Зенон Элейский (др.-греч. Ζηνων ο Ελεατης) (ок. 490 до н. э. — ок. 430 до н. э.), древнегреческий философ, ученик Парменида. Знаменит своими апориями, которыми он доказывал немыслимость движения, пространства и множества. Научные дискуссии, вызванные этими парадоксальными рассуждениями, существенно углубили понимание таких фундаментальных понятий, как роль дискретного и непрерывного в природе, адекватность физического движения и его математической модели и др. Эти дискуссии продолжаются и в настоящее время.
Нашей целью будет не реконструкция зеноновских аргументов, а стремление понять с точки зрения современной науки, на какие реальные трудности в анализе движения указал Зенон Элейский. Именно указал, поскольку о попытке приписать непосредственно Зенону современную постановку проблем движения не может быть и речи. Кстати говоря, эта постановка в логико-философской литературе не отличается единством. Нередко ответственность за парадоксы движения возлагается на неточность и размытость используемых понятий [1]. Уточним понятия – парадоксы исчезнут. Мы с этим не согласны. Апории Зенона касаются самих основ человеческого миропонимания. Они требуют не просто уточнения понятий, а выбора философской платформы объяснения реальности. Поскольку дело построения таких платформ не может быть завершено, пока существует мыслящий разум, на выборе одной из них лежит печать неизбежной исторической ограниченности. Сказанное, разумеется, в полной мере относится и к построениям в данной статье. Но сегодня, несомненно, мы понимаем и знаем больше, чем два с половиной тысячелетия назад, а завтра, возможно, удастся продвинуться вперед еще дальше [2].
Начнем рассмотрение зеноновских затруднений с апорий о движении.
Ахилл – герой и, как бы мы сейчас сказали, выдающийся спортсмен. Черепаха, как известно, одно из самых медлительных животных. Тем не менее Зенон утверждал, что Ахилл проиграет черепахе состязание в беге. Примем следующие условия. Пусть Ахилла отделяет от финиша расстояние 1, а черепаху – ½. Двигаться Ахилл и черепаха начинают одновременно. Пусть для определенности Ахилл бежит в 2 раза быстрее черепахи. Тогда, пробежав расстояние ½, Ахилл обнаружит, что черепаха успела за то же время преодолеть отрезок ¼ и по-прежнему находится впереди героя. Далее картина повторяется: пробежав четвертую часть пути, Ахилл увидит черепаху на одной восьмой части пути впереди себя и т. д. Следовательно, всякий раз, когда Ахилл преодолевает отделяющее его от черепахи расстояние, последняя успевает уползти от него и по-прежнему остается впереди. Таким образом, Ахилл никогда не догонит черепаху. Начав движение, Ахилл никогда не сможет его завершить.
Знающие математический анализ обычно указывают, что ряд
сходится к 1. Поэтому, дескать, Ахилл преодолеет весь путь за конечный промежуток времени и, безусловно, обгонит черепаху [3]. Но вот что пишут по данному поводу Д. Гильберт и П. Бернайс:
“Обычно этот парадокс пытаются обойти рассуждением о том, что сумма бесконечного числа этих временных интервалов все-таки сходится и, таким образом, дает конечный промежуток времени. Однако это рассуждение абсолютно не затрагивает один существенно парадоксальный момент, а именно парадокс, заключающийся в том, что некая бесконечная последовательность следующих друг за другом событий, последовательность, завершаемость которой мы не можем себе даже представить (не только физически, но хотя бы в принципе), на самом деле все-таки должна завершиться” [4].
Принципиальная незавершаемость данной последовательности заключается в том, что в ней
“Представим себе вычислительную машину, которая выполняла бы первую операцию за ½ минуты, вторую – за ¼ минуты, третью – за ⅛ минуты и т. д. Такая машина могла бы к концу первой минуты “пересчитать” весь натуральный ряд (написать, например, счетное число единиц). Ясно, что работа над конструкцией такой машины обречена на неудачу. Так почему же тело, вышедшее из точки А, достигает конца отрезка В, “отсчитав” счетное множество точек А1, А2,…, Аn,…?” [5]
Древние греки тем более не могли себе представить завершенную бесконечную совокупность. Поэтому вывод Зенона о том, что движение из-за необходимости “пересчитать” бесконечное число точек не может закончиться, еще тогда произвел большое впечатление. На схожих аргументах основывается апория о невозможности начать движение.
Рассуждения очень простое. Для того, чтобы пройти весь путь, движущееся тело сначала должно пройти половину пути, но чтобы преодолеть эту половину, надо пройти половину половины и т. д. до бесконечности. Иными словами, при тех же условиях, что и в предыдущем случае, мы будем иметь дело с перевернутым рядом точек: (½)n,…, (½)3, (½)2, (½)1. Если в случае апории
Действительно, согласно легенде, один из философов так и “возразил” Зенону. Зенон велел бить его палками: ведь он не собирался отрицать чувственное восприятие движения. Он говорил о его
“Представим себе, что по дороге в одном направлении движутся быстроногий Ахилл и две черепахи, из которых Черепаха-1 несколько ближе к Ахиллу, чем Черепаха-2. Чтобы показать, что Ахилл не сможет перегнать Черепаху-1, рассуждаем следующим образом. За то время, как Ахилл пробежит разделяющее их вначале расстояние, Черепаха-1 успеет уползти несколько вперед, пока Ахилл будет пробегать этот новый отрезок, она опять-таки продвинется дальше, и такое положение будет бесконечно повторяться. Ахилл будет все ближе и ближе приближаться к Черепахе-1, но никогда не сможет ее перегнать. Такой вывод, конечно же, противоречит нашему опыту, но логического противоречия у нас пока нет.
Пусть, однако, Ахилл примется догонять более дальнюю Черепаху-2, не обращая никакого внимания на ближнюю. Тот же способ рассуждения позволяет утверждать, что Ахилл сумеет вплотную приблизиться к Черепахе-2, но это означает, что он перегонит Черепаху-1. Теперь мы приходим уже к логическому противоречию” [6].
Здесь трудно что-либо возразить, если оставаться в плену образных представлений. Необходимо выявить формальную суть дела, что позволит перевести дискуссию в русло строгих рассуждений. Как нам кажется, первая апория сводится к следующим трем утверждениям:
(0) Каков бы ни был отрезок [A B], движущееся от А к В тело должно побывать во всех точках отрезка [A B].
(1) Любой отрезок [A B] можно представить в виде бесконечной последовательности убывающих по длине отрезков [A a1] [a1 a2] [a2 a3]… [an an+1].
(2) Поскольку бесконечная последовательность аi (1 ≤ i ‹ ω) не имеет последней точки, невозможно завершить движение побывав в каждой из точке этой последовательности.
Проиллюстрировать полученный вывод можно по-разному. Наиболее известная иллюстрация – “самое быстрое никогда не сможет догнать самое медленное” – была рассмотрена выше. Но можно предложить более радикальную картину, в которой обливающийся потом Ахилл (вышедший из пункта А) безуспешно пытается настичь черепаху, преспокойно греющуюся на Солнце (в пункте В) и даже не думающую убегать. Суть апории от этого не меняется. Иллюстрацией тогда станет куда более острое высказывание – “самое быстрое никогда не сможет догнать неподвижное”. Если первая иллюстрация парадоксальна, то вторая – тем паче.
При этом нигде не утверждается, что убывающие последовательности отрезков ai для [A B] и ai' для [A' B'] должны быть одинаковы. Напротив, если отрезки [A B] и [A' B'] неравны по длине между собой, их разбиения на бесконечные последовательности убывающих отрезков окажутся различными. В приведенном рассуждении Ахилла отделяет от черепах 1 и 2 разные расстояния. Поэтому мы имеем два различных отрезка [A B1] и [A B] с общей начальной точкой А. Неравные отрезки [A B1] и [A B] порождают различные бесконечные последовательности точек, и недопустимо использовать одну из них вместо другой. Между тем именно эта незаконная операция применяется в аргументах о двух черепахам [7].
Если не смешивать иллюстрации и существо апории, то можно утверждать, на наш взгляд, что апории
(0) Каков бы ни был отрезок [A B], движущееся от А к В тело должно побывать во всех точках отрезка [A B].
(1) Любой отрезок [A B] можно представить в виде бесконечной последовательности убывающих по длине отрезков [bn+1 bn]… [b3 b2] [b2 b1]… [b1 B].
(2) Поскольку бесконечная последовательность bi не имеет первой точки, невозможно побывать в каждой из точек этой последовательности.
Таким образом, апория
Проанализировав более тщательно две приведенные апории, мы обнаружим, что обе они опираются на допущение о
Итак, допустим существование неделимых отрезков пространства и интервалов времени. Рассмотрим следующую схему, на которой каждая клетка таблицы представляет неделимый блок пространства. Имеется три ряда объектов А, В и С, занимающих по три блока пространства, причем первый ряд остается неподвижным, а ряды В и С начинают
Ряд С, утверждает Зенон, за неделимым момент времени прошел одно неделимое место неподвижного ряда А (место А1). Однако за то же самое время ряд С прошел два места ряда В (блоки В2 и В3). Согласно Зенону, это противоречиво, т. к. должен был встретиться момент прохождения блока В2, изображенный на следующей схеме:
Но где в это промежуточное положение находился ряд А? Для него просто не остается соответствующего места. Остается либо признать, что движения нет, либо согласиться с тем, что ряд А делим не на три, а на большее количество мест. Но в последнем случае мы вновь возвращаемся к допущению о бесконечной делимости пространства и времени, снова попадая в тупик апорий
Апория
Мы считаем, что сказанное Уитроу верно. Промежуточное положение (0/1) с логической точки зрения вовсе не обязано наличествовать в какой-то момент времени, поскольку предположение о его отсутствии непротиворечиво [9]. Другой вопрос, что наши привычные представления о движении, опирающиеся интуицию непрерывности, оказываются неадекватными в дискретном случае. В этом отличие дискретной ситуации от ситуации с бесконечной делимостью пространственных и временных интервалов. Утверждение, что ряд ½1, ½2, ½3,…, ½n завершится, логически противоречиво, если n не ограничено. Аналогичным образом, необычная вычислительная машина Германа Вейля никогда не сможет завершить вычисления в какой-то момент времени из-за неограниченного числа шагов процесса пересчета множества натуральных чисел. Можно, используя понятие предела, просуммировать упомянутый ряд и получить единицу, или, вводя трансфинитные числа, допустить выполнение в ходе вычислений количества шагов, равного первому бесконечному числу ω. Такие построения уже будут непротиворечивыми. Но они обладают существенным, на наш взгляд, изъяном.
Осмысливая принципы, лежащие в основе теории множеств (которая может, как известно, рассматриваться в качестве фундамента современной математики), Дж. Р. Шенфилд указывает на “следующий фундаментальный вопрос: если дана совокупность S шагов, то существует ли шаг, следующий за каждым шагом из S?” [10] Рассматривая случаи, когда S состоит из единственного шага или из бесконечной последовательности шагов Sn, Si,…, он отвечает на поставленный вопрос утвердительно: “В первых двух случаях мы отчетливо можем представить себе ситуацию, когда все шаги из S уже осуществлены” [11]. Применим эти рассуждения к апории
Логически все это непротиворечиво (вопреки мнению самого Зенона). Но здесь процесс движения, содержащий, по условию задачи,
Легко представить себе совокупности, упорядоченные по типам ω+1 и 1+ω*, в качестве данностей. Но вообразить
Что касается второй альтернативы, то именно она реализуется в рассмотренных псевдорешениях парадоксов движения. Между тем, в апориях Зенона
Получается в итоге, что трудности, связанные с апориями
Суть затруднения в том, что, согласно Зенону, движение тела означает изменение его местоположения. За мгновение времени никаких изменений в местоположении тел произойти не может. Но поскольку время слагается из мгновений, в каждой из которых все тела покоятся, движения нет. Отметим, что это рассуждение нельзя опровергнуть ссылкой на то, что движущееся тело обладает отличной от нуля мгновенной скоростью, как это иногда думают [13]. Действительно, рассмотрим следующий рисунок. Видно, что более высокая скорость бега Ахилла по сравнению с черепахой отражена меньшим углом наклона графика его бега к оси S. Угол наклона графика связан, как известно, с мгновенной скоростью, значение которой определяется тангенсом угла касательной к графику функции. Однако все это не отменяет того факта, что в любой момент времени t Ахилл и черепаха находятся в строго определенных
Рассмотренное представление движения имеет статический характер. Оно полностью подобно изображению движения при помощи кинематографии. Как известно, изображение движения на киноленте складывается из отдельных кадров, на которых все неподвижно. Но если прокрутить эту ленту со скоростью 24 кадра в секунду, возникает иллюзия движения. Теперь представим себе, что количество кадров ленты несчетно, и что все они упорядочены так же, как и действительные числа, в результате чего каждому моменту времени соответствует один кадр. В итоге мы получим как раз ту картину движения, которая сводит его к сумме состояний покоя (отдельных кадров), расположенных непрерывным образом (в отличие от реальных кинолент). Но именно так и описывается движение в современной физике. Выдающиеся ученые чувствовали это. Например, такой тонкий аналитик, как Б. Рассел, фактически прямо признал то, что Зенон отрицал в качестве парадокса: “… мы живем в неизменном мире и… стрела в каждый момент своего полета фактически покоится” [14], однако, согласно Расселу, данное обстоятельство не мешает признавать наличие движений и изменений в том смысле, что в
А. Грюнбаум в ответ на это возразил, что кадры киноленты существуют
Разумеется, раздавались голоса против такого статического подхода к описанию времени и движения в современной науке. Одним из критиков был философ-интуитивист А. Бергсон. Он настаивал на том, что необходимо различать описание
“… Если во времени механика постигает лишь одновременность [16], то в движении – только неподвижность.
Можно было бы предвидеть этот результат, если вспомнить, что механика по необходимости оперирует с уравнениями, а алгебраическое уравнение всегда выражает совершившийся факт. Между тем сама суть длительности и движения, какими они предстают нашему сознанию, заключается в процессе непрерывного становления; алгебра же может выражать в своих формулах результаты, полученные в определенный момент длительности, и положение, занимаемое в пространстве движущимся телом, но она не в состоянии выразить саму длительность и само движение” [17].
В случае движения мы “имеем дело не с
“Почему Ахилл обгоняет черепаху? Потому, что каждый шаг Ахилла и каждый шаг черепахи в качестве движений неделимы, а в качестве пространства – суть различные величины, а значит, пространство, пройденное Ахиллом, будет больше, чем сумма расстояний, пройденного черепахой, и того, на которое она вначале его опередила. Зенон совершенно не принимает в расчет, что только пространство можно разлагать и вновь составлять, поэтому он, воссоздавая движение Ахилла по тому же закону, что и движения черепахи, смешивает пространство с движением” [19].
Здесь А. Бергсон не прав. Похоже, для Зенона было несомненным, что движение есть именно процесс. Ведь он говорит не о трудностях введения завершенных в своей данности отрезков пространства, а о немыслимости процесса их прохождения. Либо движение будет описано как процесс, как ряд последовательных операций или действий по осуществлению движения, либо придется признать, что любая попытка такого описания неминуемо ведет к противоречиям, что будет означать логическую невозможность движения. Согласно Пармениду и Зенону, неизбежна вторая альтернатива. Движения как процесса нет и быть не может. Со своей стороны, объявляя апории против движения софизмами, Бергсон не в состоянии предложить приемлемого их решения. Нельзя же считать таким решением наивную апелляцию к интуиции [20]. Вместе с тем, в рассуждениях французского философа о коренном отличии статического представления о движении от процессуального заключено рациональное зерно.
Современная наука, особенно математика и физика, блестяще подтвердила философию элеатов, приняв статические представления о движении. Та картина движения, которую она дает, надо полагать, вполне бы удовлетворила как Парменида, так и Зенона с точки зрения отсутствия в ней
Можно вообразить, что если бы элеатам предъявили современный взгляд на движение, сводящийся к тому, что в одни моменты времени тела находятся тут, а в другие там, то они вряд ли стали бы спорить с такой позицией. В сущности, именно это и утверждает Зенон в апории
Сходство прослеживается вплоть до забавных мелочей. Спросите современного космолога, как выглядит Вселенная с точки зрения внешнего наблюдателя? Распространенный ответ – Вселенная с точки зрения является четырехмерной гиперсферой конечных размеров. Подобно тому, как существо, двигающееся по сфере в одном направлении, возвращается в ту же точку, путешественник по нашей Вселенной, если он никуда не сворачивал, вернется снова на Землю, хотя все время удалялся от нее. Правда, промежуток времени будет очень большой. Так что не только центральный тезис элеатов об отсутствии движения находит поддержку в современном естествознании, но даже такая малозначительная деталь философии Парменида, как конечность [21] и сферичность бытия, тоже встречает в современной космологии благожелательный прием.
Другое дело, что принятие основных выводов философии элеатов (терминологические расхождения не в счет) происходит в науке неосознанно. Далеко не все физики и математики даже слышали о Пармениде, хотя, быть может, имя Зенона им более известно. Современная наука взяла на вооружение главный тезис элеатов, состоящий в противопоставлении чувственного знания и знания умопостигательного. Желая описать при помощи математики какое-либо явление природы, ученые меньше всего склонны при этом обращать внимание на соответствие принятых теоретических допущений данным восприятия и даже эксперимента. Например, допущение в современной математике и физике бесконечных структур, весьма проблематичных с точки зрения эмпирического оправдания, приобрело поистине повальный характер. Так, время сплошь и рядом отождествляют с множеством действительных чисел, количество которых не только бесконечно, но и несчетно. Явно дискретная структура нашего опыта никак не сказывается на масштабах применения в физике непрерывных образований (вроде только что упоминавшейся действительной прямой) и т. д. – количество примеров легко умножить…
Цит. по