Почему нельзя было раньше узнавать о числах, алгебре и геометрии в такой увлекательной форме? Почему нельзя было сразу объяснить, зачем нам все эти параболы, интегралы и вероятности. Оказывается, математика окружает нас. Она повсюду! По параболе льется струя воды из фонтана, а инженеры используют свойства параболы, чтобы рассчитать траекторию полета самолетов и спутников. С помощью интегралов можно вычислить, сколько вам нужно линолеума, чтобы застелить помещение непрямоугольной формы. А умение вычислять вероятность события поможет выиграть в покер.
«Магия математики» – та книга, о которой вы мечтали в школе. Все, от чего раньше голова шла кругом, теперь оказывается простым и ясным: треугольник Паскаля, математическая бесконечность, магические свойства чисел, последовательность Фибоначчи, золотое сечение. А ещё профессиональный фокусник Артур Бенджамин делится секретами математических фокусов. Продемонстрируйте их – ваши зрители точно потянутся за калькуляторами, чтобы пересчитать.
Переводчик
Научный редактор
Редактор
Руководитель проекта
Корректор
Компьютерная верстка
Дизайн обложки
В оформлении обложки использованы изображения из фотобанка
© Arthur Benjamin, 2015
Публикуется с разрешения издательства BASIC BOOKS, an imprint of PERSEUS BOOKS LLC. (США) при содействии Агентства Александра Корженевского (Россия)
© Издание на русском языке, перевод, оформление. ООО «Альпина Паблишер», 2016
Вступление
Математику уже затем учить надо, что она ум в порядок приводит.
Не люблю длинных предисловий. Хочется сразу начать читать книгу. Но здесь не совсем обычная книга. Кажется, что слово «магия» предполагает некоторые фокусы и трюки. Не скрою, они здесь есть, и многим это понравится. Правда, книга не об этом.
Мы задаемся вопросом, зачем нам нужна математика. Особенно гуманитариям. Мой личный опыт научил меня определенному отношению к этому вопросу. Навыки математического мышления оказались нужны всем и каждому. Если вы, конечно, любите размышлять, а не зубрить. Если вам доставляет удовольствие сам процесс логических рассуждений. Парадокс именно в том, что магия, волшебство математики проявляется постепенно, как рассвет. Не сразу, но заметно. Не ярко, но очень красиво.
Вдруг вы замечаете у себя умение логически мыслить и рассуждать, грамотно и четко формулировать мысли, делать верные логические выводы. Вдруг вам просто становится после этого легче общаться с людьми.
Особенно математика важна для развития ребенка. Она дает возможность сразу правильно и рационально мыслить. Причем навсегда. Мне повезло в жизни. У меня было два прекрасных преподавателя. Оба стали моими Учителями. Один преподавал язык и литературу и утверждал, что, «не зная грамматики – не выучишь математики». Второй преподавал математику и «приводил в порядок наши мысли». Они крепко дружили между собой. И, похоже, они считали оба эти предмета волшебно полезными для нашей жизни. Одно оказалось неотделимо от другого. Особенно сильно это проявилось позднее, когда я стал играть (иногда небезуспешно) в различные интеллектуальные игры. Вот такая магия получилась.
Мозг требует таких же тренировок, как и любая другая мышца человеческого организма. Когда-то, лет 30 назад, я работал в Федерации бодибилдинга, как смешно это ни звучит. Должен заметить, что тогда меня сильно удивило интеллектуальное развитие спортсменов, особенно занимающих призовые места на самых престижных турнирах. Оказалось, что для подготовки надо быть почти кандидатом медицинских наук. Ну а когда человек начинает читать разную литературу, его любопытство направляет ум в самые невероятные места. Призер «Мистер Олимпия» Олег Отрох специально занимался математикой. Она помогала ему добиться нужной концентрации. Кроме того, он был убежден, что математика защищает его разум от всяких Паркинсонов и Альцгеймеров. Роберт Фишер – между прочим, чемпион мира по шахматам – научился читать и писать только потому, что иначе он не мог записывать шахматные партии, как того требовали правила. И вот тут он открыл для себя, как помогает ему мыслить математика. Не мог оторваться до последних своих дней.
Вы еще задаетесь вопросом, зачем вам нужна математика? Особенно гуманитариям? Выходит, не только сдачу в магазине считать. Мой личный опыт научил меня определенному отношению к этому вопросу. Навыки математического мышления оказались нужны всем и каждому. Вся эволюция человека от узелков на веревочках и абака до суперкомпьютеров прошла рука об руку с математикой. Даже просто оценивая картину в музее или памятник на улице, мы подсознательно обращаем внимание на пропорции. Благодаря математике мы умеем видеть красоты мира и природы. Каждый раз, выбирая смартфон или компьютер, мы невольно оперируем математическими терминами. Мы гордимся своими селфи, произнося слово «мегапиксели» как заклинание. Вот такая математика. Она не только делает нас разумнее, тренирует наш мозг, развивает нас как личность. Она просто помогает нам жить.
А магия? А что магия? Магия в книге есть. Забавная, замечательная, необыкновенная и неожиданная. Причем даже для тех, кто полагает, что знает эту самую математику. Хочется, чтобы вы ее тоже увидели своими глазами. Увидели и насладились. Это очень красиво.
P.S. А парочку фокусов и трюков я все-таки запомнил.
Глава номер ноль
Всю мою жизнь меня тянуло к магии. Не счесть, сколько кудесников видел я на своем веку, как и не счесть, сколько чудес я сотворил собственными руками. Но я не перестаю восхищаться тем, как работает магия, как из простых и понятных вроде бы действий и алгоритмов вдруг рождается поразительное, непостижимое искусство – искусство, которое я так обожаю постигать. Несколько основных принципов – и вот я уже сам придумываю трюки.
Примерно то же чувство я испытываю, когда дело касается математики. С самого детства шестым чувством я ощущал, что в числах кроется истинная магия. Как вам, например, вот это? Задумайте любое число в промежутке от 20 от 100. Задумали? Сложите между собой составляющие его цифры. Вычтите получившуюся сумму из задуманного вами числа. И снова сложите цифры. Получилось 9? Если нет – перепроверьте свои вычисления. Здорово, правда? Вся математика построена на таких вот фокусах, о которых в школах нам почему-то не рассказывают. В этой книжке я покажу вам, как с помощью обычных чисел, фигур и простой логики творить настоящие чудеса. Добавим немного алгебры и геометрии, и перед нами откроются двери в производственные цеха фабрики магии, а может, и самого человеческого естества.
Эта книжка полна чисел, алгебры и математического анализа, геометрии и тригонометрии. Но есть в ней и много такого, что не столь хорошо знакомо неискушенному читателю и при этом не объяснено в мельчайших подробностях: треугольник Паскаля, математическая бесконечность, магические свойства некоторых чисел (9, π,
Ее еще называют «уравнением Бога», ведь здесь используются самые важные для математической науки числа: 0 и 1 – основы всех основ, число π = 3,14159… – самое важное в геометрии,
Эта книга написана для тех, кто когда-нибудь захочет пройти курс математики, и для тех, кто сейчас проходит курс математики, или для тех, кто только что прошел курс математики. Иными словами – абсолютно для всех, вне зависимости от того, обожаете вы математику или боитесь ее как огня. Чтобы сделать наше общение проще, я сформулировал несколько «правил» (в математическом понимании этого слова).
В каждой главе есть «отступления», в которых я рассказываю о чем-то интересном, что упомянуто в основном тексте, но в логику рассуждений не вписывается: это может быть лишний пример, подробное доказательство или информация, рассчитанная на более искушенного читателя. При первом чтении (равно как и при втором или третьем) вам, возможно, захочется эти «отступления» проигнорировать. Но я очень надеюсь, что вам все же захочется перечитать эту книжку: математика – такая вещь, к которой хочется возвращаться снова и снова.
Вот и все правила. Хватайте их подмышку и вперед – в удивительный мир математической магии!
Глава номер один
Магия чисел
Числовые закономерности
Изучение математики всегда начинается с чисел. Сначала мы учимся выражать количество с помощью букв, цифр или самих предметов. А потом долгие и долгие годы складываем, вычитаем, умножаем, делим и решаем разные арифметические задачи. И за всей этой рутиной часто не видим магию чисел, способную развлечь и удивить любого, кто решится всего лишь заглянуть чуть глубже.
Вот, например, одна хитрость, с которой еще в детстве столкнулся немецкий математик Карл Фридрих Гаусс[2]. Как-то раз на уроке математики учитель попросил класс сложить между собой всей числа от 1 до 100. Вряд ли он хотел развлечь учеников – скорее, отвлечь: заставить заняться чем-нибудь нудным и требующим полного сосредоточения, а самому спокойно сделать другую работу. Представьте себе его удивление, когда через несколько секунд Гаусс вышел к доске и написал ответ – 5050. Хотите знать, как он это сделал? Он просто представил все эти числа в виде двух рядов: верхний – от 1 до 50, нижний – от 51 до 100, причем в нижнем ряду числа
Гаусс заметил, что сумма чисел в каждом из 50 столбцов одинаковая – 101, а значит, для того, чтобы получить искомый результат, нужно всего лишь умножить 101 на 50. Так у него и получилось 5050.
Собственно говоря, благодаря такой вот способности – не быстро считать в уме, но заставлять числа плясать под свою дудку – Гаусс и стал одним из величайших математиков XIX столетия. В этой главе мы как раз и поговорим об интересных числовых закономерностях и, конечно, увидим танец чисел. Одни из этих примеров полезны тем, что развивают способности умственного счета, другие – просто красивы.
Только что мы последовали путем гауссовой логики, чтобы получить сумму первой сотни простых чисел. Но что, если нам нужна сумма 17 из них? Или тысячи? Миллиона? Логика Гаусса позволяет подсчитывать сумму первых
Посмотрите, что произойдет, если мы расположим два треугольника основаниями друг к другу, вот так:
У нас получился прямоугольник из 5 рядов и 6 столбцов – всего 30 кружков. Значит, в каждом из двух наших треугольников была половина общего их количества, то есть по 15 кружков. Мы, это, разумеется, уже знаем, но давайте применим этот же принцип к двум прямоугольникам, количество рядов в которых равно
Видите, закономерность, которую мы использовали для сложения первой сотни чисел, вполне применима к любому подобному ряду, сколько бы членов в него ни входило. И если вдруг нам понадобится сложить между собой все числа от 1 до 1 000 000, сделать это можно будет всего за два шага: перемножив 1 000 000 и 1 000 001 и разделив результат пополам.
Разобравшись в одной формуле, вы с легкостью разберетесь и в остальных. Например, если мы удвоим обе части последнего уравнения, получится формула суммы первых
А как насчет суммы первых нечетных, спрóсите вы? Давайте посмотрим, что говорят нам числа.
То, что справа –
Кружков в нем 5 × 5 = 25, это очевидно. Но давайте подсчитаем иначе. Начнем с одинокого кружка в левом верхнем углу. Его окружают 3 кружка, потом 5, потом 7 и, наконец, 9. Следовательно,
И возьми мы квадрат со сторонами
Чуть позже мы еще вернемся к методу подсчета кружков (как и к методу решения задачи двумя разными способами), и вы увидите, к каким интересным результатам он может привести в высшей математике. Но и для понимания основ он не менее полезен.
Эта закономерность может привести нас к другой, еще более красивой. Раз уж мы хотим заставить числа танцевать, почему бы не сделать это и с их квадратами?
Взгляните вот на такую пирамидку уравнений:
Какую закономерность вы видите? Подсчитать количество чисел в каждом ряду несложно: 3, 5, 7, 9, 11 и так далее. А дальше неожиданность: первое число каждого ряда – по крайней мере, первых 5 записанных здесь рядов – является квадратом числа. И правда: 1, 4, 9, 16, 25… Почему так получается? Возьмем пятый ряд. Сколько чисел ему предшествуют? Давайте сложим их количество: 3 + 5 + 7 + 9. Прибавим к ним еще единицу, и у нас получится первое число пятого ряда – сумма первых 5 нечетных чисел, которая, как мы уже знаем, равна 5².
А теперь просчитаем пятое уравнение, ничего к нему не добавляя. Как бы это сделал Гаусс? Если пока не обращать внимания на начальное 25, слева у нас останется 5 чисел, каждое из которых будет ровно на 5 меньше, чем соответствующее ему число справа.
То есть сумма чисел справа будет ровно на 25 больше суммы чисел слева. Но это без учета 25, которые стоят в начале. А с ними у нас получается именно тот результат, который обещан нам знаком равенства. Следуя той же логике и призвав на помощь алгебру, мы докажем, что этот ряд можно продолжать бесконечно.
А теперь – специально для тех, кто хотел немного алгебры. Ряду
Перейдем к другой закономерности. Как мы уже видели, из нечетных чисел можно составлять квадраты. А теперь посмотрим, что произойдет, если собрать их в один большой треугольник – вроде того, что изображен чуть ниже.
Так отлично видно, что 3 + 5 = 8, а 7 + 9 + 11 = 27, а 13 + 15 + 17 + 19 = 64. Что общего у 1, 8, 27 и 64? Да это же полные кубы чисел! Например, если сложить между собой пять чисел пятого ряда, мы получим:
Логика вроде бы подсказывает, что сумма чисел в ряду
Снова возьмем 4 ряд. Что мы тут видим? А
Кстати, если уж мы взялись оперировать квадратами и кубами, не могу удержаться, чтобы не указать вам на еще одну закономерность. Что получится, если сложить кубы чисел, начиная с 1³?
Подсчитывая сумму кубов, мы получаем 1, 9, 36, 100, 225 и т. д. – числа, которые являются полными квадратами. Но это не
Другими словами, сумма кубов первых
Как быстро считать в уме
Среди читателей наверняка найдутся те, кто, познакомившись с этими примерами, скажет: «Ух ты, здо́рово! Но какая от всего этого польза?» Здесь в любом математике проснулся бы художник, и в ответ вы услышали бы: «Разве нужно красоте оправдание иное, нежели сама красота?» Ведь чем лучше мы понимаем числовые закономерности, тем глубже постигаем их красоту. И все-таки иногда они приносят практическую пользу.
Вот простая закономерность, которую мне посчастливилось обнаружить в юности (даже если я и не был первооткрывателем). Я смотрел на пары чисел, которые в сумме давали 20 (10 и 10, например, или 9 и 11), и думал, а какие из них надо перемножить, чтобы получить наибольшее произведение? Логика подсказывала, что это 10 на 10, и моя схема эта подтвердила.
Эта закономерность была несомненна. Чем дальше отстояли друг от друга числа, тем меньше становилось произведение. И насколько они отдалялись от 100? На 1, на 4, на 9, 16, 25… То есть на 1², 2², 3², 4², 5² и т. д. А потом мне стало интересно, работает ли эта закономерность для чисел, дающих другую сумму. Я решил попробовать 26:
И я снова увидел, что наибольшее произведение дало умножение двух одинаковых чисел. А потом произведение стало уменьшаться с интервалом сначала 1, потом 4, потом 9 и т. д. Еще несколько подобных примеров убедили меня, что закономерность была строгой (ее алгебраическое выражение я покажу чуть позже). Выяснил я и то, что ее можно применять для быстрого возведения чисел в квадрат.
Допустим, нам нужно знать квадрат 13. Вместо того чтобы умножать 13 × 13, можно сделать умножение попроще: 10 × 16 = 160. До правильного ответа уже рукой подать, и чтобы его получить, достаточно будет прибавить возведенное в квадрат 3 – число, составляющее разницу между 13 и числами, которые мы перемножили. То есть:
Можно взять еще один пример, скажем, 98 × 98. Для удобства к первому числу добавим 2 до 100, а от второго отнимем 2 до 96. Значит, к их произведению нужно будет прибавить 2². Вот наше уравнение:
Особенно легко применять эту схему к числам, которые заканчиваются на 5: если уменьшить и увеличить их на 5, оперировать придется круглыми числами. Например:
Теперь попробуем возвести в уме в квадрат 59. Увеличив и уменьшив это число на единицу, получим 59² = (60 × 58) + 1². Но как умножить в уме 60 на 58? Простой совет из двух слов: слева направо. Забудем на время про 0 и подсчитаем 6 × 58: 6 × 50 = 300 и 6 × 8 = 48. Потом сложим эти два результата (опять же, слева направо) и получим 348. И добавим ноль в конце, то есть 60 × 58 = 3480. Поэтому:
А вот алгебраическое доказательство этого метода (перечитайте это отступление после того, как во второй главе мы поговорим о
где
Теперь, когда вы профессионально возводите в квадрат двузначные числа, можно попробовать и трехзначные. Если помните, 12² = 144, значит:
Есть еще одна подобная формула, которая работает для любых двух чисел, близких к сотне. Человек, который становится случайным свидетелем таких вычислений, испытывает чувство, будто наблюдает за трюком фокусника. Вот, например, 104 × 109. Рядом с каждым из них пишем число, на которое оно превышает сотню (см. пример ниже). В левом столбце сложим первое число со второй разностью и запишем результат: 104 + 9 = 113. В правом столбце перемножим две разности: 4 × 9 = 36. «Соединим» эти числа, то есть запишем их одно за другим и – тадам! – волшебным образом получим ответ: 11 336.
Другие примеры и алгебраическую формулу такого вычисления я приведу чуть позже, в главе 2. И, раз уж мы об этом заговорили, кое-что еще о вычислениях в уме. Мы тратим уйму времени на то, чтобы научиться считать столбиком, хотя научиться делать это в уме куда быстрее. Задумайтесь: как часто в обычной жизни у нас есть время и возможность достать бумагу и провести все необходимые подсчеты? Для сложных вычислений можно воспользоваться калькулятором, но не будете же вы доставать его в магазине, читая данные об энергетической ценности на упаковке продуктов, или сидя в зале собрания, или дома, включив выпуск экономических новостей. Вот здесь-то, в оценке по-настоящему важных для вас цифр, и становятся очевидными все плюсы устного счета. Увы, в школе нас хорошо учат считать на бумаге, со счетом в уме дела обстоят плохо.
Строго говоря, эта тема достойна отдельной книги, но, раз уж мы говорим о магии, а не о способностях человеческого мозга, коснемся ее вскользь, обозначив лишь самые основные положения. Главный прием, о котором я не устаю говорить: считайте
Сложение в уме
Допустим, нам нужно подсчитать что-нибудь, вроде
(Я специально записываю это уравнение в одну строку, чтобы увести вас от искушения подсчитать столбиком.) Начнем с 314, прибавив сотню, чтобы упростить подсчеты:
Прибавить 50 к 414 еще проще. А затем:
Вот и вся суть сложения в уме. Есть еще один путь, не менее эффективный: превратить проблему сложения в более простую проблему вычитания. Способ этот хорош для подсчета цен в магазине. Возьмем, к примеру, сложим
$8,95 меньше $9 лишь на 5 центов, поэтому легче сначала прибавить к $23,58 именно $9, а потом вычесть $0,05. И смотрите, как все сразу упрощается:
Вычитание в уме
Главный прием при вычитании в уме – вычитать
Соответственно, если вам нужно вычесть 39, вычтите 40 и прибавьте 1.
С двух– или трехзначными (как, впрочем, и с бóльшими) числами самая правильная стратегия –
Дополняющее число для 87 – 13, для 75 – 25 и так далее. И наоборот: дополняющее число для 13 – 87, а для 25 – 75. Решая каждую такую задачу слева направо, вы легко заметите, что во всех примерах (кроме последнего) сумма крайних левых чисел будет равна 9, а крайних правых – 10. Закономерность нарушается только тогда, когда числа заканчиваются на 0 (как в последнем примере): дополняющим числом для 80 будет 20.
Применим эту стратегию к вычислению 1234 – 567. Даже вычитание на бумаге в этом случае – не самое простое занятие, что уж говорить про подсчет в уме. Но с дополняющими числами этот
Правда, очень просто? Потому что при сложении ничего не нужно держать «в уме». И так просто дело будет обстоять почти всегда, когда вы используете дополняющие числа при вычитании, пусть и трехзначные:
В большинстве случаев (когда числа не заканчиваются на 0) сумма «основной» и «дополнительной» цифр равна 9, за исключением последней пары, равной 10. Например, для 789: 7 + 2 = 9; 8 + 1 = 9; 9 + 1 = 10. Следовательно, дополнительное число, считая слева направо, вычисляется так: 9 – 7 = 2, 9 – 8 = 1, 10 – 9 = 1. Метод дополнительных чисел пригодится при подсчете сдачи. Мои любимые бутерброды в соседнем магазине, например, стоят $6,76. Как узнать, сколько я получу, если расплачусь банкнотой в $10? Да как раз с помощью дополняющего до 1000 числа для 676 – 324. Значит, сдача будет $3,24.
Каждый раз, покупая бутерброд, я волей-неволей замечаю, что и его цена, и возвращаемая мне сдача представляют собой квадраты чисел (26² = 676, а 18² = 324). Вопрос на засыпку: есть еще одна пара квадратов чисел, которые дают в сумме 1000. Сможете их найти?
Умножение в уме
Вы не поверите, но для того, чтобы легко умножать в уме, хотя бы примерно, достаточно выучить обычную таблицу умножения. А потом – набить руку (не беспокойтесь, учить больше ничего не придется) в решении примеров, в которых однозначное число умножается на двузначное. И снова: главный трюк – считать слева направо. Умножая, например, 8 на 24, умножьте сначала 8 × 20, а потом – 8 × 4:
Хорошо потренировавшись, переходите к перемножению одно– и трехзначных чисел. Это немного сложнее – просто потому, что чуть больше нужно держать в уме. Трюк в том, чтобы последовательно складывать промежуточные результаты и тем самым своевременно освобождать свою «оперативную» память. Например, при умножении 456 × 7 вашим предпоследним действием должно быть сложение 2800 + 350, а последним – прибавление 42.
Следующий шаг по пути мастера – операции с двузначными числами. Как по мне, так здесь-то и начинается самое веселье, хотя бы потому, что способов, которыми можно достичь нужного результата, много и все они разные. Это значит, что вы можете проверить себя – и одновременно насладиться стройностью арифметических чудес. Рассмотрим всего один пример: 32 × 38.
Самый популярный (и наиболее близкий к подсчету в столбик) метод – это
Как будем умножать 30 × 38? Сначала умножим 3 × 38, а в конце прибавим 0. То есть 3 × 38 = 90 + 24 = 114, поэтому 30 × 38 = 1140. А потом 2 × 38 = 60 + 16 = 76. В итоге
Другой способ решить наш пример (особенно если одно из наших чисел заканчивается на 7, 8 или 9) – использовать
Сложность обоих методов – как сложения, так и вычитания – заключается в том, что они заставляют вас постоянно держать в голове большие числа (вроде 1140 или 1280), одновременно делая другие вычисления. Не самая простая задача. Мне больше по душе
Если же мы разложим 32 на 4 и 8, получим 38 × 4 × 8 = 152 × 8 = 1216, но я лично предпочитаю умножать двузначное число сначала на больший сомножитель, а промежуточный результат (обычно трехзначный) – на меньший.
Метод разложения отлично работает при умножении на 11 – хотя бы потому, что здесь есть один любопытный и при этом простой трюк:
Другой интересный метод –
Вычисления становятся элементарными, если последние цифры двух чисел дают в сумме 10 (как в нашем примере: оба числа начинаются с 3, а сумма их последних цифр – 8 и 2 – равна 10). Вот еще один пример:
Но даже если вторые цифры не дадут в сумме 10, метод от этого не станет менее эффективным и эффектным, да и вычисления усложнятся не так уж и сильно. Чтобы умножить, например, 41 на 44, сначала надо уменьшить меньшее из них на единицу (чтобы работать с круглым числом 40) и, соответственно, увеличить на ту же единицу большее число:
Для 34 × 37 отнимаем 4 у 34 (и остается 30) и отдаем их 37 (37 + 4 = 41), а потом прибавляем 4 × 7:
Кстати, помните загадочный пример с 104 × 109? Там использовался тот же самый метод:
В некоторых школах, кстати, учеников заставляют учить не привычную таблицу умножения, которая заканчивается 10, но расширенную до 20. Наш метод сводит эту необходимость на нет:
Как же так получается, что эта штука работает, спросите вы? Чтобы разобраться, нужно обратиться к алгебре – этим мы займемся в главе 2. А алгебра даст нам еще больше способов счета. Например, ту же задачу можно будет решить еще и вот так:
Кстати, о таблице умножения: взгляните на столбцы и ряды однозначных чисел чуть ниже (я же обещал вам это показать, помните?). Перед нами встанет тот же вопрос, который встал перед юным Гауссом:
Приблизительный подсчет в уме. Деление в уме
Давайте начнем с очень простого вопроса, на который существует очень простой ответ, которому по какой-то неизвестной причине не учат в школах:
а) если вам нужно перемножить два трехзначных числа, сможете ли вы сразу сказать, из скольки знаков будет состоять результат?
И чуть посложнее:
б) число из скольки знаков получится, если умножить четырехзначное число на пятизначное?
В школе почти все время уходит на то, чтобы подбирать цифры при умножении и делении, а не на то, чтобы подумать о том,
Ответ на вопрос (а) – из пяти или шести цифр. Знаете почему? Минимальный возможный пример – 100 × 100 = 10 000 (здесь пять цифр). Максимальный – 999 × 999, результат которого однозначно будет меньше семизначного 1000 × 1000 = 1 000 000 (пусть и ненамного). Но раз 999 × 999 меньше, значит, в ответе будет шесть цифр (давайте, кстати, вспомним, насколько легко это посчитать: 9992 = (1000 × 998) + 12 = 998 001.) Вот и вывод: результатом перемножения двух трехзначных чисел будет пяти– или шестизначное число.
Ответ на вопрос (б) – из восьми или девяти цифр. Почему? Наименьшее четырехзначное число – 1000, которое можно представить в виде 10³ (единица с тремя нолями). Наименьшее пятизначное число – 10 000, равное 104. Следовательно, наименьшим произведением 10³ и 104 будет 107 – единица с семью нолями, восьмизначное число. (Откуда взялось 107? Смотрите: 10³ × 104 = (10 × 10 × 10) × (10 × 10 × 10 × 10) = 107.) Ну а наименьшим произведением будет число, лишь ненамного меньшее десятизначного 104 × 105 = 109, то есть девятизначное.
Такая логика приводит нас к простому правилу: умножение
Конкретное количество цифр в ответе легче всего определить, взглянув на начальные (крайние левые) цифры перемножаемых чисел. Если их произведение больше или равно 10, тогда в ответе будет
В результате у нас получается еще более простое правило, уже в отношении деления: деление
То есть девятизначное число, разделенное на пятизначное, даст нам четырех– или пятизначный результат. Правило определения более конкретного ответа здесь еще проще, чем в случае с умножением. Крайние левые цифры не нужно ни умножать, ни делить – достаточно их просто
Рассказывать в подробностях про процесс деления в уме я здесь не буду: он мало чем отличается от деления в столбик на бумаге (но каким бы методом вы ни воспользовались, считать нужно слева направо). Но есть парочка уловок, которые значительно облегчат вам жизнь.
Скажем, если вы делите на 5 (или на любое число, заканчивающееся на 5), удвойте числитель и знаменатель, и задача станет проще. Например,
После удвоения обоих чисел хорошо видно, что и 246, и 9 кратны 3 (мы поговорим об этом подробнее в главе 3), поэтому задача упрощается до деления отдельно числителя и знаменателя на 3.
Взгляните на
Все дроби здесь либо конечны, либо цифры в них начинают повторяться со второго знака после запятой. Единственным исключением является десятичная дробь от 1/7, повторение в которой начинается с седьмой цифры:
(Причина этой закономерности в том, что все другие числа от 2 до 11 делятся на 10, 100, 1000, 9, 90 или 99, ближайший же делитель для 7 – 999 999.) Если же записать цифры десятичного аналога 1/7 в виде круга, произойдет чудо:
Что интересно, все другие дроби со знаменателем 1/7 тоже могут воссозданы с помощью бесконечного движения по этому кругу – меняться будет только точка начала этого движения. Посмотрите сами:
Давайте закончим эту главу тем же вопросом, который мы уже задавали несколько страниц назад.
Начнем с первого ряда – посчитаем сумму всех чисел в нем. Можно – как Гаусс, можно – с помощью формулы треугольных чисел, а можно – путем обычного сложения:
Так, теперь второй ряд. Вот как это будет выглядеть:
По той же логике, 3 ряд будет равен 3 × 55. И так далее, и тому подобное, и в результате сумму всех чисел в таблице умножения можно подсчитать так:
Ну а возвести в уме 55 в квадрат вы теперь можете легко и просто… 3025!
Глава номер два
Магия алгебры
Вступление с чудесами
Первый раз я столкнулся с алгеброй еще в детстве – мой отец вдруг решил дать мне урок вычислений:
– Сын, – сказал он мне. – Алгебра – все равно что арифметика. За тем исключением, что вместо чисел ты пишешь буквы. Вот, смотри: 2
– Вроде, понимаю.
– Очень хорошо, – сказал он. – А сколько тогда будет 3β + 4β?
– 7β, – уверенно ответил я.
– Что-то я тебя не слышу, – посетовал папа. – Можешь погромче?
– СЕМЬБЕТА!!! – заорал я.
– И ни одного ответа! – с готовностью отозвался папа. Он всегда предпочитал каламбуры, шутки и забавные истории скучным вычислениям, так что такой исход я мог бы и предвидеть.
Второй раз алгебра улыбнулась мне, когда я пытался понять один магический трюк – сейчас расскажу, какой.
Шаг 1. Задумайте число от 1 до 10 (хотя, по большому счету, можно и большее).
Шаг 2. Умножьте это число на 2.
Шаг 3. Добавьте 10.
Шаг 4. Разделите на 2.
Шаг 5. Вычтите из результата изначально задуманное вами число.
Уверен, получилось 5. Правильно?
Хотите узнать, в чем кроется секрет волшебства? В алгебре. Разберем фокус еще раз, шаг за шагом, начиная с первого. Я понятия не имею, какое число вы загадали, поэтому давайте заменим его буквой
Шаг второй предлагает нам удвоить загаданное число, то есть мы, по сути, имеем 2
Правила алгебры
Начнем с загадки. Найдите число, которое становится в три раза больше, если к нему прибавить 5.
Чтобы ее решить, заменим неизвестное нам число буквой
Уберем по одному
(смотрите, откуда берется 2
Можем проверить правильность ответа: 2,5 + 5 = 7,5, Тот же ответ получаем, умножая 2,5 на 3.
А вот еще один фокус, в сути которого можно легко разобраться с помощью алгебры. Запишите любое трехзначное число, цифры в котором идут по убывающей (например, 842 или 951). Затем запишите эти числа в обратном порядке и вычтите второе число из первого. Какой бы ответ у вас ни получился, запишите в обратном порядке и его, а затем сложите эти два числа. Вот пример с числом 853:
Попробуйте другое число. Что вышло? А то, что, если четко и правильно выполнять все инструкции, вы всегда будете получать 1089! Как так?
Алгебра, помоги! Итак, начинаем мы с трехзначного числа
Другими словами, нам надо умножить полученную разность на 99. А раз в изначальном нашем числе цифры идут по убыванию,
И каждое из этих чисел, если мы прибавим его к его «зеркальному» двойнику, даст
– пару, неизбежно дающую в сумме 1089.
Этот пример отлично иллюстрирует то, что я называю золотым правилом алгебры: совершайте с одной частью уравнения те же действия, что и с другой его частью.
Например, нам нужно найти
Наша основная задача – изолировать
Второй шаг – избавиться от 10, которую надо вычесть и слева и справа, то есть
Наконец делим все на 2, упрощая тем самым левую часть, в итоге получая
Ну и проверим ответ, конечно – это никогда не помешает: При
А вот алгебраическая задачка из реальной жизни: в 2014 г. газета
А так как каждая транзакция по продаже – это $15 прибыли, а по просмотру – $6, уравнение преобразуется:
Возможность привести первое уравнение к виду
или 15
Вычтем из обеих частей 12 000 000:
Значит,
Теперь самое время обсудить правило, которым мы в этой книге уже использовали и продолжим использовать, хотя до этого напрямую о нем не говорили. Называется оно «закон дистрибутивности» и работает тогда, когда у вас в одной задаче или одном уравнении есть одновременно сложение и умножение. Согласно этому закону, для любых чисел
Это правило следует использовать при умножении однозначного числа на двузначное, например,
Очень полезная штука, когда дело доходит до счета. Допустим, у нас есть 7 кошельков с монетами: по 20 золотых и 8 серебряных монет в каждом. Сколько у нас всего монет? С одной стороны, можно подойти к проблеме так: в каждом кошельке по 28 монет, значит, всего их 7 × 28. С другой стороны, можно посчитать отдельно монеты разного достоинства: 7 × 20 золотых и 7 × 8 серебряных, значит, всего: (7 × 20) + (7 × 8). Следовательно, 7 × 28 = (7 × 20) + (7 × 8).
Закон дистрибутивности можно выразить и геометрически, начертив прямоугольник и разбив его на два части, как на рисунке.
Как видим, площадь прямоугольника равна
Иногда, кстати, его можно применить одновременно и к числам, и переменным, например,
«Читать» это уравнение можно двумя способами: слева направо и справа налево. В первом случае мы видим 3, умноженное на 2
Почему «минус» на «минус» при умножении дают «плюс»? Иными словами, с чего бы вдруг (–5) × (–7) = 35? У учителей всегда наготове с десяток самых разных объяснений, начиная с аннулирования долгов и заканчивая железобетонным «ну, потому что вот так». Но
Допустим, мы примем тот факт, что –5 × 0 = 0, а –5 × 7 = –35. (Для этих примеров тоже имеются свои доказательства, очень близкие к тому, что мы выстраиваем сейчас, но большинство с радостью просто принимают эти утверждения на веру.) Взгляните-ка вот на что:
Чему это равно? С одной стороны, это все то же –5 × 0, равное, как нам хорошо известно, нолю. С другой стороны, использовав закон дистрибутивности, мы получим ((–5) × (–7)) + (–5
А если ((–5) × (–7)) – 35 = 0, мы вынуждены признать, что (–5) × (–7) = 35. Обобщая, можно сказать, что закон дистрибутивности утверждает, что для всех значений
Магия метода FOIL
Одним из самых важных и полезных следствий из закона дистрибутивности является алгебраическое правило
Смотрите, как правило
Давайте проиллюстрируем все это примером с конкретными числами:
Почему работает правило FOIL? Согласно закону дистрибутивности (по отношению к части со сложением, идущей на первом месте),
А теперь вместо
Последняя часть становится возможной благодаря повторному применению закона дистрибутивности. Если вы предпочитаете геометрически визуализированное доказательство (при условии, что
С одной стороны, площадь можно высчитать с помощью (
А теперь давайте посмотрим, как работает магия правила
В нашем примере результат будет равен 49. И сколько бы вы ни бросали обычные шестигранные кости, результат будет тот же. Дело в том, что сумма чисел на противоположных сторонах стандартной игральной кости всегда равна 7. То есть если обозначить выпавшие числа буквами
Обратите внимание на подсчет в третьей строке (–
На уроках алгебры правило FOIL обычно применяют для решения таких, например, задач:
В крайней правой части число 7 (которое в этом случае называется
С отрицательными величинами это тоже отлично работает, и вот тому подтверждение: в нашем первом примере мы начинаем с того, что 6 + (–2) = 4, а 6 × (–2) = –12.
А вот примеры, когда известные числа у нас одинаковые:
Обратите внимание, кстати, что (
Главное, что нужно запомнить – формула
Мы уже пользовались ей в главе 1, в примере, когда учились в уме возводить в квадрат числа. Способ этот основан на алгебраической формуле:
Сначала давайте удостоверимся в правильности этой формулы. В отличие от формулы квадратов здесь мы имеем [(
А вот несколько рисунков, доказывающих закон квадратичной зависимости. На них показано, как геометрическая фигура с площадью
В главе 1 мы научились перемножать между собой близкие по значению числа. Но если там мы оперировали числами, близкими к сотне и начинающимися с одной и той же цифры, то здесь, используя элементы алгебры, мы можем поговорить и о более интересных примерах. Скажем, вот алгебраическая интерпретация метода сближения:
Это становится возможным, потому что (
Обратите внимание, что при сложении наши множители дают 43 + 48 = 91 – тот же результат, что и менее сложные для подсчетов 40 + 51 = 91. Это совсем не случайно, ведь алгебра говорит нам, что сумма изначальных множителей представляет собой (
В главе 1 мы использовали этот метод для чисел больше 100. Но он отлично работает и с меньшими величинами, например,
Обратите внимание, что 96 + 97 = 193 = 100 + 93 (на деле я всего лишь сложил две последние цифры, 6 и 7, чтобы узнать, что сотню нужно умножать на число, заканчивающееся на 3 и, скорее всего, равное 93). Со временем, получив опыт, вы научитесь не обращать внимания на минусы и умножать не отрицательные числа, а их положительные «отражения». То есть
Этот же метод можно применить к парам чисел, одно из которых чуть меньше, а другое – чуть больше 100, только в конце вместо сложения вам нужно произвести вычитание. Например,
И опять же, число 102 можно получить двумя способами: либо из 109 – 7, либо из 93 + 9, либо из 109 + 93 – 100 (ну и четвертый вариант – сложить последние цифры начальных чисел: 9 + 3 скажут нам, что число будет заканчиваться на 2, и этой информации может быть вполне достаточно). Практикуясь, вы научитесь легко перемножать близкие друг к другу числа. Посмотрите на несколько несложных примеров с трехзначными числами. Имейте в виду, что
Поиски x
Чуть выше мы видели несколько примеров решения уравнений с помощью золотого правила алгебры. Если уравнение содержит только одно неизвестное (скажем,
мы можем к его левой и правой части сначала добавить 7 и получить 9
Или вот другой пример, чуточку сложнее:
Сначала мы упростим его, убрав из обеих частей 2
решением же будет
Ситуация немного запутывается, если мы имеем дело с
которое имеет два решения:
у нас все еще есть два решения:
А как насчет уравнения
Уравнение вроде
выглядит немного сложнее из-за этого 4
Первый метод, который я обычно применяю в таких случаях, –
И что теперь? А теперь вспоминаем последний раздел, где мы говорили о FOIL и где мы уже видели, что
Единственная возможная ситуация, в которой произведение двух сложных множителей равно 0, – это когда один из них равен 0. Следовательно, у нас либо
что и является ответом (не забудьте проверить).
Применяя метод
А теперь взгляните на
имеет решение
Символ ± означает «плюс» или «минус». Для примера: в уравнении
Значит, наша формула утверждает, что
Поэтому
Еще одним забавным способом решения квадратных уравнений является
Сделать это нужно для того, чтобы преобразовать левую часть в (
Другими словами, (
что дает нам
Но для уравнения
наш выбор очевиден – и это формула корней. У нас получается, что
Согласитесь – в общем-то, не самый очевидный случай. По большому счету, в математике очень немного формул, которые действительно надо помнить, но формула корней квадратного уравнения – одна из них. Достаточно немного попрактиковаться, и вы легко обнаружите, что использовать эту формулу просто, как… дважды два.
Почему работает формула корней квадратного уравнения? Давайте запишем уравнение
а потом разделим обе части на
Извлечем квадратный корень из левой и правой частей уравнения:
и в результате получим
Что и требовалось доказать.
Алгебра в графиках
В XVII веке в математике произошел настоящий прорыв: французы Пьер де Ферма и Рене Декарт независимо друг от друга придумали отличный способ визуализации алгебраических уравнений (равно как и алгебраическую запись геометрических объектов).
Начнем, пожалуй, с графика простого уравнения
Оно означает, что любое значение переменной
Добавим немного необходимой терминологии. Горизонтальная линия на нашей картинке называется
представляет собой линию с наклоном
А вот график линий
Первая линия
Добавим к обеим частям сначала
то есть
Зная две точки, лежащие на одной прямой, нарисовать график в виде целой линии становится делом техники. Немного сложнее иметь дело с квадратичной функцией (и фигурирующим в ней
А вот график уравнения
Обратите внимание, что, когда
С параболами мы сталкиваемся каждый день. Каждый раз, когда вы видите движущийся по кривой предмет, будь то летящий мяч или струя воды в фонтанчике, вы, в сущности, видите параболу (просто взгляните на картинку чуть ниже). Свойства параболы активно используются в устройстве фар, телескопов, спутниковых тарелок и многих других приборов.
Еще немного терминологии. До этого все наши примеры содержали в себе
Обратите внимание, что в случае с многочленами степень, в которую возводятся переменные, может быть выражена только положительным целым числом – ни в коем случае не отрицательным и не дробным. То есть если вам попадается уравнение с чем-нибудь вроде
А вот графики двух кубических многочленов, на которых вы легко заметите, что в обоих – максимум три корня.
В главе 10 мы рассмотрим
имеет три корня (1, 2 и –3). В свою очередь,
имеет только один действительный корень – при
В этой главе мы научились легко находить корни любого линейного или квадратного многочлена. А еще есть формулы для нахождения корней многочленов третьей или четвертой степеней, но они очень-очень сложные. Вывели их еще в XVI веке, а потом еще две сотни лет ведущие математики занимались поиском такого же уравнения для многочлена пятой степени. Лучшие умы бились над этой проблемой и никак не могли найти решения, пока в начале XIX века норвежский математик Нильс Абель не доказал, что создать такую формулу для пятой и более высокой степени просто-напросто невозможно. Это приводит нас к каламбуру, который считают забавным только математики: «Почему Исаак Ньютон не смог доказать теорему невозможности формулы для пятого порядка? – Потому что корни с деревьев не падают!»
Примеры доказательств невозможности чего-либо мы рассмотрим в главе 6.
Почему
Обратите внимание, что с каждым уменьшением степени на единицу число делится на 5, что имеет для нас смысл, если над этим задуматься. Ведь тогда 50 = 1, 5–1 = 1/5, 5–2 = 1/25 и так далее.
Если мы хотим, чтобы правило работало при значении степени, равном 0, необходимо, чтобы
а так как левая часть становится равна
Желание же применить закон к отрицательным величинам вынуждает нас признать, что
Разделим обе части на
Применение закона к целым величинам дает
Следовательно, умножая
Вычисление Y (и Х, само собой!)
Предлагаю закончить главу тем же, с чего мы начинали – с алгебраической магии.
Шаг номер 1. Задумайте два числа от 1 до 10.
Шаг номер 2. Сложите их между собой.
Шаг номер 3. Умножьте сумму на 10.
Шаг номер 4. Прибавьте большее из загаданных чисел.
Шаг номер 5. Теперь вычтите меньшее.
Шаг номер 6. Скажите мне результат, и я назову
Хотите – верьте, хотите – нет, но одного этого достаточно, чтобы узнать, с чего все начиналось. Например, если в результате получилось число 126, значит, скорее всего, вы загадали 9 и 3. Даже если повторить этот фокус несколько раз подряд, изумленная аудитория вряд ли догадается, как вы это делаете.
А секрет вот в чем. Чтобы узнать большее число, возьмите последнюю цифру результата (в нашем случае это 6), прибавьте к предшествующему ей числу (то есть 12) и разделите на 2. Так мы узнаем, что первое число – (12 + 6)/2 = 18/2 = 9. Второе число можно найти, вычтя из первого (9) последнюю цифру ответа, то есть 9 – 6 = 3.
Вот еще пара примеров – попрактиковаться. При ответе 82 большее из загаданных чисел – (8 + 2)/2 = 5, меньшее – 5 – 2 = 3. При ответе 137 большее – (13 + 7)/2 = 10, меньшее – 10 – 7 = 3.
Как же все-таки это работает? Допустим, загаданные вами числа – это
И какой от этого толк, спросите вы? Обратите внимание, что число, получающееся после 10(
Если вы хотите еще немного пощекотать нервы себе и своему зрителю, чья рука – гарантирую вам – немедленно потянется за калькулятором, попросите его загадать любые два числа от 1 до 100. И следуйте тем же инструкциям с одним лишь небольшим изменением: в третьем шаге попросите умножить результат не на 10, а на 100. То есть если ваш зритель, например, начал с 42 и 17, после пятого шага у него должно получиться 5925. Ответ вы можете составить, взяв из остатка
Еще один пример: если ответ получился 15 222 (то есть
Глава номер три
Магия 9
Самое магическое число
В детстве любимым моим числом была девятка: ее магия мне казалась бесконечной, неисчерпаемой. Просто следуйте следующим инструкциям и увидите все сами:
1. Задумайте число от 1 до 10 (или выберите большее целое число; если хочется, можете воспользоваться калькулятором).
2. Умножьте его на 3.
3. Прибавьте 6.
4. Снова умножьте на 3.
5. Теперь на 2, если хотите.
6. Сложите между собой цифры своего числа. Если в результате у вас получилось однозначное число, остановитесь.
7. А если двузначное, снова сложите между собой цифры своего результата.
8. Сконцентрируйтесь на ответе.
У меня стойкое ощущение, что у вас получилось 9. Правильно? Если нет – проверьте свои вычисления.
Что такого волшебного в девятке? Именно об этом мы и поговорим в этой главе; а еще мы заглянем в параллельное измерение, в котором числа 12 и 3 функционально друг от друга ничем не отличаются. Первое магическое свойство числа 9 становится явным, когда смотришь на ряд получаемых от него произведений:
Что общего между этими числами? Если вы сложите между собой цифры каждого из них, вы гарантированно получите 9. Давайте проверим: 18 состоит из 1 + 8 = 9, 27 – из 2 + 7 = 9, а, например, 144 – из 1 + 4 + 4 = 9. Постойте-ка, вроде есть одно исключение – 99. Сумма его цифр – 18, но 18 – это произведение 9 и 2. Вывод, который мы сделаем, может быть, и знаком вам по начальной школе. Чуть позже в этой главе мы приведем его объяснение. Так вот:
Например, если цифры числа 123 456 789 в сумме дают 45 (которое кратно 9), оно также кратно 9. А 314 156, сумма цифр которого равна 23 (которое на 9 не делится), таковым, наоборот, не является.
Чтобы понять, как это правило связано с фокусом, которым мы начали эту главу, и в чем, собственно говоря, его суть, обратимся к алгебре. Вы начали с определенного числа – назовем его
А вот другая разновидность того же фокуса – не менее мной любимая. Попросите кого-нибудь вооружиться калькулятором и загадать одно из следующих четырехзначных чисел:
Числа эти взяты не просто так: 3141 – первые четыре цифры числа π (см. главу 8), 2718 – первые четыре цифры числа
В чем тут секрет? Начнем с того, что каждое из изначальных четырех чисел кратно 9. А раз вы начинаете с числа, кратного 9, и умножаете его на целое число, ответ тоже будет кратен 9. А еще сумма его цифр должна быть кратна 9. Поэтому надо просто сложить между собой числа, которые вам называют. Неназванная цифра – это число, которое необходимо прибавить к результату, чтобы он стал кратным 9. Например, зритель называет вам цифры 5, 0, 2, 2, 6 и 1. Их сумма равна 16 – до ближайшего числа, кратного 9 – а именно, 18 – не хватает 2. Если вы слышите цифры 1, 1, 2, 3, 5, 8, дающие в сумме 20, то зритель не назвал вам 7 – остаток, который необходимо добавить к 20, чтобы получить 27. А что, если сумма названных вам цифр уже равна 18 – что тогда нужно угадать? Правильно, 9: вы же просили не обводить кружком 0.
Почему же цифры, составляющие числа, кратные 9, в сумме всегда дают числа, тоже кратные 9? Посмотрите на такой пример: число 3456, разложенное на элементы с помощью умножения на 10, выглядит как
Следуя той же логике, любое число, сумма цифр которого кратна 9, само должно быть кратно 9 (и наоборот: любое число, кратное 9, при сложении составляющих его цифр даст нам результат, кратный 9).
Вычисление вычета по модулю 9
А что, если сумма цифр нашего числа все-таки не кратна 9? Возьмем, например, число 3457. Следуя алгоритму, означенному чуть выше, мы можем представить 3457 (сумма цифр которого равна 19) как 3(999) + 4(99) + 5(9) + 7 + 12, то есть 3457 – это 7 + 12 = 19, что чуть больше, чем кратное девятке 18. А если 19 = 18 + 1, значит, и 3457 ровно на единицу больше ближайшего кратного 9 числа. К тому же выводу можно прийти, сложив цифры числа 19, потом – цифры числа 10, то есть вот какая последовательность у нас получается:
Процесс сложения между собой цифр числа и повторение этой операции до тех пор, пока не получится однозначное число, называется
Алгебраически, обозначив цифровой корень числа
где
Обратите внимание, что цифровые корни слагаемых чисел равны 5 и 6, а цифровой корень их суммы (11) равен 2. И совсем не случайно, что цифровой корень результата (134 651) тоже имеет цифровой корень, равный 2. Причина всего это кроется в следующей алгебраической формуле:
Если числа не совпадают, вы наверняка где-то ошиблись. И вот что важно: даже если числа
Складывая цифры результата, мы видим, что его цифровой корень – 5, а сумма цифровых корней равна 32, что подтверждает его правильность, потому что цифровой корень 32 – тоже 5. При проверке результата вычитания метод тоже отлично работает. Возьмем для примера те же числа, что были у нас в позапрошлом примере:
Разность будет равна 48 923, ее цифровой корень – 8. Работая с цифровыми корнями уменьшаемого и вычитаемого, видим, что 5 – 6 = –1. Но страшного в этом ничего нет – мы сделали все абсолютно правильно, потому что –1 + 9 = 8, да и прибавление (или вычитание) числа, кратного 9, к нашему ответу (или из нашего ответа) не меняет значение цифрового корня. По той же логике разница с 0 также верна при цифровом корне, равном 9.
А теперь неплохо было бы собрать вместе полученные нами знания и придумать еще один фокус (вроде того, который мы демонстрировали в предисловии). Просто следуйте инструкциям, хотите – с калькулятором, хотите – без.
1. Задумайте любое дву– или трехзначное число.
2. Сложите между собой его цифры.
3. Вычтите результат из задуманного числа.
4. Сложите между собой цифры полученной разности.
5. Если получилось четное число, умножьте его на 5.
6. Если нечетное – на 10.
7. Вычтите 15.
Получилось 75, да?
Если вы начали, например, с 47, вы сначала посчитали 4 + 7 = 11, а потом – 47 – 11 = 36. Дальше было 3 + 6 = 9 – нечетное число, умножив которое на 10, получаем 90, а 90 – 15 = 75. А может, вы начали с трехзначного числа – 831, например? Тогда 8 + 3 + 1 = 12, потом 831 – 12 = 819, а затем 8 + 1 + 9 = 18 – четное число. Дальше делаем 18 × 5 = 90, вычитаем 15 и получаем те же 75.
Секрет тут в том, что, если цифровая сумма изначального числа равна
Теперь предлагаю посмотреть, как работает вычисление вычета по девятке с умножением. Возьмем те же числа и попробуем посчитать:
При умножении вычисление вычета по девятке работает на основе метода
При делении вычисление вычета по модулю 9 обычно не используется, но я не могу не показать вам поистине чудесный метод деления на 9. Иногда его называют «ведическим». Возьмем
Представим это в следующем виде:
Продублируем первую цифру над чертой, там же – но уже над последней цифрой – напишем литеру
А дальше будем складывать числа попарно, как это показано чуть ниже, обводя их овалом, и записывать результаты над чертой. Сумма 1 и 2, обведенных овалом, равна 3, поэтому следующим числом нашего частного будет 3.
Потом 3 + 3 = 6.
Затем 6 + 0 = 6.
И завершаем все остатком: 6 + 2 = 8.
И вот наш ответ: 12 302
Чтобы сэкономить бумагу, сразу дадим полную картину:
Начиная вверху с 3, мы складываем 3 + 1 = 4, потом 4 + 4 = 8, потом 8 + 1 = 9, и в конце – 9 + 5 = 14. Получается 3489 и 14 в остатке. Но раз 14 = 9 + 5, нам нужно добавить 1 к частному, чтобы получилось 3490 и 5 в остатке.
А вот простой вопрос с чарующим своей стройностью ответом. Проверьте, пожалуйста (на бумаге или в уме), правильно ли, что
Мы уже знаем, что, если остаток равен или больше 9, мы просто вычитаем из него эту девятку, а к частному прибавляем 1. Примерно то же происходит, когда сумма складываемых нами при делении чисел превышает 9. Мы сначала это запоминаем, потом вычитаем из результата 9 и продолжаем считать так же, как и считали. Например, при решении 4821 ÷ 9, мы делаем вот что:
Начинаем мы с 4, но поскольку 4 + 8 = 12, единицу мы пишем над четверкой (чтобы не забыть), а потом вычитаем 9 из 12, чтобы дальше написать 3. Затем идет 3 + 2 = 5, а после этого – 5 + 1 = 6; в результате получаем 535 с остатком 6 – взгляните:
Когда слишком многое «идет на ум», вычислять становится сложнее. Попробуем 98 765 ÷ 9.
Мы начинаем с 9, складываем 9 + 8 = 17, отмечаем запоминаемую единицу и вычитаем 9, чтобы получить вторую цифру – 8. Дальше у нас идет 8 + 7 = 15, мы отмечаем еще одну единицу и пишем 15 – 9 = 6. 6 + 6 = 12 – значит, «на ум идет» уже третья единица, – считаем 12 – 9 = 3. И остаток: 3 + 5 = 8. С учетом запомненных единиц получаем 10 973 с остатком 8.
Если вам уже нравится деление на 9, попробуйте делить на 91. Возьмите любое двузначное число и просто делите его на 91 без остановки, множа количество знаков после запятой, пока не надоест. И никаких столбиков, никаких калькуляторов! Нет, кроме шуток! Вот, смотрите:
Если говорить конкретнее, ответ тут – , где линия над цифрами 582417 означает, что они повторяются до бесконечности. Откуда эти числа берутся? На самом деле это деление ничуть не сложнее умножения исходного двузначного числа на 11. С помощью метода, о котором мы говорили в главе 1, считаем 53 × 11 = 583. Вычитаем из этого числа единицу и получаем первую половину нашего ответа, а именно – 0,582. Вторая половина – это разность, полученная при вычитании первой половины из 999: 999 – 582 = 417. В результате получаем .
Еще один пример – 78 ÷ 91. Здесь 78 × 11 = 858, то есть ответ будет начинаться с 857. Затем 999 – 857 = 142, поэтому 78 ÷ 91 = . Это число нам уже встречалось в главе 1, потому что 78/91 легко упрощается до 6/7.
Метод этот работает, потому что 91 × 11 = 1001. Поэтому в первом примере А так как 1/1001 = , мы получаем повторяющуюся часть нашего ответа из 583 × 999 = 583 000 – 583 = 582 417.
91 = 13 × 7 дает нам отличный способ делить числа на 13,
Точно так же 2/13 = 14/91 = , потому что 14 × 11 = 154.
Магия 10, 11, 12 и модульной арифметики
Многое из того, что мы узнали о девятке, справедливо и в отношении других чисел. Вычисляя вычет по модулю 9, мы, по сути, заменяем числа тем, что осталось от их деления на 9. Не думаю, что для вас это большая новость. Каждый из нас делает это практически каждый день – с тех самых пор, когда мы научились называть время. Допустим, часы показывают ровно 8 (утра или вечера – неважно). Сколько они будут показывать через 3 часа? А через 15 часов? А через 27? А сколько они показывали 9 часов назад? Первые числа, которые возникают в сознании – 11, 23, 35, –1, но стоит нам вспомнить, что речь идет о часах, мы понимаем, что ответ на все эти вопросы будет один и тот же – 11 часов, ведь все заданные промежутки должны считаться от 12. Математики используют для этого такого вот вида запись:
Обобщая, мы можем сказать, что
Самая интересное в таких сравнениях по модулю – что ведут они себя абсолютно так же, как и обычные уравнения. Вот почему мы можем пользоваться здесь
Итак, разнообразые сравнения можно складывать, вычитать и умножать. Например, если
Чуть более конкретно: так как 14 ≡ 2, а 17 ≡ 5 (mod 12), 14 × 17 ≡ 2 × 5 (mod 12), и это подтверждает, что 238 = 10 + (12 × 19). Следствием этого правила является то, что мы можем возводить сравнения по модулю в различные степени. Поэтому, если
при положительном целом значении
Почему работает модульная арифметика? Например, если
Значит,
То же правило возведения в степень делает число 9 таким особенным в десятеричной системе. Так как
то, согласно правилу возведения в степень, 10n ≡ 1n = 1 (mod 9) для любого значения
А если 10 ≡ 1 (mod 3), становится понятно, почему мы можем простым сложением цифр определить, является ли число кратным 3 (или каким будет остаток при делении его на 3). Если бы мы проводили вычисления в другой системе – скажем, основанной на 16 (она называется
Но вернемся к более привычной десятеричной системе. Есть простой способ определить, кратно ли определенное число 11. Основывается он на том, что
Значит, 10n ≡ (–1)n (mod 11). Следовательно, 10² ≡ 1 (mod 11), 10³ ≡ (–1) (mod 11) и т. д. Число 3456, например, соответствует
То есть 3456 делится на 11 с остатком 2. Общее правило звучит так: число является кратным 11 только при условии, что мы приходим к числу, кратному 11 (например, 0, ± 11, ± 22….), при поочередном вычитании и сложении цифр. Давайте попробуем разобраться, делится ли число 31 415 на 11 без остатка? Достаточно посчитать 3 – 1 + 4 – 1 + 5 = 10, чтобы понять, что не делится, но сумма цифр следующего за ним целого 31 416 будет равна 11, поэтому 31 416 кратно 11.
Расчеты по модулю 11, кстати, используются для работы с ISBN[4]. Допустим, у вас есть книжка с десятизначным ISBN (номер с таким количеством цифр присваивался большинству книг до 2007 года). Эти цифры обозначают страну, в которой была издана книга, издательство и название, все, кроме последней, десятой, которую еще называют
Так, ISBN моей книжки «Секреты устного счета», изданной в 2006-м, – 0-307-33840-1, что соответствует
поскольку 154 = 11 × 14. В А что происходит, когда возникает необходимость в качестве контрольной цифры поставить 10? В этом случае вместо десятки ставят литеру
В 2007 г. издатели перешли на тринадцатизначную систему ISBN, основанную уже на модуле 10 вместо 11. То есть номер
Похожая система, основанная на модуле 10, используется для проверки правильности штрихкодов, номеров кредитных и дебетовых карточек. Еще модульная арифметика играет важную роль в проектировании электронных схем и интернет-систем, обеспечивающих финансовую безопасность.
Календарные исчисления
Мой любимый математический фокус – определять день недели, в который родился человек, по году и дате. Допустим, ваша знакомая говорит вам, что родилась 2 мая 2002 года. Представьте себе ее удивление, когда вы почти мгновенно сообщите ей, что это был четверг. Куда более полезно с практической точки зрения умение определять день недели по любой предстоящей в этом или следующем году дате. В этом разделе я расскажу вам, как легко это делать с помощью математики.
Но перед тем как заняться непосредственно самим методом, давайте вспомним пару интересных фактов из истории календаря. Итак, Земле требуется примерно 365,25 дней, чтобы пройти путь вокруг Солнца. Поэтому обычный год у нас длится 365 дней, а четверти мы собираем вместе и раз в четыре года добавляем один «лишний» (его еще называют високосным) день – 29 февраля. Таким образом, за четырехлетний цикл у нас получается 4 × 365 + 1 = 1461 день, что очень близко к реальному, астрономическому, положению вещей. Именно эта идея и легла в основу юлианского календаря, составленного Юлием Цезарем более 2000 лет назад. Например, 2000 год – високосный. И каждый четвертый после него – тоже: 2004, 2008, 2012, 2016 и т. д., вплоть до последнего в этом столетии 2096. «А как же 2100? – спросите вы. – Он разве не будет високосным?» А вот и нет. Знаете почему?
Проблема в том, что более точная длительность астрономического года – 365,243 (что примерно на 11 минут меньше 365,25), поэтому високосных годов получается чересчур много. За четыре сотни оборотов вокруг Солнца человечество проживает 146 097 дней, а юлианский календарь насчитывает 400 × 365,25 = 146 100 дней (что на три дня больше). Эту проблему (как и проблемы, связанные с определением дня Пасхи) попытался решить в 1582 году папа римский Григорий XIII, представив свой вариант календаря, впоследствии названный григорианским. И именно по этой самой причине в этом самом году католики всего мира убрали из своего летоисчисления десять дней. Например, в Испании после юлианского четверга 4 октября 1582 года последовала григорианская пятница, ставшая 15 октября 1582 года. После введения григорианского календаря годы, числовые значения которых можно разделить без остатка на 100, но при этом нельзя разделить без остатка на 400, перестали быть високосными (что позволило убрать лишние три дня). Следовательно, 1600 год в григорианском календаре оставался високосным, а вот 1700-й, 1800-й и 1900-й этот статус потеряли. Точно так же 2000-й и 2400-й – високосные, а 2100-й, 2200-й и 2300-й – нет. Согласно этой системе, каждые четыре сотни лет мы имеем 100 – 3 = 97 високосных годов или (400 × 365) + 97 = 146 097 дней, что точно соответствует астрономической истине.
Некоторые страны – в основном, некатолические – далеко не сразу приняли григорианский календарь. Англия вместе со своими колониями, например, перешла на него только в 1752 году, когда за средой 2 сентября сразу же последовал четверг 14 сентября (обратите внимание, что они «потеряли» 11 дней, а не десять, потому что пропустили 1700 год, который в юлианском календаре был високосным, а в григорианском – обычным). Всемирное же распространение григорианский календарь получил только в 1920 году. Представьте, какой головной болью это стало для историков. Мой любимый исторический парадокс – смерти Уильяма Шекспира и Мигеля де Сервантеса, которые по справочникам случились в один день, 23 апреля 1616 года, а на деле – с разницей в десять дней. Все это как раз из-за того, что к моменту смерти Сервантеса Испания уже пользовалась григорианским календарем, а Англия – все еще юлианским. То есть григорианское 23 апреля 1616 года в Испании было юлианским 13 апреля 1616 года в Англии, где жил (и прожил еще десять дней) Шекспир.
Формула определения дня недели по любой дате григорианского календаря выглядит так:
Давайте разберемся, что здесь к чему. Все это имеет смысл, если формула использует модульную арифметику по модулю 7 (поскольку в неделе 7 дней). Например, если нас интересует дата через 72 дня, день недели будет на два впереди от сегодняшнего, потому что 72 ≡ 2 (mod 7). А вот дата через 28 дней придется на тот же день недели, потому что 28 делится на 7 без остатка.
Начнем, пожалуй, с кодов дней недели – их легче всего запомнить:
По большому счету, здесь и запоминать-то ничего не надо: все точно соответствует привычной нам системе (ну, кроме воскресенья, которое, кроме 7, может быть и 0)[5].
Откуда пошли английские названия дней недели? Корнями они уходят в традиции Вавилонского царства, где были связаны с именами Солнца, Луны и пяти других ближайших к Земле небесных тел. От Солнца (
А вот с кодами месяцев мороки чуть больше, поэтому здесь я приведу «запоминалки» – подсказки, основанные на ассоциации.
Откуда берутся эти цифры, я объясню чуть позже – сначала разберемся с вычислениями. Единственный код года, который вам пока нужно знать, – 0 для 2000 года. Давайте попытаемся посчитать, на какой день недели пришлось в этом году 19 марта (мой день рождения, кстати). Код марта у нас – 2, код 2000 года – 0, подставляем их в нашу формулу и получаем
Значит, 19 мая 2000 года было воскресеньем.
Быстренько объясним, откуда берутся коды месяцев. Обратите внимание, что в невисокосные годы коды февраля и марта совпадают. Объясняется это тем, что в феврале 28 дней, а значит, 1 марта наступает через 28 дней после 1 февраля – то есть оба эти месяца начинаются в один и тот же день недели. А теперь смотрите: 1 марта 2000 года было средой. Поэтому, если мы присвоим 2000 году код 0, а понедельнику – код 1, марту просто некуда деваться, как получить код 2. Поэтому в невисокосный год кодом февраля тоже должна быть двойка. А раз в марте у нас 31 день, что ровно на 3 больше февральских 28, календарь апреля сдвигается по неделе на 3 дня вперед, то есть код получается 2 + 3 = 5. Дальше мы добавляем апрельские 28 + 2 к коду 5 и видим, что код мая должен быть 5 + 2 = 7, которые мы можем заменить на 0, раз уж наш модуль – 7. Точно так же мы можем определить коды и всех остальных месяцев.
С другой стороны, в феврале високосного года (а 2000 год был високосным) 29 дней, поэтому календарь марта убегает только на один день вперед, а код такого февраля будет 2 – 1 = 1. В январе 31 день, поэтому его код в невисокосном году должен быть на три единицы меньше кода февраля: 2 – 3 = –1 ≡ 6 (mod 7). В високосный же год получается на единицу меньше: 1 – 3 = –2 ≡ 5 (mod 7).
Что происходит с вашим днем рождения от года к году? Если забыть про високосные годы, между двумя днями рождения проходит 365 дней, то есть каждый раз эта дата смещается на один день вверх по неделе, потому что 365 ≡ 1 (mod 7), а 365 = 52 × 7 + 1. Но когда между ними «вклинивается» 29 февраля, если вы, разумеется, не родились именно 29 февраля, смещение составит не один день, а два. Соответственно, к коду года в нашей формуле мы просто добавляем 1. Или 2, когда дело доходит до високосного года. Вот коды годов с 2000-го по 2031-й. Не переживайте.
Обратите внимание, что мы идем просто по порядку – 0, 1, 2, 3 и т. д., – перескакивая через единицу для високосного года. Так происходит в случае с 2004-м, кодом которого вместо 4 будет 5, 2005-й тогда получает код 6, а 2007-й должен бы получить 7, но, так как мы с вами работаем по модулю 7, возвращаемся обратно к 0, Поэтому код 2007-го – 1, а 2008-го (високосного) – 3.
И так далее. С помощью этой таблицы мы легко определим, что в 2025 году (это ближайший год, числовое обозначение которого является квадратом числа), день числа Пи (14 марта) придется на
А как насчет 1 января 2008 года? Не забудьте, что год этот – високосный, а значит, код января будет 5, а не 6. Следовательно:
Посмотрите еще раз на таблицу вдоль ее рядов, и увидите, что каждый раз, когда проходит 8 лет, код года повышается на 3 (по модулю 7). Например, годы в первом ряду имеют коды 0, 3, 6, 2 (двойка по модулю 7 – это та же девятка). Происходит это потому, что за период в 8 лет нам обязательно попадается два високосных года, поэтому даты смещаются на 8 + 2 = 10 ≡ 3 (mod 7).
А вот кое-что еще более интересное. С 1901 по 2099 год через каждые 28 лет календарь повторяется один в один. Знаете, почему? Из 28 лет 7 – всегда високосные, поэтому календарь смещается на 28 + 7 = 35 дней, а 35 – число, кратное 7, что и обеспечивает повторяемость дней недели (закономерность эта нарушится, если мы опустимся ниже 1900 года или поднимемся выше 2100-го, ведь в григорианском календаре они не високосные). Поэтому, просто складывая или вычитая числа, кратные 28, вы можете превратить
То есть какую бы практическую задачу вы ни решали, вы можете превратить нужный вам год в один из тех, что составляют нашу таблицу, и таким нехитрым способом узнать его код. Почему, например, кодом 2017-го будет 0? Да потому что с 2000 года (имеющего код 0), календарь смещается по неделе 17 раз
Шаг 1: Возьмите две последние цифры года (в примере с 2022 годом этими цифрами будут 22).
Шаг 2: Разделите это число на 4. В результате нас интересует только целое, остаток можно проигнорировать (в нашем примере – 22
Шаг 3: Сложите числа из первого и второго шагов (в нашем примере – 22 + 5 = 27).
Шаг 4: Возьмите ближайшее число, кратное 7, которое при этом будет меньше суммы, полученной после третьего шага (это может быть 0, 7, 14, 21 или 28). Вычтите его из этой суммы и узнаете код года (другими словами, сократите число из третьего шага по модулю 7: так как 27 – 21 = 6, кодом 2022 года будет 6).
Обратите внимание, что шаги с 1 по 4 работают для любого года в промежутке с 2000-го по 2099-й; можно значительно упростить себе задачу устного счета, просто вычтя на начальном этапе число, кратное 28, и получив таким образом год в промежутке с 2000-го по 2027-й. 2040 год, например, можно «упростить» до 2012, и шаги с 1-го по 4-й превращаются в элементарное 12 + 3 – 14 = 1. К тому же результату можно прийти, работая непосредственно с 2040: 40 + 10 – 49 = 1.
Алгоритм этот можно использовать не только для двухтысячных годов. Коды месяцев останутся такими же, а вот с кодами годов нужно будет сделать одну небольшую поправку. Код 1900 года будет равен 1. Следовательно, код каждого года в промежутке с 1900-го по 1999-й будет на одну единицу больше, чем их «собратья» в промежутке с 2000-го по 2099-й. То есть если код 2040-го – 1, значит, кодом 1940-го будет 2; а кодом 1922-го, например, будет 7 (ну, или 0), потому что 2022 год обозначается кодом 6. Код 1800 года – 3, 1700-го – 5, 1600-го – 0 (на самом деле на полный цикл у календаря уходит 400 лет, потому что именно четырехсотлетний период имеет 100 – 3 = 97 високосных годов, то есть ровно через 400 лет, день в день, календарь сместится на 400 + 97 = 497 дней, что даст нам абсолютно тот же день недели и то же число, ведь 497 кратно 7).
Хотите узнать, каким днем недели было 4 июля 1776 года? Сначала найдем код 2076 года, для чего вычтем 56 из 2076, а потом посчитаем код 2020-го: 20 + 5 – 21 = 4. Следовательно, код 1776 года будет 4 + 5 = 9 ≡ 2 (mod 7). Таким образом, получается, что по григорианскому календарю 4 июля 1776 года пришлось на
А раз так, может быть, те, кто подписывал Декларацию независимости, просто хотели успеть завершить все перед выходными?
Под конец главы давайте я расскажу вам о еще одном волшебном свойстве числа 9. Загадайте любое число, в котором ни одна цифра не повторяется, при этом идут они от меньшего к большему. Это может быть, например, 12 345, 2358, 369 или 135 789. Умножьте это число на 9 и сложите между собой цифры. В том, что результат будет кратен 9, для нас ничего нового нет – удивительным будет то, что цифры в своей сумме дадут
Фокус сработает, даже если цифры будут повторяться – главное, чтобы они шли от меньшего к большему и чтобы разряд единиц не равнялся разряду десятков. Вот, смотрите:
Так в чем тут секрет? Давайте посмотрим, что происходит, когда мы умножаем на 9 число
Если считать слева направо, то, с учетом того, что
а сумма цифр результата составит
что и требовалось доказать.
Глава номер четыре
Магия счета
Математика с восклицательным знаком!
В самом начале этой книги мы говорили о том, как посчитать сумму всех чисел от 1 до 100. И мы справились – у нас получилось 5050. Также мы нашли замечательную формулу для подсчета суммы первых
93326215443944152681699238856266700490715968264381621468
59296389521759999322991560894146397615651828625369792082
7223758251185210916864000000000000000000000000
В этой главе вы увидите, как использовать такие огромные числа для счета. Они помогут нам узнать, сколько существует способов расставить на книжной полке дюжину книжек (примерно
Когда мы перемножаем все числа от 1 до
Например,
Мне кажется, символ восклицательного знака подходит здесь как нельзя лучше: значение числа
Казалось бы, 0! должен быть равен 0. Но это почему-то не так: 0! = 1. Давайте разберемся, почему. Обратите внимание, что для
Если мы хотим, чтобы наше утверждение оставалось верным для
Итак, факториалы растут очень и очень быстро. Посмотрите сами:
Насколько велики эти числа? Ученые говорят, что количество всех-всех песчинок в мире равняется 10²². А количество всех-всех атомов во Вселенной – 1080. Так вот, если вы тщательно перемешаете колоду из 52 карт (что, как мы чуть позже узнаем, может быть сделано 52! способами), шансы на то, что в таком порядке они сложатся впервые со времен изобретения карт и никогда больше не сложатся снова, близки к 100 %. И это при условии, что все люди на Земле каждую минуту на протяжении нескольких миллионов лет будут тасовать каждый свою колоду.
В начале главы вы, скорее всего, заметили, каким огромным количеством нолей заканчивается факториал 100! Откуда они берутся? При перемножении чисел от 1 до 100 мы получаем ноль всякий раз, когда умножаем число, кратное 5, на число, кратное 2. Первых в промежутке от 1 до 100 будет 20, вторых (по сути, всех четных) – 50, что, по идее, дает нам в конце 20 нолей. Но ведь числа 25, 50, 75 и 100 дают нам дополнительные коэффициенты пятерки, поэтому 100! будет иметь в итоге 24 ноля.
Как и в главе 1, здесь мы увидим несколько замечательных математических закономерностей, в которых используются факториалы. Вот, например, одна из моих любимых:
Правило суммы и произведения
Большинство проблем с вычислением на самом деле сводятся к двум правилам – суммы и произведения. Правило суммы используется, когда нужно подсчитать общее количество имеющихся у вас вариантов выбора. Допустим, у вас есть 3 рубашки с короткими рукавами и 5 рубашек – с длинными. Но наденете-то вы только одну. Значит, вы стоите перед выбором одного из 8 вариантов. Обобщая, можно сказать, что, если у вас есть два типа объектов и количество объектов первого типа равно
Как уже было сказано, правило суммы исходит из того, что в двух типах объектов каждый объект уникален. Но если у нас все же есть несколько объектов (в количестве
Правило произведения применяется в том случае, когда вам нужно предпринять некое действие, которое состоит из двух частей. Если имеется
В полной колоде карт каждая карта принадлежит к одной из 4 мастей (пики, червы, бубны, трефы) и 13 достоинств (туз, 2, 3, 4, 5, 6, 7, 8, 9, 10, валет, дама и король). Значит, всего в полной колоде 4 × 13 = 52 карты. При желании все их можно разложить в виде прямоугольника со сторонами 4 на 13 – тем самым мы получим визуальное представление об общем количестве в 52.
Давайте применим правило произведения для подсчета почтовых индексов. Каково возможное количество пятизначных индексов? Каждый индекс – это пятизначное число, состоящее из цифр от 0 до 9. Наименьшее из них будет иметь вид 00000, а наибольшее – 99999[7]. Значит, всего имеется 100 000 вариантов. К тому же результату можно прийти с помощью правила произведения. У нас есть 10 вариантов выбора числа для первой цифры (от 0 до 9), 10 – для второй, и дальше по 10 для третьей, четвертой и пятой. Значит, имеем 105 = 100 000 вариантов.
В почтовых индексах числа могут повторяться. А если взять ситуацию, в которой объекты не могут повторяться – например, когда вы выкладываете предметы в ряд? Несложно заметить, что два объекта в каждой паре могут быть расположены двумя способами. Скажем, буквы А и B могут быть представлены либо как АВ, либо как ВА. Способов разложить 3 объекта у нас ровно 6: ABC, ACB, BAC, BCA, CAB, CBA. А можете представить в уме, без ручки и бумажки, 24 возможные комбинации 4 объектов? Начнем с выбора одного из четырех вариантов для начальной позиции (выбираем из четырех букв: А, B, C или D). Для второй позиции останется 3 варианта, для третьей – 1, для последней, четвертой, – всего лишь 1. Всего получается 4 × 3 × 2 × 1 = 4! = 24 варианта. Другими словами, для
А вот пример одновременного использования правил суммы и произведения. Допустим, некое государство выдает автовладельцам регистрационные номера двух типов. Номера первого типа состоят из 3 букв и 3 цифр, второго – из 2 букв и 4 цифр (в обоих случаях сначала идут буквы, потом – цифры). Сколько всего будет номеров (притом что мы можем использовать все 26 букв латинского алфавита и 10 цифр, не обращая при этом внимания на внешнее сходство, вроде О и ноль)? Сначала посчитаем количество номеров первого типа, применив правило произведения:
То же с номерами второго типа:
Так как один номер относится либо к первому, либо ко второму типу (и не повторяется), согласно правилу суммы общее количество возможных комбинаций – 24 336 000.
Но подобного рода подсчеты (математики даже выделяют такие упражнения в отдельную ветвь своей науки –
ведь для первых двух символов каждого номера существует 26 вариантов, для последних трех – 10, при этом третий символ может быть или буквой, или цифрой, а значит, возможных вариантов здесь будет 26 + 10 = 36.
Лотерея и покер
В этом разделе мы используем то, что только что узнали, для подсчета своих шансов выиграть в лотерею или собрать нужную комбинацию в покере. Но позвольте сначала предложить вам немного мороженого.
Допустим, вам предлагают наполнить рожок 3 шариками разных сортов мороженого. Всего можно выбирать из 10 сортов. Сколько всего можно получить разных рожков? Не забудьте: порядок шариков разных сортов имеет значение (а как же иначе? Ведь вкус-то разный!). Если повторяться можно, получается, что у нас есть 10 вариантов для каждого из трех шариков: 103 = 1000 вероятных комбинаций. Ну а если нельзя – их количество сокращается до 10 × 9 × 8 = 720, как показано на картинке чуть ниже.
Теперь кое-что поинтереснее. Как будут лежать три шарика трех
Другой способ представить 10 × 9 × 8 – 10!/7! (хотя первый пример, конечно, легче подсчитать). Значит, количество чашек – Такая запись читается как «число сочетаний из 10 по 3», обозначается символом и равняется 120. Другими словами, число вариантов при выборе определенного количества различных объектов, равного
Математики называют такого рода вычисления
Если ваш продавец мороженого предлагает 20 разных сортов, то, направляясь туда с намерением купить 5 разных шариков (в случайном порядке), вам придется выбирать из
вариантов. Кстати, если на вашем калькуляторе не предусмотрено специальной кнопки, чтобы подсчитать просто наберите в любом поисковике «число сочетаний из 20 по 5»[8], и вы увидите веб-калькулятор с готовым ответом.
Биноминальные коэффициенты, впрочем, могут появляться и там, где порядок расположения объектов определенную роль все же играет. Если вы 10 раз подбросите монетку, сколько всего у вас будет возможных последовательностей результатов (вроде О-Р-О-Р-Р-О-О-Р-Р-Р или О-О-О-О-О-О-О-О-О-О)? Так как каждый бросок имеет два возможных исхода, правило произведения говорит нам, что их будет 210 = 1024, причем шансы выпадения каждой стороны абсолютно равны. (Некоторые, конечно, удивятся: вероятность того, что выпадет вторая комбинация, вроде бы куда ниже, чем у первой. Тем не менее шансы и у той, и у другой абсолютно равные – 1 к 1024.) С другой стороны, то, что за 10 бросков орел выпадет 4 раза, а не 10, куда вероятнее, ведь комбинаций с 4 орлами много, а с 10 – всего одна. Вот только «много» – это сколько? Подобная последовательность определяется количеством «орлиных» бросков, равным 4 из 10, соответственно, остальные броски должны закончиться выпадением решки. Количество способов определить,
или примерно 20 % всех возможных комбинаций.
Логично спросить, сколько можно собрать вазочек с 3 шариками из 10 сортов, если можно повторяться (10³/6 – ответ неправильный, это ведь даже не целое число). Наиболее простой способ – рассмотреть 3 отдельных случая, взяв за отправную точку количество разных сортов в вазочке. Очевидно, что в случае с 3 шариками одного сорта получится 10 вазочек. Из сказанного выше понятно, что в случае с 3 шариками 3 сортов получится вазочек. А вазочек будут с 2 сортами мороженого, ведь 2 сорта мы можем выбрать способами. И лишь потом можно решать, какие 2 из 3 шариков будут именно этого сорта. Сложив все вместе, получим 10 + 120 + 90 = 220 вазочек.
Есть и другой способ прийти к этому ответу, не разбивая задачу. Каждую вазочку можно представить как комбинацию трех звездочек и девяти черточек. Если мы выбираем первый, второй и снова второй сорта, «перекодированная» вазочка будет выглядеть вот так:
Второй, снова второй и седьмой сорта – вот так:
А комбинация
будет означать, что наш выбор пал на сорта третий, пятый и десятый. То есть вазочка – это набор из 3 звездочек и 9 черточек. Всего получается 12 символов, 3 из которых обязательно должны быть звездочками. Следовательно, возможных комбинаций у нас будет Обобщая, можно сказать, что количество способов выбрать
Подсчет сочетаний необходим в большинстве задач, в которых большую роль играет случайность. Представим себе лотерею, в которой вам нужно угадать 5 различных чисел от 1 до 47. Дополнительно вы выбираете еще одно, МЕГАчисло от 1 до 27 (можно выбирать любое, в том числе и одно из тех, которые уже встречались в пятерке). У нас есть 27 вариантов выбора дополнительного числа, и
Другими словами, ваш шанс выиграть главный приз в такой лотерее – примерно 1 из 40 миллионов.
Теперь давайте переключим внимание на покер. Комбинация в покере – это обычно 5 карт из 52, составляющих колоду. Все они разные, выбраны случайно, порядок их значения не имеет. Следовательно, количество комбинаций равняется
Комбинация из 5 карт одной и той же масти
называется
и наши шансы получить один из них составляют 5148/2 598 960, то есть примерно 1 к 500. Любители покера теперь могут вычесть из 5 148 4 × 10 = 40, чтобы узнать, какова вероятность, что собрать
При простом
Стрит может сложиться из 10 разных комбинаций (ценность которых определяется «ценностью» младшей карты). Определив ту из них, которая нужна нам (пусть будет 3-4-5-6-7), мы выбираем одну из 4 мастей, которой должны быть все карты. Следовательно, количество комбинаций стрита равняется
то есть почти в 2 раза выше, чем у флеша. А шанс его получить – 1 к 250. Именно поэтому флеш в покере ценится больше: его куда сложнее собрать.
Еще более ценен
Чтобы подсчитать свои шансы на фул-хаус, нам сперва нужно выбрать необходимое нам достоинство, которое попадется нам трижды (13 вариантов), потом – то, которое попадется дважды (12 вариантов). Допустим, нам нужны 3 дамы и 2 семерки. Определимся с мастями. Получить нужных нам дам можно способами, семерки – способами. Общее количество фул-хаусов, таким образом, равняется
Следовательно, вероятность его собрать – 3744/2 598 960 или 1 к 700.
От фул-хаусов перейдем к
Пытаясь посчитать количество возможных пар, многие ошибочно начинают с 13 × 12, как в случае с фул-хаусами. Но теперь нам нужно немного другое, ведь здесь вероятность получить две семерки после двух дам – это абсолютно то же, что и получить двух дам после двух семерок. Поэтому правильно будет начать с (имея в виду и семерки, и дам), потом выбрать новое достоинство для непарной карты (пусть это будет пятерка), затем выбрать масти. Количество комбинаций с двумя парами –
Появляются они в 5 % случаев.
Подробнее на всех вариантах раздач мы останавливаться не будем, но я попрошу вас взглянуть на следующие подсчеты и проверить, насколько они верны. Комбинаций с
с
с
всего – 42 % всех возможных комбинаций.
А сколько же может быть
Первая часть – это количество комбинаций 5 карт разного достоинства за вычетом 10 последовательных (вроде 3-4-5-6-7). Следующая часть охватывает вероятные «расклады» этих 5 карт разного достоинства; для каждого достоинства у нас есть 4 варианта, но при этом мы должны исключить возможность того, что все они встретятся в одном «раскладе». Все это значит, что наши шансы собрать «пустую» комбинацию – 50,1 %. А еще это значит, что в 49,9 % случаев мы будем играть как минимум с одной парой.
А теперь вопрос, на который можно дать целых три прелюбопытных ответа, причем правильными из них будут сразу два! Сколько существует комбинаций, в которых есть как минимум один туз? Уверен, вас так и подмывает ответить что, само собой,
Но проще всего будет пойти
Я уже говорил чуть выше, что «цена» комбинаций в покере зависит от частоты их появлений: чем реже комбинация, тем она «ценнее». То есть если шансов собрать одну пару больше, чем сразу две, одна пара ценится куда меньше двух. Вот «стоимость» всех комбинаций, от меньшей к большей:
Пара
Две пары
Тройка
Стрит
Флеш
Фул-хаус
Каре (или «четверка»)
Стрит-флеш
На этот случай есть эффективная «запоминалка»: «Раз, два, три, стрит, флеш; два-три, четыре, стрит-флеш» (где «два-три» – это фул-хаус).
А теперь предположим, что в колоде появились джокеры. Всего карт у нас становится 54, причем джокеры (всего их два) могут «превращаться» в карту любой масти и любого достоинства – в зависимости от того, что вам нужно для наилучшей комбинации. То есть если у вас на руках и джокер, разумнее всего будет посчитать его тузом, чтобы получилась тузовая тройка. Можно «превратить» джокера и в короля, конечно, но тогда у вас будет две пары, что хуже, чем тройка[12].
Но здесь-то и начинается самое интересное. Следуя традиционному порядку карт, мы можем посчитать эту комбинацию и как тройку, и как две пары, а можем – только как тройку, исключив ее из числа двух пар. Последнее выглядит наиболее разумно, но ведь это значит, что общее количество комбинаций с тройками значительно увеличивается, а с двумя парами – уменьшается, что превращает последние в более редкие. Мы, конечно, можем сказать, что теперь две пары имеют бóльшую ценность, но проблему этим не решишь: она всего лишь «перевернется вверх ногами», ведь количество двух пар увеличится, а количество троек – уменьшится. Из этого всего следует странный на первый взгляд вывод, сделанный математиком Стивом Гэдбойсом в 1996 году: при игре в покер с джокерами невозможно ранжировать «ценность» комбинаций по частоте их появления.
Закономерности треугольника Паскаля
Вот вам во всей его красе треугольник Паскаля:
Треугольники уже знакомы нам по главе 1, так что мы хорошо знаем, насколько интересные закономерности могут появляться из организованных таким образом чисел. Еще более интересные (и куда более красивые) закономерности получатся в треугольнике чисел о которых мы только что узнали. Такой треугольник называется Паскалевым – тот, который изображен чуть выше. У нас есть формула Давайте превратим все ее символы в числа и поищем закономерности (см. изображение треугольника чуть ниже). Большинство из них будут подробно описаны в этой главе, но, если объяснения вдруг покажутся вам скучными, можете смело их пропускать и просто наслаждайтесь стройной красотой самих закономерностей.
Верхний (или нулевой) ряд представлен одним-единственным значением – (не забывайте: 0! = 1). Каждый ряд начинается с единицы и ею же заканчиваются, потому что
Взгляните на пятый ряд:
Обратите внимание, что второе число в нем – 5, да и в принципе вторым числом ряда
геометрически
В целом же закономерность говорит о том, что
У таких симметричных отношений есть два объяснения. Первое – алгебраическое – с помощью формулы
Но так ли уж сильно она нам тут нужна? Почему, например, Число обозначает количество вариантов выбора 3 сортов мороженого из десяти (в вазочке, не в рожке). Но ведь это то же самое, что считать варианты выбора тех 7 сортов, которые мы
Следующая закономерность, которую легко заметить, заключается в том, что во всех, кроме 1-го, рядах каждое число есть, по сути, сумма двух других – тех, которые находятся прямо над ним. Посмотрите, например, на 9 и 10 ряды треугольника. Потрясающе, правда? Называются эти отношения
Почему так происходит? Когда мы смотрим на равенство 120 = 36 + 84, мы, по сути, видим
Чтобы в этом разобраться, давайте попробуем ответить на один вопрос. Если имеется 10 сортов мороженого, сколько вазочек можно собрать из 3 шариков разных сортов (порядок шариков при этом не важен)? С одной стороны, мы уже посчитали это количество как Но есть и другой способ. Допустим, один из предлагаемых нам сортов мороженого – ванильное. Сколько вазочек у нас получится
А теперь давайте посмотрим, что будет, если мы сложим все числа каждого ряда Паскалева треугольника (см. ниже).
Закономерность предполагает, что сумма всегда будет представлять собой степень двойки. Алгебраически: сумма чисел ряда
то есть буквально удвоенная сумма чисел 4-го ряда. То же продолжается и дальше, вниз от вершины треугольника и до бесконечности.
С точки зрения биноминальных коэффициентов правило утверждает, что сумма чисел ряда
что несколько неожиданно, поскольку отдельные значения соответствуют факториалам и являются делимыми самых разных чисел. И все же общая сумма основана на 2 и простом множителе.
Еще один способ объяснить эту закономерность – подсчет, а именно –
от количества шариков в вазочке и руководствуясь правилом суммы, получаем
вариантов, что можно упростить до 1 + 5 + 10 + 10 + 5 + 1. С другой стороны, мы можем ответить на тот же вопрос, использовав правило произведения. Вместо того чтобы торопиться подсчитывать, сколько всего шариков может оказаться в вазочке, мы можем взять каждый из предлагаемых сортов и решить, покупать его или нет. Например, у нас есть 2 варианта выбора для шоколадного мороженого (берем или нет), 2 – для ванильного (берем или нет) и т. д. для всех 5 сортов (имейте в виду, что, решив не брать ни один из сортов, мы останемся с пустой вазочкой, что условия нашей задачи вполне допускают). Значит, возможных комбинаций будет
А раз в обоих случаях мы шли верным путем,
чего и следовало ожидать.
Тот же комбинаторный принцип доказывает, что, если посчитать сумму
Почему? Левая сторона считает вазочки с четным количеством шариков мороженого (при ассортименте из
Если представить треугольник Паскаля как
Значит, столбик
А теперь смотрите, что произойдет, когда мы сложим между собой несколько первых чисел любого столбца. Возьмем, например, первые 5 чисел 3 столбца (см. ниже). Получаем 1 + 3 + 6 + 10 + 15 = 35 – число, которое видим справа по диагонали от 15. Другими словами,
Называется эта закономерность
Поскольку порядок не важен, у нас получится А теперь давайте попробуем найти ответ на эту задачу, разбив ее на несколько поменьше. Во сколько троек будет входить игрок под номером 7? Иными словами, в каком количестве тренировок будет мелькать свитер с самым большим номером? Так как одно место в тройке занято семеркой, на остальные два места у нас остается вариантов. Идем дальше. Сколько тренировок посетит хоккеист с цифрой 6 на свитере? Включаем в свою задачу 6, исключаем из нее 7 и получаем вариантов для двух «вакансий». Точно так же нужно будет посчитать вариантов для номера 5, – для номера 4 и – для номера 3. Так как самыми большими числами могут быть 3, 4, 5, 6 или 7, мы просчитали все возможные варианты, поэтому тройка может быть сформирована способами – и это то же число, что было обозначено в левой части предыдущего уравнения. Обобщая, можно сказать, что
Давайте используем эту формулу для решения важной задачи, которая, без сомнения, заботит ваш ум каждый год во время новогодних каникул. Возьмем за основу популярную английскую народную песенку «Двенадцать дней Рождества»[13]: в первый день ваша настоящая любовь подарила вам 1 подарок (куропатку). На второй день – 3 подарка (куропатку и 2 горлиц). На третий – целых 6 (куропатку, 2 горлиц и 3 курочек). И так далее. Вопрос: сколько подарков у вас будет через 12 дней?
На
подарков (получилось это из нашей суперполезной формулы для треугольных чисел или из правила клюшки при
То есть если открывать по подарку каждый день – вам хватит их почти до конца года (ну, один можно пропустить в день рождения)!
Давайте теперь cпоем песенку, чтобы отпраздновать свой успех. Называется она «
В
…
5 (плюс 10) всяких вкусностей!
А через
Усевшись считать подарки,
Сколько же я насчитал(а)?
Ровно
А вот одна из самых странных закономерностей Паскалева треугольника. На рисунке ниже отмечены все нечетные числа. Присмотритесь к ним и увидите в большом треугольнике несколько маленьких.
А теперь давайте сделаем вот что: сначала продлим большой треугольник до 16 рядов, а затем заменим все нечетные числа единицами, а все четные – нолями. Обратите внимание, что под каждой парой нолей, равно как и под каждой парой единиц, стоит ноль. Причина этого – в том, что при сложении 2 четных или 2 нечетных чисел сумма будет выражена четным числом.
Не будем на этом останавливаться: посмотрим на еще больший треугольник – из 256 рядов, – в котором все нечетные числа заменены черными квадратиками, а все четные – белыми.
По сути своей данная фигура – это фрактал, или рекурсивное изображение, известное так же как
В рядах 1, 2, 4 и 8 (порядковые номера которых суть степени 2) у нас по 2 нечетных числа. В рядах 3, 5 и 6 (порядковые номера которых суть сумма двух степеней 2) у нас по 4 нечетных числа. В ряду же 7 (порядковый номер которого есть сумма трех степеней 2) – 8 нечетных чисел. Отсюда следует удивительное по своей красоте правило. Если
Не будем на этом подробно останавливаться, но, если вам интересно, будет нечетным числом всякий раз, когда
при
И под самый конец главы – еще одна закономерность. Мы уже видели, что происходит, если сложить числа в рядах (степень 2) и столбцах («хоккейная клюшка») Паскалева треугольника. А что будет, если сложить их по диагонали?
Смотрите, какие суммы выходят:
Не буду томить вас. Это числа знаменитой последовательности Фибоначчи, которая окажется в центре нашего внимания в следующей главе.
Глава номер пять
Магия последовательности Фибоначчи
Числа матушки Природы
Лицезрите во всей красе одну из самых таинственных числовых последовательностей – последовательность Фибоначчи!
В ее начале находятся два одинаковых числа – 1 и 1. Третье число – это 1 + 1 (сумма двух предыдущих чисел), то есть 2. Четвертое – 1 + 2 = 3, пятое – 2 + 3 = 5 и т. д. и т. п. Очень похоже на чехарду: 3 + 5 = 8; 5 + 8 = 13; 8 + 13 = 21… Впервые эти числа в таком виде появились в книге 1202 года
Одна из самых известных включенных в него задач – задача о бессмертных кроликах. Допустим, крольчонку требуется месяц, чтобы повзрослеть. От каждой пары кроликов каждый месяц рождается еще пара – и так до бесконечности, поскольку наши кролики бессмертны. Вопрос: если начать с одной пары, сколько у нас будет пар кроликов 12 месяцев спустя?
Иллюстрировать задачу можно либо картинкой, либо таблицей. Маленькой буквой
Всю эту ситуацию мы можем представить в виде таблицы. Здесь хорошо видно, что в первые 6 месяцев число пар кроликов равняется соответственно 1, 1, 2, 3, 5 и 8.
Давайте попробуем доказать, что на седьмой месяц у нас будет уже 13 пар, ничего при этом не рисуя и не фиксируя на листочке. Сколько к этому моменту будет пар взрослых кроликов? Так как каждая пара из тех, что получились у нас к шестому месяцу, к седьмому успела повзрослеть, получаем 8 пар.
А сколько будет пар крольчат? Их число будет равняться числу пар взрослых кроликов шестого месяца (то есть 5) или общему количеству пар пятого месяца (и такое совпадение совсем не случайно). Следовательно, на седьмой месяц у нас будет 8 + 5 = 13 пар.
Если мы назовем первые два числа последовательности Фибоначчи
И тогда
Следовательно, ответом на задачу Фибоначчи о бессмертных кроликах будет
Эта последовательность пригодна не только для подсчета численности популяций животных. Числа Фибоначчи встречаются даже в самой природе, и на удивление часто: это и лепестки цветка, и спирали подсолнуха, ананаса или сосновой шишки. Меня в последовательности Фибоначчи больше всего восхищают обнаруживающиеся в ней замечательные числовые закономерности.
Давайте для начала сложим несколько первых из этих чисел:
Числа справа к последовательности не относятся, но находятся совсем рядом с ней – буквально в одном шаге. Давайте разберемся, что тут происходит. Возьмем последнее из этих уравнений и посмотрим, что произойдет, если заменить каждое из чисел Фибоначчи на разность двух следующих после него. То есть
Обратите внимание, как двойка из (2 – 1) перекрывается двойкой из (3 – 2), а тройка из (3 – 2) перекрывается тройкой из (5 – 3). Собственно говоря, перекрываются здесь практически все числа, за исключением самого большого 34 и начального –1. Означает это, что сумма первых
А вот еще один вопрос, напрямую связанный с первым и имеющий не менее элегантный ответ. Что мы получим, если захотим сложить между собой первые
Давайте сначала посмотрим на некоторые из них:
Погодите-ка. Вроде бы что-то знакомое. Мы же уже видели эти числа, когда считали прошлую сумму. Они на единицу меньше чисел Фибоначчи. По сути, каждое из них может быть трансформировано подобным образом на том основании, что каждое из чисел Фибоначчи – сумма двух предыдущих. Именно этой суммой мы можем заменить каждое число, занимающее четную позицию в последовательности, вот так:
Последняя строчка получается благодаря тому, что сумма первых 7 чисел последовательности лишь на единицу меньше девятого.
В целом, если мы будем исходить из того, что
А теперь давайте посчитаем сумму первых
Здесь все еще проще, как ни странно. Сумма
К ответу можно прийти и другим способом – с помощью того, о чем мы только что говорили. Если мы вычтем первые
Подсчет с помощью чисел Фибоначчи
Мы заглянули лишь в замочную скважину той двери, за которой раскинулся сад самых настоящих чудес. Только растут в нем не деревья, а числовые закономерности, уходящие корнями в последовательность Фибоначчи. И вам, наверняка, не терпится узнать, для чего еще, кроме подсчета поголовья кроликов, нужны эти числа. На самом деле – много для чего. В 1150 году (задолго до того, как Леонардо Пизанский представил миру задачку про кроликов) индийский поэт Хемачандра задался очень интересным вопросом: сколькими способами можно сложить стихотворную стопу из
Вопрос: Сколькими способами можно записать число
Ответ: Обозначим результат как
У нас есть один вариант, дающий в сумме 1, два варианта, дающих 2 (1 + 1 и 2), и три варианта, дающих 3 (1 + 1 + 1, 1 + 2 и 2 + 1). Повторимся: для получения нужной нам суммы доступны только единицы и двойки. При этом порядок этих цифр имеет значение: 1 + 2 и 2 + 1 суть две разные комбинации. Получить 4 можно уже пятью разными вариантами: 1 + 1 + 1 + 1, 1 + 1 + 2, 1 + 2 + 1, 2 + 1 + 1, 2 + 2. По всему выходит, что числа в правой части нашей таблицы – это числа из последовательности Фибоначчи, и так оно есть на деле.
Давайте попробуем понять, почему вдруг 5 можно получить
Причем все значения
А так как мы с вами уже знаем,
Так, восьмая диагональ дает нам
С точки зрения «подсчета комбинаций» это значит, что
Чтобы понять суть этой закономерности, попробуем ответить на один вопрос двумя различными способами.
Вопрос: Сколько существует возможных комбинаций единиц и двоек, дающих в сумме 8?
Ответ номер один: Судя по тому, о чем мы говорили чуть выше, –
Ответ номер два: Представим себе эту проблему как 5 частных задач, в основе каждой из которых лежит количество двоек в комбинации. Сколько комбинаций обойдется вообще без двоек? Разумеется, только одна – 11111111. И поэтому совсем не случайно, что
С одной двойкой? Уже семь: 2111111, 1211111, 1121111, 1112111, 1111211, 1111121, 1111112. Каждая из них состоит из семи цифр, и, смещая двойку шаг за шагом, получаем
С двумя двойками (скажем, 221111)? Не будем перечислять их все, просто отметим, что любая из них будет состоять из двух двоек и четырех единиц, то есть всего из шести цифр, что дает нам возможных местоположений двоек. По той же логике комбинации с тремя двойками будут включать в себя две единицы и состоять из 5 цифр, а общее их количество будет равняться И наконец, из четырех двоек у нас получится всего одна комбинация (а именно 2222), потому что
Оба ответа отлично проясняют всю ситуацию. И заодно объясняют, почему сумма чисел
К тому же можно прийти, представив последовательность Фибоначчи в виде
Такую визуализацию можно использовать, чтобы понять другие закономерности, основанные на числах Фибоначчи. Давайте посмотрим, что произойдет, если возвести числа Фибоначчи в квадрат.
В том, что, сложив два соседних числа последовательности Фибоначчи, мы получим следующее за ними, ничего нового для нас нет (в конце концов, именно так и появилась эта последовательность). А теперь посмотрите на числа Фибоначчи, возведенные в квадрат и сложенные между собой:
Попробуем объяснить эту закономерность с точки зрения счета. Последнее уравнение утверждает, что
Почему? Ответим на простой вопрос.
Вопрос: Сколькими способами можно выложить из квадратов и прямоугольников ряд длиной в 10 квадратов?
Ответ 1: Естественно,
То есть разрывы между плитками у нас будут после 2, 3, 4, 6, 7, 9 и 10 квадратов (попросту – везде, кроме центральной оси прямоугольников, в нашем примере – это после 1, 5 и 8 квадратов).
Ответ 2: Решим две задачи: сначала посчитаем варианты кладки, в которых будет разрыв после 5 квадрата (то есть ряд можно разделить пополам), потом те, где разрыва в этом месте не будет (и ряд будет разделяться на две неравные части). Начнем с первого. Левую часть можно выложить
Теперь посчитаем те варианты, в которых разрыва в центре нет, зато мы точно знаем, что 5 и 6 квадраты закрыты прямоугольником (как нарисовано ниже). В таком случае части ряда как слева, так и справа от центрального прямоугольника можно выложить
На уровне обобщений же трюк с разделением панелей длиной 2
Возьмем только что рассмотренную закономерность и попробуем использовать ее в похожих примерах. Скажем, сколько будет способов выложить плиткой ряд протяженностью
А теперь рассмотрим другой пример. Что получится, если суммировать квадраты всех чисел Фибоначчи?
Ух ты! Здо́рово, правда? Сумма квадратов есть произведение двух последних чисел! Но зачем прибавлять сумму квадратов 1, 1, 2, 3, 5 и 8 к произведению 8 × 13? Лучший способ визуализировать это – взять шесть квадратов со сторонами 1, 1, 2, 3, 5 и 8 и расположить их так, как показано на схеме.
Берем один квадрат 1 на 1. Рядом с ним помещаем второй такой же. Получается прямоугольник 1 на 2. Под ним располагаем квадрат 2 на 2, и наш прямоугольник вырастает до 3 на 2. К его более длинной грани прибавляем квадрат 3 на 3 (получается прямоугольник 3 на 5); квадрат 5 на 5 отправляется вниз (получая прямоугольник 8 на 5), и, наконец, чертим самый большой квадрат, 8 на 8, тем самым заканчивая и прямоугольник 8 на 13. А теперь – простой вопрос.
Вопрос: Какова площадь большого прямоугольника?
Ответ 1: С одной стороны, это будет сумма площадей всех входящих в него квадратов, то есть 1² + 1² + 2² + 3² + 5² + 8².
Ответ 2: С другой стороны, высота большого прямоугольника равняется 8, длина же – 5 + 8 = 13, а значит, площадь – 8 × 13.
Так как оба эти ответа логически верны, они должны приводить нас к одному и тому же результату, который объяснит наше тождество. По большому счету, то, как мы строили этот прямоугольник, уже его объясняет – вместе со всеми отношениями между входящими в нее числами (я имею в виду 1² + 1² + 2² + 3² + 5² = 5 × 8). И если следовать этой логике и дальше, мы расширим наш прямоугольник сначала до 13 × 21, потом до 21 × 34 и т. д. до бесконечности. Общая формула выглядит так:
Посмотрим, что произойдет при перемножении двух
С помощью метода доказательства (называемого также индукцией), о котором мы подробно поговорим в следующей главе, приходим к тому, что при
А почему бы нам не пойти дальше, к
Еще несколько закономерностей чисел Фибоначчи
Говоря о треугольнике Паскаля, мы видели, насколько красивые в своей сложности закономерности демонстрируют его четные и нечетные числа. С последовательностью Фибоначчи все проще. Посмотрите на нее еще раз. Какие из этих чисел четные?
И дальше такой порядок повторяется вновь и вновь:
Происходит это потому, что после каждого блока «нечетное, нечетное, четное» следующий цикл сложения выглядит как «нечетное + четное = нечетное», потом «четное + нечетное = нечетное» и, наконец, «нечетное + нечетное = четное», так что закономерность бесконечно повторяется.
Говоря языком соотносимости, выученным нами в главе 3, каждое четное число соотносится с 0 (по модулю 2), а каждое нечетное – с 1 (также по модулю 2), а 1 + 1 ≡ 0 (mod 2). Вот как выглядит последовательность Фибоначчи в двоичной системе (или по модулю 2 – выбирайте любой термин):
А что насчет чисел, кратных 3? Первые из них –
В троичной системе последовательность выглядит как
После каждого восьмого числа мы замыкаем круг и начинаем опять с двух следующих друг за другом единиц, то есть в этом случае цикл состоит из 8 чисел, четвертое и восьмое из которых – 0. Так и получается, что каждое четвертое место последовательности Фибоначчи занято числом, кратным 3. Считая по модулю 5, 8 или 13, обнаруживаем, что
и закономерность продолжается.
А что насчет чисел,
называются
А теперь – мой самый любимый факт о числах Фибоначчи. Он касается
Как вы думаете, каким будет наибольший общий делитель двадцатого и девяностого чисел последовательности Фибоначчи? Ответ звучит как поэзия: 55 – десятое число последовательности Фибоначчи! А вот уравнение:
Или в общем виде, для значений
Другими словами, «НОД значений
Иногда закономерность может оказаться обманчивой. Какие, например, из чисел Фибоначчи являются простыми? (Простые – это числа больше 1, которые при этом делятся без остатка только на 1 и на самих себя, мы поговорим о них подробнее в следующей главе.) Числа больше единицы, не являющиеся простыми, называются
А теперь взгляните на числа, стоящие на «простых» позициях:
Числа 2, 5, 13, 89, 233 и 1597 – простые. Закономерность вроде бы говорит нам о том, что, если значение
На самом деле простые числа Фибоначчи встречаются редко – пока что официально подтверждено лишь 33, наибольшее из них занимает
Но отвлечемся немного от серьезных научных изысканий и займемся небольшим, но забавным фокусом, основанным на магии чисел Фибоначчи.
В 1 и 2 рядах таблицы напишите два любых числа от 1 до 10. Сложите их, а сумму запишите в 3 ряду. Затем сложите числа из 2 и 3 рядов. Результат запишите в 4 ряд. Продолжайте так делать (ряд 3 + ряд 4 = ряд 5 и т. п.), пока не дойдете до конца таблицы. У вас получится свой вариант последовательности Фибоначчи. А теперь разделите число из 10 ряда на число из 9 ряда. Из результата вам нужны первые три цифры, включая те, которые идут после запятой. В нашем примере из них оставляем 1,61. Хотите – верьте, хотите – нет, но, с каких бы двух положительных (необязательно целых и даже необязательно из промежутка от 1 до 10) чисел в 1 и 2 рядах вы ни начали, частным при делении числа 10 ряда на число 9 ряда
Чтобы разобраться в природе этого фокуса, обозначим первые два числа литерами
Требуется найти частное чисел 10 и 9 рядов:
Почему же результат всегда будет начинаться с 1,61? Вы удивитесь, но в основе этого лежит
Начиная, например, с дробей 1/3 и 1/2, для которых медианта будет 2/5, она расположена в интервале 1/3 < 2/5 < 1/2.
Почему медианта всегда будет располагаться примерно между изначальными числами? Если мы начинаем с дробей где
Обратите внимание, что при
Следовательно, медианта этих двух дробей должна находиться между ними. Другими словами,
Вот почему частное чисел из 10 и 9 рядов должно начинаться с 1,61, как мы уже до этого и посчитали.
Прежде чем открыть секрет числа 1,61, можете поразить свою аудиторию, постоянно добавляя числа к своей таблице. Так, в нашем примере, где мы начали с 3 и 7, достаточно беглого взгляда, чтобы узнать результат – 781. Как? С помощью алгебры. Если сложить значения из 2 таблицы, мы получим сумму, равную 55
В чем важность числа 1,61? Если не останавливаться на 10 ряду и продолжать расширять таблицу, вы легко обнаружите, что частное двух соседних чисел будет от ряда к ряду все больше приближаться к значению, которое называют «золотым сечением» –
Кроме
Алгебра покажет нам, на самом ли деле частное двух соседних чисел последовательности Фибоначчи приближается к
При увеличении значения
Умножив обе стороны этого уравнения на
Другими словами,
Существует еще одна будоражащая воображение формула для
Глядя на нее, я не перестаю удивляться: как такое возможно, что вся эта формула, построенная вокруг √
Мы можем ее немного упростить, потому что значение
находится между –1 и 0, и чем больше мы увеличиваем степень, тем больше оно приближается к 0. По большому счету, можно утверждать, что для любого
Все эти вычисления показывают, что
названную в честь французского математика Эдуарда Люка (1842–1891) – первооткрывателя многих удивительных свойств этих чисел, а заодно и чисел Фибоначчи, включая формулу с наибольшим общим делителем, о которой мы не так давно говорили. Кстати, именно Люка впервые назвал набор чисел 1, 1, 2, 3, 5, 8… последовательностью Фибоначчи. Последовательность же Люка соответствует его собственной (несколько упрощенной) версии формулы Бине –
Другими словами, при
Не заметить здесь закономерность почти невозможно. Например, сложение «соседей» числа Фибоначчи дает соответствующее ему по позиции число последовательности Люка:
А если мы сложим «соседей» числа из последовательности Люка, получим результат, который будет ровно в 5 раз больше соответствующего ему по позиции числа Фибоначчи:
Если перемножить между собой соответствующие друг другу числа двух последовательностей, мы получим еще одно число последовательности Фибоначчи!
Последнее может быть доказано с помощью алгебры и формул Бине (а именно (
И когда мы их перемножаем, получается
Откуда пришло название «золотое сечение»? Из золотого прямоугольника, в котором соотношение длинной и короткой сторон составляет
Если обозначить короткую сторону единицей и убрать из прямоугольника квадрат со сторонами 1 на 1, у нас останется еще один прямоугольник со сторонами 1 и (
То есть пропорции маленького прямоугольника будут такими же, как и большого. Кстати,
Благодаря этому своему свойству золотой прямоугольник считается эстетически образцовым, а потому часто используется в разных областях искусства, будь то живопись, фотография или архитектура. Например, Лука Пачоли[14] – друг и соратник Леонардо да Винчи называл его «божественной пропорцией».
Золотое сечение лежит в основе стольких удивительных математических явлений, что подчас очень сложно удержаться от соблазна увидеть его даже там, где его нет и никогда не было. Например, в романе «Код да Винчи» Дэн Браун пишет, будто число 1,618 встречается везде и всегда, и подтверждение тому – строение человеческого тела, Браун утверждает, что отношение нашего роста к высоте, на которой расположен пупок, – 1,618. Я не проводил измерений, но в статье Джорджа Марковски «Выдумки о золотом сечении», опубликованной в журнале
Я уже не раз говорил, что многие числовые закономерности, в которых присутствуют числа Фибоначчи, суть настоящая поэзия. И это не просто метафора: эти числа действительно используются при создании стихотворений. Возьмем, к примеру, лимерики. Вот, последите за ритмом (пусть без слов, просто используя сетку слогов):
Если посчитать количество слогов в каждом ряду, мы получим числа Фибоначчи! Лично меня это вдохновило настолько, что я отважился написать о них свой собственный лимерик:
Глава номер шесть
Магия доказательств
Ценность доказательств
Одна из главных радостей занятий математикой – возможность окончательных, не оставляющих ни тени сомнения доказательств. Это ставит математику на особое место в ряду других наук, которые опираются на соответствие законам материального мира. Однако новые открытия могут опровергать или изменять эти законы. В математике же доказанное однажды остается доказанным навсегда. Прошло больше 2000 лет с того момента, как Евклид доказал бесконечность множества простых чисел – и это никогда не удастся оспорить. Научно-технические формации сменяют друг друга, теоремы же вечны. Как однажды сказал великий Годфри Харди[15]: «Математик так же, как художник или поэт, создает узоры. И если его узоры более устойчивы, то лишь потому, что они сотканы из идей». По-моему, доказать новую теорему – все равно что шагнуть на тропу, ведущую в научное бессмертие.
В математике доказывают не только абсолютную истинность, но и
С вашего позволения, расскажу о первом своем опыте на этой стезе. В детстве двумя главными предметами моего обожания были настольные игры и загадки. Как-то раз мой друг предложил мне загадку, связанную с настольными играми, и, конечно, я был заинтригован. Он положил передо мной пустую шахматную доску размером 8 на 8 клеточек и 32 костяшки домино и спросил:
– Можешь выложить домино так, чтобы они закрыли всю доску?
– Конечно, – уверенно ответил я. – Просто по четыре костяшки на ряд. Вот так:
– Молодец, – сказал он. – А если я уберу две клетки – правую нижнюю и левую верхнюю, и их останется 62 – сможешь закрыть оставшиеся 31 костяшкой? – и он положил на крайние квадратики две монетки.
– Хм… Наверное, – ответил я.
Но как я ни пытался, какие комбинации ни пробовал, у меня ничего не получалось. Наконец я сдался, заявив, что это в принципе невозможно.
– А если невозможно, – сказал мой друг, – можешь
Я не мог. Ведь для этого потребовалось бы проверить бесконечное множество вариантов (если хотите, можете посчитать, сколько именно) и удостовериться в том, что
– Посмотри на цвета, – посоветовал друг, видя мое замешательство.
«На цвета? Причем тут цвета?» – подумал я. А потом понял. Обе закрытые клеточки были белыми, а значит, из 62 оставшихся свободными, 32 были черными и всего лишь 30 – белыми. А поскольку костяшка домино, как ее ни положи, закрывает пару разноцветных клеточек, выложить ими всю доску не получилось бы ни за что на свете. Здо́рово!
Если вам понравилось последнее доказательство, понравится и это. Играя в известный всем «Тетрис», нужно заполнять «стакан» из 10 клеток падающими фигурами. Всего их 7, и соответственно их форме их иногда обозначают латинскими буквами: I, J, L, O, Z, T и S.
Каждая фигура состоит из 4 квадратиков, поэтому вполне естественно задаться вопросом, можно ли сложить их как-нибудь так, чтобы получился прямоугольник размером 4 на 7? При этом фигурки можно переворачивать как угодно.
Оказывается, нельзя. Как это доказать? Давайте раскрасим квадратики в прямоугольнике в шахматном порядке – так, чтобы получилось 14 серых и 14 белых.
Обратите внимание: любая фигура, кроме «Т», должна закрывать 2 белых и 2 серых квадратика независимо от своего положения. Сама же «Т» состоит из 3 квадратиков одного цвета и 1 квадратика – другого. Следовательно, как бы ни располагались остальные 6 фигур, они закроют 12 белых и 12 серых квадратиков, а это значит, что для «Т» останется только по 2 квадратика каждого цвета, в которые она «не впишется».
Как же убедить окружающих в истинности математического утверждения, которое кажется нам верным? Обычно начинают с описания математических объектов, которые мы используем, например целых чисел
множества, которое включает положительные и отрицательные числа и ноль.
Определив объекты, мы делаем допущение, которое считаем самоочевидным – например, «сумма или произведение двух целых чисел всегда будет целым числом» (в следующей главе, посвященной геометрии, мы будем исходить из того, что между двумя точками можно провести только одну прямую). Такие самоочевидные, не требующие доказательств утверждения называются
Начнем, пожалуй, с доказательства простых теорем, которые вызывают минимум сомнений. Когда мы слышим «два четных числа при сложении дают третье четное число» или «два нечетных числа при умножении дают третье нечетное число», наш разум обычно пытается проверить такие утверждения рядом примеров и из них сделать вывод, что это, скорее всего, верно. Ну или хотя бы не полная чушь. Вы даже можете решить, что это настолько очевидно, что может быть принято как аксиома. Делать этого не стоит – по крайней мере, до тех пор, пока вы
Теорема: Если
Это прекрасный пример теоремы по принципу «если…, то…». Чтобы ее доказать, нам надо сделать допущение в части, начинающейся с «если…», и, смешав логику с алгеброй, показать, что часть, начинающаяся с «то…», является следствием этого допущения. В нашем примере мы предполагаем, что
Доказательство: Предположим, что
А так как
Обратите внимание, что доказательство основывается на аксиоме, согласно которой сумма двух целых чисел (в нашем случае
Редкий математик устоит перед тем, чтобы, доказав теорему по принципу «если…, то…», не попытаться доказать ее же, но наоборот, используя в качестве отправной точки обратное высказывание, то есть, по сути, меняя местами части «если…» и «то…». В нашем примере с четными числами обратным высказыванием станет предположение, что «если
где очень четко и ясно видно, что четное число можно получить сложением двух других чисел, которые четными не являются.
Следующая наша теорема касается нечетных чисел. Нечетным называется такое число, которое не делится на 2. Попытавшись это сделать, вы всегда получите 1 в остатке. Алгебраически
Теорема: Если
Доказательство: Предположим, что m и n являются нечетными числами. Тогда
А так как 2
А что насчет обратного высказывания? Итак, если
Теорема: Если
Доказательство: Предположим, что либо
В том случае, когда теорему можно доказать как в «прямом», так и в «обратном» порядке, ее иногда называют теоремой по принципу «если и только если» (или «тогда и только тогда»). Как раз такую мы сейчас и доказали:
Теорема:
Рациональные и иррациональные числа
Возможно, теоремы, которые мы только что рассмотрели, ничем вас не удивили, а их доказательства показались вам весьма прямолинейными. Куда большее удовольствие получаешь, пытаясь подтвердить менее очевидные предположения. Пока что мы довольствовались целыми числами – не пора ли заняться дробями? Число, которое можно представить в дробном виде, называется рациональным. Если быть точным, то число
Для следующей нашей теоремы не лишним будет вспомнить, как вообще складывать дроби. И легче всего это делать, когда дроби имеют общий знаменатель, например:
В противном случае нам сперва придется привести дроби к общему знаменателю:
В целом же дроби
И этого вполне достаточно, чтобы доказать несколько простых теорем, связанных с рациональными числами.
Теорема: Среднее арифметическое двух рациональных чисел также будет рациональным числом.
Доказательство: Возьмем два рациональных числа –
Это дробь, числитель и знаменатель которой – целые числа. Следовательно, среднее арифметическое значение
А теперь давайте подумаем, что же именно утверждается в этой теореме. А утверждается в ней то, что между двумя разными рациональными числами, насколько бы близки они друг другу ни были, всегда найдется еще одно рациональное число. Возникает искушение сделать из этого вывод, что все числа являются рациональными (как довольно долго думали древние греки). Нет, это не так. И смотрите, почему. Возьмем число √
Теорема:√
Доказательство: Предположим обратное: √
где дробь
или
что приводит нас к тому, что
То есть
что приводит нас к
и констатации того факта, что
Лично я нахожу это доказательство восхитительным (и смайлик в конце строки тому подтверждение): прямая и хорошо освещенная тропа чистой, ничем не замутненной логики приводит нас к удивительному умозаключению. В главе 12 мы еще увидим, насколько велик на самом деле процент иррациональных чисел. Практически все действительные числа являются иррациональными, притом, что в повседневной жизни мы с ними почти не сталкиваемся.
Из доказанной нами только что теоремы следует одно любопытное заключение (его, пожалуй, даже можно назвать сопутствующей теоремой – такой, условия которой вытекают из только что доказанной). Основано оно на следующем правиле возведения в степень, согласно которому для любых положительных значений
То есть утверждение, что (5³)² = 56, будет вполне справедливым, потому что
Сопутствующая теорема: Существуют иррациональные числа
Не пугайтесь, нам эта теорема вполне по плечу, хоть мы и знаем пока лишь одно иррациональное число – √
Доказательство: Раз уж мы знаем, что √
то есть рациональное число. Следовательно, независимо от того, является рациональным или иррациональным числом, мы докажем, что
Так обычно и выглядит любое доказательство существования чего бы то ни было: почти всегда остроумно и очень редко – исчерпывающе. (Кстати, уж коли зашла речь: число – все-таки иррациональное число, но сейчас это для нас абсолютно не принципиально.)
Куда больше удовлетворения (равно как и куда больше существенной информации) получаешь, идя путем конструктивного доказательства. Одно из них, к примеру, – доказательство того, что любое рациональное число
Умножим обе части на 1000:
вычтем первое уравнение из второго:
и получим
Возьмем еще одну периодическую десятичную дробь, но на этот раз такую, в которой цикл повторения начинается не с первой после запятой цифры, а чуть позже.
Какой обычной дроби будет соответствовать десятичная 0,83333…? Начнем с
Затем сделаем так:
и так:
При вычитании 10
Значит,
Этот алгоритм позволяет нам с определенной долей уверенности утверждать, что число будет рациональным тогда и только тогда, когда его представление в виде десятичной дроби является либо конечным, либо периодическим. Иррациональной же будет та дробь, которая после запятой имеет бесконечное количество знаков, не образуюющих при этом цикл, например,
Доказательство методом индукции
Вернемся к теоремам о положительных числах. В главе 1 мы выяснили, что
и предположили, что сумма первых
Так, в примере с первыми
Мы видим, что сумма самого первого нечетного числа – 1 – и в самом деле составляет 1², то есть для
при добавлении следующего нечетного числа (2
Другими словами, если сумма первых
Индукция – инструмент действенный. Эта книга начиналась с проблемы определения суммы первых
Это предположение, безусловно, правдиво при
Тогда, прибавив к этой сумме (
В этой формуле
В этой главе (да и в книге вообще) будет еще много примеров использования индуктивного метода. А пока для закрепления материала вот вам песня, написанная «музыкантами от математики» Дэйном Кэмпом и Ларри Лессером на мотив знаменитой «Blowin' in the Wind» Боба Дилана.
В главе 5 мы рассмотрели несколько задач, основанных на числах последовательности Фибоначчи. Попробуем доказать парочку из них, используя метод индукции.
Теорема: Для
Доказательство (методом индукции): Если
Добавив к обеим частям число Фибоначчи F
что и требовалось доказать.
Столь же простым будет доказательство для суммы квадратов чисел Фибоначчи.
Теорема: Для
Доказательство (методом индукции): Если
А теперь добавим к обеим сторонам
что и требовалось доказать.
В главе 1 мы выяснили, что сумма кубов равна квадрату суммы, то есть
но тогда мы не были готовы это доказать. Просто мы ничего не знали об индукции. При
А так как нам уже известно, что докажем схожую теорему.
Теорема: Для
Доказательство (методом индукции): При
Прибавим к обеим сторонам (
что и требовалось доказать.
А вот геометрическое доказательство тождества суммы кубов.
Посчитаем площадь фигуры двумя разными способами, а потом сравним результаты. С одной стороны, перед нами явно квадрат, каждая из сторон которого равна 1 + 2 + 3 + 4 + 5, а общая площадь, таким образом, – (1 + 2 + 3 + 4 + 5)².
С другой стороны, если начать с верхнего левого угла, а затем двигаться вниз по диагонали, мы пройдем последовательно через один квадрат размером 1 на 1, два размером 2 на 2 (один из которых разбит на два прямоугольника), три квадрата размером 3 на 3, четыре размером 4 на 4 (и еще один «разрезанный» пополам) и, наконец, пять квадратов размером 5 на 5. Следовательно, их общая площадь будет равна
Так как обе полученные нами площади должны быть равны, имеем
То же можно сделать и с квадратом со сторонами длиной 1 + 2 +… +
Доказательство методом индукции применяется не только при сложении – оно отлично работает всякий раз, когда некую «большую» проблему (вроде
Так как 64 (число клеток) на 3 не делится, одних лишь тримино для всей площади шахматной доски нам явно не хватит. Но стоит взять дополнительно один квадратик размером 1 на 1, и можно смело утверждать, что вне зависимости от его (квадратика) положения на доске для всего остального хватит тримино. Причем утверждение это справедливо не только для обычных шахматных досок 8 на 8, но и для досок размером 2 на 2, 4 на 4, 16 на 16 и т. д.
Теорема: Для любого значения
Доказательство (методом индукции): Утверждение является истинным при
Сектор с квадратиком имеет размер 2
Последнее тождество имеет много полезных применений. Давайте докажем его по индукции, добавив парочку других способов. Какова сумма первых
Приступим к сложению:
Видите закономерность? Каждая сумма на 1 меньше следующего числа, получаемого от возведения 2 в степень. Все это сводится вот к чему.
Теорема: Для
Доказательство по индукции: Как мы уже отмечали, утверждение является верным при
Добавив к обеим частям следующее число, получаемое при возведении 2 в степень (то есть 2
В 4 и 5 главах мы подтвердили множество закономерностей, находя ответ двумя разными способами. Возможно, комбинаторный подход покажется вам наиболее ценным.
Вопрос: В хоккейной команде
Ответ 1: У каждого игрока два варианта: идти или не идти. Значит, у команды в целом есть 2
Ответ 2: За основу «состава» положим хоккеиста с наибольшим номером на свитере. «Состав» с единицей в качестве наибольшего числа всего 1, с двойкой их 2 (потому что хоккеист № 2 может пойти либо в одиночестве, либо в компании хоккеиста № 1), с тройкой – 4 (потому что хоккеист № 3 может пойти либо один, либо в компании хоккеиста № 2, который точно так же может позвать, а может и не позвать с собой хоккеиста № 1). Следуя этой логике и дальше, мы увидим, что всего возможных «составов» будет 2
Оба результата верны, а значит, равны. Таким образом, получается, что 1 + 2 + 4 +… + 2
При всех достоинствах комбинаторного метода наиболее простым здесь будет алгебраический – схожий с тем, который мы использовали для преобразования периодической десятичной дроби в простую.
Алгебраическое доказательство:
Удвоив обе части, получим
Вычтем первое уравнение из второго, что позволит нам избавиться от всего лишнего и оставить только
Теорема эта – ключ к двоичной системе, имеющей огромное практическое значение: именно на ее основе проводят числовые операции все компьютеры. Смысл ее заключается в том, чтобы представить любое число как уникальную сумму различных степеней основания числа 2. Например,
Запишем это двоичным кодом, заменяя каждое возведенное в степень число 2 единицей, а каждое пропущенное значение 2 в степени – нолем. В нашем примере это 83 = (1 × 64) + (0 × 32) + (1 × 16) + (0 × 8) + (0 × 4) + (1 × 2) + (1 × 1). Следовательно, в двоичной системе число 83 выглядит так:
Как удостовериться, что в таком виде можно представить любое положительное число? Предположим, что каждое число от 1 до 99 есть уникальная сумма степеней основания 2. Сможем ли мы представить в столь же уникальном виде число 100? Начнем с наибольшей степени основания 2, которая меньше 100, то есть с 64. (Почему именно 64? Да потому что меньшие значения – 1, 2, 4, 8, 16 и 32 – дадут в сумме лишь 63, а значит, 100 нам никак не получить.) Остается добрать 36 – точно так же, с помощью чисел, которые получаются от возведения 2 в разные степени. Как это сделать? Проще всего – следуя той же логике, что и с сотней, то есть начать с самого большого подходящего нам числа. Так как 36 = 32 + 4, значит 100 = 64 + 32 + 4, в двоичной системе – (1100100)2. Обобщив это (с помощью так называемого убедительного индуктивного подтверждения), приходим к выводу, что любое положительное число имеет уникальное двоичное представление.
Простые числа
Как мы только что убедились, любое положительное целое число может быть представлено в виде уникальной суммы различных степеней числа 2. В принципе, можно говорить, что числа, получаемые при возведении 2 в последовательные степени – это строительные блоки, из которых складываются положительные целые числа.
Примерно то же справедливо и отношении простых чисел и умножения: любое положительное целое число можно представить в виде произведения простых чисел (с той лишь разницей, что простые числа изучены куда меньше, чем степени основания 2, и знаем о них мы далеко еще не всё).
Число 1 простым не является: у него всего один делитель (хотя, конечно, не только поэтому – есть и более веские причины, о которых мы поговорим чуть позже). Обратите также внимание: в этом ряду всего лишь одно четное – 2, что явно (а можно сказать и – выгодно) отличает ее от остальных простых чисел.
Положительное целое число, для которого имеются 3 и более делителя, называется составным, ведь его можно разложить на более простые. Вот они:
Так, у четверки всего три делителя (1, 2 и 4), у шестерки – четыре (1, 2, 3 и 6) и так далее. Обратите внимание, что числа 1 нет и здесь. Математики называют его единицей, числом с уникальным свойством – быть делителем абсолютно любого целого числа.
Каждое составное число может быть представлено в виде произведения простых чисел. Возьмем для примера 120. Можно начать с 120 = 6 × 20. Но и 6, и 20 – тоже составные. Разложим их сразу на простые: 6 = 2 × 3, 20 = 2 × 2 × 5. Следовательно,
Примечательно то, что, на какие бы составляющие мы ни разложили начальное число, результат получится абсолютно тот же. Причина тому – теорема о единственности разложения, основная теорема арифметики, согласно которой каждое положительное целое число больше 1 раскладывается на произведение простых чисел единственным способом, включая порядок следования сомножителей.
Здесь-то, кстати, и кроется настоящая причина того, что число 1 не может быть названо простым: будучи простым, оно бы делало эту теорему несостоятельной. Ведь тогда 12, например, можно было бы представить не только как 2 × 2 × 3, но и как 1 × 1 × 2 × 2 × 3, и разложение на простые числа не было бы уникальным.
Однажды разложив число, вы узнаете всю его подноготную. В детстве моим любимым числом была девятка, но с возрастом я узнавал и другие, куда более сложные (вроде π = 3,14159…, φ = 1,618…,
Зная положительные множители, вы можете узнать и положительные делители – вернее, их количество. Так, любой из делителей 2520 должен сводиться к форме 2
Из основной теоремы арифметики вытекает любопытное следствие, касающееся простых чисел (вы можете найти его доказательство практически в любом учебнике, причем на первых страницах): если простое число
кратно 11, то 11 должно быть делителем либо 333, либо 3003 (на деле – только последнего сомножителя: 3003 = 11 × 273). В случае составных чисел это правило работает не всегда: так, 60 = 6 × 10 делится на 4, несмотря на то что 4 не является делителем ни 6, ни 10.
Чтобы показать уникальность каждого разложения на множители, пойдем от обратного – предположим, что одно и то же число можно представить несколькими отличными друг от друга произведениями. Допустим,
где все значения
что означает, что число может быть разложено на множители двумя разными способами, а это противоречит нашему условию, что
Кстати, существуют такие системы счисления, где далеко не каждое число раскладывается на множители
В марсианской системе числа вроде 6 или 10 будут считаться простыми, потому что их нельзя разложить на меньшие четные числа. А отличить простые числа от составных (которые, кстати, чередуются в ряду с завидной регулярностью) не составляет никакого труда: если число делится на 4 без остатка – оно составное (потому что 4
Но давайте посмотрим на число 180:
Очевидно, что оно может быть разложено на множители двумя разными способами, а значит, ни о какой уникальности на Марсе и слыхом не слыхивали.
В интервале от 1 до 100 насчитывается 25 простых чисел, от 101 до 200 – 21, от 201 до 300 – 16. И тенденция эта сохраняется: чем дальше мы продвигается, тем реже встречаются простые величины (без всякой, впрочем, системы: в промежутке от 301 до 400 их снова 16, а в промежутке от 401 до 500 – 17) – а от 1 000 000 до 1 000 100 мы их найдем всего лишь 6. Объяснение этому вполне очевидно: чем больше число, тем больше потенциальных делителей у него будет.
Давайте попробуем доказать, что есть такие сотни чисел, в которых простых чисел не будет вовсе (и не только сотни – тысячи, миллионы, сколько угодно). Для этого будет достаточно подобрать 99 последовательно идущих друг за другом составных чисел:
Так как 100! = 100 × 99 × 98 ×… × 3 × 2 × 1, его можно разделить на все числа от 2 до 100. Возьмем теперь 100! + 53. Так как 53 – делитель 100! оно должно являться делителем и 100! + 53. Та же логика подсказывает, что при 2 ≤
Обратите внимание, что мы пропустили 100! + 1. Впрочем, ничто не мешает нам взять и его. На этот счет существует очень интересная теорема –
Итак, чем больше числа, тем меньше среди них попадается простых. Вполне логично было бы предположить, что рано или поздно они перестают попадаться вовсе. Но только не в этом случае, как больше 2000 лет назад предупредил нас Евклид. Дерзнем не поверить великому греку на слово и докажем это сами.
Теорема: Количество простых чисел бесконечно.
Доказательство: Предположим обратное – что количество простых чисел конечно. Значит, существует некое наибольшее простое число. Обозначим его литерой P. Возьмем число P! + 1. Так как P! делится на все числа в промежутке от 2 до P, ни одно из них нельзя разделить на P! + 1 без остатка. Следовательно, простой множитель P! + 1 будет больше P, что противоречит нашему условию, что P есть наибольшее простое число.◻
И хотя мы никогда не найдем наибольшее простое число, математики и специалисты по вычислительной технике не оставляют попыток зайти в этих поисках все дальше и дальше в бесконечность числового ряда. Самым большим известным науке простым числом на настоящий момент является число, состоящее из 17 425 170 цифр. Чтобы его записать, потребуется примерно сотня томов – каждый объемом не меньше книги, которую вы сейчас держите в руках. Но можно уместить и в одну строку –
А все благодаря существованию удивительно действенных методов, которые позволяют легко определить, являются ли числа вида 2
Великий Пьер де Ферма доказал, что если
Следствием теоремы Ферма является то, что, если при наибольшем значении числа
Простые числа активно используются в повседневной жизни – в частности, в вычислительной технике при создании алгоритмов кодирования (на них, например, построена система шифрования с открытым ключом, которая используется при совершении финансовых операций онлайн). В большинстве своем они построены на методах быстрого определения того, является ли то или иное число простым. Жаль только, что нет настолько же эффективных способов быстрого разложения на множители по-настоящему огромных чисел. Так, если я перемножу два случайных тысячезначных числа и скажу вам двухтысячезначный ответ, вы никогда в жизни не сможете найти составляющие его простые величины – ни сами, ни с помощью компьютера (конечно, если этот компьютер не квантовый – а такие собирать пока еще попросту не научились). Зато представляете, насколько надежны коды (вроде алгоритма
Интерес человечества к простым числам стар, как само человечество. Древние греки называли число, равное сумме его делителей (естественно, за исключением самого этого числа),
Видите закономерность? Первое число – это степень основания 2. Второе – на единицу меньше, чем удвоенная степень основания 2; и при этом оно простое (поэтому здесь и нет 8 × 15 или, скажем, 32 × 63: ведь 15 и 63 простыми числами не являются). Закономерность эту можно сформулировать в виде теоремы.
Теорема: Если число 2n – 1 является простым, число 2n–1 × (2n – 1) будет совершенным.
Доказательство: Допустим, что число
что и требовалось доказать.
Великий Леонард Эйлер доказал, что каждое четное совершенное число может быть сведено к этой форме. Именно это представление помогло определить 48 совершенных четных чисел. Существуют ли в принципе среди совершенных чисел нечетные, не знает никто. Доказано, что
С простыми числами связано множество нерешенных математических проблем. Одну из них я уже упоминал: неизвестно, бесконечно ли количество простых чисел Фибоначчи (если помните, мы выяснили, что во всей последовательности всего лишь два полных квадрата чисел – 1 и 144 – и столько же кубов – 1 и 8).
Еще одна проблема – известная как
Закончить эту главу я бы хотел доказательством, которое может показаться вам притянутым за уши (да что уж греха таить, именно за уши оно и притянуто). Тем не менее смею надеяться, что оно вас все-таки удовлетворит.
Утверждение: Все положительные целые величины интересны.
Доказательство: Вы, без сомнений, согласитесь, что первые положительные числа не оставляют вас равнодушными. Например, 1 – это самое первое положительное число, 2 – первое четное положительное число, 3 – первое нечетное простое число… Предположим обратное – что совсем не все числа так уж интересны. Тогда есть некая самая первая навевающая скуку величина. Назовем ее
Глава номер семь
Магия геометрии
Неожиданные грани геометрии
Начнем, пожалуй, с одной геометрической задачки, которая вполне сойдет за фокус. Возьмите листок бумаги и сделайте следующее.
Шаг 1. Начертите фигуру из четырех не пересекающихся друг с другом линий. Должен получиться четырехугольник. Подпишите углы по часовой стрелке литерами
Шаг 2. Отметьте центральные точки сторон
Шаг 3. Соедините эти точки пунктирными линиями так, чтобы получился еще один прямоугольник,
Хотите – верьте, хотите – нет, но он всегда будет параллелограммом. Другими словами, линия
Геометрия скрывает в себе множество подобных сюрпризов. Несложные предположения, незамысловатые логические ходы – и вот вам удивительный результат.
Хотите проверить свою интуицию? Давайте проведем небольшую, но очень увлекательную викторину: одни ответы покажутся вам вполне очевидными, а другие – поразят, даже если вы прекрасно разбираетесь в геометрии. Начнем?
Вопрос 1. Некий фермер решил обнести изгородью прямоугольную территорию с периметром 16 метров. Чему должны быть равны стороны этого участка, чтобы его площадь была максимальной?
А. Он должен быть квадратным (то есть его длина и ширина должны быть равны 4 м).
Б. Соотношение сторон участка должно соответствовать принципу золотого сечения и составлять 1,618 (то есть примерно 5,25 на 3,25 м).
В. Длина участка должна быть максимальной (8 м).
Г. Во всех трех вышеперечисленных вариантах площадь будет одинаковой.
Вопрос 2. Есть две параллельные прямые (см. рисунок ниже). На нижней лежат точки X и Y. Наша задача – поместить на верхней прямой третью точку так, чтобы получившийся между ней, X и Y треугольник имел наименьший периметр. Какую точку следует выбрать?
А. Точку А (расположенную точно посередине между X и Y, чтобы прямоугольник получился равнобедренным).
Б. Точку B (расположенную точно над X или над Y, чтобы треугольник получился прямоугольным).
В. Точку С (расположенную как можно дальше от X и Y).
Г. Любую, потому что все треугольники будут иметь одинаковый периметр.
Вопрос 3. Возьмем те же прямые и те же точки X и Y. Теперь попытаемся понять, где на верхней прямой должна располагаться точка P, чтобы получился треугольник с наибольшей площадью. Итак, точка P должна находиться:
А. В точке А.
Б. В точке B.
В. Как можно дальше от X и Y.
Г. Где угодно, потому что все треугольники будут иметь равную площадь.
Вопрос 4. В американском футболе расстояние между воротами составляет примерно 110 м. Натянем между ними веревку той же длины. Затем добавим к ней еще 30 см. Насколько высоко можно будет поднять веревку в центре поля?
А. Чуть больше, чем на пару сантиметров.
Б. Достаточно высоко, чтобы под ней можно было проползти.
В. Достаточно высоко, чтобы под ней можно было пройти в полный рост.
Г. Достаточно высоко, чтобы под ней мог проехать грузовик.
Давайте теперь найдем правильные ответы на все эти вопросы. Первые два, по-моему, вполне очевидны. А вот последние… Впрочем, мы обязательно разберем все в подробностях.
Ответ 1. Вариант (А): каким бы ни был изначальный периметр, прямоугольник всегда будет иметь наибольшую площадь только при равных размерах его сторон. Следовательно, наилучшим выбором будет квадрат.
Ответ 2. Вариант (А): наименьший периметр будет иметь треугольник, образованный соединением точек X и Y с точкой, расположенной точно посередине между ними (то есть А).
Ответ 3. Вариант (Г): все треугольники будут иметь одинаковую площадь.
Ответ 4. Вариант (Г): в самом центре поля веревку получится поднять вверх чуть больше, чем на 4 м – вполне достаточно для грузовика.
Для решения первой задачи будет достаточно несложных алгебраических вычислений. Возьмем прямоугольник, в котором длина верхней и нижней сторон равна
А так как
Какое значение
есть площадь нашего прямоугольника. При
Так как мы вычитаем из 16 некую положительную величину, разность в любом случае будет меньше 16. Следовательно, площадь нашего прямоугольника будет максимальной при
Чтобы ответить на остальные вопросы, нам нужно разобраться в тех из них, которые на первый взгляд кажутся парадоксальными, а заодно и освежить в памяти школьные основы геометрии: почему сумма углов треугольника равна 180°? О чем нам рассказывает теорема Пифагора? Как определить, равна ли форма двух треугольников (и зачем вообще это нужно)?
Классика геометрии
Геометрия уходит корнями далеко вглубь веков – во времена Древней Греции. Оттуда же происходит и само название этой чудесной во всех отношениях науки: «гео» на древнегреческом означает «земля», «метрия» – «измерение». Оно говорит само за себя, давая нам ясное представление о том, зачем вообще придумали геометрию – чтобы измерять земельные участки, на которых планировалось вести строительство или другие работы. А еще ее использовали в астрономии. Но древние греки не были бы древними греками, если бы не отшлифовывали любое свое знание до абсолютно идеальных форм, превращая его в искусство – такое, каким не устают (и никогда не устанут) восхищаться их потомки, сколько бы тысячелетий ни прошло. И по сей день главной книгой геометрии остаются написанные в 300 году до нашей эры «Начала» Евклида – сокровищница всех наших знаний о геометрии, лучший на все времена учебник. В «Началах» разъясняется, что такое математическая строгость, дедуктивный и аксиоматический методы, доказательство… – Все то, на чем до сих пор строится любая работа любого математика.
Евклид выдвинул пять
Аксиома 1. Любые две точки пространства могут быть соединены только одним отрезком прямой.
Аксиома 2. Отрезок этот можно продолжать в обоих направлениях до бесконечности – так получаются прямые.
Аксиома 3. Для любых двух точек
Аксиома 4. Все прямые углы равны 90°.
Аксиома 5. Если точка Р не лежит на прямой
Думаю, тут важно оговориться, что здесь мы ведем речь о так называемой
А если в пятой аксиоме предположить, что через точку P можно провести не одну, а две прямых, параллельных прямой l, мы придем к системе, которая называется
Конечно же, пятью аксиомами, сформулированными Евклидом, геометрия не ограничивается, поэтому не удивляйтесь, если на этих страницах вы найдете и другие. Ну а поскольку эта книга – отнюдь не учебник, мы, пожалуй, не будем тратить время на обстоятельное доказательство прописных истин и объяснение элементарных понятий, тем более с нуля. Я очень высокого мнения о своем читателе и считаю аксиомой, что он помнит со школы (или просто знает), что такое точка, прямая, угол, круг, периметр, площадь и так далее. К тому же я по мере сил буду избегать профессиональной лексики и всяких специфических и понятных, пожалуй, только математику, обозначений – ведь в центре нашего внимания не наука как таковая, но ее магия, способная затронуть струны любой, даже самой далекой от геометрии, души.
Я абсолютно уверен, например, что вы уже знаете (ну или готовы принять на веру), что градусов в любом круге ровно 360 и что обозначается это как 360°. А любой находящийся в этом круге угол, таким образом, будет равен значению от 0° до 360°. Представьте себе стрелки часов, сходящиеся в самом центре циферблата. В час дня или ночи стрелки располагаются так, будто «отрезают» от круга одну двенадцатую – значит, угол между ними равен 30°. В три часа стрелки «отрежут» уже четверть круга
и образуют угол 90° (такой угол называется
А вот одно очень полезное и часто встречаемое на практике обозначение: отрезок прямой, лежащий между точками
Две прямые при пересечении всегда образуют четыре угла. Взгляните на рисунок – что вы видите? Видите, что два прилежащих (смежных) угла (
Это справедливо в отношении всех четырех пар смежных углов, то есть
Если вычесть второе уравнение из первого, получится, что
А вычитание третьего уравнения из второго приведет нас к
Так у нас получаются еще две пары углов –
Осторожно, двери закрываются! Следующая остановка – доказательство того, что сумма углов абсолютно любого треугольника равна 180°. Но сначала – несколько фактов о параллельных прямых. Две прямые считаются параллельными, если они никогда – ни на видимом отрезке, ни в бесконечности – не пересекаются. Посмотрите на рисунок: вот две параллельные прямые (
Аксиома соответственных углов: Соответственные углы всегда равны.
В соединении с теоремой вертикальных углов аксиома говорит нам, что, согласно рисунку выше,
(Книги по математике в большинстве своем предлагают специальные названия для каждой из возможных пар: углы
Теорема: Сумма углов любого треугольника равна 180°.
Доказательство: Возьмем треугольник
Образовавшиеся при этом углы
Теорема о сумме углов треугольника, равной 180°, крайне важна для понимания сути планиметрии. В других же геометрических системах она не работает совершенно: для примера можно спроецировать тот же треугольник на сферу-«глобус», причем так, чтобы он начинался на «северном полюсе», спускался к «экватору» вдоль любой из «линий долготы», там заворачивал направо в первый раз, а после прохождения четверти «планеты» – и во второй, возвращаясь к «северному полюсу». Получившийся таким образом треугольник будет иметь три прямых угла, дающих вместе не 180, а целых 270°. В сферической геометрии сумма углов треугольника есть величина непостоянная: она все больше отдаляется от значения в 180° при малейшем увеличении его площади и находится к ней в прямой пропорциональной зависимости.
На занятиях по геометрии в школе или университете очень много внимания уделяется доказательству
Для этого даже есть специальный математический символ – ≅; наша запись, таким образом, будет выглядеть как
Остальное – дело техники. Если вы, например, имеете дело с двумя равносторонними треугольниками и знаете, что углы двух из трех пар равны (допустим, ∠
Это именно аксиома, а не теорема, поскольку доказать ее с помощью уже существующих аксиом невозможно. Зато, принятая на веру, она ложится в основу других не менее полезных теорем конгруэнтности а) по трем сторонам; б) по одной стороне и двум прилежащим к ней углам; и в) по двум углам и прилежащей к одному из них стороне. (Не существует только теоремы конгруэнтности по двум сторонам и прилежащему к одной из них углу: для стопроцентной уверенности угол все же должен находиться
Но вернемся к аксиоме по двум сторонам и углу между ними и докажем с ее помощью одну замечательную теорему, касающуюся равнобедренных треугольников.
Теорема о равнобедренном треугольнике: Если в равнобедренном треугольнике
Доказательство: Из точки
Получившиеся таким образом треугольники
То же можно доказать и с помощью теоремы конгруэнтности по трем сторонам. Для этого возьмем точку
Из факта конгруэнтности следует, что ∠
Кстати,
Теорему эту можно применить и к равностороннему треугольнику: если равны
Сопутствующая теорема: В равностороннем треугольнике каждый из углов равен 60°.
Согласно теореме конгруэнтности по трем сторонам, если в треугольниках
Два треугольника с равными углами называются
Все это поможет нам ответить на второй вопрос нашей викторины, с которой мы начали главу. Давайте вспомним все условия. У нас есть две параллельные прямые: на нижней пролегает отрезок
Теорема: треугольник
И хотя для того, чтобы подтвердить это предположение, достаточно пары нехитрых вычислительных операций, побалуем себя изысканным геометрическим подходом (доказательство получится очень долгим и немного запутанным, поэтому, если хотите, можете особо в него не вчитываться, а то и вовсе пропустить).
Доказательство: Предположим, что точка
Треугольники
Периметр треугольника
а так как мы только что доказали, что
Длина
Отрезки
Обозначим точку, находящуюся прямо под точкой
Чтобы доказать, что точка
поэтому масштабирующий коэффициент будет равен 2. Следовательно, длина
Обобщая, мы можем утверждать, что для того, чтобы треугольник
Порой геометрические задачи можно решить с помощью алгебры. Предположим, например, что отрезок
как показано на графике. То есть если, скажем,
За этим кроется один полезный факт о треугольниках. Начертите треугольник и соедините друг с другом центральные точки любых двух его сторон. Видите, что получается? Ответ кроется в следующей теореме.
Теорема о центральных точках треугольника: В треугольнике
Доказательство: Поместим треугольник
Теорема о центральных точках треугольника поможет нам разгадать фокус, с которого начиналась эта глава: тогда мы взяли четырехугольник
Применив теорему о центральных точках треугольника, мы обнаружим, что отрезок
Проведем точно такую же диагональ из вершины
Большинство из разобранных нами теорем связано с треугольниками, что ничуть не удивительно, ведь в геометрии этой фигуре уделяется много внимания. Кстати сказать, треугольник есть не что иное, как наипростейшая разновидность полигонов (многоугольников). Дальше идут четырехугольник (четырехсторонний полигон), пятиугольник (пятисторонний полигон) и так далее. Полигон, количество сторон которого равно
Следующая наша теорема будет верна для любого четырехугольника.
Теорема: Сумма углов четырехугольника равна 360°.
Доказательство: Возьмем любой четырехугольник с вершинами
Чтобы проследить общую закономерность, разберем еще одну теорему.
Теорема: Сумма углов пятиугольника равна 540°.
Доказательство: Возьмем пятиугольник с вершинами
Этот алгоритм можно применять снова и снова, к любому полигону, вплоть до
Здесь отлично сработает метод индукции: для этого надо разделить наш
Теорема: сумма углов n-угольника равна 180(
А теперь… просто следите за волшебной палочкой! Начертите восьмиугольник (восьмисторонний полигон) и поставьте внутри него 5 точек – где угодно. А теперь соедините их с вершинами углов и друг с другом так, чтобы у вас получались треугольники (именно треугольники – никаких других фигур). Процесс этот называется триангуляцией, и вот несколько его примеров. (Последний восьмиугольник я оставил пустым, чтобы вы могли проделать это сами.)
В обоих моих примерах восьмиугольники разбиты ровно на 16 треугольников. Столько же должно получиться у вас в третьем октагоне вне зависимости от того, где именно вы поставили 5 точек. (А если вдруг нет, значит, вы где-то ошиблись – в этом случае просто внимательно приглядитесь к каждой доле и убедитесь, что в ней ровно 3 точки, а не 4; если же их все-таки 4, проведите линию от одного угла доли к другому, чтобы разделить ее на два треугольника.) Объяснить это можно с помощью следующей теоремы.
Теорема: В процессе триангуляции
В нашем предыдущем примере
Доказательство: Предположим, что в процессе триангуляции у нас получается количество треугольников, равное
Вопрос: Чему будет равна сумма углов всех треугольников?
Ответ 1: Так как количество треугольников равно
Ответ 2: Разобьем задачу на две. Углы, прилежащие к каждой из внутренних точек (напомним, что их количество равно
Из двух ответов составим уравнение
Разделим обе части на 180, что даст нам
что и требовалось доказать.☺
Периметры и площади
Периметр полигона есть сумма длин его сторон. Так, периметр прямоугольника длиной
В этой главе мы уже не раз обращались к помощи алгебры, чтобы разрешить исключительно геометрические проблемы. Принцип этот прекрасно работает и в обратную сторону: порой геометрия значительно облегчает понимание алгебры. Взгляните на типичную задачу. Насколько малым может быть значение где
Возьмем фигуру, состоящую из четырех костяшек домино, каждая из которых имеет размер
С одной стороны, поскольку фигура представляет собой квадрат
или
Начав с площади прямоугольника, можно найти площадь практически любой другой геометрической фигуры, в первую очередь – треугольника.
Теорема: Площадь треугольника с длиной основания
Для наглядности возьмем три конкретных треугольника, основание каждого из которых рана
В зависимости от того, какие размеры имеют прилежащие к основанию
Если углы ∠
что и требовалось доказать.
В случае же, если ∠
В примере с остроугольным треугольником мы представляли
что и требовалось доказать.
Теорема Пифагора
Теорема Пифагора является, пожалуй, чуть ли не самой популярной теоремой в геометрии. И уж точно одной из самой популярных в математике вообще. Поэтому в том, что ей посвящен целый раздел нашей «геометрической» главы, нет ничего странного.
Итак, в прямоугольном треугольнике сторона, лежащая напротив угла в 90°, называется гипотенузой, другие две стороны – катетами. В треугольнике, изображенном чуть ниже, катетами являются отрезки
Теорема Пифагора: В прямоугольном треугольнике с катетами длиной
Существует более трех сотен различных доказательств этой теоремы, но мы остановимся лишь на самых простых. Можете пропускать некоторые из них, если хотите: моя основная цель заключается в том, чтобы хотя бы одно из них заставило вас улыбнуться, а может быть, даже восхититься.
Доказательство 1: Ниже на рисунке изображен квадрат, составленный из четырех конгруэнтных прямоугольных треугольников.
Вопрос: Какова площадь этого квадрата?
Ответ 1: Длина каждой из сторон квадрата равна
Ответ 2: С другой стороны, большой квадрат состоит из четырех треугольников, площадь каждого из которых равна
Сведем первый и второй ответы к одному уравнению:
Вычтем 2
что и требовалось доказать.☺
Доказательство 2: Возьмем ту же фигуру, что и в предыдущем доказательстве, только немного поменяем расположение треугольников в ней. И если на левом рисунке очевидно, что площадь пустого пространства равна
Доказательство 3: Снова передвинем треугольники, только на этот раз так, чтобы они располагались более компактно (как на следующем рисунке), а
Доказательство 4: Это будет доказательство подобием, поэтому нам нужно сначала вспомнить все, что мы знаем и подобных треугольниках. В прямоугольном треугольнике
Обратите внимание, что треугольник
Имейте в виду, что порядок букв здесь имеет важное значение: ∠ACB = ∠ADC = ∠CDB = 90° являются прямыми углами, как и ∠A = ∠BAC = ∠CAD = ∠BCD и ∠B = ∠CBA = ∠DCA = ∠DBC. Сопоставление длин сторон первых двух треугольников дает
Точно так же для первого и третьего треугольников –
Сложим эти два уравнения и получим
А так как
что и требовалось доказать.☺
Следующее доказательство будет чисто геометрическим – никакой алгебры, зато очень много непростой визуализации.
Доказательство 5: В этот раз возьмем два квадрата с площадями
А теперь мысленно поверните нижнюю часть левого треугольника на 90° против часовой стрелки – так, чтобы «вывести» его за верхнюю границу большого квадрата. Поверните на 90° и второй треугольник, только теперь по часовой стрелке – так, чтобы прямые углы «легли» один на другой в точке сочленения двух квадратов, как показано на рисунке:
В результате получится квадрат, площадь которого будет равна
Теорема Пифагора нужна нам для того, чтобы объяснить ответ на четвертый вопрос нашей викторины – вопрос о футбольном поле и двух его воротах, расположенных в 110 метрах друг от друга, с натянутой между ними веревкой длиной 110 метров 30 сантиметров.
Расстояние от ворот до центра поля составляет 55 метров. Поднятая в этом месте вверх – до точки h – веревка дает нам прямоугольный треугольник с длиной одного катета 55 и длиной гипотенузы 55,15. Берем теорему Пифагора, добавляем немного алгебры по вкусу, перемешиваем… и получаем
Достаточно высоко даже для самого большого грузовика, правда?
Магия геометрии
Давайте закончим эту главу тем же, чем начали ее – небольшим геометрическим фокусом. Большинство доказательств теоремы Пифагора основываются на перестановке частей одной геометрической фигуры с целью получения другой с той же площадью. Но смотрите, какой обнаруживается парадокс. Возьмем квадрат 8 на 8. Его, пожалуй, вполне можно разделить на четыре части, как на рисунке чуть ниже – длина одной стороны каждой части должна равняться 3, 5 или 8 (да-да, одному из чисел Фибоначчи!). Перегруппируем эти части так, чтобы получился прямоугольник 5 на 13. (Обязательно попробуйте сделать это сами!) Но ведь площадь начальной фигуры равна 8 × 8 = 64, а конечной – 5 × 13 = 65! Но как это возможно?
Разгадка этого парадокса заключается в том, что прямая линия, являющаяся «диагональю» прямоугольника 5 на 13, на самом деле не такая уж и прямая. Смотрите сами: треугольник, обозначенный буквой С, имеет гипотенузу с наклоном 3/8 = 0,375 (потому что значение ее y-координаты увеличивается на 3, а значение
В этой главе мы узнали много интересного о треугольниках, квадратах, прямоугольниках и других полигонах, образованных с помощью разного количества прямых линий. Геометрия окружностей и других фигур изогнутой формы более сложна. Здесь нам не обойтись без тригонометрии и ее специфических методов счисления. И, конечно же, без основы основ – удивительного числа π.
Глава номер восемь
Магия числа π
Вокруг да около окружности
Прошлую главу мы начали с проверки своей геометрической интуиции: речь шла сначала о прямоугольниках, затем – о треугольниках и наконец – о натянутой между двух футбольных ворот веревке. Пора поговорить и об окружностях, и тут уж мы мелочиться не будем – начнем с того, что обмотаем веревкой Землю!
Вопрос 1. Представьте себе веревку, достаточно длинную, чтобы обернуть ее вокруг Земли по экватору (это примерно 40 075 км). Но перед тем как завязать узелок, добавим к ней еще три метра. Так вот, если неким волшебным образом нам удастся поднять веревку над землей и водой по всей ее длине на одну и ту же высоту, какой будет эта высота?
А. Чуть больше пары сантиметров.
Б. Достаточной, чтобы под ней можно было проползти.
В. Достаточной, чтобы под ней можно было пройти в полный рост.
Г. Достаточной, чтобы под ней мог проехать грузовик.
Вопрос 2. Две точки окружности –
А. В точке
Б. В точке
В. В точке
Г. Где угодно, потому что все углы будут абсолютно равны.
Чтобы ответить на эти вопросы, нужно разобраться в особенностях геометрии окружностей. Впрочем, если вам все это кажется смертельно скучным, можно вполне обойтись и так: ответом на первый вопрос будет вариант Б, на второй – вариант Г. Но разве вам интересно глотать пищу, не чувствуя ее вкуса? Так вот, особенности геометрии окружностей и есть тот самый вкус.
Любая окружность может быть выражена двумя понятиями – точкой
Длина окружности и ее площадь
Диаметр окружности – это величина D, обозначающая расстояние между двумя максимально удаленными друг от друга точками окружности и определяющаяся как его удвоенный радиус. То есть
Периметр окружности (то есть расстояние, пройденное по кругу от некой точки до нее же) называется ее, окружности, длиной (или периферией) и обозначается буквой
На самом деле для того, чтобы сопоставить длину окружности с ее диаметром, нам нужно «распрямить» круг, измерить получившуюся линию, а потом разделить результат на диаметр. И вы с удивлением обнаружите, что, независимо от того, измеряете вы монетку, дно стакана, тарелку или гимнастический круг, у вас всегда получится
Число π определяется как постоянная величина, представляющая собой соотношение длины круга к его диаметру. То есть
И π остается неизменным для абсолютно любой окружности! Если хотите, можете преобразовать эту формулу для подсчета длины окружности: зная диаметр D или радиус r той или иной окружности, вы можете просто посчитать
или
Цифровое выражение π начинается с
Чуть позже мы узнаем, что идет дальше, после 9, а заодно обсудим некоторые свойства этого числа.
Определить длину окружности «на глазок» не так-то легко. Испытайте себя – возьмите высокий стакан и постарайтесь прикинуть, что больше: его высота или длина окружности? Уверен, большинство проголосует за высоту… и почти наверняка вы окажетесь неправы: чаще всего больше будет именно длина окружности. Не верите? Проверить достаточно легко: просто измерьте большим и указательным пальцами диаметр стакана и трижды отложите этот отрезок вдоль его стенки.
Теперь можно смело отвечать на первый из двух вопросов, заданных в начале главы. Если мы представим экватор в виде идеального круга с длиной окружности, равной 40 075 км, его радиус составит
Но значение радиуса не так уж для нас и важно – куда важнее знать, насколько увеличится этот радиус, если к длине окружности прибавится три метра – совсем ненамного, примерно на 3/2π ≈ 0,5 метра. Следовательно, под веревкой окажется достаточно места, чтобы проползти, но недостаточно, чтобы пройти в полный рост (если, конечно, вы не танцор лимбо[21]).
Но самым удивительным здесь будет не столько сам ответ, сколько тот факт, что полученные нами 0,5 м ни капельки не зависят от изначальной длины окружности – вы придете к тому же результату независимо от того, обвязываете ли вы веревкой Землю, Юпитер, Плутон или теннисный мячик. Например, радиус круга с длиной окружности, равной 15 м, составит 15/(2π) ≈ 2,38. Прибавив 3 метра, получим новый радиус 18/(2π) ≈ ≈ 2,86, который будет больше старого примерно на 0,5 метра.
А вот еще один очень важный факт из геометрии окружностей.
Теорема: Предположим, что точки
На рисунке, например, хорошо видно, что углы ∠
Доказательство: Проведем линию радиуса из точки
Так как отрезки
Теорема эта является частным случаем другой, самой любимой моей во всей геометрии теоремы о центральном угле, которой посвящено следующее «Отступление».
Ответ на второй вопрос нашей мини-викторины может дать
Например, если ∠
Зная длину окружности, мы можем вывести очень важную формулу – формулу вычисления ее площади.
Теорема: Площадь круга с радиусом
Вы наверняка помните эту формулу со школы. Что ж, тем больше удовольствия вы получите, узнав, наконец, из чего она вытекает. Конечно, правильнее всего было бы использовать метод вычислений, но пока вполне можно удовлетвориться и другим, не менее эффективным, доказательством.
Доказательство 1: Представьте себе круг как совокупность концентрически расходящихся колец, как это показано на рисунке. Сделайте в нем прорезь от верхнего края к центру, а затем «разогните» кольца, чтобы они сложились в фигуру, напоминающую треугольник. Чему будет равна площадь этой фигуры?
Надеюсь, вы не забыли, что площадь треугольника с основанием
что и требовалось доказать.☺
Теорема эта настолько прекрасна, что просто невозможно устоять и не доказать ее еще раз. Только если в предыдущем случае мы чистили луковицу, теперь будем разрезать пиццу.
Доказательство 2: Разделите круг на четное количество равных секторов-«кусочков». Возьмите «кусочек» из верхней половинки и положите рядом с «кусочком» из нижней половинки, как показано на рисунках (в наших примерах мы разрезали «пиццу» сначала на 8, а потом – на 16 частей). Разложите так весь круг. С увеличением количества секторов форма каждого из них будет все больше и больше напоминать треугольник с высотой
прямоугольной с увеличением количества этих секторов, площадь окружности составит
как мы и предполагали.☺
А еще можно взять окружность и представить ее на плоскости в виде графика.
Для круга с радиусом r и центральной точкой, расположенной в координатах (0, 0) работает формула
что хорошо видно по графику чуть ниже. Чтобы в этом разобраться, возьмем некую лежащую на окружности точку с координатами (
Круг с
Подобная фигура имеет формулу
и площадь πab, что вполне логично, потому что площадь изначального единичного круга равняется π, после чего мы растянули ее на
Существует несколько забавных фактов, связанных с эллипсами, которыми я хотел бы с вами поделиться. Например, вы можете нарисовать овал с помощью двух канцелярских кнопок, лески и карандаша.
Возьмите кнопки, воткните их в лист бумаги или картона и накиньте на них колечко из лески или прочной нитки (но до предела не натягивайте). Поставьте карандаш кончиком в центр получившейся конструкции и оттяните один из концов лески так, чтобы получился треугольник. А теперь постепенно передвигайте карандаш по бумаге вокруг кнопок, не ослабляя леску. Диаграмма, получившаяся в результате, будет иметь эллиптическую форму.
Местоположения кнопок называются фокусами эллипса, и они, конечно же, тоже волшебные. Если вместо кнопки в точку одного фокуса положить бильярдный шар и ударить по нему так, чтобы он покатился в случайном направлении, то после всего лишь одного касания о периметр он обязательно пройдет через точку второго фокуса.
Кстати, космические тела, вроде планет и комет, путешествуют вокруг солнца именно по эллиптической орбите. Естественно, я не смог удержаться:
А вот вам еще один очень интересный факт – не существует такой формулы, которая позволила бы просчитать длину эллипса. Зато есть некое приближенное представление, придуманное математическим гением по имени Сриниваса Рамануджан[22] и позволяющее оценить эту длину хотя бы примерно:
Обратите внимание, что при
Число π появляется и в трехмерных фигурах. Возьмем для примера консервную банку, которая для любого математика является
Объяснить эту формулу можно, представив цилиндр как совокупность окружностей, расположенных одна на другой так, чтобы образовалась стопка высотой
А чему будет равна
Формула для нахождения площади поверхности сферы выглядит еще проще, хотя путь к ней куда более тернист:
Давайте завершим раздел примерами, где у π появляется вкус мороженого и пиццы. Представьте себе рожок мороженого (также известный как конусовидный стаканчик) с высотой
Конус этот легко уместится в цилиндр радиусом
И хотя вычисления здесь и в самом деле совершенно не нужны, отказать себе в удовольствии, которое дарит нам эта красота и простота, совершенно невозможно: площадь поверхности конуса равна
Ну, и наконец, пицца, имеющая радиус
Это лакомство – не что иное, как необычной формы цилиндр (радиус
Немного переделаем эту формулу – уверен, у вас слюнки потекут:
Удивительные лики π
В том, что число π появляется в площадях и длинах всех кругообразных объектов, рассмотренных нами, ничего удивительного нет. Но только этим сфера его влияния не ограничивается – оно обнаруживается даже там, где, казалось бы, ему делать совершенно нечего.
Возьмем для примера множество
и в которой
Знаменитая
Встречается число π и в бесконечных суммах: как впервые наглядно показал Леонард Эйлер, сложение квадратов обратных величин положительных целых значений дает нам
А если мы повторно возведем в квадрат каждое из значений выше, сумма обратных величин четвертой степени окажется равной
Формулу эту можно обобщить, распространив на любой ряд обратных величин всех
А что насчет нечетных обратных величин? В главе 12 мы увидим, что сумма обратных величин положительных значений бесконечна. При любой нечетной степени больше 1 получим что-то наподобие этого:
(это пример для кубов). Сумма здесь будет, по идее, конечной, вот только простой формулы для ее точного вычисления пока никто не нашел.
Невероятно, но факт: π всплывает даже в задачах, связанных с вероятностью. Например, если вы выберете два случайных больших числа, вероятность того, что у них не будет ни одного общего простого множителя, составит чуть больше 60 %. Это приблизительно. А если точно, то 6/π² = 0,6079…. И то, что этот результат является обратной величиной для одной из посчитанных нами чуть выше бесконечных сумм – вовсе не совпадение.
Из чего состоит π?
К тому, что число π немного превышает 3, вы вполне можете прийти самостоятельно – для этого достаточно просто аккуратно все подсчитать. Но сначала нужно найти ответы на парочку вопросов. Во-первых, можно ли доказать соседство π и 3, не проводя специальных измерений? Во-вторых, существует ли для π какое-нибудь более удобоваримое представление (скажем, формула или простая дробь)?
На первый вопрос можно ответить, нарисовав окружность с радиусом 1, площадь который, как нам уже известно, равна π1² = π. На рисунке чуть ниже этот круг вписан в квадрат с длиной сторон, равной 2. Так как площадь квадрата очевидно больше площади круга, получаем, что π должно быть меньше 4.
С другой стороны, в круг можно вписать шестиугольник – так, чтобы все шесть его вершин были расположены на окружности, причем на равном расстоянии друг от друга. Каким будет
Можно на этом не останавливаться и попытаться еще сильнее сократить возможный разброс – для этого нам понадобятся полигоны с бóльшим количеством сторон. Так, если мы окружим единичный круг не квадратом, а шестиугольником, у нас получится доказать, что π < 2√
Еще раз: шестиугольник можно разделить на 6 равносторонних треугольников, каждый из них в свою очередь разбивается на 2 прямоугольных. Если длина меньшего катета равна
Следуя той же логике чередования «вписанных» и «описывающих» полигонов, состоящих последовательно из 12, 24, 48 и 96 сторон, один из величайших древнегреческих математиков Архимед сумел доказать, что 3,14103 < π < 3,14271, что сводится к немногим более простой формуле
Есть несколько простых дробей, которые более-менее соотносятся со значением π. Например,
Лично мне больше всего нравится последняя. И не только потому, что она совпадает с π в 6 из всего множества знаков после запятой, но и потому, что использует первые три нечетных числа (причем по два раза и по порядку!): две единицы, две тройки и две пятерки.
Не знаю, как у вас, но у меня руки прямо-таки чешутся найти такую простую дробь, которая полностью бы соответствовала π, – с
Может быть, тогда можно представить его в виде квадратов или кубов простых чисел? Ведь есть же, например, √
Впрочем, представить π в простом дробном виде все же можно. Правда, это будет не одна дробь, а сумма или произведение нескольких – вплоть до бесконечности. В главе 12, например, мы увидим, что
Формула эта настолько прекрасна, даже обворожительна, что даже не хочется верить, что π с ее помощью вычислять придется очень и очень долго: после трехсотого элемента мы будем настолько же далеко от заветного 3,14…, насколько далеко от него банальное 22/7.
А вот еще одна недурная попытка, называемая формулой Уоллиса, – представление π в виде бесконечного (то есть считать придется все равно очень долго, пусть и не настолько, насколько в случае с суммой) произведения:
Запомним π (а заодно и τ) во славу его!
Число π продолжает будоражить самые светлые умы и по сей день. С его помощью даже испытывают суперкомпьютеры на быстродействие и точность вычислений – можете себе представить, насколько оно просчитано «в глубину» – на триллионы цифр после запятой. Практического толку от
Число π – уже почти религия. У ее последователей даже праздник свой есть, он так и называется – День числа π – и празднуется 14 марта (3-й месяц, 14-й день) – в день рождения Альберта Эйнштейна. В честь праздника энтузиасты пекут пироги на математическую тему, надевают маски автора теории относительности и участвуют в конкурсах по воспроизведении наизусть как можно большего количества знаков после тройки и запятой. Рядовой участник такого конкурса помнит, как правило, от нескольких их десятков до нескольких сотен. Рекорд же принадлежит китайскому студенту Чао Лю, добравшемуся в 2005 году до 67 891 цифры! В Книге рекордов Гиннесса говорится, что на одно лишь оглашение числа у него ушло больше 24 часов, на запоминание – около четырех лет.
Вот первые 100 цифр π:
π = 3,141592653589793238462643383279502884197169399375
105820974944592307816406286208998628034825342117067…
Как только люди не пытались сохранить их в памяти! Один из самых популярных методов – составлять предложения-«запоминалки», в которых количество букв в каждом слове равно числовому значению соответствующей цифры. Пожалуй, наиболее известные из них – английские «How I wish I could calculate pi»[23] (охватывает 7 знаков: 3,141592) и «How I want a drink, alcoholic of course, after the heavy lectures involving quantum mechanics»[24] (а здесь этих знаков уже 15).
Самая, пожалуй, забавная из них – пародия на знаменитого «Ворона» Эдгара Аллана По, созданная в 1995 году Майком Китом[25] для первых 740 знаков числа π. Одна лишь первая строчка (вместе с именем автора и заглавием) покрывает 42 цифры. Слово из 10 букв считается цифрой 0.
Позже Кит переработал и дополнил свой опус – так родилась его знаменитая «Кадеическая каденция»[26] (Cadaeic Cadenza) – уникальное произведение, в котором «зашифровано» 3835 цифр числа π. (Слово «Cadaeic» – тоже своего рода «шифр» π, в основе которого лежат порядковые номера букв латинского алфавита: C – 3, A – 1, D – 4, A – 1, E – 5, I – 9, C – 3. Сейчас оно стало термином, обозначающим жанр подобного рода поэтических экспериментов.) Кроме «Ворона», в нее входят пародии на другие известные стихи, вроде «Бармаглота» Льюиса Кэрролла[27]. Самым грандиозным трудом Кита, без сомнений, является «Во сне: грезы о первом десятке тысяч цифр числа π»
У этого метода есть один существенный недостаток: даже выучив наизусть все эти длинные предложения, стихотворения и целые рассказы, вы вряд ли сможете моментально определить количество букв в произносимых вами словах.
Мне больше по душе другой «шифр» –
1 =
2 =
3 =
4 =
5 =
6 =
7 =
8 =
9 =
0 =
Представляете, для этой системы тоже есть специальная «запоминалка» (да-да, «запоминалка» для «запоминалки»). Вот что предложил мне мой друг Тони Марлошковипс: буква «т» в своем начертании имеет один вертикальных штрих (буква «д» же является ее звонкой парой); «н» – два штриха; у «м» три точки опоры; «р» – последняя согласная в слове «четыре»; «л» – перевернутая римская цифра V (пять); «ш» – первая буква в слове «шесть» («ж», «ч» и «щ» же связаны с ней кровным фонетическим родством); «г» – зеркальное отражение цифры 7 («к» и «х» же – ее глухие аналоги); «в» и «ф» так же «глазасты», как и восьмерка; «б» – это висящая вверх ногами девятка; ну а «з» звучит как английское «z» в слове «zero», что значит «ноль» («с» и «ц» – члены семьи, группа поддержки). А можно просто взять и запомнить слово ТНМРЛШКВПС – «разбавьте» его гласными, и Тони Марлошковипс станет и вашим другом (жаль только, что воображаемым).
По такой схеме можно превращать цифры и числа в самые настоящие слова. Число 31, например, согласно нашей системе, будет равно буквам «м» и «т» (или «м» и «д»). А значит, его можно «зашифровать» словами
Добавим еще несколько правил. Во-первых, удвоенная согласная читается как
Итак, перейдем к π. Первые три его цифры соответствуют буквам «м», «т» и «р», а это значит, что к ним можно подобрать такие слова, как
Первые 5 цифр π – 31415 – могут превратиться в «мою Тортиллу», а первые 24 цифры – 314159265358979323846264 – соответственно, в
Для следующих с17 цифр – 33832795028841971 – у меня родилось
Вот еще 19 – 33832795028841971
Для следующих 18 – 459230781640628620 – вполне сгодится
И, наконец, еще 22 цифры: 8998628034825342117067:
Вот таким вот нехитрым способом нам удалось в пяти совершенно глупых предложениях «зашифровать» первые 100 цифр числа π.
Буквенная система хорошо помогает, когда нужно запомнить определенную дату или, скажем, номер телефона или счета в банке. Попробуйте – сначала будет немного сложно, но со временем вы привыкнете и сможете запомнить много важных для вас чисел.
Почти все математики единодушны во мнении, что π – одно из самых важных для их науки чисел. Но если вы взглянете на формулы и уравнения, в которых оно фигурирует, вы наверняка заметите, что очень часто его нужно умножать на 2. Для этого произведения было придумано специальное обозначение – греческая буква t («тау», рифмуется с «вау!»):
Очень и очень многие полагают, что тысячи геометрических понятий и формул стали бы куда проще, если бы изначально основывались именно на
Вот как выглядят первые сто цифр числа t. Пробелы между ними расставлены в соответствии с приведенной чуть ниже «запоминалкой». Обратите внимание, что начинается все с
t = 6,283185307179586476925286766559005768394338798750
211641949889184615632812572417997256069650684234135…
В 2012 году тринадцатилетний мальчишка по имени Итан Браун установил мировой рекорд по воспроизведению наизусть цифр числа t. Он вспомнил их ровно 2012 – по номеру года своего триумфа. Чтобы облегчить себе задачу, он использовал уже описанный нами буквенный «шифр» – но вместо долгих предложений он описывал словами короткие образные ситуации, каждая из которых обязательно состояла из субъекта (подлежащего, выраженного существительным), действия (сказуемого, выраженного личной формой глагола) и объекта (дополнения, выраженного также существительным). Он, правда, немного поменял правила игры, исключив из системы те согласные буквы, которые появляются в окончаниях глаголов (-
Чтобы лучше запомнить эти фразы, Браун использовал мнемотехнику
Давайте закончим эту главу гимном числу π. Я взял на себя смелость немного дополнить пародию Ларри Лессера под названием «π по-американски». Только имейте в виду, что песенку эту получится спеть всего лишь раз, ведь цифры π по кругу не повторяются.
Глава номер девять
Магия тригонометрии
Высшая точка тригонометрии
Основная задача тригонометрии – решать задачи, которые нельзя решить методами классической геометрии. Вот, смотрите сами.
Вопрос: Как измерить высоту горы, если в нашем распоряжении только транспортир и калькулятор?
Сделать это можно
Способ 1 (или метод решения «в лоб»): Заберитесь на вершину горы и сбросьте с нее калькулятор. (Это потребует определенных усилий). Засеките время, за которое он долетит до земли (или дождитесь вопля восходителя внизу). Если у вас получилось
Способ 2 (или метод загорелых альпинистов): Подойдите к смотрительнице местных красот (желательно симпатичной и дружелюбно настроенной) и предложите ей свой новенький блестящий транспортир в обмен на информацию о высоте горы. Если смотрительниц поблизости не наблюдается, найдите самого загорелого альпиниста (чем сильнее загар, тем больше времени он проводит на вершине и, следовательно, может знать ответ на ваш вопрос). Основное преимущество этого метода – у вас появится новый друг и калькулятор будет цел). Если ответ альпиниста вызовет у вас сомнения, всегда можно забраться на вершину и прибегнуть к способу № 1. Недостатки – у вас могут конфисковать транспортир и обвинить в попытке дать взятку должностному лицу.
Способ 3 (метод указателей): Перед тем как применять способы 1 или 2, поищите внизу табличку, на которой будет указана высота горы. Несомненное преимущество данного метода заключается в том, что вам не придется жертвовать своим оборудованием.
Если же ни один из этих вариантов вас не устраивает, придется поискать более математические методы, о которых и пойдет речь в этой главе.
Тригонометрия и треугольники
Слово «тригонометрия» состоит из двух греческих корней:
Равнобедренный прямоугольный треугольник. Как следует из названия, один из его углов равен 90°, а два других равны между собой, то есть по 45° (не забыли, что сумма углов треугольника равна 180°?). Если предположить, что длина каждого катета составляет 1, то, согласно теореме Пифагора, длина гипотенузы будет равна √(
Треугольник с углами 30°, 60° и 90°. В равностороннем треугольнике все стороны имеют одинаковую длину, а все углы – по 60°. Если мы разделим такой треугольник на две конгруэнтные части (как показано ниже), у нас получатся два прямоугольных треугольника с углами 30°, 60° и 90°. Если длины всех сторон изначального треугольника равны 2, будут равны и 2 гипотенузы каждой из его прямоугольных половинок. Длины меньших катетов при этом составят 1, а бо́льших, как следует из теоремы Пифагора, – √(
Единство (
Обратите внимание:
Вся тригонометрия основана на двух очень важных функциях – синусе и косинусе. Возьмем треугольник
Имейте в виду, что
Еще одна не менее популярная в тригонометрии функция – тангенс. Для угла
в прямоугольном треугольнике –
Для всех этих формул есть свои специальные «запоминалки». Один мой знакомый, например, любил повторять: «Сильно противный Глеб, который прилег на гриб, так противно прилег». Здесь «СИльно» означает синус, все «ПРОТИВное» – противолежащий катет, «КОторый» – косинус, «ПРИЛег» – прилежащий катет, «ТАк» – тангенс, а слова, начинающиеся с буквы «г» – гипотенузу (то есть получаем подсказку насчет синуса, потом косинуса, а потом и тангенса).
Итак, в треугольнике с длинами сторон 3, 4 и 5 имеем
А что с углом
то есть синус
Так как ∠
То есть если в треугольнике
Кроме синуса, косинуса и тангенса в тригонометрии есть еще три элементарные функции. Используются они, правда, не так часто, как уже известные нам, но почему бы не упомянуть и их? Это секанс, косеканс и котангенс, и смысл их заключается в том, что
Приставка «ко-» означает здесь те же отношения дополнения, что и в паре «синус – косинус», а именно: для любого острого угла прямоугольного треугольника sec (90° –
Чтобы найти косинусы, тангенсы и все остальное, достаточно знать значение синуса одного из углов, это очевидно. Но ведь и его (скажем, sin 40°) тоже надо как-то найти, правда? Самый простой способ – воспользоваться калькулятором: просто включаем его и узнаем, что sin 40° = 0,642…. Откуда это значение берется, мы узнаем чуть позже.
Некоторые значения тригонометрических функций встречаются в расчетах настолько часто, что лучше всего их просто запомнить. Вернемся к треугольнику с углами 30°, 60° и 90° и вспомним про соотношение его сторон – 1: √
Стороны же треугольника с углами 45°, 45° и 90° имеют соотношение 1: 1: √
А так как tan запомнить придется только то, что tan 45° = 1 и что tan 90° определить невозможно, потому что cos 90° = 0.
С такими знаниями пора вернуться к подножию нашей горы. Только сначала давайте остановимся у первого попавшегося дерева и попробуем рассчитать его высоту.
Предположим, что мы не дошли до ствола 3 метра и что угол между землей под нашими ногами и верхушкой дерева составляет 50°, как изображено на рисунке. (Определить угол, кстати, можно либо с помощью приложения, которое в наши дни есть на многих смартфонах, либо посредством простого устройства, называющегося
Обозначим высоту буквой
Следовательно,
Теперь пойдем к горе – испытаем первый из наших математических методов. Сложность его в том, что мы даже примерно не сможем прикинуть расстояние до центра подножья – то есть вместе с высотой горы мы получаем уравнение с двумя неизвестными. Предположим, что мы измерили угол от точки, в которой находимся, до вершины и получили 40°, потом отошли на 300 метров дальше и получили уже 32° (см. рисунок). Что нам теперь с этой информацией делать?
Способ 4 (метод тангенсов): Обозначим высоту горы
что можно представить как
что дает нам
Так как
Решается это как
Тригонометрия и окружность
Пока что наши знания о тригонометрических функциях ограничиваются прямоугольными треугольниками. Для решения повседневных задач этого, в принципе, более чем достаточно. Но разве вам не интересно узнать, как они ведут себя в других углах, а не только в тех, значения которых колеблются исключительно в диапазоне от 0° до 90° (ведь в прямоугольном треугольнике один из углов всегда прямой, а два оставшихся – острые)? Конечно, интересно, и именно этим мы и займемся в этом разделе – посмотрим на тригонометрические функции через призму
Надеюсь, вы не забыли, что единичным называется такой круг, радиус которого равен 1, а центр расположен в
Давайте попробуем найти некую точку (
Для того чтобы найти
Другими словами, значения координат (
Для любого угла
А вот еще одно общее представление. Только теперь мы разделим единичный круг на много углов с шагом 30° (и сделаем один шаг в 45° для большей наглядности) – так мы получим углы из уже очень хорошо знакомых нам треугольников. Помните, я советовал вам выучить значения косинусов и синусов для углов 0°, 30°, 45°, 60° и 90°?
К углам этим можно прийти с помощью простого отражения значений, содержащихся в первой четверти окружности.
Прибавление или вычитание 360° на величину угла никак не повлияет (мы просто обойдем вокруг него с одной или другой стороны), а значит, для любого ∠
Имея дело с отрицательными значениями углов, мы двигаемся по окружности слева направо: так, угол, равный –30°, ничем, по сути, не отличается от угла, равного 330°. Обратите внимание, что сдвиг на
Например,
Обратное происходит, когда мы «отзеркаливаем» ∠
Скажем, при
Остальные тригонометрические функции определяются по старой схеме (например, tan
Оси
Ну и еще немного терминологии. Для определения неизвестных значений углов нужны
Функция sin–1 (которая также называется
Для треугольника с длинами сторон 3, 4 и 5 (см. рисунок) калькулятор может рассчитать ∠
Самое время применять все эти знания на деле. В «геометрической» главе мы доказали теорему Пифагора, с помощью которой можно вычислить длину гипотенузы прямоугольного треугольника, зная длины его катетов. Здесь же, в главе «тригонометрической», мы можем сделать практически то же самое для
Теорема (закон косинусов): Длина стороны
Для примера взгляните на изображенный ниже треугольник
А так как cos 15° ≈ 0,9659, уравнение упрощается сначала до
Доказательство: Чтобы доказать эту теорему, рассмотрим три частных случая – в зависимости от того, будет ли ∠
Если ∠
Треугольник же
Составим из двух равных
Следовательно,
В треугольнике
Если же ∠
Для него, как и для получившегося большого, верна теорема Пифагора:
В треугольнике
Кроме того с помощью функций можно рассчитать площадь треугольника.
Сопутствующая теорема: В любом треугольнике
Доказательство: Площадь треугольника с длиной основания
Следствия этой теоремы очевидны:
Другими словами, в треугольнике
Теорема (закон синусов): В любом треугольнике
Закон синусов – это еще один способ вычислить высоту нашей горы. На этот раз мы сосредоточимся на
Способ № 5 (закон синусов): В треугольнике
Умножим обе части на sin 32°, что даст нам
что полностью совпадает с ответом, к которому мы пришли в прошлом разделе.
Не менее замечательна в этом отношении
А потом и площадь
Например, если взять треугольник со сторонами 3, 14 и 15 (узнаете первые пять цифр числа π?), полупериметр будет равен (3 + 14 + 15)/2 = 16, а площадь, таким образом, – √(
Несложно, правда? Уверен, внимательный читатель не сможет не заметить здесь закон косинусов, слегка приправленный алгеброй.
Тригонометрические тождества
Но этим возможности тригонометрических функций не ограничиваются. Они способны и на куда более интересные и запутанные взаимоотношения – так называемые
Но их, конечно же, куда больше.
Из тождеств рождаются формулы, притом весьма полезные. Ими-то мы и займемся в этом разделе.
Первое тождество основывается на формуле единичной окружности:
Под эту формулу должна подходить точка (cos
Теорема: Для любого ∠
До сих пор все произвольные углы мы обозначали буквой
В тригонометрии для этой цели часто используется греческая буква θ (тета) –
А бывает и так, что вообще ничего не используется:
Но перед тем как доказывать какое бы то ни было тождество, нужно найти длину отрезка прямой. В этом нам поможет теорема Пифагора.
Теорема (формула расстояния между двумя точками): Обозначим длину отрезка прямой от точки (
Например, длина отрезка от точки (–2, 3) до точки (5, 8) равна
Доказательство: Возьмем две точки (
то есть что и требовалось доказать.
Чему будет равна диагональ в коробке размером
Теперь проложим линию
Ну а теперь собственно тождество – столь же полезное, сколь и красивое. Доказательство может показаться несколько запутанным, поэтому можете смело его пропускать (хотя я все же советую вам в нем разобраться – оно ляжет в основу доказательства других тождеств).
Теорема: Для любых углов
Доказательство: На единичной окружности, центром которой является точка
В треугольнике
С другой стороны, формула расстояния приводит нас к уравнению
поэтому расстояние
где последнее представление основывается на уравнениях cos²
Соединив эти уравнения для
Вычтем из обеих частей 2, разделим их на –2 и получим
что и требовалось доказать.◻
Формула для cos (
Так как ∠
Из этого можно заключить, что
Обратите внимание, что при
Происходит это на том основании, что cos 90° = 0, а sin 90° = 1. Если в этом уравнении заменить
Мы уже доказали правдивость этих утверждений на примере
так как cos (–
А так как cos²
Из этого тождества косинусов проистекает аналогичное тождество синусов, например,
а замена
Давайте соберем в одну таблицу все тождества, которые мы успели вывести в этой главе:
Повторюсь: использовать буквы
Радианы и графики в тригонометрии
До сих пор нам встречались углы, значения которых находились исключительно в диапазоне от 0 до 360
или, другими словами,
Для тауистов, почитающих число t как 2π,
В числовом же выражении 1 радиан примерно равен 57°.
Но зачем они нужны, спросите вы. И чем вдруг научному сообществу так не угодили привычные всем градусы?
В круге с радиусом
А вот единичный круг, поделенный на самые «популярные» углы – значения выражены как в градусах, так и в радианах.
Для сравнения – версия с t вместо π.
На рисунках, кстати, очень хорошо заметно, насколько t удобнее π. Для угла 90° (занимающего четверть окружности) представление в радианах выглядит как t/4; для угла 120° (треть окружности) – как t/3; для угла 60° (одна шестая окружности) – как t/6; t же есть, по сути, один полный
Как нам еще предстоит убедиться, радианы позволяют значительно упростить формулы и уравнения подсчета тригонометрических функций. Формулы синуса и косинуса, например, можно превратить в «бесконечные ряды многочленов»:
но только если
Графики эти будут повторяться с шагом 2π (тауисты, на старт!). Происходит это из-за того, что как синус, так и косинус берут свои начала в окружности, а угол
(например, sin 0 = 0 = cos (–π/2), а sin π/2 = 1 = cos 0).
Тангенс, равный, как мы помним, sin
Синуса и косинуса, в принципе, достаточно, чтобы прийти к любой другой периодической тригонометрической функции. Именно благодаря такому своему уникальному свойству, как периодичность, они обрели огромную популярность для решения практических задач, в условиях которых заложена цикличность и «сезонность». Это и измерение температур, и анализ экономических данных, и многое другое. А еще с тригонометрическими функциями так или иначе связаны звуковые колебания, волны на воде, электричество и даже сердцебиение.
Ну и, по традиции, в завершение главы – самое интересное: между тригонометрией и числом π существует удивительная, поистине волшебная связь. Хотите ее увидеть? Возьмите калькулятор и наберите на нем столько пятерок, сколько получится. У меня, например, на экране уместилось их целых 16 – 5 555 555 555 555 555. Теперь посчитайте величину, обратную этому числу; у меня получилось
Нажмите кнопку «sin» и посмотрите, что у вас получилось (вначале может идти несколько нолей – просто не обращайте на них внимания). Лично на меня с дисплея смотрело число
которое (после отбрасывания 17 нолей, идущих за запятой) почти в точности повторяло первые 16 цифр числа π! К тому же результату можно прийти, начав с любого числа, состоящего как минимум из пяти пятерок.
В этой главе мы выяснили, зачем нужна тригонометрия, и увидели, как она помогает нам лучше понять свойства треугольников и окружностей. Тригонометрические функции – не просто «вещи в себе», они взаимодействуют, вступая друг с другом в замысловатые, но прекрасные в своей стройности отношения. А еще мы проследили их связь с числом π. Теперь черед за двумя другими важнейшими для математики величинами: иррациональной
Глава номер десять
Магия чисел
Самая прекрасная математическая формула
Время от времени (с завидной, надо признать, регулярностью) математические и другие научные периодические издания проводят среди своих читателей опросы, предлагая им выбрать самое красивое уравнение. И раз за разом в числе лидеров оказывается она – удивительная формула, известная как тождество Эйлера:
Некоторые даже называют ее «уравнением Бога», ведь в ней сошлись вместе пять фундаментальных констант, пять самых важных чисел математики: 0 и 1 – начала всех арифметических начал, π, позволяющее постичь геометрию,
В нем прекрасны и отношения между этими числами: сложение, умножение и возведение в степень – все то, что символизирует рост.
О ноле, единице и π мы уже кое-что знаем, самое время разобраться с иррациональным
А вот еще несколько постоянных претендентов на корону самой красивой формулы. Большинство из них уже встречались вам на уже прочитанных страницах или скоро встретятся на непрочитанных. Первые два также рождены гением Леонарда Эйлера.
Мнимое число i: квадратный корень –1
Загадочная природа числа
На первый взгляд это кажется совершенно невозможным: разве может быть отрицательным число, умноженное несколько раз на само себя? В конце концов, даже 0² = 0, а любая возведенная в квадрат отрицательная величина обязана стать положительной, разве нет? Не спешите рубить с плеча. Вспомните, ведь было такое время, когда вы вообще ничего не знали об отрицательных числах, да и, узнав, вряд ли сразу же поверили в их существование (как и многие-многие математики до вас). Что это вообще за глупость – количество, меньшее, чем 0? Как что-то может быть
Число
В алгебраическом смысле мнимые числа ничем не отличаются от чисел действительных. Судите сами:
Кстати, если взять и возвести в квадрат –
А что со сложением? Чему, например, равна сумма 3 и 4
Давайте попробуем разобраться в этом с помощью нескольких конкретных примеров. Начнем со сложения и вычитания:
Для умножения применим алгебраический метод
Для комплексного числа каждый квадратный многочлен
Помните, в главе 2 мы с вами говорили о том, что нельзя извлечь квадратный корень из отрицательной величины? Но ведь никакие квадратные корни отрицательных величин нам и не нужны. Смотрите сами: уравнение
Кстати, формула корней квадратного уравнения будет верна даже при комплексных значениях
В любом квадратном многочлене мы можем найти как минимум один корень, пусть и комплексный. На этот счет есть своя теорема.
Теорема (основная теорема алгебры): Любой многочлен
Обратите внимание, что многочлен первой степени, вроде 3
То же происходит и с многочленами второй степени: разложив
Сопутствующая теорема: Любой многочлен степени
Теорема эта означает, что любой многочлен степени
Например,
из чего очень хорошо видно, что у него будет четыре различных корня: 2, –2, 2
А вот многочлен третьей степени 3
то есть имеет только два различных корня: –2 и 1.
Геометрия комплексных чисел
Комплексные числа можно представить в виде
Только что мы выяснили, насколько легко складывать, вычитать и умножать числовые выражения комплексных величин. С их геометрическими представлениями работать ничуть не сложнее: достаточно просто взглянуть на соответствующие точки.
Возьмем, к примеру, сложение:
Посмотрите на график ниже: точки 0, 3 + 2
Вы удивитесь, но его вполне достаточно, чтобы сложить комплексные числа
Для вычитания
Для умножения и деления нам понадобится измерить комплексные величины.
На графике ниже хорошо видно, что точка 3 + 2
Точки с модулем, равным 1, складываются в
что есть не что иное, как
А вот еще кое-что интересное: при перемножении комплексных чисел будут перемножаться и их модули.
Теорема: Для комплексных величин
Например,
А что насчет угла, привязанного к произведению? Для обозначения угла, образованного комплексным
Обратите внимание, что угол значений (3 + 2
Теорема: Для комплексных величин
Доказательство этого (оно приведено в «отступлении») основано на некоторых тригонометрических тождествах, рассмотренных нами в предыдущей главе.
Доказательство: Возьмем две комплексные величины
Тогда на основании тождеств cos (
Следовательно,
Обобщим: чтобы умножить комплексные величины, нужно
Ну и, наконец, возьмем число
Получается, что при
Магия числа e
Если вдруг у вас под рукой есть профессиональный калькулятор, сделайте вот что:
1. Наберите на нем любое хорошо запоминающееся семизначное число (можно взять номер телефона, несколько цифр из номера паспорта или просто любимую цифру, повторенную семь раз).
2. Посчитайте обратную ему величину (для этого нужно нажать кнопку 1/
3. Прибавьте к нему единицу.
4. Возведите результат в степень, равную загаданному семизначному числу (нажимаете кнопку
Первые четыре цифры ответа – 2,718, да? Не удивлюсь даже, если у вас получится
то есть цифр, совпадающих с иррациональным числом
Так что это за мистическое
Ваши операции с калькулятором свелись, по сути, к
где
С другой стороны, даже при больших значениях
Сложность здесь заключается в том, что «основа» (1 + 1/
Давайте посмотрим повнимательнее, как ведет себя функция (1 + 1/
Именно так и определяется число
Если заменить дробь 1/
где
Чтобы отследить общую закономерность, заменим ставку 0,06 ставкой
Теперь предположим, что проценты начисляются дважды в год: по 3 % каждые 6 месяцев. Через год на вашем счете будет лежать $10 000(1,03)² = $10 609 – немного больше, чем в прошлом случае.
С ежеквартальными (раз в три месяца) начислениями вы заработаете 4 раза по 1,5 %, то есть $10 000(1,015)4 = $10 613,63.
Давайте обобщим и это: при начислении процента
При очень больших значениях
Сведем все это в таблицу:
Иными словами, начав с $
Как хорошо видно на графике, функция
А что насчет графика 5
Точно так же, как квадратный корень является обратным представлением квадратичной функции (то есть находится с ней во «взаимоотменяющих» отношениях), логарифм является обратным представлением показательной (экспоненциальной) функции. Наиболее часто используемый логарифм – десятичный (то есть по основанию 10), обозначаемый как lg
из чего следует
Например, так как 10² = 100, lg 100 будет равен 2. Вот очень полезная таблица логарифмов:
Одной из причин популярности логарифмов является их уникальная способность преобразовывать огромные значения в малые, куда более удобоваримые для человеческого ума. Логарифмы, в частности, используются при измерении и подсчете магнитуды землетрясения по шкале от 1 до 10 (да-да, это я о знаменитой шкале Рихтера), громкости звука (в децибелах), кислотности химических растворов (
Что собой представляет lg 512? Любой профессиональный калькулятор (равно как и большинство поисковых систем в Интернете) скажет вам, что log 512 = 2,709…. Вполне похоже на правду: 512 находится между 10² и 10³, а значит, его логарифм должен быть больше 2, но меньше 3.
Логарифмы были изобретены для того, чтобы преобразовывать умножение в более простое сложение. Основано это на одной любопытной теореме.
Теорема: Для любых положительных значений
Другими словами,
Доказательство: Согласно правилам действий со степенями,
Следовательно, возведение 10 в степень lg
Не менее полезно следующее правило.
Теорема: Для любого положительного значения
Доказательство: Согласно правилам действий со степенями,
то есть логарифм
Десятичный логарифм – штука вполне себе обычная, насколько вообще обычным может быть нечто столь активно использующееся в таких важных областях науки, как химия, физика или геология (справедливости ради все же следует упомянуть, что в информатике и дискретной математике предпочтение отдается логарифму с основанием 2). В целом же для любого значения
Так, log2 32 = 5, потому что 25 = 32. А все уже рассмотренные нами свойства логарифмов соответствуют любому значению
В большинстве разделов математики, физики и техники самым полезным считается логарифм по основанию
Или же, для всех действительных значений
Ваш калькулятор, например, может за долю секунды подсчитать, что ln 5 = 1,609…, однако это нам уже хорошо известно по тому, что
Большинство профессиональных калькуляторов способно считать как натуральные, так и десятичные логарифмы. И лишь очень немногие ориентированы на другие значения
Теорема: Для любых положительных значений
Доказательство: Предположим, что
log
Другие лики е
Как и число π, число
а ее график, изображенный чуть ниже, – наверное, самый важный график в любом статистическом исследовании.
В той же главе 8 мы встречали
Позже, в главе 11, на примере
мы увидим важную связь между числом
В частности, при
Не правда ли, очень легкий и быстрый способ определить цифры, составляющие число
Кстати, о цифрах… Вы наверняка уже заметили, что число
или, как любил повторять один мой преподаватель, «2,7 Эндрю Джексон, Эндрю Джексон», потому что седьмой президент США был избран именно в 1828 году. («Запоминалка» эта, кстати, отлично подходит и студентам-историкам: с помощью первых цифр числа
Вмешивается
что очень близко
Нет, это не совпадение. Вспомните формулу, в которой мы впервые увидели
Если мы положим
Когда
Одна из самых моих любимых задач, связанных с вероятностью, –
С количеством тетрадей, равным
И тогда
А вот каковы вероятности для других значений
С увеличением
Но откуда берется это 1/
Почему приблизительно, спросите вы? Да потому что здесь, в отличие от задачи с лотерейными билетами, мы не сталкиваемся с последовательностью независимых друг от друга событий. Количество тетрадок ограничено, поэтому первое же «попадание» учителя в цель немного увеличит шансы второго ученика получить чужую тетрадку (то есть вместо 1/
Точное же значение
Если в этом уравнении мы подставим
То есть в классе, состоящем из
Например, если
Теорема: Число
Доказательство: Предположим обратное – что число
Обратите внимание, что
Не существует целых величин меньше 1, поэтому мы не можем считать
Уравнение Эйлера
Число
Нам уже встречались бесконечные последовательности для функций
Считалось, что эти формулы работают при любых действительных значениях
Теорема Эйлера: Для любого значения угла θ (выраженного в радианах)
Доказательство: Посмотрим, что будет происходить с последовательностью для
Обратите внимание на поведение
Это приводит нас к доказательству «уравнения Бога», с которого мы начинали эту главу. Приняв θ = π рад (или 180°), мы получим
Но это далеко не все, о чем говорит нам теорема Эйлера. Мы уже встречались с cos θ +
Но и это еще не все! Любая точка комплексной плоскости имеет на окружности свое соответствие. А именно комплексная величина
Следовательно, если у нас на комплексной плоскости есть две точки
что является комплексным числом с модулем
Давайте же восславим число
Глава номер одиннадцать
Магия исчисления
Касательно касательных
Математика – это язык, на котором говорит наука. Стоит ли удивляться, что большинство законов природы описываются с помощью математического алфавита? Исчисление – один из способов познать суть вещей, то, как они изменяются, развиваются, движутся. Эту главу мы посвятим измерению скорости, с которой изменяются функции, и изучению теории приближений – примерной оценки (аппроксимации) сложных и простых полиномиальных функций (многочленов). А еще исчисление – мощное средство
Предположим, что у вас есть лист картона размером 12 на 12 см (см. рисунок). Наша задача – сделать из него лоток, для чего нам нужно от каждого из четырех углов отрезать по квадратику размером
Представим объем как функцию
кубических сантиметров. Значение
Попробуем графический подход – визуализируем функцию
Влево от максимума функция растет, вправо – уменьшается. Слева значение ее наклона положительное, справа – отрицательное. В самой верхней точке не происходит ничего – функция в ней словно застыла в нерешительности, выбирая, куда направиться: вверх или все-таки вниз. Поэтому через нее можно смело провести горизонтальную (то есть с нулевым наклоном) касательную. Именно ее – такую
А заодно мы коснемся касательных, и для этого нам придется среза́ть углы, причем не только в переносном, но и вполне себе прямом (как мы это делали только что в задачке про лоток) смысле.
Исчисление – штука непростая и громоздкая: у вас вряд ли получится найти по ней учебник меньше, чем на тысячу страниц. В нашем же распоряжении их едва ли больше 20, поэтому единственное, что мы успеем – так это чуть-чуть посветить спичкой в темной комнате. Все, что нам предстоит увидеть, –
Начнем с самого простого – функций, представленных прямыми. В главе 2 мы уже говорили о том, что наклон графика линейной функции
На графике ниже проведено несколько разных линий. Диагональная функция
Задав две точки, мы можем провести через них прямую. Ее наклон можно определить, не прибегая к формуле самой прямой, – достаточно взять координаты точек (
позволяющее узнать отношение приращения функции к приращению аргумента.
Для примера возьмем линию
Теперь рассмотрим функцию
Для этого нам нужны хотя бы две точки. Что же делать? Придется взять еще одну линию – такую, которая пересекает кривую функции как минимум дважды (так называемую
Для более точного результата переместим вторую точку как можно ближе к (1, 2). Скажем, если
Посмотрим, что происходит, когда
То есть при приближении
Подобным представлением мы хотим сказать, что
А вот как все это выглядит в обобщенном виде. Нам нужно найти наклон касательной к кривой
Представим наклон касательной, проходящей через точку (
Выглядит не очень-то понятно, поэтому давайте возьмем парочку более конкретных примеров. Для прямой линии
Наклон касательной будет равен
Обратимся к производной функции
а так как
При
а так как
Поиск производной функции
Теорема: Если
Как следствие, мы можем утверждать, что, поскольку
Доказательство: Предположим, что
Положив
Обратите внимание, что, применяя этот предел справа, мы исходим из предположения, что предел суммы равен сумме пределов. Доказывать это мы, пожалуй, не станем – просто доверимся здравому смыслу, говорящему, что при приближении значений
Что же касается второго утверждения нашей теоремы, то при
что и требовалось доказать.◻
Чтобы продифференцировать функцию
а так как
Теорема (правило дифференцирования степенной функции): При
Например,
а
С помощью этого закона можно дифференцировать даже функции-константы, вроде
то
Правило дифференцирования степенной функции верно и при отрицательных значениях
Аналогичным образом, если
Жаль только, что доказать это нам пока что не по силам.
Перед тем как дифференцировать более сложные функции, применим уже полученные знания в не менее интересных и полезных целях. Например, в целях оптимизации.
Максимум против минимума
Дифференциация нужна для того, чтобы выяснять, где функция достигает своего максимума, а где – минимума. При каком, например, значении
Как вы, наверняка, помните, проведенная через нее касательная должна иметь наклон 0. Так как
Где же максимум? В нашем примере его попросту нет: значение
Теорема (теорема об экстремуме функции в точке): Если дифференцируемая на отрезке функция
Давайте на секунду вернемся в начало главы, к задаче с лотком. Нам нужно, по сути, максимизировать функцию
где
Следовательно, ее критическими точками будут
А так как мы знаем, что при объеме, равном 0, и конечных точках, равных 0 и 6, объем будет минимальным, нам остается только одна критическая точка –
Правила дифференцирования
Чем больше функций мы продифференцируем, тем больше задач сможем решить. Пожалуй, самой важной функцией в исчислении является
Теорема: Если
Почему
Вспомним, что
что означает, что с увеличением
Возведя обе части в степень
А есть ли еще такие функции, которые равны своим производным? Есть. Но все они сводятся к
Не так давно мы выяснили, что при сложении функций производная суммы равна сумме производных. А что насчет умножения? Увы, но производная произведения не равна произведению производных. Тем не менее посчитать ее не очень сложно – для этого достаточно воспользоваться несложной теоремой.
Теорема (правило дифференцирования произведения функций): Если
Например, согласно правилу дифференцирования произведения, чтобы продифференцировать
Обратите внимание, что при
что полностью соответствует правилу дифференцирования степенной функции.
Доказательство (правило дифференцирования произведения функций): Предположим, что
А дальше творим истинно математическое волшебство – добавляем к числителю 0, но не привычным способом, а с помощью прибавления и вычитания
Так как
Но доказанное правило полезно не только в этом конкретном случае – с его помощью можно найти производные других функций. Мы уже доказали, что правило дифференцирования степенной функции верно при положительных значениях показателя степени. Давайте посмотрим, как оно поведет себя при дробных и отрицательных значениях.
Например, согласно правилу дифференцирования степенной функции
Сможем ли мы доказать его с помощью правила дифференцирования произведения? Предположим
Продифференцировав обе стороны и применив правило дифференцирования произведения, получаем
Следовательно, как мы и предполагали.
Правило дифференцирования произведения при отрицательных значениях степени гласит, что
Продифференцировав обе стороны и применив правило дифференцирования произведения, получаем
Разделив всех члены уравнения на
что и требовалось доказать.◻
Следовательно, если
Помните, в 7 главе мы искали такое положительное значение
показала бы минимальное значение? Тогда мы нашли решение с помощью геометрии, показав, что результат может быть достигнут при
Что касается тригонометрических функций, то их дифференцировать ничуть не сложнее. Обратите внимание, что для доказательства следующей теоремы нам нужно, чтобы углы были выражены в радианах.
Теорема: Если
Доказательство: Для доказательства нам потребуется следующая лемма (
Лемма:
Здесь утверждается, что значение любого угла
А так как
И снова
То, что можно доказать с помощью такого вот графика:
На единичной окружности, часть которой изображена выше,
Рассмотрим сектор
Так как сектор
Для положительных значений
А так как
◻
С помощью полученного результата и нескольких алгебраических формул (включая cos²
◻
Производные синуса и косинуса – ключи к дифференцированию тангенса.
Теорема: Если
Доказательство: Предположим, что
Продифференцировав обе части и применив правило дифференцирования произведения функций, получим
Разделим все члены на cos
в котором предпоследнее значение получается в результате деления тождества cos 2
Доказательство правила дифференцирования частного: Так как
Умножив все на
Заменим
Теперь мы умеем дифференцировать многочлены, показательные и тригонометрические функции. Также мы научились дифференцировать их суммы, произведения и частные. Но есть еще
Не перепутайте: это не то же самое, что
Теорема (цепное правило): Если
Например, если
Обобщая, можно сказать, что при
С другой стороны, функция
Обобщим и это: цепное правило говорит нам, что при
что полностью соответствует правилу дифференцирования произведения функций.
Продифференцируем
Со степенными функциями дело обстоит ничуть не сложнее. Так как
Например, производная
Обратите внимание, что функция
при любом значении
Давайте соберем все найденное с помощью цепного правила в таблицу:
Хотите применить все это на практике? Вот вам задачка, практичней некуда. Корова Клара пасется в километре на север от реки (оси
Предположим, что корова решила двинуться с луга (то есть из стартовой точки (0, 1)) к месту водопоя (то есть к точке (
Продифференцировав это уравнение (с помощью цепного правила) и приравняв его к 0, получим
Проверить это можно, взяв
Неплохим вариантом будет метод
Расстояние до
Фокус-покус: ряд Тейлора
Доказывая в конце прошлой главы уравнение Эйлера, мы воспользовались тремя загадочными формулами:
Перед тем как разбираться, как мы пришли к этому, давайте немного поиграем. Интересно, что получится, если взять отдельно каждый член ряда
Последовательно дифференцируя
Теперь давайте попытаемся понять, откуда, собственно говоря, берутся эти формулы. Мы знаем, как найти производные наиболее популярных функций. Но бывают такие ситуации, когда одну и ту же функцию нужно продифференцировать несколько раз, разыскав ее вторую (
Для этого имеются специальные формулы. Они называются
при любом значении
Проследим, как меняется формула для
то есть ряд Тейлора для
Посчитаем с его помощью проценты. Как мы выяснили в прошлой главе, если положить на счет $1000 под 5 %, то, при условии непрерывных начислений, к концу года мы будем иметь $1000
а потом и
Аппроксимации Тейлора могут быть представлены в виде графика, на котором вместе с первыми тремя многочленами Тейлора изображена показательная (экспоненциальная) функция
Постепенно увеличивая степень многочлена, мы достигаем все большей точности аппроксимации, особенно если
На графике получается прямая линия, проходящая через точку (0,
Кстати, многочлены и ряды Тейлора отлично показывают себя при работе и с другими величинами (не только 0), к которым стремится
При
Возьмем ряд Тейлора для
Аналогично, для
Ну и напоследок давайте возьмем пример, в котором ряд Тейлора равен функции при некоторых – но не всех – значениях
Следуя и дальше этой закономерности (или воспользовавшись методом индукции), мы неизбежно придем к заключению, что
что будет верно только при таком значении
Странно, правда? Возможно, вам интересно узнать, каково это – складывать бесконечное количество чисел. А как будет выглядеть их сумма? Ответы на эти вопросы – в следующей главе, посвященной бесконечности, главе, в которой мы встретимся со многими странными, удивительными, непредсказуемыми и прекрасными тайнами математики.
Глава номер двенадцать
Магия бесконечности
Бесконечно интересно
Когда еще, как не в конце, под самый занавес, говорить о бесконечности? И когда еще, как не в конце, вспоминать начало? А в начале у нас была сумма всех чисел от 1 до 100:
А потом – и сумма чисел от 1 до
А еще были другие суммы чисел конечных диапазонов. В этой главе мы попытаемся сосчитать те числа, ряд которых имеет начало, но не имеет конца, например,
(надеюсь, мне удалось убедить вас, что в результате получится 2, причем не
А другие – вовсе не имеют их, как, скажем,
В математике принято считать, что суммой всех положительных чисел является
то есть результат постоянно растет, не имея при этом верхнего предела. По сути, это означает, что ответ превосходит любое число, которое только может возникнуть у вас в голове – сотню, миллион, квадриллион… И все-таки в конце главы мы увидим, что вполне бывает, например, и такое:
Заинтригованы? Уверен, что да. Уже через несколько строк мы покинем привычный нам мир и отправимся в сумеречное царство бесконечности, где возможны самые странные вещи, – в царство, манящее всех математиков своей неизведанностью и красотой.
Является ли бесконечность числом? Не совсем, хотя с ним порой и обращаются, как с обычным числом: вы вполне можете натолкнуться на что-нибудь вроде
Теоретически никакого
Кстати, количества, выражаемые как ∞ – ∞ (бесконечность минус бесконечность) или 1/0 являются неопределенными. Конечно, очень велико искушение заявить, что 1/0 = ∞, потому что при делении единицы на все меньшую и меньшую положительную величину частное будет расти. Но ведь если делить 1 на все меньшие и меньшие по абсолютной величине отрицательные числа, то частное будет представать все большим и большим по абсолютной величине отрицательным числом.
Важность бесконечной суммы: геометрические ряды
Начнем, пожалуй, с утверждения, принимаемого всеми математиками и кажущегося неправильным большинству непосвященных:
То, что две эти величины очень близки друг к другу, не вызывает сомнений практически ни у кого. Но считать их одним и тем же числом?.. Несколько чересчур, правда? Неправда. Позвольте мне попробовать убедить вас в обратном. Поверьте, доказательств у меня так много, что хотя бы одно из них обязательно покажется вам правдоподобным.
Самое, пожалуй, простое исходит из утверждения, что
Умножаем обе стороны на 3 и получаем
Другое доказательство основано на методе, который мы использовали в главе 6 для периодических десятичных дробей. Обозначим бесконечную последовательность знаков после запятой переменной
Умножим обе части на 10:
Вычтем первое уравнение из второго
и получим
А вот доказательство, для которого алгебра вообще не нужна. Надеюсь, вы согласны с тем, что два числа могут считаться разными, если между ними расположено третье число, не равное ни первому, ни второму (например, их среднее арифметическое)? Пойдем от обратного: предположим, что 0,99999… и 1 суть разные величины. Какое же тогда число будет между ними? А если такого числа нет, значит, мы не можем утверждать, что они разные.
Два числа или две бесконечные суммы считаются
Следуя той же логике, мы можем оценить бесконечную сумму следующего ряда:
А еще мы можем найти ей физическое соответствие. Представьте, что вы стоите в двух метрах от кирпичной стены. Вы делаете шаг вперед – ровно на метр. Следующий шаг будет вполовину короче – полметра. Потом четверть метра, одна восьмая метра и так далее. С каждым шагом расстояние между вами и стеной сокращается ровно вполовину. Если проигнорировать физические ограничения на длину каждого следующего шага (в том числе и длину ваших ступней), то рано или поздно вы подберетесь вплотную к стене. Всего же вы пройдете ровно 2 метра.
То же можно представить и геометрически. Начнем с прямоугольника с длинами сторон 1 и 2 и площадью 2. Разделим его пополам, потом еще раз и еще – и так до бесконечности. Площадь первого сектора будет равна 1, второго – 1/2, третьего – 1/4 и так далее. Даже когда мы будем делить на
Алгебра позволяет нам подойти к решению задачи с точки зрения
Эта закономерность подсказывает нам, что при
Доказать это можно либо с помощью метода индукции (см. главу 6), либо как частный случай формулы конечного геометрического ряда.
Теорема (конечный геометрический ряд): При
Доказательство 1 (метод индукции): При
Она отлично работает и при
что и требовалось доказать.◻
А что, если мы немного схитрим, прибегнем к алгебре «со сдвигом»?
Доказательство 2: Предположим, что
Умножим обе стороны на
Вычтем
Другими словами,
что и требовалось доказать.
Обратите внимание, что при
Чем больше
На этот счет, кстати, есть одна шутка, понять которую сможет только математик. Бесконечное количество математиков заходит в бар. Первый заказывает полный бокал пива, второй – половину бокала, третий – четверть, четвертый – одну восьмую… Наконец, бармен не выдерживает и, воскликнув «Нет, ну есть же этому какой-то предел!», наливает им на всех две полные кружки.
Обобщая, можно сказать, что любое число в интервале от –1 до 1, возводимое во все бо́льшую и бо́льшую степень, все ближе и ближе подходит к нулю. В результате мы имеем крайне важный и полезный (
Теорема (геометрический ряд): При –1 <
Чтобы решить нашу последнюю задачу, примем
Выглядит знакомо, не правда ли? Это потому что мы уже встречались с подобным рядом – в самом конце главы 11, когда с помощью исчисления старались показать, что функция
А что еще мы можем «выжать» из этого ряда? Как насчет следующей суммы?
Если вынести за скобки дробь 1/4, убрав ее из каждого члена, получится
то есть при
Доказать это можно практически без слов – просто посмотрите на рисунок ниже и обратите внимание, что закрашенные квадраты занимают ровно треть общей площади большого квадрата.
Геометрический ряд можно использовать также для доказательства нашей задачи с 0,99999…, ведь бесконечное количество знаков после запятой есть не что иное, как замаскированный бесконечный ряд. Просто примем
Формула геометрического ряда верна и тогда, когда
что показано на следующем графике, расположенном на комплексной плоскости.
И хотя формула конечного геометрического ряда верна для любого значения
а бесконечный – что
что выглядит нелепо (хотя это впечатление может быть и обманчивым: в предпоследнем разделе этой главы мы увидим вполне правдоподобное объяснение такого результата).
Число положительных целых величин бесконечно:
Равно как бесконечно и количество положительных четных целых величин:
Считается, что первое
Множество, способное к объединению в пары, называется
перечислить от меньшего значения к большему не получится просто потому, что нет никакого «стартового» наименьшего значения. Зато получится перечислить их вот так:
Следовательно, множество всех целых является счетным, а число его элементов равно числу элементов в множестве положительных целых.
А что насчет множества положительных рациональных величин? Напомню: рациональными называются числа, имеющие форму
то есть мы берем дроби в соответствии с суммой их числителей и знаменателей. Так как любая рациональная величина неизбежно появляется в списке, их множество будет счетным.
А существуют ли вообще такие бесконечные множества, которые не являются счетными? Немецкий математик Георг Кантор (1845–1918) доказал, что все действительные величины, даже только те из них, что ограничены диапазоном от 0 до 1, образуют
и т. д. Но так мы никогда не выйдем за пределы величин с конечным количеством знаков. Число 1/3 = 0,333…, например, в нашем списке так и не встретится. Но, может, есть какой-нибудь другой, более эффективный способ перечисления? Кантор доказал, что его нет. Он пошел от обратного – предположил, что множество действительных величин является счетным. Он взял конкретный пример и начал с
Доказать, что этот список не будет полным, можно, «придумав» такое действительное число, которое никогда в нем не появится. Можно взять, скажем, величину 0,
Эта схема известна под названием «канторовский диагональный процесс», но мне больше по душе «доказательство через кантор-аргумент» (кхм, прошу прощения).
По сути, мы только что показали, что, несмотря на бесконечность рациональных величин, величин иррациональных все же больше. Просто выберите случайное действительное значение, лежащее на оси, и оно почти наверняка окажется иррациональным.
Бесконечные ряды очень часто появляются при решении задач, связанных с вероятностью. Предположим, что вы кидаете два шестигранных кубика, причем кидаете до тех пор, пока в сумме у вас не выпадет 6 или 7. Если 6 выпадает раньше 7, вы выиграли, если наоборот – проиграли. Каковы ваши шансы на победу? Количество возможных комбинаций равно 6 × 6 = 36. Пять из них дают в сумме 6 (а именно (1, 5), (2, 4), (3, 3), (4, 2), (5, 1)), шесть – 7 ((1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)). Следовательно, ваши шансы на победу составляют меньше 50 %. Но сколько именно? Всего значимых для вас комбинаций 5 + 6 = 11, в остальных случаях кубики придется бросать вновь. Из этих одиннадцати пять приведут вас к выигрышу, шесть – к поражению. Значит, ваши шансы равны 5/11.
К тому же ответу можно прийти и с помощью геометрического ряда. Шансы на выигрыш при первом броске равны 5/36. А при втором? Чтобы он вообще состоялся, при первом броске вам надо выбрость что-то, кроме 6 или 7. Не забываем, что оптимальный для нас результат – 6. Общая вероятность выбросить 6 или 7 при первом броске – 5/36 + 6/36 = 11/36, выбросить другую комбинацию – 25/36. Чтобы определить вероятность выигрыша при втором броске, умножим это число на вероятность выбросить 6 при любом броске – 5/36, – в результате получим (25/36)(5/36). Для третьего броска получим уже (25/36)(25/36)(5/36), для четвертого – (25/36)³(5/36) и т. д. Сложив все вместе, получим
что и требовалось доказать.◻
Гармонический ряд и синусоидальные изменения
Когда бесконечный ряд приводит нас к (конечной) сумме, мы говорим, что сумма сходится к этому значению. Когда же этого не происходит, мы говорим, что ряд расходится. Если ряд сходится, то отдельные его значения должны суммироваться до величин, стремящихся к 0. Например, ряд 1 + 1/2 + 1/4 + 1/8 +… сходится к 2, а значит, его члены 1, 1/2, 1/4, 1/8… все ближе подходят к 0.
Обратное же высказывание будет неверным, потому стремление каждого последующего члена ряда к 0 не есть гарантия того, что он не разойдется. Самый важный пример этого утверждения – гармонический ряд, названный так еще древними греками, обнаружившими, что струны лиры, соотносящиеся по длине, как 1, 1/2, 1/3, 1/4, 1/5…, издают гармоничные созвучия.
Теорема: Гармонический ряд является расходящимся, то есть
Доказательство: Прежде чем доказывать, что сумма этого ряда равна бесконечности, покажем сначала, что это есть просто некое очень большое число. Для этого разобьем ряд на несколько частей на основании количества цифр в знаменателе. Обратите внимание, что, поскольку каждый из первых 9 членов больше 1/10, то
Каждый из следующих 90 членов больше 1/100, поэтому
Аналогично поступим со следующими 900 членами (надо ли говорить, что каждый из них больше 1/1000?):
И так далее –
и тому подобное. Следовательно, сумма всех-всех членов равна как минимум
и так до бесконечности.
А вот забавный факт:
где γ есть число 0,5772155649…, так называемая
Не менее удивителен и следующий факт: одного взгляда на простые знаменатели достаточно, чтобы понять, что при большом простом значении
где
Следствием этого факта является то, что
Стремление к бесконечности здесь действительно имеет место: логарифм логарифма числа
Хотите увидеть, что произойдет, если немного модифицировать гармонический ряд? Даже если выбросить из него определенное конечное количество членов, он все еще будет расходиться. Например, если выбросить первый миллион – – который в сумме даст 14, все оставшиеся члены все равно будут стремиться к бесконечности.
Ряд будет расходиться, даже если его расширить. Например, так как при имеем
Так что же, получается, вообще нет никаких способов заставить этот ряд сойтись? Есть! Как показал Эйлер, достаточно просто возвести знаменатели всех его членов в квадрат:
В принципе, воспользовавшись интегральным исчислением, можно показать, что при любом значении
будет сходиться к значению, меньшему, чем Например, при
А теперь возьмем гармонический ряд и уберем из него все числа, в которых есть цифра 9. И смотрите, что произойдет: приравнять все оставшиеся члены к бесконечности уже не получится, а значит, ряд будет сходиться к некой величине. Доказать это можно, просчитав все числа без девяток. Для этого разобъем их на несколько групп в соответствии с длиной знаменателя. Начнем, к примеру, с восьми дробей с однозначным знаменателем: Членов с двумя цифрами под чертой будет 8 × 9 = 72, потому что вариантов выбора первой цифры (любой, кроме 0 и 9) у нас восемь, а вариантов выбора второй – девять. Таким же образом чисел с трехзначным знаменателем получится 8 × 9 × 9, а с
и т. д. Общая же сумма составит не больше, чем
Таким образом, гармонический ряд без девяток будет сходиться к величине, не превышающей 80.◻
Секрет в том, что в этом ряду почти все большие величины обязательно будут иметь девятку. Если загадать случайное число (то есть число со случайным порядком случайных цифр), вероятность того, что среди первых
Давайте посмотрим на числа π и
Представляете, существуют даже специальные программы (в том числе и онлайн), которые ищут придуманные вами последовательности цифр среди знаков π и
Бесконечно занимательные и бесконечно невозможные бесконечные суммы
Давайте
В начале главы мы выяснили, что
и поняли, что это – особый случай геометрического ряда, в котором при любом значении
Все это верно и для отрицательных величин от 0 до –1. Например, при
Ряд, в котором постоянно чередуются положительные и отрицательные величины, с каждым шагом приближающиеся к нулю, называется
Возьмем другой знакочередующийся ряд:
После четвертого члена нам становится понятно, что бесконечная сумма составит минимум 1 – 1/2 + 1/3 – 1/4 = 7/12 = 0,583…, после пятого – максимум 1 – 1/2 + 1/3 – 1/4 + 1/5 = 47/60 = 0,783…. Истина, как всегда, кроется где-то посередине – 0,693147…. С помощью исчисления мы можем найти
Чтобы размяться, возьмем следующий ряд
и посмотрим, что будет, если продифференцировать обе его части. Помните, в главе 11 мы определили, что производные 1,
Посмотрим на другой ряд, заменив
Найдем для обеих сторон
(Постоянная величина слева – 0, потому что при
Если же заменить
В большинстве учебников по исчислению сказано, что
А положив
Правильно пользоваться геометрическим рядом мы уже научились. Почему бы немного не попользоваться им неправильно? Формула утверждает, что
при любом значении
Конечно, это невозможно: при сложении и вычитании целых величин дробь вроде 1/2 просто не может образоваться, даже при сходящейся сумме. С другой стороны, крупица здравого смысла в таком ответе все-таки есть – просто взгляните на промежуточные суммы:
Возьмем другое «незаконное» значение –
Этот ответ выглядит еще более нелепо, чем предыдущий: как может сумма положительных чисел быть отрицательной? Но зерно истины скрыто и здесь. Помните, в главе 3 мы разбирали случаи, когда положительная величина ведет себя как отрицательная в таких, например, отношениях:
Это привело нас к выводу, что 10
А вот один очень интересный способ понять 1 + 2 + 4 + 8 + 16 +…, который потребует от нас нестандартного творческого подхода. Вернемся назад к главе 4, в которой мы выяснили, что любое целое может быть представлено в виде уникальной суммы двух степеней двойки. Именно этот принцип лежит в основе
где каждый член – это степень по основанию 2. К чему это нас приведет, пока неясно, но некоторая закономерность здесь уже прослеживается. Так, эти числа можно складывать, перенося лишние цифры в следующий разряд – как мы всегда и делаем. Например, прибавив к предыдущему ряду число 106, получим
где две двойки предсказуемо дают 4, а две восьмерки – 16. А дальше смотрите, что происходит: этот результат мы прибавляем к следующим 16 и получаем 32. Плюс еще 32 – будет 64. А так как дальше у нас уже есть целых две величины, равные 64, имеем 64 и 128. Все, что выше 256, остается в единственном экземпляре. Теперь попробуйте представить, что произойдет, когда мы прибавим 1 к некой абстрактной «наибольшей» величине.
Мы получим бесконечную цепь реакций, уводящих за пределы уравнения все значения, не связанные степенными отношениями с 2. Следовательно, сумму вполне можно представить как 0. Так как (1 + 2 + 4 + 8 + 16 +…) + 1 = 0, вычитание 1 из обеих частей приведет нас к бесконечной сумме, ведущей себя в точности, как число –1.
Хотите, расскажу вам о своей любимой бесконечной сумме? Вот она:
Чтобы доказать это, обратимся к алгебраическим хитростям и так же, как мы делали во втором доказательстве действительности конечного геометрического ряда, сдвинем отдельные элементы. Такой подход отлично срабатывает для конечных сумм, но в применении к суммам бесконечным он дает порой очень странные, порой абсурдные результаты. Применим его для начала к одному из предыдущих тождеств. Сумму запишем дважды – без сдвига и со сдвигом. Получится
Сложим эти два уравнения:
Следовательно,
Тот же метод можно использовать для быстрого (хотя и не вполне «законного») подтверждения формулы геометрического ряда.
Вычтем одно уравнение из другого:
Самое потрясающее то, что знакочередующаяся версия желаемой нами суммы тоже имеет очень любопытный ответ:
Сдвигаем, записываем ответ дважды:
Складываем:
Следовательно, 2
Ну и, наконец, посмотрим, что произойдет, если представить сумму всех положительных целых как
Вычтем второе из первого:
Другими словами,
Решая это уравнение для
как и предполагалось.
Для протокола отметим, что при сложении бесконечного количества положительных целых сумма расходится до бесконечности. Но не торопитесь списывать все наши конечные результаты на обычные чудеса математики – с подобными странностями можно и нужно разобраться. Достаточно просто посмотреть на числа под другим углом, и сумма 1 + 2 + 4 + 8 + 16 +… = –1 покажется не такой уж и невероятной.
В привязке к оси, как вы наверняка помните, казалось невозможным найти корень числа –1, но у нас получилось сделать это, когда мы трактовали комплексные величины как точки на комплексной же плоскости – точки, подчиняющиеся своим собственным арифметическим законам. Любой физик, занимающийся теорией струн[37], подтвердит, что 1 + 2 + 3 + 4 +… = –1/12, ведь именно на этой сумме основано множество его вычислений. Видите: даже самый абсурдный результат нельзя просто взять и отмести только на основании его абсурдности – всему есть свое объяснение, достаточно лишь напрячь воображение.
Давайте закончим эту книжку еще одним парадоксальным результатом. В начале раздела мы взяли знакочередующийся ряд
сходящийся к ln 2 = 0,693147…. От перемены мест слагаемых сумма, по идее, меняться не должна – этот принцип называется коммутативным законом сложения и выглядит как
для любых значений
Это именно перемена мест слагаемых: мы по-прежнему складываем дроби с нечетными значениями знаменателя и вычитаем дроби с четными значениями знаменателя. И хотя четные числа используются в ряду в 2 раза чаще, чем нечетные, тех и других у нас бесконечный запас. К тому же каждая из дробей встречается лишь единожды, как и в оригинальном уравнении. Правда? Правда. Но взгляните-ка:
Это значит, что у нас получается лишь половина изначальной суммы! Как такое возможно? И как возможно то, что перемена мест слагаемых приводит нас к другому результату? Ответ прост: коммутативный закон сложения вполне может «буксовать», когда дело доходит до бесконечного количества чисел, и это хорошо известно.
«Пробуксовка» возникает при схождении всякий раз, когда положительные величины вместе с отрицательными формируют расходящийся ряд. Другими словами, когда положительные величины дают в сумме ∞, а отрицательные –∞, как в нашем последнем примере. Подобные ряды называются
Конечно, обычно бесконечные ряды, с которыми мы сталкиваемся в повседневной жизни, так странно себя не ведут. Если заменить каждый член ряда его
Так вот, он будет именно абсолютно сходящимся, ведь при сложении абсолютных величин мы придем к другому, ничуть не менее знакомому нам сходящемуся ряду
Здесь коммутативный закон сложения «буксовать» не будет даже при бесконечном количестве членов. Следовательно, в изначальном знакочередующемся ряду числа 1, –1/2, 1/4, –1/8… можно «тасовать» как угодно – их сумма всегда будет равна 2/3.
К сожалению, в отличие от бесконечных рядов, любая книга, в том числе и эта, должна когда-то заканчиваться. Лезть дальше бесконечности мы, пожалуй, не осмелимся, а остановимся прямо здесь. Впрочем, у меня для вас припасено еще одно
На бис: магические квадраты
Уверен, этот десерт вам понравится. С бесконечностью он никак не связан, зато магия здесь содержится прямо в официальном названии – разве можно просто взять и пройти мимо?
Мало кто знает, но этот квадрат обладает одним уникальным свойством, которое я бы назвал «квадратно-палиндромическим». Если представить каждую горизонталь или вертикаль как трехзначное число, а потом сложить их квадраты, получим
То же происходит и с большими диагоналями:
Магические квадраты магического квадрата!
Самый простой квадрат размером 4 на 4 включает в себя числа от 1 до 16, которые суммируются до 34 (см. ниже). Математики и фокусники очень любят квадраты 4 на 4: они дают нам десятки способов прийти к волшебному результату. Например, в нашем квадрате итоговое число 34 дают не только горизонтали, вертикали и диагонали, но и каждый внутренний сектор размером 2 на 2 (например, левый верхний (8, 11, 13, 2), центральный (2, 7, 16, 9) или «разнесенный» по углам (8, 1, 10, 15)) и большие диагонали.
У вас есть любимое двузначное число больше 20? Можно создать для него (обозначим его буквой
Следующий наш пример основан на
Впрочем, даже если у вас нет любимого двузначного числа, то уж день рождения есть наверняка – а значит, теперь вы сможете создать свой личный магический квадрат! Воспользуемся моим методом «двойного дня рождения» – дорогая вам дата здесь появляется дважды: в верхней горизонтали и в четырех углах. Я обозначу взятые вами числа буквами
Моя мать, например, родилась 18 ноября 1936 года, значит, ее личный магический квадрат выглядит вот так:
А теперь ваш день рождения. Следуя закономерности, указанной выше, вы получите свою личную сумму больше 30 раз – попробуйте посчитать сами.
Если же вам и этого мало, вот вам способы создать более крупные магические квадраты – например, квадрат размером 10 на 10, в который входят все числа от 1 до 100:
Сможете прикинуть, чему равна сумма чисел в каждой горизонтали, вертикали или диагонали, при этом их не складывая? Конечно же, сможете: много-много страниц назад мы доказали, что сумма всех чисел от 1 до 100 равна 5050, каждый же ряд составляет одну десятую от этого количества, то есть 5050/10 = 505.
Правда, забавно? Мы заканчиваем тем же, чем и начинали. Спасибо за то, что прошли со мной весь этот путь! И поздравляю! Сколько матемагических фокусов мы увидели, сколько способов решения задач открыли, сколько всего нового узнали! Уверен, все это пригодится вам еще не раз, и надеюсь, что идеи, о которых рассказано в этой книге, показались вам полезными, интересными и магическими!
Итого
Я и вправду надеюсь, что это не последняя книга по математике, которую вы читаете. Ведь в меню еще столько вкусного – столько всего, о чем не узнаешь на уроках в школе.
«Магия математики» родилась в процессе работы над видеокурсом «Математическое удовольствие», выпущенным в серии «Лучшие курсы». Он состоит из 24 получасовых лекций – в них я так или иначе касаюсь тех тем и проблем, которые мы обсуждали в этой книге. Но есть там и многое другое, не менее интересное: загадки вероятности, математические игры… и, конечно, еще больше магии! Не описать словами, насколько я благодарен издателям курса за то, что позволили мне использовать его материалы для создания этой книги.
«Лучшие курсы» – это более трех десятков программ, доступных в аудио– и видеоформатах (их можно купить на дисках или скачать с официального сайта). Все они посвящены математике и основным ее разделам: алгебре, геометрии, исчислению и даже истории этой удивительной науки. Масштабный проект, для работы над которым привлекались выдающиеся преподаватели со всей Америки. Представляете, какой было честью попасть в их число? Всего мне посчастливилось поучаствовать в четырех программах: об одной я уже вам рассказал, остальные три называются «Дискретная математика», «Математика в играх и головоломках» и «Секреты устного счета».
Последняя, кстати, – это не только курс лекций, но и книга, написанная мной в соавторстве с замечательным историком и популяризатором науки Майклом Шермером и выпущенная издательством Random House. В ней мы постарались пролить как можно больше света на все, что связано со счетом в уме при решении как простых, так и сложных, комплексных задач. Чтобы в ней разобраться, совсем необязательно быть специалистом – достаточно просто знать таблицу умножения для первых десяти чисел. Впрочем, если вы не знаете и ее (например, потому что еще учитесь в начальной школе), могу порекомендовать почитать «Искусство устного счета» – она написана еще проще (над ней мне помогала работать Наталья Сен-Клер – именно ей книга обязана удивительной легкостью авторской речи и прекрасными иллюстрациями). И то и другое издание можно купить на Amazon.com или createspace.com.
Более искушенный читатель может найти для себя интересными «Доказательства, которые действительно работают: Искусство комбинаторики», «Сливки теории чисел» (выпущены издательством Американской математической ассоциации; соавтор первой – Дженнифер Куин, соредактор второй – Эзра Браун) и «Удивительный мир теории графов» (издательство Принстонского университета, соавторы – Гари Чартренд и Пинг Жанг).
Своим интересом к литературе я обязан Мартину Гарднеру – величайшему математическому магу всех времен и народов, автору более чем двух сотен книг, многие из которых посвящены занимательной математике. Его творения (вместе с колонкой «Математические игры», которую он вел в журнале
Если вам интересна высшая математика или область возможных значений (самый край математической земли, самая высокая из всех вершин этой горной цепи), то здесь мне очень важной вехой представляется серия «Искусство решения задач» Ричарда Ражика. Там есть все, что вы наверняка успели полюбить: алгебра, геометрия, исчисление и многое, многое другое. У серии есть сайт ArtOfProblemSolving.com, где любой желающий может пройти интерактивный курс математики и поучаствовать в интересных конкурсах.
Кстати, об Интернете. Мой коллега Френсис Су собрал на своей странице www.math.hmc.edu/funfacts несколько сотен самых удивительных математических задач. В основном они ориентированы на педагогов, которые любят «разогреть» учеников в самом начале урока нестандартным и интересным заданием. Что-то подобное сделал и Алекс Богомольный: просто зайдите на Cut-The-Knot.org, и «Интерактивные математические пазлы» захватят вас очень и очень надолго. А еще вы найдете там более сотни доказательств теоремы Пифагора! Если читать лень, можете посмотреть видео на Numberphile.com – отличный способ провести время с пользой.
Больше мне добавить (или умножить) нечего. Читайте и получайте удовольствие!
Благодарности
Эти страницы так и не увидели бы типографского станка, если бы не храбрость и настойчивость моего литературного агента Карен Ганц Залер и не поддержка моего любимого редактора из издательства Basic Books Ти Джея Келлехера.
Я бы не справился без помощи нежно любимой мной Натальи Сен-Клер, которая украсила эту книгу чудесными графиками, диаграммами и рисунками. У Натальи есть уникальный дар – она может превратить самую скучную теорию в веселый праздничный карнавал.
У каждого писателя должен быть свой «идеальный» читатель. Моего зовут Сэм Гутекунст. Кода-то он был моим студентом, теперь же значительно облегчает работу Ти Джея, тщательнейшим образом вычитывая страницу за страницей и составляя подробные комментарии. А еще судьба свела меня с математиками Ами Шел-Гелаш и Винсентом Матско, чьи зоркие глаза разглядели все мои ляпы. Без их профессиональной поддержки у меня никогда не получилось бы то, что получилось.
А еще у меня совершенно фантастические коллеги и студенты. Все-таки наш колледж – удивительное место! Особое спасибо хотелось бы сказать профессору Френсису Су (за вдохновляющие беседы и сайт Math Fun Facts) и Скотту и Кэрол Энн Смолвудам, возглавляющим кафедру математики имени Смолвудов. И, конечно же, я бесконечно благодарен Кристоферу Брауну, Гари Чартренду, Джею Кордесу, Джону Форту, Рону Грэхему, Мохаммеду Омару, Джейсону Розенхаусу и Наталье Сен-Клер за плодотворные дискуссии и родившиеся в ходе них идеи.
Итану Брауну я признателен за мнемонические упражнения для числа t, Дагу Данхэму – за чудесное изображение бабочки, Дейлу Гердеману – за диаграмму Серпинского, Майку Киту – за его хит о числе π, математикам Ларри Лессеру и Дейну Кэмпу – за разрешение использовать в книге их стихотворения, Наталье Сен-Клер – за фотографию в разделе о золотом сечении.
Спасибо профессионалам из Perseus Books. Спасибо, Квин До, Ти Джей Келлехер, Кесси Нельсон, Мелисса Веронези, Сью Вара, Джеф Вильямс и многие-многие другие – с вами было удивительно приятно работать!
Создателям серии «Лучшие курсы» я желаю и дальше столь же успешно продолжать свое великое дело. Математику можно и нужно нести в массы! Вы же делаете это таким способом, который мне бы и в голову никогда не пришел. Большое спасибо вам за то, что позволили мне использовать материалы из «Математического удовольствия» во время работы над этой книжкой. Джей Тейт, вы незаменимы!
Я не стал бы тем, кем стал, без моих родителей Ларри и Ленор Бенджаминов, и, конечно же, без моих учителей – Бетти Голд, Мэри Энн Спаркс и Джин Фислер. Спасибо и моим однокашникам и коллегам по Мейфилд Хай Скул, Университету Карнеги – Меллон, Университету Джонса Хопкинса и колледжу Харви Мадда.
Но больше всего на свете я благодарен своей жене Дине и нашим дочерям Лорел и Ариэль – за их любовь и терпение. (Дина, спасибо, что читала все, что появлялось на мониторе моего компьютера.) Я люблю вас. Дорогие мои, вы – самая удивительная и непостижимая магия всей моей жизни.
АРТУР БЕНДЖАМИН защитил диссертацию в Университете Джонса Хопкинса (Балтимор, Мэриленд), профессор кафедры математики имени Смолвудов Колледжа Харви Мадда (Клермонт, Калифорния). За свою писательскую и преподавательскую деятельность неоднократно удостаивался престижных наград. Помимо прочего, доктор Бенджамин занимает пост редактора журнала