassard’s quantum cryptosystem, messages are encoded in the states of individual photons emitted by a laser. Although many photons are needed to transmit a message (one photon per bit, plus many more photons wasted in various inefficiencies), the machines can be built with existing technology because they need to perform their quantum computations on only one photon at a time. The system’s security is based not on intractability, either classical or quantum, but directly on the properties of quantum interference: that is what gives it its classically unobtainable absolute security. No amount of future computation by any sort of computer, whether for millions or trillions of years, would be of any help to an eavesdropper on quantum-encrypted messages: for if one communicates through a medium exhibiting interference,
Because quantum cryptography depends on manipulating individual photons, it suffers from a major limitation. Each photon that is successfully received, carrying one bit of the message, must somehow have been transmitted intact from the transmitter to the receiver. But every method of transmission involves losses, and if these are too heavy the message will never arrive. Setting up relay stations (which is the remedy for this problem in existing communication systems) would compromise the security because an eavesdropper could, without being detected, monitor what goes on inside the relay station. The best existing quantum-cryptographic systems use fibre-optic cables and have a range of about ten kilometres. This would suffice to provide, say, the financial district of a city with absolutely secure internal communications. Marketable systems may not be far away, but to solve the problem of public-key cryptography in general — say, for global communication — further advances in quantum cryptography are required.
Experimental and theoretical research in the field of quantum computation is accelerating world-wide. Ever more promising new technologies for realizing quantum computers are being proposed, and new types of quantum computation with various advantages over classical computation are continually being discovered and analysed. I find all these developments very exciting, and I believe that some of them will bear technological fruit. But as far as this book is concerned, that is a side-issue. From a fundamental standpoint it does not matter how useful quantum computation turns out to be, nor does it matter whether we build the first universal quantum computer next week, or centuries from now, or never. The quantum theory of computation must in any case be an integral part of the world-view of anyone who seeks a fundamental understanding of reality. What quantum computers tell us about connections between the laws of physics, universality, and apparently unrelated strands of explanation of the fabric of reality, we can discover — and are already discovering — by studying them theoretically.
quantum computation Computation that requires quantum-mechanical processes, especially interference. In other words, computation that is performed in collaboration between parallel universes.
exponential computation A computation whose resource requirements (such as the time required) increase by a roughly constant factor for each additional digit in the input.
tractable/intractable (Rough-and-ready rule) A computational task is deemed tractable if the resources required to perform it do not increase exponentially with the number of digits in the input.
chaos The instability in the motion of most classical systems. A small difference between two initial states gives rise to exponentially growing deviations between the two resulting trajectories. But reality obeys quantum and not classical physics. Unpredictability caused by chaos is in general swamped by quantum indeterminacy caused by identical universes becoming different.
universal quantum computer A computer that could perform any computation that any other quantum computer could perform, and render any finite, physically possible environment in virtual reality.
quantum cryptography Any form of cryptography that can be performed by quantum computers but not by classical computers.
special-purpose quantum computer A quantum computer, such as a quantum cryptographic device or quantum factorization engine, that is not a universal quantum computer.
decoherence If different branches of a quantum computation, in different universes, affect the environment differently, then interference is reduced and the computation may fail. Decoherence is the principal obstacle to the practical realization of more powerful quantum computers.
The laws of physics permit computers that can render every physically possible environment without using impractically large resources. So universal computation is not merely possible, as required by the Turing principle, it is also tractable. Quantum phenomena may involve vast numbers of parallel universes and therefore may not be capable of being efficiently simulated within one universe. However, this strong form of universality still holds because quantum computers can efficiently render every physically possible quantum environment, even when vast numbers of universes are interacting. Quantum computers can also efficiently solve certain mathematical problems, such as factorization, which are classically intractable, and can implement types of cryptography which are classically impossible. Quantum computation is a qualitatively new way of harnessing nature.
10
The Nature of Mathematics
The ‘fabric of reality’ that I have been describing so far has been the fabric of
This suggests that we ought to apply Dr Johnson’s criterion again. If we want to know whether a given abstraction really exists, we should ask whether it ‘kicks back’ in a complex, autonomous way. For example, mathematicians characterize the ‘natural numbers’ 1, 2, 3,… in the first instance through a precise definition such as:
1 is a natural number.
Each natural number has precisely one successor, which is also a natural number.
1 is not the successor of any natural number.
Two natural numbers with the same successor are the same.
Such definitions are attempts to express abstractly the intuitive
Nevertheless, abstract entities are intangible. They do not kick back physically in the sense that a stone does, so experiment and observation cannot play quite the same role in mathematics as they do in science. In mathematics,
Mathematicians are rather proud of this absolute certainty, and scientists tend to be a little envious of it. For in science there is no way of being certain of any proposition. However well one’s theories explain existing observations, at any moment someone may make a new, inexplicable observation that casts doubt on the whole of the current explanatory structure. Worse, someone may reach a better understanding that explains not only all existing observations but also why the previous explanations seemed to work but are nevertheless quite wrong. Galileo, for instance, found new explanation of the age-old observation that the ground beneath our feet is at rest, an explanation that involved the ground actually moving. Virtual reality — which can make one environment seem to be another — underlines the fact that when observation is the ultimate arbiter between theories, there can never be any certainty that an existing explanation, however obvious, is even remotely true. But when proof is the arbiter, it is supposed, there can be certainty.
It is said that the rules of logic were first formulated in the hope that they would provide an impartial and infallible method of resolving all disputes. This hope can never be fulfilled. The study of logic itself revealed that the scope of logical deduction as a means of discovering the truth is severely limited. Given substantive assumptions about the world, one can deduce conclusions; but the conclusions are no more secure than the assumptions. The only repositions that logic can prove without recourse to assumptions are tautologies — statements such as ‘all planets are planets’, which assert nothing. In particular, all substantive questions of science lie outside the domain in which logic alone can settle disputes. But mathematics, it is supposed, lies
As I have said, there is no such method of justification as ‘induction’. The idea of reasoning one’s way to ‘near-certainty’ in science is myth. How could I prove with ‘near-certainty’ that a wonderful new theory of physics, overturning my most unquestioned assumptions about reality, will not be published tomorrow? Or that I am in not inside a virtual-reality generator? But all this is not to say that scientific knowledge is indeed ‘second-class’. For the idea that mathematics yields certainties is
Since ancient times, the idea that mathematical knowledge has a privileged status has often been associated with the idea that some abstract entities, at least, are not merely part of the fabric of reality but are even more real than the physical world. Pythagoras believed that regularities in nature are the expression of mathematical relationships between natural numbers. ‘All things are numbers’ was the slogan. This was not meant quite literally, but Plato went further and effectively denied that the physical world is real at all. He regarded our apparent experiences of it as worthless or misleading, and argued that the physical objects and phenomena we perceive are merely ‘shadows’ or imperfect imitations of their ideal essences (‘Forms’, or ‘Ideas’) which exist in a separate realm that is the true reality. In that realm there exist, among other things, the Forms of pure numbers such as 1,
Plato then pointed out a problem. Given all this Earthly imperfection (and, he could have added, given our imperfect sensory access even to Earthly circles), how can we possibly know what we know about real, perfect circles? Evidently we do know about them, but how? Where did Euclid obtain the knowledge of geometry which he expressed in his famous axioms, when no genuine circles, points or straight lines were available to him? Where does the certainty of a mathematical proof come from, if no one can perceive the abstract entities that the proof refers to? Plato’s answer was that we do not obtain our knowledge of such things from this world of shadow and illusion. Instead, we obtain it directly from the real world of Forms itself. We have perfect inborn knowledge of that world which is, he suggests, forgotten at birth, and then obscured by layers of errors caused by trusting our senses. But reality can be remembered through the diligent application of ‘reason’, which then yields the absolute certainty that experience can never provide.
I wonder whether anyone has ever believed this rather rickety fantasy (including Plato himself, who was after all a very competent philosopher who believed in telling ennobling lies to the public). However, the problem he posed — of how we can possibly have knowledge, let alone certainty, of abstract entities — is real enough, and some elements of his proposed solution have been part of the prevailing theory of knowledge ever since. In particular, the core idea that mathematical knowledge and scientific knowledge come from
There have been many bitter controversies about precisely which types of perfectly reliable knowledge our mathematical intuition can be expected to reveal. In other words, mathematicians agree that mathematical intuition is a source of absolute certainty, but they cannot agree about what mathematical intuition tells them! Obviously this is a recipe for infinite, unresolvable controversy.
Inevitably, most such controversies have centred on the validity or otherwise of various methods of proof. One controversy concerned so-called ‘imaginary’ numbers. Imaginary numbers are the square roots of negative numbers. New theorems about ordinary, ‘real’ numbers were proved by appealing, at intermediate stages of a proof, to the properties of imaginary numbers. For example, the first theorems about the distribution of prime numbers were proved in this way. But some mathematicians objected to imaginary numbers on the grounds that they were not real. (Current terminology still reflects the old controversy, even though we now think that imaginary numbers are just as real as ‘real’ numbers.) I expect that their schoolteachers had told them that they were not
There were similar controversies over the validity of the use of infinite numbers, and of sets containing infinitely many elements, and of the infinitesimal quantities that were used in calculus. David Hilbert, the great German mathematician who provided much of the mathematical infrastructure of both the general theory of relativity and quantum theory, remarked that ‘the literature of mathematics is glutted with inanities and absurdities which have hail their source in the infinite’. Some mathematicians, as we shall see, denied the validity of reasoning about infinite entities at all. The runaway success of pure mathematics during the nineteenth century had done little to resolve these controversies. On the contrary, it tended to intensify them and raise new ones. As mathematical reasoning became more sophisticated, it inevitably moved ever further away from everyday intuition, and this had two important, opposing effects. First, mathematicians became more meticulous about proofs, which were subjected to ever increasing standards or rigour before they were accepted. But second, more powerful
So by about 1900 there was a crisis at the foundations of mathematics — namely, that there were no foundations. But what had become of the laws of pure logic? Were they not supposed to resolve all disputes within the realm of mathematics? The embarrassing fact was that the ‘laws of pure logic’ were in effect what the disputes in mathematics were now about. Aristotle had been the first to codify such laws in the fourth century BC, and so founded what is today called
————————————————————
[Therefore]
In other words, this rule said that if a statement of the form ‘all As have property B’ (as in ‘all men are mortal’) appears in a proof, and another statement of the form ‘the individual X is an A’ (as in ‘Socrates is a man’) also appears, then the statement ‘X has property B’ (‘Socrates is mortal’) may validly appear later in the proof, and in particular it is a valid conclusion. The syllogisms expressed what we would call
Aristotle had declared that all valid proofs could be expressed in syllogistic form. But he had not proved this! And the problem for proof theory was that very few modern mathematical proofs were expressed purely as a sequence of syllogisms; nor could many of them be recast in that form, even in principle. Yet most mathematicians could not bring themselves to stick to the letter of the Aristotelian law, since some of the new proofs seemed just as self-evidently valid as Aristotelian reasoning. Mathematics had moved on. New tools such as symbolic logic and set theory allowed mathematicians to relate mathematical structures to one another in new ways. This had created new self-evident truths that were independent of the classical rules of inference, so those classical rules were self-evidently inadequate. But which of the new methods of proof were genuinely infallible? How were the rules of inference to be modified so that they would have the completeness that Aristotle had mistakenly claimed? How could the absolute authority of the old rules ever be regained if mathematicians could not agree on what was self-evident and what was nonsense?
Meanwhile, mathematicians were continuing to construct their abstract castles in the sky. For practical purposes many of these constructs seemed sound enough. Some had become indispensable in science and technology, and most were connected by a beautiful and fruitful explanatory structure. Nevertheless, no one could guarantee that the entire structure, or any substantial part of it, was not founded upon a logical contradiction, which would make it literally nonsense. In 1902 Bertrand Russell proved that a scheme for defining set theory rigorously, which had just been proposed by the German logician Gottlob Frege, was inconsistent. This did not mean that it was necessarily invalid to use sets in proofs. Indeed, very few mathematicians seriously supposed that any of the usual ways of using sets, or arithmetic, or other core areas of mathematics, might be invalid. What was shocking about Russell’s result was that mathematicians had believed their subject to be
Many mathematicians therefore felt that it was a matter of urgency to place proof theory, and thereby mathematics itself, on a secure foundation. They wanted to consolidate after their headlong advances: to define once and for all which types of proof were absolutely secure, and which were not. Whatever was outside the secure zone could be dropped, and whatever was inside would be the sole basis of all future mathematics.
To this end, the Dutch mathematician Luitzen Egbertus Jan Brouwer advocated an extreme conservative strategy for proof theory, known as
Historically, intuitionism played a valuable liberating role, just as inductivism did. It dared to question received certainties — some of which were indeed false. But as a positive theory of what is or is not a valid mathematical proof, it is worthless. Indeed, intuitionism is precisely the expression, in mathematics, of solipsism. In both cases there is an over-reaction to the thought that we cannot be
Since, in most people’s minds, the law of the excluded middle is itself backed by a powerful intuition, its rejection naturally causes non-intuitionists to wonder whether the intuitionists’ intuition is so self-evidently reliable after all. Or, if we consider the law of the excluded middle to stem from a
But all that is only to criticize intuitionism from the outside. It is no disproof; nor can intuitionism ever be disproved. If someone insists that a self-consistent proposition is self-evident to them, just as if they insist that they alone exist, they cannot be proved wrong. However, as with solipsism generally, the truly fatal flaw of intuitionism is revealed not when it is attacked, but when it is taken seriously in its own terms, as an explanation of its own, arbitrarily truncated world. Intuitionists believe in the reality of the finite natural numbers 1, 2, 3, …, and even 10,949,769,651,859. But the intuitive argument that because each of these numbers has a successor, they form an infinite sequence, is in the intuitionists’ view no more than a self-delusion or affectation and is literally untenable. But by severing the link between their version of the abstract ‘natural numbers’ and the intuitions that those numbers were originally intended to formalize, intuitionists have also denied themselves the usual explanatory structure through which natural numbers are understood. This raises a problem for anyone who prefers explanations to unexplained complications. Instead of solving that problem by providing an alternative or deeper explanatory structure for the natural numbers, intuitionism does exactly what the Inquisition did, and what solipsists do: it retreats still further from explanation. It introduces further unexplained complications (in this case the denial of the law of the excluded middle) whose only purpose is to allow intuitionists to behave as if their opponents’ explanation were true, while drawing no conclusions about reality from this.
Just as solipsism starts with the motivation of simplifying a frighteningly diverse and uncertain world, but when taken seriously turns out to be realism
David Hilbert proposed a much more commonsensical — but still ultimately doomed — plan to ‘establish once and for all the certitude of mathematical methods’. Hilbert’s plan was based on the idea of consistency. He hoped to lay down, once and for all, a complete set of modern rules of inference for mathematical proofs, with certain properties. They would be finite in number. They would be straightforwardly applicable, so that determining whether any purported proof satisfied them or not would be an uncontroversial exercise. Preferably, the rules would be intuitively self-evident, but that was not an overriding consideration for the pragmatic Hilbert. He would be satisfied if the rules corresponded only moderately well to intuition, provided that he could be sure that they were self-consistent. That is, if the rules designated a given proof as valid, he wanted to be sure that they could never designate any proof with the opposite conclusion as valid. How could he be sure of such a thing? This time, consistency would have to be
Hilbert was to be definitively disappointed. Thirty-one years later, Kurt Gödel revolutionized proof theory with a root-and-branch refutation from which the mathematical and philosophical worlds are still reeling: he proved that Hilbert’s tenth problem is insoluble. Gödel proved first that any set of rules of inference that is capable of correctly validating even the proofs of ordinary arithmetic could never validate a proof of its own consistency. Therefore there is no hope of finding the provably consistent set of rules that Hilbert envisaged. Second, Gödel proved that if a set of rules of inference in some (sufficiently rich) branch of mathematics
If Hilbert’s programme had worked, it would have been bad news for the conception of reality that I am promoting in this book, for it would have removed the necessity for
It may seem that the achievement of a unified standard of proof in mathematics could at least have helped us in the overall drive towards unification — that is, the ‘deepening’ of our knowledge that I referred to in Chapter 1. But the opposite is the case. Like the predictive ‘theory of everything’ in physics, Hilbert’s rules would have told us almost nothing about the fabric of reality. They would, as far as mathematics goes, have realized the ultimate reductionist vision, predicting everything (in principle) but explaining nothing. Moreover, if mathematics had been reductionist then all the undesirable features which I argued in Chapter 1 are absent from the structure of human knowledge would have been present in mathematics: mathematical ideas would have formed a hierarchy, with Hilbert’s rules at its root. Mathematical truths whose verification from the rules was very complex would have been objectively less fundamental than those that could be verified immediately from the rules. Since there could have been only a finite supply of such fundamental truths, as time went on mathematics would have had to concern itself with ever less fundamental problems. Mathematics might well have come to an end, under this dismal hypothesis. If it did not, it would inevitably have fragmented into ever more arcane specialities, as the complexity of the ‘emergent’ issues that mathematicians would have been forced to study increased, and as the connections between those issues and the foundations of the subject became ever more remote.
Thanks to Goedel, we know that there will never be a fixed method of determining whether a mathematical proposition is true, any more than there is a fixed way of determining whether a scientific theory is true. Nor will there ever be a fixed way of generating new mathematical knowledge. Therefore progress in mathematics will always depend on the exercise of creativity. It will always be possible, and necessary, for mathematicians to invent new types of proof. They will validate them by new arguments and by new modes of explanation depending on their ever improving understanding of the abstract entities involved. Gödel’s own theorems were a case in point: to prove them, he had to invent a new method of proof. I said the method was based on the ‘diagonal argument’, but Gödel extended that argument in a new way. Nothing had ever been proved in this way before; no rules of inference laid down by someone who had never seen Gödel’s method could possibly have been prescient enough to designate it as valid. Yet it
So explanation does, after all, play the same paramount role in pure mathematics as it does in science. Explaining and understanding the world — the physical world and the world of mathematical abstractions — is in both cases the object of the exercise. Proof and observation are merely means by which we check our explanations. Roger Penrose has drawn a further, radical and very Platonic lesson from Gödel’s results. Like Plato, Penrose is fascinated by the ability of the human mind to grasp the abstract certainties of mathematics. Unlike Plato, Penrose does not believe in the supernatural, and takes it for granted that the brain is part of, and has access only to, the natural world. So the problem is even more acute for him than it was for Plato: how can the fuzzy, unreliable physical world deliver mathematical certainties to a fuzzy, unreliable part of itself such as a mathematician? In particular, Penrose wonders how we can possibly perceive the infallibility of new, valid
Penrose is still working on a detailed answer, but he does claim that the very existence of this sort of open-ended mathematical intuition is fundamentally incompatible with the existing structure of physics, and in particular that it is incompatible with the Turing principle. His argument, in summary, runs as follows. If the Turing principle is true, then we can consider the brain (like any other object) to be a computer executing a particular program. The brain’s interactions with the environment constitute the inputs and outputs of the program. Now consider a mathematician in the act of deciding whether some newly proposed type of proof is valid or not. Making such a decision is tantamount to executing a proof-validating computer program within the mathematician’s brain. Such a program embodies a set of Hilbertian rules of inference which, according to Gödel’s theorem, cannot possibly be complete. Moreover, as I have said, Gödel provides a way of constructing, and proving, a true proposition which those rules can never recognize as proven. Therefore the mathematician, whose mind is effectively a computer applying those rules, can never recognize the proposition as proven either. Penrose then proposes to show the proposition, and Gödel’s method of proving it to be true, to that very mathematician. The mathematician understands the proof. It is, after all, self-evidently valid, so the mathematician can presumably see that it is valid. But that would contradict Gödel’s theorem. Therefore there must be a false assumption somewhere in the argument, and Penrose thinks that the false assumption is the Turing principle.
Most computer scientists do not agree with Penrose that the Turing principle is the weakest link in his story. They would say that the mathematician in the story would indeed be unable to recognize the Gödelian proposition as proven. It may seem odd that a mathematician should suddenly become unable to comprehend a self-evident proof. But look at this proposition:
I am trying as hard as I can, but I cannot consistently judge it to be true. For if I did, I would be judging that I
Anyway, Penrose hopes for a new, fundamental theory of physics replacing both quantum theory and the general theory of relativity. It would make new, testable predictions, though it would of course agree with quantum theory and relativity for all existing observations. (There are no known experimental counter-examples to those theories.) However, Penrose’s world is fundamentally very different from what existing physics describes. Its basic fabric of reality is what
It is often suggested that the brain may be a quantum computer, and that its intuitions, consciousness and problem-solving abilities might depend on quantum computations. This
I must admit that I cannot conceive of such a theory. However, fundamental breakthroughs do tend to be hard to conceive of before they occur. Naturally, it is hard to judge Penrose’s theory before he succeeds in formulating it fully. If a theory with the properties he hopes for does eventually supersede quantum theory or general relativity, or both, whether through experimental testing or by providing a deeper level of explanation, then every reasonable person would want to adopt it. And then we would embark on the adventure of comprehending the new world-view that the theory’s explanatory structures would compel us to adopt. It is likely that this would be a very different world-view from the one I am presenting in this book. However, even if all this came to pass, I am nevertheless at a loss to see how the theory’s original motivation, that of explaining our ability to grasp new mathematical proofs, could possibly be satisfied. The fact would remain that, now and throughout history, great mathematicians have had different, conflicting intuitions about the validity of various methods of proof. So even if it is true that an absolute, physico-mathematical reality feeds its truths directly into our brains to create mathematical intuitions, mathematicians are not always able to distinguish those intuitions from other, mistaken intuitions and ideas. There is, unfortunately, no bell that rings, or light that flashes, when we are comprehending a truly valid proof. We might sometimes feel such a flash, at a ‘eureka’ moment — and nevertheless be mistaken. And even if the theory predicted that there
I have presented only a sketch of the arguments of Penrose and his opponents. The reader will have gathered that essentially I side with the opponents. However, even if it is conceded that Penrose’s Gödelian argument fails to prove what it sets out to prove, and his proposed new physical theory seems unlikely to explain what it sets out to explain, Penrose is nevertheless right that any world-view based on the existing conception of scientific rationality creates a problem for the accepted foundations of mathematics (or, as Penrose would have it, vice versa). This is the ancient problem that Plato raised, a problem which, as Penrose points out, becomes more acute in the light of both Gödel’s theorem and the Turing principle. It is this: in a reality composed of physics and understood by the methods of science, where does mathematical certainty come from? While most mathematicians and computer scientists take the certainty of mathematical intuition for granted, they do not take seriously the problem of reconciling this with a scientific world-view. Penrose does take it seriously, and he proposes a solution. His proposal envisages a comprehensible world, rejects the supernatural, recognizes creativity as being central to mathematics, ascribes objective reality both to the physical world and to abstract entities, and involves an integration of the foundations of mathematics and physics. In all those respects I am on his side.
Since Brouwer’s, and Hilbert’s, and Penrose’s and all other attempts to meet Plato’s challenge do not seem to have succeeded, it is worth looking again at Plato’s apparent demolition of the idea that mathematical truth can be obtained by the methods of science.
First of all, Plato tells us that since we have access only to imperfect circles (say) we cannot thereby obtain any knowledge of perfect circles. But why not, exactly? One might as well say that we cannot discover the laws of planetary motion because we do not have access to real planets but only to images of planets. (The Inquisition
The reliability of the knowledge of a
Euclidean geometry can be abstractly formulated entirely without diagrams. But the way in which numerals, letters and mathematical symbols are used in a symbolic proof can generate no more certainty than a diagram can, and for the same reason. The symbols too are physical objects — patterns of ink on paper, say — which denote abstract objects. And again, we are relying entirely upon the hypothesis that the physical behaviour of the symbols corresponds to the behaviour of the abstractions they denote. Therefore the reliability of what we learn by manipulating those symbols depends entirely on the accuracy of our theories of their physical behaviour, and of the behaviour of our hands, eyes, and so on with which we manipulate and observe the symbols. Trick ink that caused the occasional symbol to change its appearance when we were not looking — perhaps under the remote control of some high-technology practical joker — could soon mislead us about what we know ‘for certain’.
Now let us re-examine another assumption of Plato’s: the assumption that we do not have access to perfection in the physical world. He may be right that we shall not find perfect honour or justice, and he is certainly right that we shall not find the laws of physics or the set of all natural numbers. But we can find a perfect hand in bridge, or the perfect move in a given chess position. That is to say, we can find physical objects or processes that fully possess the properties of the specified abstractions. We can learn chess just as well with a real chess set as we could with a perfect Form of a chess set. The fact that a knight is chipped does not make the checkmate it delivers any less final.
As it happens, a perfect Euclidean circle
Incidentally, Plato’s idea that physical reality consists of imperfect imitations of abstractions seems an unnecessarily asymmetrical stance nowadays. Like Plato, we still study abstractions for their own sake. But in post-Galilean science, and in the theory of virtual reality, we also regard abstractions as means of understanding real or artificial
Given that there will always be a possibility that the virtual-reality generator or its user interface will go wrong, can a virtual-reality rendering of a Euclidean circle really be said to achieve perfection, up to the standards of mathematical certainty? It can. No one claims that mathematics itself is free from
A similar objection would be that we can never tell for sure how the virtual-reality generator will behave under the control of a given program, because that depends on the functioning of the machine and ultimately on the laws of physics. Since we cannot know the laws of physics for sure, we cannot know for sure that the machine is genuinely rendering Euclidean geometry. But again, no one denies that unforeseen physical phenomena — whether they result from unknown laws of physics or merely from brain disease or trick ink — could mislead a mathematician. But if the laws of physics are in relevant respects as we think they are, then the virtual-reality generator can do its job perfectly, even though we cannot be certain that it is doing so. We must be careful here to distinguish between two issues: whether
Suppose that we deliberately modify the Euclidean geometry program so that the virtual-reality generator will still render circles quite well, but less than perfectly. Would we be unable to infer
When we
Using a perfect virtual-reality rendering, we might experience six identical circles touching the edge of another identical circle in a plane without overlapping. This experience, under those circumstances, would amount to a rigorous proof that such a pattern is possible, because the geometrical properties of the rendered shapes would be absolutely identical with those of the abstract shapes. But this sort of ‘hands-on’ interaction with perfect shapes is not capable of yielding
How do we verify it? We prove it. A proof is traditionally defined as a sequence of statements satisfying self-evident rules of inference, but what does the ‘proving’
But which rules of inference should we use? This is like asking how we should program the virtual-reality generator to make it render the world of Euclidean geometry. The answer is that we must use rules of inference which, to the best of our understanding, will cause our symbols to behave, in the relevant ways, like the abstract entities they denote. How can we be sure that they will? We cannot. Suppose that some critics object to our rules of inference because they think that our symbols will behave differently from the abstract entities. We cannot appeal to the authority of Aristotle or Plato, nor can we prove that our rules of inference are infallible (quite apart from Gödel’s theorem, this would lead to an infinite regress, for we should first have to prove that the method of proof that we used was itself valid). Nor can we haughtily tell the critics that there must be something wrong with their intuition, because
A conventional symbolic proof seems at first sight to have quite a different character from the ‘hands-on’ virtual-reality sort of proof. But we see now that they are related in the way that computations are to physical experiments. Any physical experiment can be regarded as a computation, and any computation is a physical experiment. In both sorts of proof, physical entities (whether in virtual reality or not) are manipulated according to rules. In both cases the physical entities represent the abstract entities of interest. And in both cases the reliability of the proof depends on the truth of the theory that physical and abstract entities do indeed share the appropriate properties.
We can also see from the above discussion that proof is a physical
It follows that neither the theorems of mathematics, nor the process of mathematical proof, nor the experience of mathematical intuition, confers any certainty. Nothing does. Our mathematical knowledge may, just like our scientific knowledge, be deep and broad, it may be subtle and wonderfully explanatory, it may be uncontroversially accepted; but it cannot be certain. No one can guarantee that a proof that was previously thought to be valid will not one day turn out to contain a profound misconception, made to seem natural by a previously unquestioned ‘self-evident’ assumption either about the physical world, or about the abstract world, or about the way in which some physical and abstract entities are related.
It was just such a mistaken, self-evident assumption that caused geometry itself to be mis-classified as a branch of mathematics for over two millennia, from about 300 BC when Euclid wrote his
A very similar mis-classification has been caused by the fundamental mistake that mathematicians since antiquity have been making about the very nature of their subject, namely that mathematical knowledge is more certain than any other form of knowledge. Having made that mistake, one has no choice but to classify proof theory as part of mathematics, for a mathematical theorem could not be certain if the theory that justifies its method of proof were itself uncertain. But as we have just seen, proof theory is not a branch of mathematics — it is a science. Proofs are not abstract. There is no such thing as abstractly proving something, just as there is no such thing as abstractly calculating or computing something. One can of course define a class of abstract entities and call them ‘proofs’, but those ‘proofs’ cannot verify mathematical statements because no one can see them. They cannot persuade anyone of the truth of a proposition, any more than an abstract virtual-reality generator that does not physically exist can persuade people that they are in a different environment, or an abstract computer can factorize a number for us. A mathematical ‘theory of proofs’ would have no bearing on which mathematical truths can or cannot be proved in reality, just as a theory of abstract ‘computation’ has no bearing on what mathematicians — or anyone else — can or cannot calculate in reality, unless there is a separate, empirical reason for believing that the abstract ‘computations’ in the theory resemble real computations. Computations, including the special computations that qualify as proofs, are physical processes. Proof theory is about how to ensure that those processes correctly mimic the abstract entities they are intended to mimic.
Gödel’s theorems have been hailed as ‘the first new theorems of pure logic for two thousand years’. But that is not so: Gödel’s theorems are about what can and cannot be proved, and proof is a physical process. Nothing in proof theory is a matter of logic alone. The new way in which Gödel managed to prove general assertions about proofs depends on certain assumptions about which physical processes can or cannot represent an abstract fact in a way that an observer can detect and be convinced by. Gödel distilled such assumptions into his explicit and tacit justification of his results. His results were self-evidently justified, not because they were ‘pure logic’ but because mathematicians found the assumptions self-evident.
One of Gödel’s assumptions was the traditional one that a proof can have only a finite number of steps. The intuitive justification of this assumption is that we are finite beings and could never grasp a literally infinite number of assertions. This intuition, by the way, caused many mathematicians to worry when, in 1976, Kenneth Appel and Wolfgang Haken used a computer to prove the famous ‘four-colour conjecture’ (that using only four different colours, any map drawn in a plane can be coloured so that no two adjacent regions have the same colour). The program required hundreds of hours of computer time, which meant that the steps of the proof, if written down, could not have been read, let alone recognized as self-evident, by a human being in many lifetimes. ‘Should we take the computer’s word for it that the four-colour conjecture is proved?’, the sceptics wondered — though it had never occurred to them to catalogue all the firings of all the neurons in their own brains when they accepted a relatively ‘simple’ proof.
The same worry may seem more justified when applied to a putative proof with an infinite number of steps. But what is a ‘step’, and what is ‘infinite’? In the fifth century BC Zeno of Elea concluded, on the basis of a similar intuition, that Achilles will never overtake the tortoise if the tortoise has a head start. After all, by the time Achilles reaches the point where the tortoise is now, it will have moved on a little. By the time he reaches
Gödel’s intuition about steps and finiteness does, as far as we know, capture real physical constraints on the process of proof. Quantum theory requires discrete steps, and none of the known ways in which physical objects can interact would allow for an infinite number of steps to precede a measurable conclusion. (It might, however, be possible for an infinite number of steps to be completed in the whole history of the universe — as I shall explain in Chapter 14.) Classical physics would not have conformed to these intuitions if (impossibly) it had been true. For example, the continuous motion of classical systems would have allowed for ‘analogue’ computation which did not proceed in steps and which had a substantially different repertoire from the universal Turing machine. Several examples are known of contrived classical laws under which an infinite amount of computation (infinite, that is, by Turing-machine or quantum-computer standards) could be performed by physically finite methods. Of course, classical physics is incompatible with the results of countless experiments, so it is rather artificial to speculate on what the ‘actual’ classical laws of physics ‘would have been’; but what these examples show is that one cannot
At least one of Gödel’s intuitions about proof turns out to have been mistaken; fortunately, it happens not to affect the proofs of his theorems. He inherited it intact from the prehistory of Greek mathematics, and it remained unquestioned by every generation of mathematicians until it was proved false in the 1980s by discoveries in the quantum theory of computation. It is the intuition that a proof is a particular type of
Now consider some mathematical calculation that is intractable on all classical computers, but suppose that a quantum computer can easily perform it using interference between, say, 10500 universes. To make the point more clearly, let the calculation be such that the answer (unlike the result of a factorization) cannot be tractably verified once we have it. The process of programming a quantum computer to perform such a computation, running the program and obtaining a result, constitutes a proof that the mathematical calculation has that particular result. But now there is no way of keeping a record of everything that happened during the proof process, because most of it happened in other universes, and measuring the computational state would alter the interference properties and so invalidate the proof. So creating an old-fashioned proof
Once again, we see the inadequacy of the traditional mathematical method of deriving certainty by trying to strip away every possible source of ambiguity or error from our intuitions until only self-evident truth remains. That is what Gödel had done. That is what Church, Post and especially Turing had done when trying to intuit their universal models for computation. Turing hoped that his abstracted-paper-tape model was so simple, so transparent and well defined, that it would not depend on any assumptions about physics that could conceivably be falsified, and therefore that it could become the basis of an abstract theory of computation that was independent of the underlying physics. ‘He thought,’ as Feynman once put it, ‘that he understood paper.’ But he was mistaken. Real, quantum-mechanical paper is wildly different from the abstract stuff that the Turing machine uses. The Turing machine is entirely classical, and does not allow for the possibility that the paper might have different symbols written on it in different universes, and that those might interfere with one another. Of course, it is impractical to detect interference between different states of a paper tape. But the point is that Turing’s intuition, because it included false assumptions from classical physics, caused him to abstract away some of the
That mathematicians throughout the ages should have made various mistakes about matters of proof and certainty is only natural. The present discussion should lead us to expect that the current view will not last for ever, either. But the confidence with which mathematicians have blundered into these mistakes and their inability to acknowledge even the possibility of error in these matters are, I think, connected with an ancient and widespread confusion between the
Necessary truth is merely the
Why, then, does mathematics work as well as it does? Why does it lead to conclusions which, though not certain, can be accepted and applied unproblematically for millennia at least? Ultimately the reason is that
So mathematical intuition is a species of physical intuition. Physical intuition is a set of rules of thumb, some perhaps inborn, many built up in childhood, about how the physical world behaves. For example, we have intuitions that there are such things as physical objects, and that they have definite attributes such as shape, colour, weight and position in space, some of which exist even when the objects are unobserved. Another is that there is a physical variable — time — with respect to which attributes change, but that nevertheless objects can retain their identity over time. Another is that objects interact, and that this can change some of their attributes. Mathematical intuition concerns the way in which the physical world can display the properties of abstract entities. One such intuition is that of an abstract law, or at least an explanation, that underlies the behaviour of objects. The intuition that space admits closed surfaces that separate an ‘inside’ from an ‘outside’ may be refined into the mathematical intuition of a
Even if any physical or mathematical intuition were inborn, that would not confer any special authority upon it. Inborn intuition cannot be taken as a surrogate for Plato’s ‘memories’ of the world of Forms. For it is a commonplace observation that many of the intuitions built into human beings by accidents of evolution are simply false. For example, the human eye and its controlling software implicitly embody the false theory that yellow light consists of a mixture of red and green light (in the sense that yellow light gives us exactly the same sensation as a mixture of red light and green light does). In reality, all three types of light have different frequencies and cannot be created by mixing light of other frequencies. The fact that a mixture of red and green light appears to us to be yellow light has nothing whatever to do with the properties of light, but is a property of our eyes. It is the result of a design compromise that occurred at some time during our distant ancestors’ evolution. It is just possible (though I do not believe it) that Euclidean geometry or Aristotelian logic are somehow built into the structure of our brains, as the philosopher Immanuel Kant believed. But that would not logically imply that they were true. Even in the still more implausible event that we have inborn intuitions that we are constitutionally unable to shake off, such intuitions would still not be necessary truths.
The fabric of reality, then, does have a more unified structure than would have been possible if mathematical knowledge had been verifiable with certainty, and hence hierarchical, as has traditionally been assumed. Mathematical entities are part of the fabric of reality because they are complex and autonomous. The sort of reality they form is in some ways like the realm of abstractions envisaged by Plato or Penrose: although they are by definition intangible, they exist objectively and have properties that are independent of the laws of physics. However, it is physics that allows us to gain knowledge of this realm. And it imposes stringent constraints. Whereas everything in physical reality is comprehensible, the comprehensible mathematical truths are precisely the infinitesimal minority which happen to correspond exactly to some physical truth — like the fact that if certain symbols made of ink on paper are manipulated in certain ways, certain other symbols appear. That is, they are the truths that can be rendered in virtual reality. We have no choice but to assume that the incomprehensible mathematical entities are real too, because they appear inextricably in our explanations of the comprehensible ones.
There are physical objects — such as fingers, computers and brains — whose behaviour can model that of certain abstract objects. In this way the fabric of physical reality provides us with a window on the world of abstractions. It is a very narrow window and gives us only a limited range of perspectives. Some of the structures that we see out there, such as the natural numbers or the rules of inference of classical logic, seem to be important or ‘fundamental’ to the abstract world, in the same way as deep laws of nature are fundamental to the physical world. But that could be a misleading appearance. For what we are really seeing is only that some abstract structures are fundamental
mathematics The study of absolutely necessary truths.
proof A way of establishing the truth of mathematical propositions.
(Traditional definition:) A sequence of statements, starting with some premises and ending with the desired conclusion, and satisfying certain ‘rules of inference’.
(Better definition:) A computation that models the properties of some abstract entity, and whose outcome establishes that the abstract entity has a given property.
mathematical intuition (Traditionally:) An ultimate, self-evident source of justification for mathematical reasoning.
(Actually:) A set of theories (conscious and unconscious) about the behaviour of certain physical objects whose behaviour models that of interesting abstract entities.
intuitionism The doctrine that all reasoning about abstract entities is untrustworthy except where it is based on direct, self-evident intuition. This is the mathematical version of solipsism.
Hilbert’s tenth problem To ‘establish once and for all the certitude of mathematical methods’ by finding a set of rules of inference sufficient for all valid proofs, and then proving those rules consistent by their own standards.
Gödel’s incompleteness theorem A proof that Hilbert’s tenth problem cannot be solved. For any set of rules of inference, there are valid proofs not designated as valid by those rules.
Abstract entities that are complex and autonomous exist objectively and are part of the fabric of reality. There exist logically necessary truths about these entities, and these comprise the subject-matter of mathematics. However, such truths cannot be known with certainty. Proofs do not confer certainty upon their conclusions. The validity of a particular form of proof depends on the truth of our theories of the behaviour of the objects with which we perform the proof. Therefore mathematical knowledge is inherently derivative, depending entirely on our knowledge of physics. The comprehensible mathematical truths are precisely the infinitesimal minority which can be rendered in virtual reality. But the incomprehensible mathematical entities (e.g. Cantgotu environments) exist too, because they appear inextricably in our explanations of the comprehensible ones.
11
Time: The First Quantum Concept
Like as the waves make towards the pebbled shore,
So do our minutes hasten to their end;
Each changing place with that which goes before,
In sequent toil all forwards do contend.
Even though it is one of the most familiar attributes of the physical world, time has a reputation for being deeply mysterious. Mystery is part of the very concept of time that we grow up with. St Augustine, for example, said:
What then is time? If no one asks me, I know; if I wish to explain it to one who asks, I know not.
Few people think that distance is mysterious, but everyone knows that time is. And all the mysteries of time stem from its basic, common-sense attribute, namely that the present moment, which we call ‘now’, is not fixed but moves continuously in the future direction. This motion is called the
We shall see that there is no such thing as the flow of time. Yet the idea of it is pure common sense. We take it so much for granted that it is assumed in the very structure of our language. In
What do we mean by ‘time can be thought of as a line?’ We mean that just as a line can be thought of as a sequence of points at different positions, so any moving or changing object can be thought of as a sequence of motionless ‘snapshot’ versions of itself, one at each moment. To say that each point on the line represents a particular moment is to say that we can imagine all the snapshots stacked together along the line, as in Figure 11.2. Some of them show the rotating arrow as it was in the past, some show it as it will be in the future, and one of them — the one to which the moving is currently pointing — shows the arrow as it is now, though a moment later that particular version of the arrow will be in the past because the will have moved on. The instantaneous versions of an object collectively
Grammarians nowadays try not to make value-judgements about how language is used; they try only to record, analyse and understand it. Therefore Quirk
…‘time can be thought of as a line (theoretically, of infinite length) on which is located, as a continuously moving point, the present moment. Anything ahead of the present moment is in the future, and anything behind it is in the past.’
FIGURE 11.1
This is perhaps surprising. We have become used to modifying our common sense to conform to scientific discoveries. Common sense frequently turns out to be false, even badly false. But it is unusual for common sense to be
Consider Figure 11.2 again. It illustrates the motion of two entities. One of them is a rotating arrow, shown as a sequence of snapshots. The other is the moving ‘present moment’, sweeping through the picture from left to right. But the motion of the present moment is not shown in the picture as a sequence of snapshots. Instead, one particular moment is singled out by the , highlighted in darker lines and uniquely labelled ‘(now)’. Thus, even though ‘now’ is said by the caption to be moving across the picture, only one snapshot of it, at one particular moment, is shown.
FIGURE 11.2
Why? After all, the whole point of this picture is to show what happens over an extended period, not just at one moment. If we had wanted the picture to show only one moment, we need not have bothered to show more than one snapshot of the rotating arrow either. The picture is supposed to illustrate the common-sense theory that any moving or changing object is a sequence of snapshots, one for each moment. So if the is moving, why do we not show a sequence of snapshots of it too? The single snapshot shown must be only one of many that would exist if this were a true description of how time works. In fact, the picture is positively misleading as it stands: it shows the
At best, one could say that Figure 11.2 is a hybrid picture which perversely illustrates motion in two different ways. In regard to the moving arrow it illustrates the common-sense theory of time. But it merely
This amended picture illustrates
FIGURE 11.3
Admittedly, different snapshots of the observer perceive different moments as ‘now’. But that does not mean that the observer’s consciousness — or any other moving or changing entity — moves through time as the present moment is supposed to. The various snapshots of the observer do not take it in turns to be in the present. They do not take it in turns to be conscious of their present. They are all conscious, and subjectively they are all in the present. Objectively, there is no present.
We do not experience time flowing, or passing. What we experience are differences between our present perceptions and our present memories of past perceptions. We interpret those differences, correctly, as evidence that the universe changes with time. We also interpret them, incorrectly, as evidence that our consciousness, or the present, or something, moves through time.
If the moving present capriciously stopped moving for a day or two, and then started to move again at ten times its previous speed, what would we be conscious of? Nothing special — or rather, that question makes no sense. There is nothing there that could move, stop or flow, nor could anything be meaningfully called the ‘speed’ of time. Everything that exists in time is supposed to take the form of unchanging snapshots arrayed along the time-line. That includes the conscious experiences of all observers, including their mistaken intuition that time is ‘flowing’. They may imagine a ‘moving present’ travelling along the line, stopping and starting, or even going backwards or ceasing to exist altogether. But imagining it does not make it happen. Nothing can move along the line. Time cannot flow.
The idea of the flow of time really presupposes the existence of a second sort of time, outside the common-sense sequence-of-moments time. If ‘now’ really moved from one of the moments to another, it would have to be with respect to this
The origin of this sort of mistake is that we are accustomed to time being a framework exterior to any physical entity we may be considering. We are used to imagining any physical object as potentially changing, and so existing as a sequence of versions of itself at different moments. But the sequence of moments itself, in pictures like Figures 11.1—11.3, is an exceptional entity. It does not exist within the framework of time — it is the framework of time. Since there is no time outside it, it is incoherent to imagine it changing or existing in more than one consecutive version. This makes such pictures hard to grasp. The picture itself, like any other physical object, does exist over a period of time and does consist of multiple versions of itself. But what the picture
But there is more to this problem than the difficulty of
The reason why we cling to these two incompatible concepts — the moving present and the sequence of unchanging moments — is that we need them both, or rather, that we think we do. We continually invoke both of them in everyday life, albeit never quite in the same breath. When we are
For example, in saying that Faraday discovered electromagnetic induction ‘in 1831’ we are assigning that event to a certain range of moments. That is, we are specifying on which set of snapshots, in the long sheaf of snapshots of world history, that discovery is to be found. No flow of time is involved when we say
Our theories of physics are, unlike common sense, coherent, and they first achieved this by dropping the idea of the flow of time. Admittedly, physicists
Absolute, true, and mathematical time, of itself, and from its own nature, flows equably without relation to anything external.
But Newton wisely makes no attempt to translate his assertion that time flows into mathematical form, or to derive any conclusion from it. None of Newton’s physical theories refers to the flow of time, nor has any subsequent physical theory referred to, or been compatible with, the flow of time.
So why did Newton think it necessary to say that time ‘flows equably’? There is nothing wrong with ‘equably’: one can interpret that as meaning that measurements of time are the same for observers at different positions and in different states of motion. That is a substantive assertion (which, since Einstein, we know to be inaccurate). But it could easily have been stated as I have just stated it, without saying that time flows. I think that Newton was deliberately using the familiar language of time without intending its literal meaning, just as he might have spoken informally of the Sun ‘rising’. He needed to convey to the reader embarking on this revolutionary work that there was nothing new or sophisticated in the Newtonian concept of time. The
Only, it does not flow. In Newtonian physics, time and motion appear much as in Figure 11.3. One minor difference is that I have been drawing successive moments separated from one another, but in all pre-quantum physics that is an approximation because time is a continuum. We must imagine infinitely many, infinitely thin snapshots interpolating continuously between the ones I have drawn. If each snapshot represents everything throughout the whole of space that physically exists at a particular moment, then we can think of the snapshots as being glued together at their faces to form a single, unchangeable block containing everything that happens in space and time (Figure 11.4) — that is, the whole of physical reality. An inevitable shortcoming of this sort of diagram is that the snapshots of space at each moment are shown as being two-dimensional, whereas in reality they are three-dimensional. Each one of them is space at a particular moment. Thus we are treating time as a fourth dimension, analogous to the three dimensions of space in classical geometry. Space and time, considered together like this as a four-dimensional entity, are called
FIGURE 11.4
In Newtonian physics this four-dimensional geometrical interpretation of time was optional, but under Einstein’s theory of relativity it became an indispensable part of the theory. That is because, according to relativity, observers moving at different velocities do not agree about which events are simultaneous. That is, they do not agree about which events should appear on the same snapshot. So they each perceive spacetime as being sliced up in a different way into ‘moments’. Nevertheless, if they each stacked their snapshots in the manner of Figure 11.4, the spacetimes they constructed would be identical. Therefore, according to relativity, the ‘moments’ shown in Figure 11.4 are not objective features of spacetime: they are only one observer’s way of perceiving simultaneity. Another observer would draw the ‘now’ slices at a different angle. So the objective reality behind Figure 11.4, namely the spacetime and its physical contents, could be shown as in Figure 11.5.
Spacetime is sometimes referred to as the ‘block universe’, because within it the whole of physical reality — past, present and future — is laid out once and for all, frozen in a single four-dimensional block. Relative to spacetime, nothing ever moves. What we call ‘moments’ are certain slices through spacetime, and when the contents of such slices are different from one another, we call it change or motion through space.
FIGURE 11.5
As I have said, we think of the flow of time in connection with causes and effects. We think of causes as preceding their effects; we imagine the moving present arriving at causes before it arrives at their effects, and we imagine the effects flowing forwards with the present moment. Philosophically, the most important cause-and-effect processes are our conscious decisions and the consequent actions. The common-sense view is that we have
To be an ‘effect’ of some cause means to be affected by that cause — to be changed by it. Thus when spacetime physics denies the reality of the flow of time, it logically cannot accommodate the common-sense notions of cause and effect either. For in the block universe nothing is changeable: one part of spacetime can no more change another than one part of a fixed
It so happens that all fundamental theories in the era of spacetime physics had the property that given everything that happens before a given moment, the laws of physics determine what happens at all subsequent moments. The property of snapshots being determined by other snapshots is called
The laws of physics that determine one snapshot from another are the ‘glue’ that holds the snapshots together as a spacetime. Let us imagine ourselves, magically and impossibly, outside spacetime (and therefore in an external time of our own, independent of that within spacetime). Let us slice spacetime into snapshots of space at each moment as perceived by a particular observer within spacetime, then shuffle the snapshots and glue them together again in a new order. Could we tell, from the outside, that this is not the real spacetime? Almost certainly. For one thing, in the shuffled spacetime physical processes would not be continuous. Objects would instantaneously cease to exist at one point and reappear at another. Second, and more important, the laws of physics would no longer hold. At least, the real laws of physics would no longer hold. There would exist a different set of laws that took the shuffling into account, explicitly or implicitly, and correctly described the shuffled spacetime.
So to us, the difference between the shuffled spacetime and the real one would be gross. But what about the inhabitants? Could they tell the difference? We are getting dangerously close to nonsense here — the familiar nonsense of the common-sense theory of time. But bear with me and we shall skirt around the nonsense.
Thus in terms of real physics — physics as perceived by the spacetime’s inhabitants — all this slicing up and re-gluing of spacetime is meaningless. Not only the shuffled spacetime, but even the collection of unglued-together snapshots, is physically identical to the original spacetime. We picture all the snapshots glued together in the right order because this represents the relationships between them that are determined by the laws of physics. A picture of them glued together in a different order would represent the same physical events — the same history — but would somewhat misrepresent the relationships between those events. So the snapshots have an
That is how it must be if the concept of time is to be freed of the error of invoking an overarching framework of time that is external to physical reality. The time stamp of a snapshot is the reading on some natural clock that exists within that universe. In some snapshots — the ones containing human civilization, for example — there are actual clocks. In others there are physical variables — such as the chemical composition of the Sun, or of all the matter in space — which can be considered as clocks because they take definite, distinct values on different snapshots, at least over a certain region of spacetime. We can standardize and calibrate them to agree with one another where they overlap.
We can reconstitute the spacetime by using the intrinsic order determined by the laws of physics. We start with any of the snapshots. Then we calculate what the immediately preceding and following snapshots should look like, and we locate those snapshots from the remaining collection and glue them on either side of the original snapshot. Repeating the process builds up the whole spacetime. These calculations are too complex to perform in real life, but they are legitimate in a thought experiment in which we imagine ourselves to be detached from the real, physical world. (Also, strictly speaking, in pre-quantum physics there would be a continuous infinity of snapshots, so the process just described would have to be replaced by a limiting process in which the spacetime is assembled in an infinite number of steps; but the principle is the same.)
The predictability of one event from another does not imply that those events are cause and effect. For example, the theory of electrodynamics says that all electrons carry the same charge. Therefore, using that theory we can — and frequently do — predict the outcome of a measurement on one electron from the outcome of a measurement on another. But neither outcome was
Here is another example. If we observe where one piece of a fully assembled jigsaw puzzle is, and we know the shapes of all the pieces, and that they are interlocked in the proper way, we can predict where all the other pieces are. But that does not mean that the other pieces were
The determinism of physical laws about events in spacetime is like the predictability of a correctly interlocking jigsaw puzzle. The laws of physics determine what happens at one moment from what happens at another, just as the rules of the jigsaw puzzle determine the positions of some pieces from those of others. But, just as with the jigsaw puzzle, whether the events at different moments
I said in Chapter 8 that two conditions must hold for an entity to be a cause of its own replication: first, that the entity is in fact replicated; and second, that most variants of it, in the same situation, would not be replicated. This definition embodies the idea that a cause is something that makes a difference to its effects, and it also works for causation in general. For X to be a cause of Y, two conditions must hold: first, that X and Y both happen; and second, that Y would not have happened if X had been otherwise. For example, sunlight was a cause of life on Earth because both sunlight and life actually occurred on Earth, and because life would not have evolved in the absence of sunlight.
Thus, reasoning about causes and effects is inevitably also about variants of the causes and effects. One is always saying what
We are forced to conclude that, in spacetime physics, conditional statements whose premise is false (‘if Faraday had died in 1830 …’) have no meaning. Logicians call such statements
If the multiverse were literally a collection of spacetimes, the quantum concept of time would be the same as the classical one. As Figure 11.6 shows, time would still be a sequence of moments. The only difference would be that at a particular moment in the multiverse, many universes would exist instead of one. Physical reality at a particular moment would be, in effect, a ‘super-snapshot’ consisting of snapshots of many different versions of the whole of space. The whole of reality for the whole of time would be the stack of all the super-snapshots, just as classically it was a stack of snapshots of space. Because of quantum interference, each snapshot would no longer be determined entirely by previous snapshots of the same spacetime (though it would approximately, because classical physics is often a good approximation to quantum physics). But the super-snapshots beginning with a particular moment would be entirely and exactly determined by the previous super-snapshots. This complete determinism would not give rise to complete predictability, even in principle, because making a prediction would require a knowledge of what had happened in all the universes, and each copy of us can directly perceive only one universe. Nevertheless, as far as the concept of time is concerned, the picture would be just like a spacetime with a sequence of moments related by deterministic laws, only with more happening at each moment, but most of it hidden from any one copy of any observer.
FIGURE 11.6
However, that is not quite how the multiverse is. A workable quantum theory of time — which would also be the quantum theory of gravity — has been a tantalizing and unattained goal of theoretical physics for some decades now. But we know enough about it to know that, though the laws of quantum physics are perfectly deterministic at the multiverse level, they do not partition the multiverse in the manner of Figure 11.6, into separate spacetimes, or into super-snapshots each of which entirely determines the others. So we know that the classical concept of time as a sequence of moments cannot be true, though it does provide a good approximation in many circumstances — that is, in many regions of the multiverse.
To elucidate the quantum concept of time, let us imagine that we have sliced the multiverse into a heap of individual snapshots, just as we did with spacetime. What can we glue them back together with? As before, the laws of physics and the intrinsic, physical properties of the snapshots are the only acceptable glue. If time in the multiverse were a sequence of moments, it would have to be possible to identify all the snapshots of space at a given moment, so as to make them into a super-snapshot. Not surprisingly, it turns out that there is no way of doing that. In the multiverse, snapshots do not have ‘time stamps’. There is no such thing as which snapshot from another universe happens ‘at the same moment’ as a particular snapshot in our universe, for that would again imply that there is an overarching framework of time, outside the multiverse, relative to which events within the multiverse happen. There is no such framework.
Therefore there is no fundamental demarcation between snapshots of other times and snapshots of other universes. This is the distinctive core of the quantum concept of time:
Other times are just special cases of other universes.
This understanding first emerged from early research on quantum gravity in the 1960s, in particular from the work of Bryce DeWitt, but to the best of my knowledge it was not stated in a general way until 1983, by Don Page and William Wooters. The snapshots which we call ‘other times in our universe’ are distinguished from ‘other universes’ only from our perspective, and only in that they are especially closely related to ours by the laws of physics. They are therefore the ones of whose existence our own snapshot holds the most evidence. For that reason, we discovered them thousands of years before we discovered the rest of the multiverse, which impinges on us very weakly by comparison, through interference effects. We evolved special language constructs (past and future forms of verbs) for talking about them. We also evolved other constructs (such as ‘
Let us now proceed with our notional reconstruction of the multiverse. There are far more snapshots in our heap now, but let us again start with an individual snapshot of one universe at one moment. If we now search the heap for other snapshots that are very similar to the original one, we find that this heap is very different from the disassembled spacetime. For one thing, we find many snapshots that are absolutely identical to the original. In fact, any snapshot that is present at all is present in an infinity of copies. So it makes no sense to ask how many snapshots, numerically, have such-and-such a property, but only
If, aside from
Quantum theory does not in general determine what will happen in a particular snapshot, as spacetime physics does. Instead, it determines what proportion of all snapshots in the multiverse will have a given property. For this reason, we inhabitants of the multi-verse can sometimes make only probabilistic predictions of our own experience, even though what will happen in the multiverse is completely determined. Suppose, for example, that we toss a coin. A typical prediction of quantum theory might be that
Figure 11.7 shows the small region of the multiverse in which these events happen. Even in that small region there are a lot of snapshots to illustrate, so we can spare only one point of the diagram for each snapshot. The snapshots we are looking at all contain clocks of some standard type, and the diagram is arranged so that all the snapshots with a particular clock reading appear in a vertical column, and the clock readings increase from left to right. As we scan along any vertical line in the diagram, not all the snapshots we pass through are different. We pass through groups of identical ones, as indicated by the shading. The snapshots in which clocks show the earliest reading are at the left edge of the diagram. We see that in all those snapshots, which are identical, the coin is spinning. At the right edge of the diagram, we see that in half the snapshots in which clocks show the latest reading the coin has fallen with ‘heads’ upwards, and in the other half it has fallen with ‘tails’ upwards. In universes with intermediate clock readings, three types of universe are present, in proportions that vary with the clock reading.
If you were present in the illustrated region of the multiverse, all copies of you would have seen the coin spinning at first. Later, half the copies of you would see ‘heads’ come up, and the other half would see ‘tails’. At some intermediate stage you would have seen the coin in a state in which it is still in motion, but from which it is predictable which face it will show when it eventually settles down. This differentiation of identical copies of an observer into slightly different versions is responsible for the subjectively probabilistic character of quantum predictions. For if you asked, initially, what result you were destined to see for the coin toss, the answer would be that that is strictly unpredictable, for half the copies of you that are asking that question would see ‘heads’ and the other half would see ‘tails’. There is no such thing as ‘which half would see ‘heads’, any more than there is an answer to the question ‘which one am I?’. For practical purposes you could regard this as a probabilistic prediction that the coin has a 50 per cent chance of coming up ‘heads’, and a 50 per cent chance of coming up ‘tails’.
FIGURE 11.7
The determinism of quantum theory, just like that of classical physics, works both forwards and backwards in time. From the state of the combined collection of ‘heads’ and ‘tails’ snapshots at the later time in Figure 11.7, the ‘spinning’ state at an earlier time is completely determined, and vice versa. Nevertheless, from the point of view of any observer, information is lost in the coin-tossing process. For whereas the initial, ‘spinning’ state of the coin may be experienced by an observer, the final combined ‘heads’ and ‘tails’ state does not correspond to any possible experience of the observer. Therefore an observer at the earlier time may observe the coin and predict its future state, and the consequent subjective probabilities. But none of the later copies of the observer can possibly observe the information necessary to retrodict the ‘spinning’ state, for that information is by then distributed across two different types of universe, and that makes retrodiction from the final state of the coin impossible. For example, if all we know is that the coin is showing ‘heads’, the state a few seconds earlier might have been the state I called ‘spinning’, or the coin might have been spinning in the opposite direction, or it might have been showing ‘heads’ all the time. There is no possibility of retrodiction here, even probabilistic retrodiction. The earlier state of the coin is simply not determined by the later state of the ‘heads’ snapshots, but only by the joint state of the ‘heads’ and the ‘tails’ snapshots. Any horizontal line across Figure 11.7 passes through a sequence of snapshots with increasing clock readings. We might be tempted to think of such a line — such as the one shown in Figure 11.8 — as a spacetime, and of the whole diagram as a stack of spacetimes, one for each such line. We can read off from Figure 11.8 what happens in the ‘spacetime’ defined by the horizontal line. For a period, it contains a spinning coin. Then, for a further period, it contains the coin moving in a way that will predictably result in ‘heads’. But later, in contradiction to that, it contains the coin moving in a way that will predictably result in ‘tails’, and eventually it does show ‘tails’. But this is merely a deficiency of the diagram, as I pointed out in Chapter 9 (see Figure 9.4, p. 212). In this case the laws of quantum mechanics predict that no observer who remembers seeing the coin in the ‘predictably heads’ state can see it in the ‘tails’ state: that is the justification for calling that state ‘predictably heads’ in the first place. Therefore no observer in the multiverse would recognize events as they occur in the ‘spacetime’ defined by the line. All this goes to confirm that we cannot glue the snapshots together in an arbitrary fashion, but only in a way that reflects the relationships between them that are determined by the laws of physics. The snapshots along the line in Figure 11.8 are not sufficiently interrelated to justify their being grouped together in a single universe. Admittedly they appear in order of increasing clock readings which, in
FIGURE 11.8
In spacetime physics, any snapshot is determined by any other. As I have said, in the multiverse that is in general not so. Typically, the state of one group of identical snapshots (such as the ones in which the coin is ‘spinning’) determines the state of an equal number of differing snapshots (such as the ‘heads’ and ‘tails’ ones). Because of the time-reversibility property of the laws of quantum physics, the overall, multi-valued state of the latter
All experimental results currently available to us are compatible with the approximation that time is a sequence of moments. We do not expect that approximation to break down in any foreseeable terrestrial experiment, but theory tells us that it must break down badly in certain types of physical process. The first is the beginning of the universe, the Big Bang. According to classical physics, time began at a moment when space was infinitely dense and occupied only a single point, and before that there were no moments. According to quantum physics (as best we can tell), the snapshots very near the Big Bang are not in any particular order. The sequential property of time does not begin at the Big Bang, but at some later time. In the nature of things, it does not make sense to ask how much later. But we can say that the earliest moments which are, to a good approximation, sequential occur roughly when classical physics would extrapolate that the Big Bang had happened 10–43 seconds (the
A second and similar sort of breakdown of the sequence of time is thought to occur in the interiors of black holes, and at the final recollapse of the universe (the ‘Big Crunch’), if there is one. In both cases matter is compressed to infinite density according to classical physics, just as at the Big Bang, and the resulting gravitational forces tear the fabric of spacetime apart.
By the way, if you have ever wondered what happened before the Big Bang, or what will happen after the Big Crunch, you can stop wondering now. Why is it hard to accept that there are no moments before the Big Bang or after the Big Crunch, so that nothing happens, or exists, there? Because it is hard to imagine time coming to a halt, or starting up. But then, time does not have to come to a halt or start up, for it does not move at all. The multiverse does not ‘come into existence’ or ‘cease to exist’; those terms presuppose the flow of time. It is only imagining the flow of time that makes us wonder what happened ‘before’ or ‘after’ the whole of reality.
Thirdly, it is thought that on a sub-microscopic scale quantum effects again warp and tear the fabric of spacetime, and that closed loops of time — in effect, tiny time machines — exist on that scale. As we shall see in the next chapter, this sort of breakdown of the sequence of time is also physically possible on a large scale, and it is an open question whether it occurs near such objects as rotating black holes.
Thus, although we cannot yet detect any of these effects, our best theories already tell us that spacetime physics is never an exact description of reality. However good an approximation it is, time in reality must be fundamentally different from the linear sequence which common sense supposes. Nevertheless, everything in the multiverse is determined just as rigidly as in classical spacetime. Remove one snapshot, and the remaining ones determine it exactly. Remove
In this jigsaw-puzzle multiverse, which neither consists of a sequence of moments nor permits a flow of time, the common-sense concept of cause and effect makes perfect sense. The problem that we found with causation in spacetime was that it is a property of
There is nothing in this definition of cause and effect that logically requires causes to precede their effects, and it could be that in very exotic situations, such as very close to the Big Bang or inside black holes, they do not. In everyday experience, however, causes always precede their effects, and this is because — at least in our vicinity in the multiverse — the number of distinct types of snapshot tends to increase rapidly with time, and hardly ever decreases. This property is related to the second law of thermodynamics, which states that ordered energy, such as chemical or gravitational potential energy, may be converted entirely into disordered energy, i.e. heat, but never vice versa. Heat is microscopically random motion. In multiverse terms, this means many microscopically different states of motion in different universes. For example, in successive snapshots of the coin at ordinary magnifications, it seems that the setting-down process converts a group of identical ‘predictably heads’ snapshots into a group of identical ‘heads’ snapshots. But during that process the energy of the coin’s motion is converted into heat, so at magnifications large enough to see individual molecules the latter group of snapshots are not identical at all. They all agree that the coin is in the ‘heads’ position, but they show its molecules, and those of the surrounding air and of the surface on which it lands, in many different configurations. Admittedly, the initial ‘predictably heads’ snapshots are not microscopically identical either, because some heat is present there too, but the production of heat in the process means that these snapshots are very much less diverse than the later ones. So each homogeneous group of ‘predictably heads’ snapshots determines the existence of — and therefore causes — vast numbers of microscopically different ‘heads’ snapshots. But no single ‘heads’ snapshot by itself determines the existence of any ‘predictably heads’ snapshots, and so is not a cause of them.
The conversion, relative to any observer, of possibilities into actualities — of an open future into a fixed past — also makes sense in this framework. Consider the coin-tossing example again. Before the coin toss, the future is open from the point of view of an observer, in the sense that it is still possible that either outcome, ‘heads’ or ‘tails’, will be observed by that observer. From that observer’s point of view both outcomes are possibilities, even though objectively they are both actualities. After the coin has settled, the copies of the observer have differentiated into two groups. Each observer has observed, and remembers, only one outcome of the coin toss. Thus the outcome, once it is in the past of any observer, has become single-valued and actual for every copy of the observer, even though from the multiverse point of view it is just as two-valued as ever.
Let me sum up the elements of the quantum concept of time. Time is not a sequence of moments, nor does it flow. Yet our intuitions about the properties of time are broadly true. Certain events are indeed causes and effects of one another. Relative to an observer, the future is indeed open and the past fixed, and possibilities do indeed become actualities. The reason why our traditional theories of time are nonsense is that they try to express these true intuitions within the framework of a false classical physics. In quantum physics they make sense, because time was a quantum concept all along. We exist in multiple versions, in universes called ‘moments’. Each version of us is not directly aware of the others, but has evidence of their existence because physical laws link the contents of different universes. It is tempting to suppose that the moment of which we are aware is the only real one, or is at least a little more real than the others. But that is just solipsism. All moments are physically real. The whole of the multiverse is physically real. Nothing else is.
flow of time The supposed motion of the present moment in the future direction, or the supposed motion of our consciousness from one moment to another. (This is nonsense!)
spacetime Space and time, considered together as a static four-dimensional entity.
spacetime physics Theories, such as relativity, in which reality is considered to be a spacetime. Because reality is a multiverse, such theories can at best be approximations.
free will The capacity to affect future events in any one of several possible ways, and to choose which shall occur.
counter-factual conditional A conditional statement whose premise is false (such as ‘Faraday had died in 1830,
snapshot (terminology for this chapter only) A universe at a particular time.
Time does not flow. Other times are just special cases of other universes.
12
Time Travel
It is a natural thought, given the idea that time is in some ways like an additional, fourth dimension of space, that if it is possible to travel from one place to another, perhaps it is also possible to travel from one time to another. We saw in the previous chapter that the idea of ‘moving’ through time, in the sense in which we move through space, does not make sense. Nevertheless, it seems clear what one would mean by travelling to the twenty-fifth century or to the age of the dinosaurs. In science fiction, time machines are usually envisaged as exotic vehicles. One sets the controls to the date and time of one’s chosen destination, waits while the vehicle travels to that date and time (sometimes one can choose the place as well), and there one is. If one has chosen the distant future, one converses with conscious robots and marvels at interstellar spacecraft, or (depending on the political persuasion of the author) one wanders among charred, radioactive ruins. If one has chosen the distant past, one fights off an attack by a
The presence of dinosaurs would be impressive evidence that we really had reached an earlier era. We should be able to cross-check this evidence, and determine the date more precisely, by observing some natural long-term ‘calendar’ such as the shapes of the constellations in the night sky or the relative proportions of various radioactive elements in rocks. Physics provides many such calendars, and the laws of physics cause them to agree with one another when suitably calibrated. According to the approximation that the multiverse consists of a set of parallel spacetimes, each consisting of a stack of ‘snapshots’ of space, the date defined in this way is a property of an entire snapshot, and any two snapshots are separated by a time interval which is the difference between their dates. Time travel is any process that causes a disparity between, on the one hand, this interval between two snapshots, and on the other, our own experience of how much time has elapsed between our being in those two snapshots. We might refer to a clock that we carry with us, or we might estimate how much thinking we have had the opportunity to do, or we might measure by physiological criteria how much our bodies have aged. If we observe that a long time has passed externally, while by all subjective measures we have experienced a much shorter time, then we have travelled into the future. If, on the other hand, we observe the external clocks and calendars indicating a particular time, and later (subjectively) we observe them consistently indicating an earlier time, then we have travelled into the past.
Most authors of science fiction realize that future- and past-directed time travel are radically different sorts of process. I shall not give future-directed time travel much attention here, because it is by far the less problematic proposition. Even in everyday life, for example when we sleep and wake up, our subjectively experienced time can be shorter than the external elapsed time. People who recover from comas lasting several years could be said to have travelled that many years into the future, were it not for the fact that their bodies have aged according to external time rather than the time they experienced subjectively. So, in principle, a technique similar to that which we envisaged in Chapter 5 for slowing down a virtual-reality user’s brain could be applied to the whole body, and thus could be used for fully fledged future-directed time travel. A less intrusive method is provided by Einstein’s special theory of relativity, which says that in general an observer who accelerates or decelerates experiences less time than an observer who is at rest or in uniform motion. For example, an astronaut who went on a round-trip involving acceleration to speeds close to that of light would experience much less time than an observer who remained on Earth. This effect is known as
Virtual reality and time travel have this, at least, in common: they both systematically alter the usual relationship between external reality and the user’s experience of it. So one might ask this question: if a universal virtual-reality generator could so easily be programmed to effect future-directed time travel, is there a way of using it for past-directed time travel? For instance, if slowing us down would send us into the future, would speeding us up send us into the past? No; the outside world would merely seem to slow down. Even at the unattainable limit where the brain operated infinitely fast, the outside world would appear frozen at a particular moment. That would still be time travel, by the above definition, but it would not be past-directed. One might call it ‘present-directed’ time travel. I remember wishing for a machine capable of present-directed time travel when doing last-minute revision for exams — what student has not?
Before I discuss past-directed time travel itself, what about the
The distinctive aspects of experiencing a past environment are, by definition, experiences of certain physical objects or processes — ‘clocks’ and ‘calendars’ — in states that occurred only at past times (that is, in past snapshots). A virtual-reality generator could, of course, render those objects in those states. For instance, it could give one the experience of living in the age of the dinosaurs, or in the trenches of the First World War, and it could make the constellations, dates on newspapers or whatever, appear correctly for those times. How correctly? Is there any fundamental limit on how accurately any given era could be rendered? The Turing principle says that a universal virtual-reality generator can be built, and could be programmed to render any physically possible environment, so clearly it could be programmed to render any environment that did once exist physically.
To render a time machine that had a certain repertoire of past destinations (and therefore also to render the destinations themselves), the program would have to include historical records of the environments at those destinations. In fact, it would need more than mere records, because the experience of time travel would involve more than merely seeing past events unfolding around one. Playing recordings of the past to the user would be mere image generation, not virtual reality. Since a real time traveller would participate in events and act back upon the past environment, an accurate virtual-reality rendering of a time machine, as of any environment, must be interactive. The program would have to calculate, for each action of the user, how the historical environment would have responded to that action. For example, to convince Dr Johnson that a purported time machine really had taken him to ancient Rome, we should have to allow him to do more than just watch passively and invisibly as Julius Caesar walked by. He would want to test the authenticity of his experiences by kicking the local rocks. He might kick Caesar — or at least, address him in Latin and expect him to reply in kind. What it means for a virtual-reality rendering of a time machine to be accurate is that the rendering should respond to such interactive tests in the same way as would the real time machine, and as would the real past environments to which it travelled. That should include, in this case, displaying a correctly behaving, Latin-speaking rendering of Julius Caesar.
Since Julius Caesar and ancient Rome were physical objects, they could, in principle, be rendered with arbitrary accuracy. The task differs only in degree from that of rendering the Centre Court at Wimbledon, including the spectators. Of course, the complexity of the requisite programs would be tremendous. More complex still, or perhaps even impossible in principle, would be the task of gathering the information required to write the programs to render specific human beings. But writing the programs is not the issue here. I am not asking whether we can find out enough about a past environment (or, indeed, about a present or future environment) to write a program that would render that environment specifically. I am asking whether the
Here is a typical such paradox. I build a time machine and use it to travel back into the past. There I prevent my former self from building the time machine. But if the time machine is not built, I shall not be able to use it to travel into the past, nor therefore to prevent the time machine from being built. So do I make this trip or not? If I do, then I deprive myself of the time machine and therefore do not make the trip. If I do not make the trip, then I allow myself to build the time machine and so do make the trip. This is sometimes called the ‘grandfather paradox’, and stated in terms of using time travel to kill one’s grandfather before he had any children. (And then, if he had no children, he could not have had any grandchildren, so who killed him?) These two forms of the paradox are the ones most commonly cited, and happen to require an element of violent conflict between the time traveller and people in the past, so one finds oneself wondering who will win. Perhaps the time traveller will be defeated, and the paradox avoided. But violence is not an essential part of the problem here. If I had a time machine, I could decide as follows: that if, today, my future self visits me, having set out from tomorrow, then tomorrow I
A contradiction indicates a faulty assumption, so such paradoxes have traditionally been taken as proofs that time travel is impossible. Another assumption that is sometimes challenged is that of free will — whether time travellers can choose in the usual way how to behave. One then concludes that if time machines did exist, people’s free will would be impaired. They would somehow be unable to form intentions of the type I have described; or else, when they travelled in time, they would somehow systematically forget the resolutions they made before setting out. But it turns out that the faulty assumption behind the paradoxes is neither the existence of a time machine nor the ability of people to choose their actions in the usual way. All that is at fault is the classical theory of time, which I have already shown, for quite independent reasons, to be untenable.
If time travel really were logically impossible, a virtual-reality rendering of it would also be impossible. If it required a suspension of free will, then so would a virtual-reality rendering of it. The paradoxes of time travel can be expressed in virtual-reality terms as follows. The accuracy of a virtual-reality rendering is the faithfulness, as far as is perceptible, of the rendered environment to the intended one. In the case of time travel the intended environment is one that existed historically. But as soon as the rendered environment responds, as it is required to, to the user kicking it, it thereby becomes historically inaccurate because the real environment never did respond to the user: the user never did kick it. For example, the real Julius Caesar never met Dr Johnson. Consequently Dr Johnson, in the very act of testing the faithfulness of the rendering by conversing with Caesar, would destroy that faithfulness by creating a historically inaccurate Caesar. A rendering can
But is this effect really an impediment to the accurate rendering of time travel? Normally, mimicking an environment’s actual behaviour is not the aim of virtual reality: what counts is that it should respond accurately. As soon as you begin to play tennis on the rendered Wimbledon Centre Court, you make it behave differently from the way the real one is behaving. But that does not make the rendering any less accurate. On the contrary, that is what is required for accuracy. Accuracy, in virtual reality, means the closeness of the rendered behaviour to that which the original environment
It seems paradoxical because in renderings of past-directed time travel the user plays a unique double, or multiple, role. Because of the looping that is involved, where for instance one or more copies of the user may co-exist and interact, the virtual-reality generator is in effect required to
FIGURE 12.1
On the wall of the simulated laboratory there is a clock, initially showing noon, and by the cylinder’s entrance there are some instructions. By the time I have finished reading them it is five minutes past noon, both according to my own perception and according to the clock. The instructions say that if I enter the cylinder, go round once with the revolving door, and emerge, it will be five minutes earlier in the laboratory. I step into one of the compartments of the revolving door. As I walk round, my compartment closes behind me and then, moments later, reaches the entrance again. I step out. The laboratory looks much the same except — what? What exactly should I expect to experience next, if this is to be an accurate rendering of past-directed time travel?
Let me backtrack a little first. Suppose that by the entrance there is a switch whose two positions are labelled ‘interaction
With this simpler setting at least, there is no ambiguity or paradox about what images ought to be generated when I emerge from the revolving door. They are images of me, in the laboratory, doing what I did at noon. One reason why there is no ambiguity is that I can remember those events, so I can test the images of the past against my own recollection of what happened. By restricting our analysis to a small, closed environment over a short period, we have avoided the problem analogous to that of finding out what Julius Caesar was really like, which is a problem about the ultimate limits of archaeology rather than about the inherent problems of time travel. In our case, the virtual-reality generator can easily obtain the information it needs to generate the required images, by making a recording of everything I do. Not, that is, a recording of what I do in physical reality (which is simply to lie still inside the virtual-reality generator), but of what I do in the virtual environment of the laboratory. Thus, the moment I emerge from the time machine, the virtual-reality generator ceases to render the laboratory at five minutes past noon, and starts to play back its recording, starting with images of what happened at noon. It displays this recording to me with the perspective adjusted for my present position and where I am looking, and it continuously readjusts the perspective in the usual way as I move. Thus, I see the clock showing noon again. I also see my earlier self, standing in front of the time machine, reading the sign above the entrance and studying the instructions, exactly as I did five minutes ago. I see him, but he cannot see me. No matter what I do, he — or rather
If I happen to be blocking the entrance, my image will nevertheless make straight for it and walk in, exactly as I did, for if it did anything else it would be an inaccurate image. There are many ways in which an image generator can be programmed to handle a situation where an image of a solid object has to pass through the user’s location. For instance, the image could pass straight through like a ghost, or it could push the user irresistibly away. The latter option gives a more accurate rendering because then the images are to some extent tactile as well as visual. There need be no danger of my getting hurt as my image knocks me aside, however abruptly, because of course I am not physically there. If there is not enough room for me to get out of the way, the virtual-reality generator could make me flow effortlessly through a narrow gap, or even teleport me past an obstacle.
It is not only the image of myself on which I can have no further effect. Because we have temporarily switched from virtual reality to image generation, I can no longer affect anything in the simulated environment. If there is a glass of water on a table I can no longer pick it up and drink it, as I could have before I passed through the revolving door to the simulated past. By requesting a simulation of non-interactive, past-directed time travel, which is effectively a playback of specific events five minutes ago, I necessarily relinquish control over my environment. I cede control, as it were, to my former self.
As my image enters the revolving door, the time according to the clock has once again reached five minutes past twelve, though it is ten minutes into the simulation according to my subjective perception. What happens next depends on what I do. If I just stay in the laboratory, the virtual-reality generator’s next task must be to place me at events that occur after five minutes past twelve, laboratory time. It does not yet have any recordings of such events, nor do I have any memories of them. Relative to me, relative to the simulated laboratory and relative to physical reality, those events have not yet happened, so the virtual-reality generator can resume its fully interactive rendering. The net effect is of my having spent five minutes in the past without being able to affect it, and then returning to the ‘present’ that I had left, that is, to the normal sequence of events which I can affect.
Alternatively, I can follow my image into the time machine, travel round the time machine with my image and emerge again into the laboratory’s past. What happens then? Again, the clock says twelve noon. Now I can see
After another five minutes have passed I can again choose whether to re-enter the time machine, this time in the company of
If I continue the experience for as long as possible, the maximum number of copies of me that can co-exist will be limited only by the image generator’s collision avoidance strategy. Let us assume that it tries to make it realistically difficult for me to squeeze myself into the revolving door with all my images. Then eventually I shall be forced to do something other than travel back to the past with them. I could wait a little, and take the compartment after theirs, in which case I should reach the laboratory a moment after they do. But that just postpones the problem of overcrowding in the time machine. If I keep going round this loop, eventually all the ‘slots’ for time travelling into the period of five minutes after noon will be filled, forcing me to let myself reach a later time from which there will be no further means of returning to that period. This too is a property that time machines would have if they existed physically. Not only are they places, they are places with a finite capacity for supporting through traffic into the past.
FIGURE 12.2
Another consequence of the fact that time machines are not vehicles, but places or paths, is that one is not completely free to choose which time to use them to travel to. As this example shows, one can use a time machine only to travel to times and places at which it has existed. In particular, one cannot use it to travel back to a time before its construction was completed.
The virtual-reality generator now has recordings of many different versions of what happened in that laboratory between noon and five minutes past. Which one depicts the real history? We ought not be too concerned if there is no answer to this question, for it asks what is real in a situation where we have artificially suppressed interactivity, making Dr Johnson’s test inapplicable. One could argue that only the last version, the one depicting the most copies of me, is the real one, because the previous versions all in effect show history from the point of view of people who, by the artificial rule of non-interaction, were prevented from fully seeing what was happening. Alternatively, one could argue that the first version of events, the one with a single copy of me, is the only real one because it is the only one I experienced interactively. The whole point of non-interactivity is that we are temporarily preventing ourselves from changing the past, and since subsequent versions all differ from the first one, they do not depict the past. All they depict is someone
One could also argue that all the versions are equally real. After all, when it is all over I remember having experienced not just one history of the laboratory during that five-minute period, but several such histories. I experienced them successively, but from the laboratory’s point of view they all happened during the same five-minute period. The full record of my experience requires many snapshots of the laboratory for each clock-defined instant, instead of the usual single snapshot per instant. In other words, this was a rendering of parallel universes. It turns out that this last interpretation is the closest to the truth, as we can see by trying the same experiment again, this time with interaction switched on.
The first thing I want to say about the interactive mode, in which I am free to affect the environment, is that
At the beginning of the session, when I first see the time machine, I immediately see it disgorging one or more copies of me. Why? Because with interaction switched on, when I come to use the time machine at five minutes past noon I shall have the right to affect the past to which I return, and that past is what is happening now, at noon. Thus my future self or selves are arriving to exercise their right to affect the laboratory at noon, and to affect me, and in particular to be seen by me.
The copies of me go about their business. Consider the computational task that the virtual-reality generator has to execute, in rendering these copies. There is now a new element that makes this overwhelmingly more difficult than it was in the non-interactive mode. How is the virtual-reality generator to find out what the copies of me are going to do? It does not yet have any recordings of that information, for in physical time the session has only just begun. Yet it must immediately present me with renderings of my future self.
So long as I am resolved to pretend that I cannot see these renderings, and then to mimic whatever I see them do, they are not going to be subjected to too stringent a test of accuracy. The virtual-reality generator need only make them do
So I begin the experience by seeing some copies of me emerge from the revolving door and do something. I pretend not to notice them, and after five minutes I go round the revolving door myself and mimic what I earlier saw the first copy doing. Five minutes later I go round again and mimic the second copy, and so on. Meanwhile, I notice that one of the copies always repeats what I had been doing during the first five minutes. At the end of the time-travelling sequence, the virtual-reality generator will again have several records of what happened during the five minutes after noon, but this time all those records will be identical. In other words, only one history happened, namely that I met my future self but pretended not to notice. Later I became that future self, travelled back in time to meet my past self, and was apparently not noticed. That is all very tidy and non-paradoxical — and unrealistic. It was achieved by the virtual-reality generator and me engaging in an intricate, mutually referential game: I was mimicking it while it was mimicking me. But with normal interactions switched on, I can choose not to play that game.
If I really had access to virtual-reality time travel, I should certainly want to test the authenticity of the rendering. In the case we are discussing, the testing would begin as soon as I saw the copies of me. Far from ignoring them, I would immediately engage them in conversation. I am far better equipped to test their authenticity than Dr Johnson would be to test Julius Caesar’s. To pass even this initial test, the rendered versions of me would effectively have to be artificial intelligent beings — moreover, beings so similar to me, at least in their responses to external stimuli, that they can convince me they are accurate renderings of how I might be five minutes from now. The virtual-reality generator must be running programs similar in content and complexity to my mind. Once again, the difficulty of writing such programs is not the issue here: we are investigating the principle of virtual-reality time travel, not its practicality. It does not matter where our hypothetical virtual-reality generator gets its programs, for we are asking whether the
In any case, what matters for present purposes is that, since my brain is a physical object, the Turing principle says that it is within the repertoire of a universal virtual-reality generator. So it is possible in principle for the copy of me to pass the test of whether he accurately resembles me. But that is not the only test I want to perform. Mainly, I want to test whether the time travel itself is being rendered authentically. To that end I want to find out not just whether this person is authentically me, but whether he is authentically from the future. In part I can test this by questioning him. He should say that he remembers being in my position five minutes ago, and that he then travelled around the revolving door and met me. I should also find that
In both these respects the rendering will certainly fail the test! At my very first and slightest attempt to behave differently from the way I remember my copy behaving, I shall succeed. And it will be almost as easy to make him behave differently from the way in which I behaved: all I have to do is ask him a question which I, in his place, had not been asked, and which has a distinctive answer. So however much they resemble me in appearance and personality, the people who emerge from the virtual-reality time machine are not authentic renderings of the person I am shortly to become. Nor should they be — after all, I have the firm intention not to behave as they do when it is my turn to use the time machine and, since the virtual-reality generator is now allowing me to interact freely with the rendered environment, there is nothing to prevent me from carrying out that intention.
Let me recap. As the experiment begins I meet a person who is recognizably me, apart from slight variations. Those variations consistently point to his being from the future: he remembers the laboratory at five minutes past noon, a time which, from my perspective, has not happened yet. He remembers setting out at that time, passing through the revolving door and arriving at noon. He remembers, before all that, beginning this experiment at noon and seeing the revolving door for the first time, and seeing copies of himself emerging. He says that this happened over five minutes ago, according to his subjective perception, though according to mine the whole experiment has not yet lasted five minutes. And so on. Yet though he passes all tests for being a version of me from the future, it is demonstrably not
So when I travel to the laboratory’s past, I find that it is not the same past as I have just come from. Because of his interaction with me, the copy of me whom I find there does not behave quite as I remember behaving. Therefore, if the virtual-reality generator were to record the totality of what happens during this time-travel sequence, it would again have to store several snapshots for each instant as defined by the laboratory clock, and this time they would all be different. In other words, there would be several distinct, parallel histories of the laboratory during the five-minute time-travelling period. Again, I have experienced each of these histories in turn. But this time I have experienced them all interactively, so there is no excuse for saying that any of them are less real than the others. So what is being rendered here is a little multiverse. If this were physical time travel, the multiple snapshots at each instant would be parallel universes. Given the quantum concept of time, we should not be surprised at this. We know that the snapshots which stack themselves approximately into a single time sequence in our everyday experience are in fact parallel universes. We do not normally experience the other parallel universes that exist at the
Now let me subject the virtual-reality time machine to the ultimate test. Let me deliberately set out to enact a paradox. I form the firm intention that I stated above: I resolve that if a copy of me emerges at noon from the time machine, then I
I and my alter ego in this experiment have had different experiences. He saw someone emerging from the time machine at noon, and I did not. Our experiences would have been equally faithful to our intention, and equally non-paradoxical, had our roles been reversed. That is, I could have seen him emerging from the time machine at noon, and then not used it myself. In that case both of us would have ended up in the universe I started in. In the universe he started in, the laboratory would remain empty.
Which of these two self-consistent possibilities will the virtual-reality generator show me? During this rendering of an intrinsically multiversal process, I play only one of the two copies of me; the program renders the other copy. At the beginning of the experiment the two copies look identical (though in physical reality they are different because only one of them is connected to a physical brain and body outside the virtual environment). But in the physical version of the experiment — if a time machine existed physically — the two universes containing the copies of me who were going to meet would initially be strictly identical, and both copies would be equally real. At the multiverse-moment when we met (in one universe) or did not meet (in the other), those two copies would become different. It is not meaningful to ask
FIGURE 12.3
We have seen that a virtual-reality generator’s ability to render time travel accurately depends on its having detailed information about the user’s state of mind. This may make one briefly wonder whether the paradoxes have been genuinely avoided. If the virtual-reality generator knows what I am going to do in advance, am I really free to perform whatever tests I choose? We need not get into any deep questions about the nature of free will here. I am indeed free to do whatever I like in this experiment, in the sense that for every possible way I may choose to react to the simulated past — including randomly, if I want to — the virtual-reality generator allows me to react in that way. And all the environments I interact with are affected by what I do, and react back on me in precisely the way they would if time travel were not taking place. The reason why the virtual-reality generator needs information from my brain is not to predict
A real time machine, of course, would not face these problems. It would simply provide pathways along which I and my counterparts, who already existed, could meet, and it would constrain neither our behaviour nor our interactions when we did meet. The ways in which the pathways interconnect — that is, which snapshots the time machine would lead to — would be affected by my physical state, including my state of mind. That is no different from the usual situation, in which my physical state, as reflected in my propensity to behave in various ways, affects what happens. The great difference between this and everyday experience is that each copy of me is potentially having a large effect on other universes (by travelling to them). Does being able to travel to the past of other universes, but not our own, really amount to time travel? Is it just
So wanting to change the specific past snapshots in which we once were does indeed not make sense. But that has nothing to do with time travel. It is a nonsense that stems directly from the nonsensical classical theory of the flow of time. Changing the past means choosing which past snapshot to be in, not changing any specific past snapshot into another one. In this respect, changing the past is no different from changing the future, which we do all the time. Whenever we make a choice, we change the future: we change it from what it would have been had we chosen differently. Such an idea would make no sense in classical, spacetime physics with its single future determined by the present. But it does make sense in quantum physics. When we make a choice, we change the future from what it will be in universes in which we choose differently. But in no case does any particular snapshot in the future change. It cannot change, for there is no flow of time with respect to which it could change. ‘Changing’ the future means choosing which snapshot we will be in; ‘changing’ the past means exactly the same thing. Because there is no flow of time, there is no such thing as changing a particular past snapshot, such as one we remember being in. Nevertheless, if we somehow gain physical access to the past, there is no reason why we could not change it in precisely the sense in which we change the future, namely by choosing to be in a different snapshot from the one we would have been in if we had chosen differently.
Arguments from virtual reality help in understanding time travel because the concept of virtual reality requires one to take ‘counter-factual events’ seriously, and therefore the multi-universe quantum concept of time seems natural when it is rendered in virtual reality. By seeing that past-directed time travel is within the repertoire of a universal virtual-reality generator, we learn that the idea of past-directed time travel makes perfect sense. But that is not to say that it is necessarily physically achievable. After all, faster-than-light travel, perpetual motion machines and many other physical impossibilities are all possible in virtual reality. No amount of reasoning about virtual reality can prove that a given process is permitted by the laws of physics (though it can prove that it is not: if we had reached the contrary conclusion, it would have implied, via the Turing principle, that time travel cannot occur physically). So what do our positive conclusions about virtual-reality time travel tell us about physics?
They tell us what time travel would look like if it did occur. They tell us that past-directed time travel would inevitably be a process set in several interacting and interconnected universes. In that process, the participants would in general travel from one universe to another whenever they travelled in time. The precise ways in which the universes were connected would depend, among other things, on the participants’ states of mind.
So, for time travel to be physically possible it is necessary for there to be a multiverse. And it is necessary that the physical laws governing the multiverse be such that, in the presence of a time machine and potential time travellers, the universes become interconnected in the way I have described, and not in any other way. For example, if I am not going to use a time machine come what may, then no time-travelling versions of me must appear in my snapshot; that is, no universes in which versions of me do use a time machine can become connected to my universe. If I am definitely going to use the time machine, then my universe must become connected to another universe in which I also definitely use it. And if I am going to try to enact a ‘paradox’ then, as we have seen, my universe must become connected with another one in which a copy of me has the same intention as I do, but by carrying out that intention ends up behaving differently from me. Remarkably, all this is precisely what quantum theory does predict. In short, the result is that if pathways into the past do exist, travellers on them are free to interact with their environment in just the same way as they could if the pathways did not lead into the past. In no case does time travel become inconsistent, or impose special constraints on time travellers’ behaviour.
That leaves us with the question whether it is physically possible for pathways into the past to exist. This question has been the subject of much research, and is still highly controversial. The usual starting-point is a set of equations which form the (predictive) basis of Einstein’s general theory of relativity, currently our best theory of space and time. These equations, known as
Taken literally, Einstein’s equations predict that travel into the past would be possible in the vicinity of massive, spinning objects, such as black holes, if they spun fast enough, and in certain other situations. But many physicists doubt that these predictions are realistic. No sufficiently rapidly spinning black holes are known, and it has been argued (inconclusively) that it may be impossible to spin one up artificially, because any rapidly spinning material that one fired in might be thrown off and be unable to enter the black hole. The sceptics may be right, but in so far as their reluctance to accept the possibility of time travel is rooted in a belief that it leads to paradoxes, it is unjustified.
Even when Einstein’s equations have been more fully understood, they will not provide conclusive answers on the subject of time travel. The general theory of relativity predates quantum theory and is not wholly compatible with it. No one has yet succeeded in formulating a satisfactory quantum version — a quantum theory of gravity. Yet, from the arguments I have given, quantum effects would be dominant in time-travelling situations. Typical candidate versions of a quantum theory of gravity not only allow past-directed connections to exist in the multiverse, they predict that such connections are continually forming and breaking spontaneously. This is happening throughout space and time, but only on a sub-microscopic scale. The typical pathway formed by these effects is about 10–35 metres across, remains open for one Planck time (about 10–43 seconds), and therefore reaches only about one Planck time into the past.
Future-directed time travel, which essentially requires only efficient rockets, is on the moderately distant but confidently foreseeable technological horizon. Past-directed time travel, which requires the manipulation of black holes, or some similarly violent gravitational disruption of the fabric of space and time, will be practicable only in the remote future, if at all. At present we know of nothing in the laws of physics that rules out past-directed time travel; on the contrary, they make it plausible that time travel is possible. Future discoveries in fundamental physics may change this. It may be discovered that quantum fluctuations in space and time become overwhelmingly strong near time machines, and effectively seal off their entrances (Stephen Hawking, for one, has argued that some calculations of his make this likely, but his argument is inconclusive). Or some hitherto unknown phenomenon may rule out past-directed time travel — or provide a new and easier method of achieving it. One cannot predict the future growth of knowledge. But if the future development of fundamental physics continues to allow time travel in principle, then its practical attainment will surely become a mere technological problem that will eventually be solved.
Because no time machine provides pathways to times earlier than the moment at which it came into existence, and because of the way in which quantum theory says that universes are interconnected, there are some limits to what we can expect to learn by using time machines. Once we have built one, but not before, we may expect visitors, or at least messages, from the future to emerge from it. What will they tell us? One thing they will certainly not tell us is news of our own future. The deterministic nightmare of the prophecy of an inescapable future doom, brought about in spite of — or perhaps as the very consequence of — our attempts to avoid it, is the stuff of myth and science fiction only. Visitors from the future cannot know our future any more than we can, for they did not come from there. But they can tell us about the future of their universe, whose past was identical to ours. They can bring taped news and current affairs programmes, and newspapers with dates starting from tomorrow and onwards. If their society made some mistaken decision, which led to disaster, they can warn us of it. We may or may not follow their advice. If we follow it, we may avoid the disaster, or — there can be no guarantees — we may find that the result is even worse than what happened to them.
On average, though, we should presumably benefit greatly from studying their future history. Although it is not our future history, and although knowing of a possible impending disaster is not the same thing as knowing what to do about it, we should presumably learn much from such a detailed record of what, from our point of view,
Our visitors might bring details of great scientific and artistic achievements. If these were made in the near future of the other universe, it is likely that counterparts of the people who made them would exist in our universe, and might already be working towards those achievements. All at once, they would be presented with completed versions of their work. Would they be grateful? There is another apparent time-travel paradox here. Since it does not appear to create inconsistencies, but merely curiosities, it has been discussed more in fiction than in scientific arguments against time travel (though some philosophers, such as Michael Dummett, have taken it seriously). I call it the
Incidentally, the time machine in these stories would have to be provided by some extraterrestrial civilization which had already achieved time travel by Shakespeare’s day, and which was willing to allow our historian to use one of their scarce, non-renewable slots for travelling back to that time. Or perhaps (even less likely, I guess) there might be a usable, naturally occurring time machine in the vicinity of some black hole.
All these stories relate a perfectly consistent chain — or rather, circle — of events. The reason why they are puzzling, and deserve to be called paradoxes, lies elsewhere. It is that in each story great literature comes into existence without anyone having written it: no one originally wrote it, no one has created it. And that proposition, though logically consistent, profoundly contradicts our understanding of where knowledge comes from. According to the epistemological principles I set out in Chapter 3, knowledge does not come into existence fully formed. It exists only as the result of creative processes, which are step-by-step, evolutionary processes, always starting with a problem and proceeding with tentative new theories, criticism and the elimination of errors to a new and preferable problem-situation. This is how Shakespeare wrote his plays. It is how Einstein discovered his field equations. It is how all of us succeed in solving any problem, large or small, in our lives, or in creating anything of value.
It is also how new living species come into existence. The analogue of a ‘problem’ in this case is an ecological niche. The ‘theories’ are genes, and the tentative new theories are mutated genes. The ‘criticism’ and ‘elimination of errors’ are natural selection. Knowledge is created by intentional human action, biological adaptations by a blind, mindless mechanism. The words we use to describe the two processes are different, and the processes are physically dissimilar too, but the detailed laws of epistemology that govern them both are the same. In one case they are called Popper’s theory of the growth of scientific knowledge; in the other, Darwin’s theory of evolution. One could formulate a knowledge paradox just as well in terms of living species. Say we take some mammals in a time machine to the age of the dinosaurs, when no mammals had yet evolved. We release our mammals. The dinosaurs die out and our mammals take over. Thus new species have come into existence without having evolved. It is even easier to see why this version is philosophically unacceptable: it implies a non-Darwinian origin of species, and specifically
In this way, knowledge-paradox situations violate epistemological or, if you like, evolutionary principles. They are paradoxical only because they involve the creation, out of nothing, of complex human knowledge or of complex biological adaptations. Analogous stories with other sorts of object or information on the loop are not paradoxical. Observe a pebble on a beach; then travel back to yesterday, locate the pebble elsewhere and move it to where you are going to find it. Why did you find it at that particular location? Because you moved it there. Why did you move it there? Because you found it there. You have caused some information (the position of the pebble) to come into existence on a self-consistent loop. But so what? The pebble had to be somewhere. Provided the story does not involve getting something for nothing, by way of knowledge or adaptation, it is no paradox.
In the multiverse view, the time traveller who visits Shakespeare has not come from the future of that copy of Shakespeare. He can affect, or perhaps replace, the copy he visits. But he can never visit the copy who existed in the universe he started from. And it is
I wish I could report that this requirement is also rigorously implemented by the laws that quantum theory imposes on the multiverse. I expect it is, but this is hard to prove because it is hard to express the desired property in the current language of theoretical physics. What mathematical formula distinguishes ‘knowledge’ or ‘adaptation’ from worthless information? What physical attributes distinguish a ‘creative’ process from a non-creative one? Although we cannot yet answer these questions, I do not think that the situation is hopeless. Remember the conclusions of Chapter 8, about the significance of life, and of knowledge, in the multiverse. I pointed out there (for reasons quite unconnected with time travel) that knowledge creation and biological evolution are physically significant processes. And one of the reasons was that those processes, and only those, have a particular effect on parallel universes — namely to create trans-universe structure by making them become alike. When, one day, we understand the details of this effect, we may be able to define knowledge, adaptation, creativity and evolution in terms of the convergence of universes.
When I ‘enact a paradox’, there are eventually two copies of me in one universe and none in the other. It is a general rule that after time travel has taken place the total number of copies of me, counted across all universes, is unchanged. Similarly, the usual conservation laws for mass, energy and other physical quantities continue to hold for the multiverse as a whole, though not necessarily in any one universe. However, there is no conservation law for knowledge. Possession of a time machine would allow us access to knowledge from an entirely new source, namely the creativity of minds in other universes. They could also receive knowledge from us, so one can loosely speak of a ‘trade’ in knowledge — and indeed a trade in artefacts embodying knowledge — across many universes. But one cannot take that analogy too literally. The multiverse will never be a free-trade area because the laws of quantum mechanics impose drastic restrictions on which snapshots can be connected to which others. For one thing, two universes first become connected only at a moment when they are identical: becoming connected makes them begin to diverge. It is only when those differences have accumulated, and new knowledge has been created in one universe and sent back in time to the other, that we could receive knowledge that does not already exist in our universe.
A more accurate way of thinking about the inter-universe ‘trade’ in knowledge is to think of all our knowledge-generating processes, our whole culture and civilization, and all the thought processes in the minds of every individual, and indeed the entire evolving biosphere as well, as being a gigantic
In the absence of time machines, there tends to be very little interchange of information between universes because the laws of physics predict, in that case, very little causal contact between them. To a good degree of approximation, knowledge created in one set of identical snapshots reaches relatively few other snapshots, namely those that are stacked into spacetimes to the future of the original snapshots. But this is only an approximation. Interference phenomena are the result of causal contact between nearby universes. We have seen in Chapter 9 that even this minuscule level of contact can be used to exchange significant, computationally useful information between universes.
The study of time travel provides an arena — albeit at present only a theoretical, thought-experiment arena — in which we can see writ large some of the connections between what I call the ‘four main strands’. All four strands play essential roles in the explanation of time travel. Time travel may be achieved one day, or it may not. But if it is, it should not require any fundamental change in world-view, at least for those who broadly share the world-view I am presenting in this book. All the connections that it could set up between past and future are comprehensible and non-paradoxical. And all the connections that it would necessitate, between apparently unconnected fields of knowledge, are there anyway.
time travel It is only past-directed time travel that really deserves the name.
past-directed In past-directed time travel the traveller experiences the same instant, as defined by external clocks and calendars, more than once in subjective succession.
future-directed In future-directed time travel the traveller reaches a later instant in a shorter subjective time than that defined by external clocks and calendars.
time machine A physical object that enables the user to travel into the past. It is better thought of as a place, or pathway, than as a vehicle.
paradox of time travel An apparently impossible situation that a time traveller could bring about if time travel were possible.
grandfather paradox A paradox in which one travels into the past and then prevents oneself from ever doing so.
knowledge paradox A paradox in which knowledge is created from nothing, through time travel.
Time travel may or may not be achieved one day, but it is not paradoxical. If one travels into the past one retains one’s normal freedom of action, but in general ends up in the past of a different universe. The study of time travel is an area of theoretical study in which all four of my main strands are significant: quantum mechanics, with its parallel universes and the quantum concept of time; the theory of computation, because of the connections between virtual reality and time travel, and because the distinctive features of time travel can be analysed as new modes of computation; and epistemology and the theory of evolution, because of the constraints they impose on how knowledge can come into existence.
13
The Four Strands
A widely held stereotype of the scientific process is that of the idealistic young innovator pitted against the old fogies of the scientific ‘establishment’. The fogies, hidebound by the comfortable orthodoxy of which they have made themselves both defenders and prisoners, are enraged by any challenge to it. They behave irrationally. They refuse to listen to criticism, engage in argument or accept evidence, and they try to suppress the innovator’s ideas. This stereotype has been elevated into a philosophy by Thomas Kuhn, author of the influential book
Kuhn accepts that, for
This Kuhnian view of the scientific process seems natural to many people. It appears to explain the repeated, jarring changes that science has been forcing upon modern thought, in terms of everyday human attributes and impulses with which we are all familiar: entrenched prejudices and preconceptions, blindness to any evidence that one is mistaken, the suppression of dissent by vested interests, the desire for a quiet life, and so on. And in opposition there is the rebelliousness of youth, the quest for novelty, the joy of violating taboos and the struggle for power. Another attraction of Kuhn’s ideas is that he cuts scientists down to size. No longer can they claim to be noble seekers after truth who use the rational methods of conjecture, criticism and experimental testing to solve problems and create ever better explanations of the world. Kuhn reveals that they are just rival teams playing endless games for the control of territory.
The idea of a paradigm itself is unexceptionable. We do observe and understand the world through a collection of theories, and that constitutes a paradigm. But Kuhn is mistaken in thinking that holding a paradigm blinds one to the merits of another paradigm, or prevents one from switching paradigms, or indeed prevents one from comprehending two paradigms at the same time. (For a discussion of the broader implications of this error, see Popper’s
It is also true that people, scientists included, and especially those in positions of power, do tend to become attached to the prevailing way of doing things, and can be suspicious of new ideas when they are quite comfortable with the old ones. No one could claim that all scientists are uniformly and scrupulously rational in their judgement of ideas. Unjustified loyalty to paradigms is indeed a frequent cause of controversy in science, as it is elsewhere. But considered as a description or analysis of the scientific process, Kuhn’s theory suffers from a fatal flaw. It explains the
Hence Kuhn is forced flatly to deny that there has been objective improvement in successive scientific explanations, or that such improvement is possible, even in principle:
there is [a step] which many philosophers of science wish to take and which I refuse. They wish, that is, to compare theories as representations of nature, as statements about ‘what is really out there’. Granted that neither theory of a historical pair is true, they nonetheless seek a sense in which the later is a better approximation to the truth. I believe that nothing of the sort can be found. (in Lakatos and Musgrave (eds),
So the growth of objective scientific knowledge cannot be explained in the Kuhnian picture. It is no good trying to pretend that successive explanations are better only in terms of their own paradigm. There are objective differences. We can fly, whereas for most of human history people could only dream of this. The ancients would not have been blind to the efficacy of our flying machines just because, within their paradigm, they could not conceive of how they work. The reason why we can fly is that we understand ‘what is really out there’ well enough to build flying machines. The reason why the ancients could not is that their understanding was objectively inferior to ours.
If one does graft the reality of objective scientific progress onto Kuhn’s theory, it then implies that the entire burden of fundamental innovation is carried by a handful of iconoclastic geniuses. The rest of the scientific community have their uses, but in significant matters they only hinder the growth of knowledge. This romantic view (which is often advanced independently of Kuhnian ideas) does not correspond with reality either. There have indeed been geniuses who have single-handedly revolutionized entire sciences; several have been mentioned in this book — Galileo, Newton, Faraday, Darwin, Einstein, Gödel, Turing. But on the whole, these people managed to work, publish and gain recognition
I have sometimes found myself on the minority side of fundamental scientific controversies. But I have never come across anything like a Kuhnian situation. Of course, as I have said, the majority of the scientific community is not always quite as open to criticism as it ideally should be. Nevertheless, the extent to which it adheres to ‘proper scientific practice’ in the conduct of scientific research is nothing short of remarkable. You need only attend a research seminar in any fundamental field in the ‘hard’ sciences to see how strongly people’s behaviour
In an analogous situation, a powerful chief executive whose business judgement was being contradicted by a brash new recruit might say, ‘Look, I’ve made more of these judgements than you’ve had hot dinners. If I tell you it works, then it works.’ A senior politician might say in response to criticism from an obscure but ambitious party worker, ‘Whose side are you on, anyway?’ Even our professor,
So the professor takes the student’s point seriously, and responds with a concise but adequate argument in defence of the disputed equation. The professor tries hard to show no sign of being irritated by criticism from so lowly a source.
So the participants in the seminar, while they are engaged in science, do behave in large measure with scientific rationality. But now the seminar ends. Let us follow the group into the dining-hall. Immediately, normal human social behaviour reasserts itself. The professor is treated with deference, and sits at a table with those of equal rank. A chosen few from the lower ranks are given the privilege of being allowed to sit there too. The conversation turns to the weather, gossip or (especially) academic politics. So long as those subjects are being discussed, all the dogmatism and prejudice, the pride and loyalty, the threats and flattery of typical human interactions in similar circumstances will reappear. But if the conversation happens to revert to the subject of the seminar, the scientists instantly become scientists again. Explanations are sought, evidence and argument rule, and rank becomes irrelevant to the course of the argument. That is, at any rate, my experience in the fields in which I have worked.
Even though the history of quantum theory provides many examples of scientists clinging irrationally to what could be called ‘paradigms’, it would be hard to find a more spectacular counterexample to Kuhn’s theory of paradigm
Some twenty years later, Hugh Everett, then a Princeton graduate student working under the eminent physicist John Archibald Wheeler, first set out the many-universes implications of quantum theory. Wheeler did not accept them. He was (and still is) convinced that Bohr’s vision, though incomplete, was the basis of the correct explanation. But did he therefore behave as the Kuhnian stereotype would lead us to expect? Did he try to suppress his student’s heretical ideas? On the contrary, Wheeler was afraid that Everett’s ideas might not be sufficiently appreciated. So he himself wrote a short paper to accompany the one that Everett published, and they appeared on consecutive pages of the journal
Wheeler’s exemplary adherence to scientific rationality may be extreme, but it is by no means unique. In this regard I must mention Bryce DeWitt, another eminent physicist who initially opposed Everett. In a historic exchange of letters, DeWitt put forward a series of detailed technical objections to Everett’s theory, each of which Everett rebutted. DeWitt ended his argument on an informal note, pointing out that he just couldn’t feel himself ‘split’ into multiple, distinct copies every time a decision was made. Everett’s reply echoed the dispute between Galileo and the Inquisition. ‘Do you feel the Earth move?’ he asked — the point being that quantum theory
Nevertheless, Everett’s discovery did not gain broad acceptance. Unfortunately, in the generation between the Copenhagen interpretation and Everett most physicists had given up on the idea of explanation in quantum theory. As I said, it was the heyday of positivism in the philosophy of science. Rejection (or incomprehension) of the Copenhagen interpretation, coupled with what might be called
Pragmatic instrumentalism has been feasible only because, in most branches of physics, quantum theory is not applied in its explanatory capacity. It is used only indirectly, in the testing of other theories, and only its predictions are needed. Thus generations of physicists have found it sufficient to regard interference processes, such as those that take place for a thousand-trillionth of a second when two elementary particles collide, as a ‘black box’: they prepare an input, and they observe an output. They use the equations of quantum theory to predict the one from the other, but they neither know nor care
So Everett’s story is indeed that of an innovative young, researcher challenging a prevailing consensus and being largely ignored until, decades later, his view gradually becomes the new consensus. But the basis of Everett’s innovation was not a claim that the prevailing theory is false, but that it is true! The incumbents, far from being able to think only in terms of their own theory, were refusing to think in its terms, and were using it only instrumentally. Yet they had dropped the previous explanatory paradigm, classical physics, with scarcely a complaint as soon as a better theory was available.
Something of the same strange phenomenon has also occurred in the other three theories that provide the main strands of explanation of the fabric of reality: the theories of computation, evolution and knowledge. In all cases the theory that now prevails, though it has definitely displaced its predecessor and other rivals in the sense that it is being applied routinely in pragmatic ways, has nevertheless failed to become the new ‘paradigm’. That is, it has not been taken on board as a fundamental explanation of reality by those who work in the field.
The Turing principle, for instance, has hardly ever been seriously doubted as a pragmatic truth, at least in its weak forms (for example, that a universal computer could render any physically possible environment). Roger Penrose’s criticisms are a rare exception, for he understands that contradicting the Turing principle involves contemplating radically new theories in both physics and epistemology, and some interesting new assumptions about biology too. Neither Penrose nor anyone else has yet actually proposed any viable rival to the Turing principle, so it remains the prevailing fundamental theory of computation. Yet the proposition that
But it is not only the opponents of artificial intelligence who have failed to incorporate the Turing principle into their paradigm. Very few others have done so either. The fact that four decades passed after the principle was proposed before anyone investigated its implications for physics, and a further decade passed before quantum computation was discovered, bears witness to this. People were accepting and using the principle pragmatically within computer science, but it was not integrated with their overall world-view.
Popper’s epistemology has, in every pragmatic sense, become the prevailing theory of the nature and growth of scientific knowledge. When it comes to the rules for experiments in any field to be accepted as ‘scientific evidence’ by theoreticians in that field, or by respectable journals for publication, or by physicians for choosing between rival medical treatments, the modern watchwords are just as Popper would have them: experimental testing, exposure to criticism, theoretical explanation and the acknowledgement of fallibility in experimental procedures. In popular accounts of science, scientific theories tend to be presented more as bold conjectures than as inferences drawn from accumulated data, and the difference between science and (say) astrology is correctly explained in terms of testability rather than degree of confirmation. In school laboratories, ‘hypothesis formation and testing’ are the order of the day. No longer are pupils expected to ‘learn by experiment’, in the sense that I and my contemporaries were — that is, we were given some equipment and told what to do with it, but we were not told the theory that the results were supposed to conform to. It was hoped that we would induce it.
Despite being the prevailing theory in that sense, Popperian epistemology forms part of the world-view of very few people. The popularity of Kuhn’s theory of the succession of paradigms is one illustration of this. More seriously, very few philosophers agree with Popper’s claim that there is no longer a ‘problem of induction’ because we do not in fact obtain or justify theories from observations, but proceed by explanatory conjectures and refutations instead. It is not that many philosophers are inductivists, or have much disagreement with Popper’s description and prescription of scientific method, or believe that scientific theories are actually unsound because of their conjectural status. It is that they do not accept Popper’s
Darwin’s theory of evolution is also the prevailing theory in its field, in the sense that no one seriously doubts that evolution through natural selection, acting on populations with random variations, is the ‘origin of species’ and of biological adaptation in general. No serious biologist or philosopher attributes the origin of species to divine creation or to Lamarckian evolution. (Lamarckism, an evolutionary theory that Darwinism superseded, was the analogue of inductivism. It attributed biological adaptations to the inheritance of characteristics that the organism had striven for and acquired during its life.) Yet, just as with the other three strands, objections to pure Darwinism
Darwinism has also been criticized as being circular because it invokes ‘the survival of the fittest’ as an explanation, while the ‘fittest’ are defined retrospectively, by their having survived. Alternatively, in terms of an independent definition of ‘fitness’, the idea that evolution ‘favours the fittest’ seems to be contradicted by the facts. For example, the most intuitive definition of biological fitness would be ‘fitness of a species for survival in a particular niche’, in the sense that a tiger might be thought to be the optimal machine for occupying the ecological niche that tigers occupy. The standard counter-examples to that sort of ‘survival of the fittest’ are adaptations, such as the peacock’s tail, that seem to make the organism much
Richard Dawkins’ innovation, as set out in his books
It is specifically Dawkins’ version of Darwinism that has become the prevailing theory of evolution in the pragmatic sense. Yet it is still by no means the prevailing
There has been a very unfortunate consequence, for all four strands, of the prevailing theory’s being generally rejected as an explanation, without serious rival explanations being current. It is that the proponents of the prevailing theories — Popper, Turing, Everett, Dawkins and their supporters — have found themselves constantly on the defensive against obsolete theories. The debate between Popper and most of his critics was (as I said in Chapters 3 and 7) effectively about the problem of induction. Turing spent the last years of his life in effect defending the proposition that human brains do not operate by supernatural means. Everett left scientific research after making no headway, and for several years the theory of the multiverse was championed almost single-handedly by Bryce DeWitt until progress in quantum cosmology in the 1970s forced its pragmatic acceptance in that field. But the opponents of the multiverse theory
The unified theory of the fabric of reality that is the subject of this book is, at the most straightforward level, merely the combination of the four prevailing fundamental theories of their respective fields. In that sense it too is the ‘prevailing theory’ of those four fields taken as a whole. Even some of the connections between the four strands are quite widely acknowledged. My thesis, therefore, also takes the form ‘the prevailing theory is true after all!’ Not only do I advocate taking each of the fundamental theories seriously as an explanation of its own subject-matter, I argue that taken together they provide a new level of explanation of a unified fabric of reality.
I have also argued that none of the four strands can be properly understood independently of the other three. This is possibly a clue to the reason why all these prevailing theories have not been believed. All four individual explanations share an unattractive property which has been variously criticized as ‘idealized and unrealistic’, ‘narrow’ or ‘naïve’ — and also ‘cold’, ‘mechanistic’ and ‘lacking in humanity’. I believe that there is some truth in the gut feeling behind these criticisms. For example, of those who deny the possibility of artificial intelligence, and find themselves in effect denying that the brain is a physical object, a few are really only trying to express a much more reasonable criticism: that the Turing explanation of computation seems to leave no room, even in principle, for any future explanation
I do not believe that this gap can be filled without bringing in the other three strands. Now, as I have said, my guess is that the brain is a classical computer and not a quantum computer, so I do not expect the explanation of consciousness to be that it is any sort of quantum-computational phenomenon. Nevertheless, I expect the unification of computation and quantum physics, and probably the wider unification of all four strands, to be essential to the fundamental
What is my evidence? I have already presented some of it in Chapter 8, where I discussed the multiverse view of knowledge. Although we do not know what consciousness is, it is clearly intimately related to the growth and representation of knowledge within the brain. It seems unlikely, then, that we shall be able to explain what consciousness is, as a physical process, before we have explained knowledge in physical terms. Such an explanation has been elusive in the classical theory of computation. But, as I explained, in quantum theory there is a good basis for one: knowledge can be understood as complexity that extends across large numbers of universes.
Another mental attribute that is somehow associated with consciousness is free will. Free will is also notoriously difficult to understand in the classical world-picture. The difficulty of reconciling free will with physics is often attributed to determinism, but it is not determinism that is at fault. It is (as I have explained in Chapter 11) classical spacetime. In spacetime,
Thus, replacing deterministic laws of motion by indeterministic (random) ones would do nothing to solve the problem of free will, so long as the laws remained classical. Freedom has nothing to do with randomness. We value our free will as the ability to express, in our actions, who we as individuals are. Who would value being random? What we think of as our
Consider this typical statement referring to free will: ‘After careful thought I chose to do X; I could have chosen otherwise; it was the right decision; I am good at making such decisions.’ In any classical world-picture this statement is pure gibberish. In the multiverse picture it has a straightforward physical representation, shown in Table 13.1. (I am not proposing to
Thus Turing’s conception of computation seems less disconnected from human values, and is no obstacle to the understanding of human attributes like free will, provided it is understood in a multiverse context. The same example exonerates Everett’s theory itself. On the face of it, the price of understanding interference phenomena is to create or exacerbate many philosophical problems. But here, and in many other examples I have given in this book, we see that the very opposite is the case. The fruitfulness of the multiverse theory in contributing to the solution of long-standing philosophical problems is so great that it would be worth adopting even if there were no physical evidence for it at all. Indeed, the philosopher David Lewis, in his book
TABLE 13.1
Turning again to the theory of evolution, I can similarly attribute
But it is not a full explanation. There is an explanatory gap, and this time we already know much more about how the other strands could fill it. We have seen that the very fact that physical variable can store information, that they can interact with one another to transfer and replicate it, and that such processes are stable, all depend on the details of quantum theory. Furthermore, we have seen that the existence of highly adapted replicators depends on the physical feasibility of virtual-reality generation and universality, which in turn can be understood as consequences of a deep principle, the Turing principle, that links physics and the theory of computation and makes no explicit reference to replicators, evolution or biology at all.
An analogous gap exists in Popperian epistemology. Its critics wonder why the scientific method works, or what justifies our reliance on the best scientific theories. This leads them to hanker after a principle of induction or something of the sort (though, as crypto-inductivists, they usually realize that such a principle would not explain or justify anything either). For Popperians to reply that there is no such thing as justification, or that it is never rational to rely on theories, is to provide no explanation. Popper even said that ‘no theory of knowledge should attempt to explain why we are successful in our attempts to explain things’ (
The proponents of the prevailing theory, in each of the four cases, are put permanently on the defensive by their critics’ harping on these explanatory gaps. This often forces them to retreat into the core of their own strand. ‘Here I stand, I can do no other’ is their ultimate response, as they rely on the self-evident irrationality of abandoning the unrivalled fundamental theory of their own particular field. This only makes them seem even more narrow to the critics, and it tends to engender pessimism about the very prospect of further fundamental explanation.
Despite all the excuses I have been making for the critics of the central theories, the history of all four strands shows that something very unpleasant happened to fundamental science and philosophy for most of the twentieth century. The popularity of positivism and of an instrumentalist view of science was connected with an apathy, loss of self-confidence and pessimism about genuine explanations at a time when the prestige, usefulness and, indeed, funding for fundamental research were all at an all-time high. Of course there were many individual exceptions, including the four heroes of this chapter. But the unprecedented manner in which their theories were simultaneously adopted and ignored speaks for itself. I do not claim to have a full explanation for this phenomenon, but whatever caused it, we seem to be coming out of it now.
I have pointed out one possible contributory cause, namely that individually, all four theories have explanatory gaps that can make them seem narrow, inhuman and pessimistic. But I suggest that when they are taken together as a unified explanation of the fabric of reality, this unfortunate property is reversed. Far from denying free will, far from placing human values in a context where they are trivial and insignificant, far from being pessimistic, it is a fundamentally optimistic world-view that places human minds at the centre of the physical universe, and explanation and understanding at the centre of human purposes. I hope we shall not have to spend too long looking backwards to defend this unified view against non-existent competitors. There will be no lack of competitors when, having taken the unified theory of the fabric of reality seriously, we begin to develop it further. It is time to move on.
paradigm The set of ideas through which those who hold it observe and explain everything in their experience. According to Thomas Kuhn, holding a paradigm blinds one to the merits of another paradigm and prevents one from switching paradigms. One cannot comprehend two paradigms at the same time.
Copenhagen interpretation of quantum mechanics An idea for making it easier to evade the implications of quantum theory for the nature of reality. At moments of observation, the outcome in one of the universes supposedly becomes real, and all the other universes — even those that contributed to that outcome — are deemed never to have existed. Under this view, one is not permitted to ask about what happens in reality between conscious observations.
The intellectual histories of the fundamental theories of the four strands contain remarkable parallels. All four have been simultaneously accepted (for use in practice) and ignored (as explanations of reality). One reason for this is that, taken individually, each of the four theories has explanatory gaps, and seems cold and pessimistic. To base a world-view on any of them individually is, in a generalized sense, reductionist. But when they are taken together as a unified explanation of the fabric of reality, this is no longer so.
14
The Ends of the Universe
Although history has no meaning, we can give it a meaning.
When, in the course of my research on the foundations of quantum theory, I was first becoming aware of the links between quantum physics, computation and epistemology, I regarded these links as evidence of the historical tendency for physics to swallow up subjects that had previously seemed unrelated to it. Astronomy, for example, was linked with terrestrial physics by Newton’s laws, and over the next few centuries much of it was absorbed and became astrophysics. Chemistry began to be subsumed into physics by Faraday’s discoveries in electrochemistry, and quantum theory has made a remarkable proportion of basic chemistry directly predictable from the laws of physics alone. Einstein’s general relativity swallowed geometry, and rescued both cosmology and the theory of time from their former purely philosophical status, making them into fully integrated branches of physics. Recently, as I have discussed, the theory of time travel has been integrated as well.
Thus, the further prospect of quantum physics absorbing not only the theory of computation but also, of all things,
The reader will know that I have changed my mind about the second point. The character of the fabric of reality that I am now proposing is not that of fundamental physics alone. For example, the quantum theory of computation has not been constructed by deriving principles of computation from quantum physics alone. It includes the Turing principle, which was already, under the name of the Church-Turing
Similarly, if we understand
That being so, the view that quantum physics is swallowing the other strands must be regarded merely as a narrow, physicist’s perspective, tainted, perhaps, by reductionism. Indeed, each of the other three strands is quite rich enough to form the whole foundation of some people’s world-view in much the same way that fundamental physics forms the foundation of a reductionist’s world-view. Richard Dawkins thinks that ‘If superior creatures from space ever visit Earth, the first question they will ask, in order to assess the level of our civilisation, is: “Have they discovered evolution yet?”’ Many philosophers have agreed with Rene Descartes that epistemology underlies all other knowledge, and that something like Descartes’s
For example, I have remarked that the fundamental theories of each of the four strands have been criticized, in part justifiably, for being ‘naïve’, ‘narrow’, ‘cold’, and so on. Thus, from the point of view of a reductionist physicist such as Stephen Hawking, the human race is just an astrophysically insignificant ‘chemical scum’. Steven Weinberg thinks that ‘The more the universe seems comprehensible, the more it also seems pointless. But if there is no solace in the fruits of our research, there is at least some consolation in the research itself.’ (
As for computation, the computer scientist Tomasso Toffoli has remarked that ‘We never perform a computation ourselves, we just hitch a ride on the great Computation that is going on already.’ To him, this is no cry of despair — quite the contrary. But critics of the computer-science world-view do not want to see themselves as just someone else’s program running on someone else’s computer. Narrowly conceived evolutionary theory considers us mere ‘vehicles’ for the replication of our genes or memes; and it refuses to address the question of why evolution has tended to create ever greater adaptive complexity, or the role that such complexity plays in the wider scheme of things. Similarly, the (crypto-)inductivist critique of Popperian epistemology is that, while it states the conditions for scientific knowledge to grow, it seems not to explain
As I have explained, the defence in each case depends on adducing explanations from some of the other strands. We are not
Thus the problem with taking any of these fundamental theories individually as the basis of a world-view is that they are each, in an extended sense, reductionist. That is, they have a monolithic explanatory structure in which everything follows from a few extremely deep ideas. But that leaves aspects of the subject entirely unexplained. In contrast, the explanatory structure that they
Three of the four strands seem to rule out human beings and human values from the fundamental level of explanation. The fourth, epistemology, makes knowledge primary but gives no reason to regard epistemology itself as having relevance beyond the psychology of our own species. Knowledge seems a parochial concept until we consider it from a multiverse perspective. But if knowledge is of fundamental significance, we may ask what sort of role now seems natural for knowledge-creating beings such as ourselves in the unified fabric of reality. This question has been explored by the cosmologist Frank Tipler. His answer, the
From my own perspective, the simplest point of entry to the omega-point theory is the Turing principle. A universal virtual-reality generator is physically possible. Such a machine is able to render any physically possible environment, as well as certain hypothetical and abstract entities, to any desired accuracy. Its computer therefore has a potentially unlimited requirement for additional memory, and may run for an unlimited number of steps. This was trivial to arrange in the classical theory of computation, so long as the universal computer was thought to be purely abstract. Turing simply postulated an infinitely long memory tape (with, as he thought, self-evident properties), a perfectly accurate processor requiring neither power nor maintenance, and unlimited time available. Making the model more realistic by allowing for periodic maintenance raises no problem of principle, but the other three requirements — unlimited memory capacity, and an unlimited running time and energy supply — are problematic in the light of existing cosmological theory. In some current cosmological models, the universe will recollapse in a Big Crunch after a finite time, and is also spatially finite. It has the geometry of a ‘3-sphere’, the three-dimensional analogue of the two-dimensional surface of a sphere. On the face of it, such a cosmology would place a finite bound on both the memory capacity and the number of processing steps the machine could perform before the universe ended. This would make a universal computer physically impossible, so the Turing principle would be violated. In other cosmological models the universe continues to expand for ever and is spatially infinite, which might seem to allow for an unlimited source of material for the manufacture of additional memory. Unfortunately, in most such models the density of energy available to power the computer would diminish as the universe expanded, and would have to be collected from ever further afield. Because physics imposes an absolute speed limit, the speed of light, the computer’s memory accesses would have to slow down and the net effect would again be that only a finite number of computational steps could be performed.
The key discovery in the omega-point theory is that of a class of cosmological models in which, though the universe is finite in both space and time, the memory capacity, the number of possible computational steps and the effective energy supply are all unlimited. This apparent impossibility can happen because of the extreme violence of the final moments of the universe’s Big Crunch collapse. Spacetime singularities, like the Big Bang and the Big Crunch, are seldom tranquil places, but this one is far worse than most. The shape of the universe would change from a 3-sphere to the three-dimensional analogue of the surface of an ellipsoid. The degree of deformation would increase, and then decrease, and then increase again more rapidly with respect to a different axis. Both the amplitude and frequency of these oscillations would increase without limit as the final singularity was approached, so that a literally infinite number of oscillations would occur even though the end would come within a finite time. Matter as we know it would not survive: all matter, and even the atoms themselves, would be wrenched apart by the gravitational shearing forces generated by the deformed spacetime. However, these shearing forces would also provide an unlimited source of available energy, which could in principle be used to power a computer. How could a computer exist under such conditions? The only ‘stuff’ left to build computers with would be elementary particles and gravity itself, presumably in some highly exotic quantum states whose existence we, still lacking an adequate theory of quantum gravity, are currently unable to confirm or deny. (Observing them experimentally is of course out of the question.) If suitable states of particles and the gravitational field exist, then they would also provide an unlimited memory capacity, and the universe would be shrinking so fast that an infinite number of memory accesses would be feasible in a finite time before the end. The end-point of the gravitational collapse, the Big Crunch of this cosmology, is what Tipler calls the omega point.
Now, the Turing principle implies that there is no upper bound on the number of computational steps that are physically possible. So, given that an omega-point cosmology is (under plausible assumptions) the only type in which an infinite number of computational steps could occur, we can infer that our actual spacetime must have the omega-point form. Since all computation would cease as soon as there were no more variables capable of carrying information, we can infer that the necessary physical variables (perhaps quantum-gravitational ones) do exist right up to the omega point.
A sceptic might argue that this sort of reasoning involves a massive, unjustified extrapolation. We have experience of ‘universal’ computers only in a most favourable environment which does not remotely resemble the final stages of the universe. And we have experience of them performing only a finite number of computational steps, using only a finite amount of memory. How can it be valid to extrapolate from those finite numbers to infinity? In other words, how can we know that the Turing principle in its strong form is strictly true? What evidence is there that reality supports more than
This sceptic is, of course, an inductivist. Furthermore, this is exactly the type of thinking that (as I argued in the previous chapter) prevents us from understanding our best theories and improving upon them. What is or is not an ‘extrapolation’ depends on which
Now, it turns out that the type of oscillations of space that would make an omega point happen are highly unstable (in the manner of classical chaos) as well as violent. And they become increasingly more so, without limit, as the omega point is approached. A small deviation from the correct shape would be magnified rapidly enough for the conditions for continuing computation to be violated, so the Big Crunch would happen after only a finite number of computational steps. Therefore, to satisfy the Turing principle and attain an omega point, the universe would have to be continually ‘steered’ back onto the right trajectories. Tipler has shown in principle how this could be done, by manipulating the gravitational field over the whole of space. Presumably (again we would need a quantum theory of gravity to know for sure), the technology used for the stabilizing mechanisms, and for storing information, would have to be continually improved — indeed, improved an infinite number of times — as the density and stresses became ever higher without limit. This would require the continual creation of new knowledge, which, Popperian epistemology tells us, requires the presence of rational criticism and thus of intelligent entities. We have therefore inferred, just from the Turing principle and some other independently justifiable assumptions, that intelligence will survive, and knowledge will continue to be created, until the end of the universe.
The stabilization procedures, and the accompanying knowledge-creation processes, will all have to be increasingly rapid until, in the final frenzy, an infinite amount of both occur in a finite time. We know of no reason why the physical resources should not be available to do this, but one might wonder why the inhabitants should bother to go to so much trouble. Why should they continue so carefully to steer the gravitational oscillations during, say, the last second of the universe? If you have only one second left to live, why not just sit back and take it easy at last? But of course, that is a misrepresentation of the situation. It could hardly be a bigger misrepresentation. For these people’s minds will be running as computer programs in computers whose physical speed is increasing without limit. Their thoughts will, like ours, be virtual-reality renderings performed by these computers. It is true that at the end of that final second the whole sophisticated mechanism will be destroyed. But we know that the subjective duration of a virtual-reality experience is determined not by the elapsed time, but by the computations that are performed in that time. In an infinite number of computational steps there is time for an infinite number of thoughts — plenty of time for the thinkers to place themselves into any virtual-reality environment they like, and to experience it for however long they like. If they tire of it, they can switch to any other environment, or to any number of other environments they care to design. Subjectively, they will not be at the final stages of their lives but at the very beginning. They will be in no hurry, for subjectively they will live for ever. With one second, or one microsecond, to go, they will still have ‘all the time in the world’ to do more, experience more, create more — infinitely more — than anyone in the multiverse will ever have done before then. So there is every incentive for them to devote their attention to managing their resources. In doing so they are merely preparing for their own future, an open, infinite future of which they will be in full control and on which, at any particular time, they will be only just embarking.
We may hope that the intelligence at the omega point will consist of our descendants. That is to say, of our
The mechanics of ‘steering’ the universe to the omega point require actions to be taken throughout space. It follows that intelligence will have to spread all over the universe in time to make the first necessary adjustments. This is one of a series of deadlines that Tipler has shown we should have to meet — and he has shown that meeting each of them is, to the best of our present knowledge, physically possible. The first deadline is (as I remarked in Chapter 8) about five billion years from now when the Sun will, if left to its own devices, become a red giant star and wipe us out. We must learn to control or abandon the Sun before then. Then we must colonize our Galaxy, then the local cluster of galaxies, and then the whole universe. We must do each of these things soon enough to meet the corresponding deadline but we must not advance so quickly that we use up all the necessary resources before we have developed the next level of technology.
I say ‘we must’ do all this, but that is only on the assumption that it is we who are the ancestors of the intelligence that will exist at the omega point. We need not play this role if we do not want to. If we choose not to, and the Turing principle is true, then we can be sure that someone else (presumably some extraterrestrial intelligence) will.
Meanwhile, in parallel universes, our counterparts are making the same choices. Will they all succeed? Or, to put that another way, will someone
(1) there is a universal computer in
(2) there is a universal computer in
The ‘all universes’ version seems too strong to express the intuitive idea that such a computer is physically
That is all that the omega-point theory — or, rather, the scientific component I am defending — has to say. One can reach the same conclusion from several different starting-points in three of the four strands. One of them is the epistemological principle that
Tipler makes the point that the science of cosmology has tended to study the
Having established the omega-point scenario, Tipler makes some additional assumptions — some plausible, others less so — which enable him to fill in more details of future history. It is Tipler’s quasi-religious interpretation of that future history, and his failure to distinguish that interpretation from the underlying scientific theory, that have prevented the latter from being taken seriously. Tipler notes that an infinite amount of knowledge will have been created by the time of the omega point. He then assumes that the intelligences existing in this far future will, like us, want (or perhaps need) to discover knowledge other than what is immediately necessary for their survival. Indeed, they have the potential to discover all knowledge that is physically knowable, and Tipler assumes that they will do so.
So in a sense, the omega point will be
But only in a sense. In attributing properties such as omniscience or even physical existence to the omega point, Tipler makes use of a handy linguistic device that is quite common in mathematical physics, but can be misleading if taken too literally. The device is to identify a limiting point of a sequence with the sequence itself. Thus, when he says that the omega point ‘knows’ X, he means that X is known by some finite entity before the time of the omega point, and is never subsequently forgotten. What he does
Tipler uses the theological term ‘omniscient’ for a reason which will shortly become apparent; but let me note at once that in this usage it does not carry its full traditional connotation. The omega point will not know
Now, since the whole of space will be filled with the intelligent computer, it will be
Since the intelligences in the computer will be creative thinkers, they must be classified as ‘people’. Any other classification, Tipler rightly argues, would be racist. And so he claims that at the omega-point limit there is an omniscient, omnipotent, omnipresent society of people. This society, Tipler identifies as God.
I have mentioned several respects in which Tipler’s ‘God’ differs from the God or gods that most religious people believe in. There are further differences, too. For instance, the people near the omega point could not, even if they wanted to, speak to us or communicate their wishes to us, or work miracles (today).{5} They did not create the universe, and they did not invent the laws of physics — nor could they violate those laws if they wanted to. They may listen to prayers from the present day (perhaps by detecting very faint signals), but they cannot answer them. They are (and this we can infer from Popperian epistemology) opposed to religious faith, and have no wish to be worshipped. And so on. But Tipler ploughs on, and argues that most of the core features of the God of the Judaeo-Christian religions are also properties of the omega point. Most religious people will, I think, disagree with Tipler about what the core features of their religions are.{6}
In particular, Tipler points out that a sufficiently advanced technology will be able to resurrect the dead. It could do this in several different ways, of which the following is perhaps the simplest. Once one has enough computer power (and remember that eventually any desired amount will be available), one can run a virtual-reality rendering of the entire universe — indeed, the entire multiverse starting at the Big Bang, with any desired degree of accuracy. If one does not know the initial state accurately enough, one can try an arbitrarily fine sampling of all possible initial states, and render them all simultaneously. The rendering may have to pause, for reasons of complexity, if the epoch being rendered gets too close to the actual time at which the rendering is being performed. But it will soon be able to continue as more computer power comes on line. To the omega-point computers, nothing is intractable. There is only ‘computable’ and ‘non-computable’, and rendering real physical environments definitely comes into the ‘computable’ category. In the course of this rendering, the planet Earth and many variants of it will appear. Life, and eventually human beings, will evolve. All the human beings who have ever lived anywhere in the multiverse (that is, all those whose existence was physically possible) will appear somewhere in this vast rendering. So will every extraterrestrial and artificial intelligence that could ever have existed. The controlling program can look out for these intelligent beings and, if it wants to, place them in a better virtual environment — one, perhaps, in which they will not die again, and will have all their wishes granted (or at least, all wishes that a given, unimaginably high, level of computing resources can meet). Why would it do that? One reason might be a moral one: by the standards of the distant future, the environment we live in today is extremely harsh and we suffer atrociously. It may be considered unethical not to rescue such people and give them a chance of a better life. But it would be counter-productive to place them immediately in contact with the contemporary culture at the time of resurrection: they would be instantly confused, humiliated and overwhelmed. Therefore, Tipler says, we can expect to be resurrected in an environment of a type that is essentially familiar to us, except that every unpleasant element will have been removed, and many extremely pleasant elements will have been added. In other words, heaven.
Tipler goes on in this manner to reconstitute many other aspects of the traditional religious landscape by redefining them as physical entities or processes that can plausibly be expected to exist near the omega point. Now, let us set aside the question whether the reconstituted versions are true to their religious analogues. The whole story about what these far-future intelligences will or will not do is based on a string of assumptions. Even if we concede that these assumptions are individually plausible, the overall conclusions cannot really claim to be more than informed speculation. Such speculations are worth making, but it is important to distinguish them from the argument for the existence of the omega point itself, and from the theory of the omega point’s physical and epistemological properties. For
As a warning against the unreliability of even informed speculation, let me revisit the ancient master builder of Chapter 1, with his pre-scientific knowledge of architecture and engineering. We are separated from him by so large a cultural gap that it would be extremely difficult for him to conceive a workable picture of our civilization. But we and he are almost contemporaries in comparison with the tremendous gap between us and the earliest possible moment of Tiplerian resurrection. Now, suppose that the master builder is speculating about the distant future of the building industry, and that by some extraordinary fluke he happens upon a perfectly accurate assessment of the technology of the present day. Then he will know, among other things, that we are capable of building structures far vaster and more impressive than the greatest cathedrals of his day. We could build a cathedral a mile high if we chose to. And we could do it using a far smaller proportion of our wealth, and less time and human effort, than he would have needed to build even a modest cathedral. So he would have been confident in predicting that by the year 2000 there would be mile-high cathedrals. He would be mistaken, and badly so, for though we have the technology to build such structures, we have chosen not to. Indeed, it now seems unlikely that such a cathedral will ever be built. Even though we supposed our near-contemporary to be right about our technology, he would have been quite wrong about our preferences. He would have been wrong because some of his most unquestioned assumptions about human motivations have become obsolete after only a few centuries.
Similarly, it may seem natural to us that the omega-point intelligences, for reasons of historical or archaeological research, or compassion, or moral duty, or mere whimsy, will eventually create virtual-reality renderings of us, and that when their experiment is over they will grant us the piffling computational resources we would require to live for ever in ‘heaven’. (I myself would prefer to be allowed gradually to join their culture.) But we cannot know what they will want. Indeed, no attempt to prophesy future large-scale developments in human (or superhuman) affairs can produce reliable results. As Popper has pointed out, the future course of human affairs depends on the future growth of knowledge. And we cannot predict what specific knowledge will be created in the future — because if we could, we should by definition already possess that knowledge in the present.{7}
It is not only scientific knowledge that informs people’s preferences and determines how they choose to behave. There are also, for instance, moral criteria, which assign attributes such as ‘right’ and ‘wrong’ to possible actions. Such values have been notoriously difficult to accommodate in the scientific world-view. They seem to form a closed explanatory structure of their own, disconnected from that of the physical world. As David Hume pointed out, it is impossible logically to derive an ‘ought’ from an ‘is’. Yet we use such values both to explain and to determine our physical actions.
The poor relation of morality is
These genetic theories can be seen as a special case of a wider stratagem, that of denying that moral judgements are meaningful on the grounds that we do not really choose our actions — that free will is an illusion incompatible with physics. But in fact, as we saw in Chapter 13, free will
What, then, is the relationship of moral values to the particular scientific world-view I am advocating in this book? I can at least argue that there is no fundamental obstacle to formulating one. The problem with all previous ‘scientific world-views’ was that they had hierarchical explanatory structures. Just as it is impossible, within such a structure, to ‘justify’ scientific theories as being
In this connection, let me point out that ‘emergence’ in the standard sense is only one way in which explanations in different strands may be related. So far I have really only considered what might be called
But now suppose that someone forms a general theory about such explanations themselves. Suppose that they introduce a higher-level concept, such as ‘human rights’, and guess that the introduction of that concept will, for a given class of moral problems like the one I have just described, always generate a new explanation that solves the problem in the utilitarian sense. Suppose, further, that this theory about explanations is itself an explanatory theory. It explains, in terms of some other strand,
If the explanation seems good, it might be worth adopting such a theory. Furthermore, since utilitarian calculations are impossibly difficult to perform, whereas analysing a situation in terms of human rights is often feasible, it may be worth using a ‘human rights’ analysis in preference to any specific theory of what the happiness implications of a particular action are. If all this were true, it could be that the concept of ‘human rights’ is not expressible, even in principle, in terms of ‘happiness’ — that it is not a utilitarian concept at all. We may call it a moral concept. The connection between the two is through emergent explanation, not emergent prediction.
I am not especially advocating this particular approach; I am merely illustrating the way in which moral values might exist objectively by playing a role in emergent explanations. If this approach did work, then it would explain morality as a sort of ‘emergent usefulness’.
In a similar way, ‘artistic value’ and other aesthetic concepts have always been difficult to explain in objective terms. They too are often explained away as arbitrary features of culture, or in terms of inborn preferences. And again we see that this is not necessarily so. Just as morality is related to usefulness, so artistic value has a less exalted but more objectively definable counterpart,
Tipler’s overconfidence in predicting people’s motives near the omega point has caused him to underrate an important implication of the omega-point theory for the role of intelligence in the multiverse. It is that intelligence is not only there to control physical events on the largest scale, it is also there to choose what will happen. The ends of the universe are, as Popper said, for us to choose. Indeed, to a large extent the content of future intelligent thoughts is what will happen, for in the end the whole of space and its contents will
Moral and aesthetic deliberations are also expressed in those patterns, as are the outcomes of all such deliberations. Indeed, whether or not there is an omega point, wherever there is knowledge in the multiverse (complexity across many universes) there must also be the physical traces of the moral and aesthetic reasoning that determined what sort of problems the knowledge-creating entity chose to solve there. In particular, before any piece of factual knowledge can become similar across a swathe of universes, moral and aesthetic judgements must already have been similar across those universes. It follows that such judgements also contain objective knowledge in the physical, multiverse sense. This justifies the use of epistemological terminology such as ‘problem’, ‘solution’, ‘reasoning’ and ‘knowledge’ in ethics and aesthetics. Thus, if ethics and aesthetics are at all compatible with the world-view advocated in this book, beauty and tightness must be as objective as scientific or mathematical truth. And they must be created in analogous ways, through conjecture and rational criticism.
So Keats had a point when he said that ‘beauty is truth, truth beauty’. They are not the same thing, but they are the same
In his enthusiasm (in the original sense of the word!), Tipler has neglected part of the Popperian lesson about what the growth of knowledge must look like. If the omega point exists, and if it will be created in the way that Tipler has set out, then the late universe will indeed consist of embodied thoughts of inconceivable wisdom, creativity and sheer numbers. But thought is problem-solving, and problem-solving means rival conjectures, errors, criticism, refutation and backtracking. Admittedly,
Like us, they will never know certainty or physical security, for their survival, like ours, will depend on their creating a continuous stream of new knowledge. If ever they fail, even once, to discover a way to increase their computing speed and memory capacity within the period available to them, as determined by inexorable physical law, the sky will fall in on them and they will die. Their culture will presumably be peaceful and benevolent beyond our wildest dreams, yet it will not be tranquil. It will be embarked upon the solution of tremendous problems and will be split by passionate controversies. For this reason it seems unlikely that it could usefully be regarded as a ‘person’. Rather, it will be a vast number of people interacting at many levels and in many different ways, but
In view of all the unifying ideas that I have discussed, such as quantum computation, evolutionary epistemology, and the multiverse conceptions of knowledge, free will and time, it seems clear to me that the present trend in our overall understanding of reality is just as I, as a child, hoped it would be. Our knowledge is becoming both broader and deeper, and, as I put it in Chapter 1, depth is winning. But I have claimed more than that in this book. I have been advocating a particular unified world-view based on the four strands: the quantum physics of the multiverse, Popperian epistemology, the Darwin-Dawkins theory of evolution and a strengthened version of Turing’s theory of universal computation. It seems to me that at the current state of our scientific knowledge, this is the ‘natural’ view to hold. It is the conservative view, the one that does not propose any startling change in our best fundamental explanations. Therefore it ought to be the prevailing view, the one against which proposed innovations are judged. That is the role I am advocating for it. I am not hoping to create a new orthodoxy; far from it. As I have said, I think it is time to move on. But we can move to better theories only if we take our best existing theories seriously, as explanations of the world.
Richard Dawkins,
Richard Dawkins,
David Deutsch, ‘Comment on “The Many Minds Interpretation of Quantum Mechanics” by Michael Lockwood’,
David Deutsch and Michael Lockwood, ‘The Quantum Physics of Time Travel’,
Douglas R. Hofstadter,
James P. Hogan,
Bryan Magee,
Karl Popper,
Karl Popper,
John Barrow and Frank Tipler,
Charles H. Bennett, Gilles Brassard and Artur K. Ekert, ‘Quantum Cryptography’,
Jacob Bronowski,
Julian Brown, ‘A Quantum Revolution for Computing’,
Paul Davies and Julian Brown,
Richard Dawkins,
Daniel C. Dennett,
Bryce S. DeWitt and Neill Graham (eds),
Artur K. Ekert, ‘Quantum Keys for Keeping Secrets’,
Ludovico Geymonat,
Thomas Kuhn,
Imre Lakatos and Alan Musgrave (eds),
Seth Lloyd, ‘Quantum-mechanical Computers’,
Michael Lockwood,
Michael Lockwood, ‘The Many Minds Interpretation of Quantum Mechanics’,
David Miller (ed),
Ernst Nagel and James R. Newman,
Anthony O’Hear,
Roger Penrose,
Karl Popper,
Randolph Quirk, Sidney Greenbaum, Geoffrey Leech and Jan Svartvik,
Dennis Sciama,
Ian Stewart,
L. J. Stockmeyer and A. K. Chandra, ‘Intrinsically Difficult Problems’,
Frank Tipler,
Alan Turing, ‘Computing Machinery and Intelligence’,
Steven Weinberg,
Steven Weinberg,
Steven Weinberg,
John Archibald Wheeler,
Lewis Wolpert,
Benjamin Woolley,