Очерки истории электричества от древности и до наших дней.
Книга о природе электрических явлений и об ученых, которые в течение многих веков стремились разгадать тайны электричества. Рассказывается также о новейших достижениях науки в области использования электричества для нужд людей, о перспективах развития большой энергетики.
От автора
Бесконечно разнообразен мир.
Бесконечно разнообразна окружающая нас природа.
Бесконечно сложны и различны люди — часть этой природы.
Многие физики, правда, глубоко убеждены, что в основе своей природа проста и большинство ее «загадок», все еще приводящих исследователей в недоумение, лишь свидетельствуют, что мы пока еще не способны понять язык, на котором мир рассказывает о себе.
Во все времена людей интересовало, как устроена Земля и Вселенная, в чем причина природных явлений. Люди давали свои толкования окружающему — всякий раз по-своему, в зависимости от уровня имевшихся знаний, от уровня развития человеческой мысли. Но одни уповали при этом на высшую силу, даже собственные достижения считали результатом откровения божьего… Другие же кропотливо собирали крупицы повседневного опыта, старались обобщить их, воспроизвести то, что наблюдали в природе.
Как нам оценить путь, который успело пройти человечество?
Раскроем «Беседу трех святителей», сочинение, созданное около IV века нашей эры. Авторитетнейшие византийские писатели рассуждают о мировых тайнах: «Иоаннъ рече: Отъ чего громъ и молния сотворено бысть? — Василий рече: Гласъ господень въ колеснице огненной утвержденъ и ангела громная приставлена…» На славянский язык это сочинение было переведено в XI веке, и написанное в нем принималось за истину еще многие столетия!
А сейчас, можно сказать, на наших глазах рождается единая физическая теория так называемого «великого объединения»: она охватывает все случаи электромагнитного взаимодействия, в том числе и атмосферные разряды-молнии, и сильные взаимодействия, ответственные за целостность атомных ядер, и слабые, делающие возможными радиоактивные превращения одних химических элементов в другие…
Вот каков скачок в знаниях людей о природе. Сделало его человечество за шестнадцать веков, причем главные, поистине семимильные шаги пройдены за последние двести лет.
Посвящена эта книга истории электричества, точнее — электромагнетизма, одной из областей человеческого знания о природе электричества. Правда, пришлось отказаться от желания пройти всю тропку, ведущую от мифов и легенд далекого прошлого к некоторым основополагающим событиям настоящего, которые позволили людям построить совершенно особый, не похожий на природный «электрический мир».
И все же почему я пишу именно об электричестве? Да потому, что, по моему глубокому убеждению, познание природы электрических явлений — величайшее достижение человеческого гения. Судите сами: что, казалось бы, менее связано друг с другом, чем электричество, свет и магнетизм? Ученые долго считали, что их субстанции — различные невесомые жидкости, которые и обеспечивают взаимодействие наэлектризованных или намагниченных тел (а природу электричества определяли вроде бы даже две жидкости — положительного и отрицательного электричества). Свет же, как думали, лишь волны мирового эфира.
Но оказалось, что все это не более чем различные проявления одних и тех же по своей природе явлений! Великий Максвелл предложил систему математических уравнений, которые лаконично и красиво описывали фундаментальные законы, лежащие в их основе, а заодно объясняли тепловое излучение и распространение радиоволн (открытых, кстати, значительно позже!).
Конечно, случилось это не вдруг, не спонтанно; не было это и откровением свыше. Общая теория электрических явлений позволила не только демонстрировать эффект притягивания Пущиной или получении искр — теперь наука и техника быстро изыскали способы передачи информации на расстояние (притом
Примеров применения электричества необозримое множество. Но выбрал я большую энергетику. Почему? Да потому, что еще в 1912 году было сказано: «Электрификация всех фабрик и железных дорог сделает условия труда более гигиеничными, избавит миллионы рабочих от дыма, пыли и грязи, ускорит превращение грязных, отвратительных мастерских в чистые, светлые, достойные человека лаборатории». А позже, уже после Великой Октябрьской социалистической революции, более коротко и емко: «Коммунизм — это есть Советская власть плюс электрификация всей страны». И говорил это Владимир Ильич Ленин, уже тогда провидевший связь между развитием энергетики и возможностью создания нового общества.
Строить его — вам, мои читатели. Вот мне и показалось, что вам важно узнать об энергетике побольше, тем более что сама история возникновения науки об электричестве и магнетизме невероятно интересна.
Мы живем в удивительное время. Достижения техники и науки так «уменьшили» размеры нашей планеты, а население ее так разрослось, что сегодня нельзя не понимать: составляя планы развития хозяйства в некотором регионе, надо думать о будущем всей Земли. Ведь сейчас даже оптимисты говорят, что примерно через полтора столетия на Земле иссякнут запасы основных видов топлива — нефти, газа, угля… Где же черпать энергию? Не погибнет ли наша — «энергетическая» — цивилизация?
Обратимся к истории. Оказывается, энергетические проблемы волновали людей уже много веков назад. В Древнем Египте, при фараоне Рамзесе II (XIV–XIII века до нашей эры), медеплавильные печи потребляли столько первосортного древесного угля, который древние углежоги получали из акаций и финиковых пальм, что вскоре… просто не осталось деревьев и производство меди пришлось свернуть. А в Англии углежоги в XVI веке так сильно извели леса, что королеве пришлось издать специальный указ, запрещающий порубку для нужд черной металлургии. Конечно, выпуск металла сразу упал. Трудно сказать, чем бы все кончилось, если бы один английский кузнец не придумал способ коксования каменного угля. Лишь тогда снова загудели домны, снова забили из леток тугие струи раскаленного металла.
Итак, проблема, которую не удалось решить в Древнем Египте, была решена в Англии XVI века. Но неужели и нашим потомкам понадобится тридцать веков, чтобы окончательно избавиться от энергетического голода? Конечно, нет! При теперешних темпах развития науки, при самом характере ее воздействия на общественные отношения многие проблемы, в том числе и энергетическая, будут разрешены достаточно скоро. Они не могут не быть разрешены — слишком велика в этом потребность.
Сегодня электричество стало самостоятельной отраслью естественнонаучных знаний. Оно еще уготовит людям немало неожиданностей. Некоторые «сюрпризы» науки мы уже можем предугадать. И контуры будущего, вырисовывающиеся сегодня, грандиозны. Потому мне и захотелось рассказать об электричестве от самого начала и до наших дней, а может быть, чуть-чуть еще и о будущем…
Часть первая. Время
Глава первая. Когда родилась наука?
Ответить на этот вопрос, наверное, так же трудно, как сказать, с чего начинается великая река. Тысячи ручейков должны слиться вместе, чтобы образовался могучий поток, несущий свои воды к морю.
Наука — важнейшая сфера деятельности человека. Результатом ее должны стать объективные знания об окружающей действительности. Объективные, то есть не зависящие от наших с вами чувств, от желаний и вкусов, от ситуации, от временно сложившейся обстановки в обществе. Научные знания заключают в себе такие человеческие представления, «которые не зависят от субъекта, не зависят ни от человека, ни от человечества»[1].
Скорее всего, сначала в систему знаний входили навыки и умения. Одни люди лучше других отыскивали съедобные коренья и разводили огонь. Другие умели строить хижины, плести корзины, изготавливать копья, дротики, обжигать гончарные изделия.
Земледелие в обширных наносных долинах крупных рек, где возникли первые поселения, побудило людей к объединению и совместному труду. Рыть каналы и строить дамбы для того, чтобы бороться с наводнениями и засухами, можно было лишь совместно, коллективным трудом. А необходимость распределять воду между земледельцами образовала основы социального порядка.
Для закрепления установленных правил и для придания им незыблемого авторитета служили мифы. Они играли чрезвычайно важную роль в общественной жизни древнейших народов, отражая достигнутый уровень развития как в практической технике, так и в общественной организации. Мифы объясняли, как был добыт огонь, как произошли ремесла, как возникли определенные обычаи и обряды; мифы закрепляли правила общежития и первые социальные институты. Они отвечали на вечные вопросы о происхождении светил и Вселенной, о рождении человека и появлении на Земле животных, растений и рыб. Долго и многообразно изменяясь, мифы породили, с одной стороны, основы религиозных воззрений, а с другой — первые научные теории.
Нагляднее всего это представлено в достижениях античной цивилизации, поскольку «в многообразных формах греческой философии уже имеются в зародыше, в процессе возникновения, почти все позднейшие типы мировоззрений. Поэтому и теоретическое естествознание, если оно хочет проследить историю возникновения и развития своих теперешних общих положений, вынуждено возвращаться к грекам»[2].
Наука об электричестве как самостоятельная отрасль естествознания родилась в XVII веке. Но первый интерес к электричеству проявили греческие мыслители, они же сделали первые шаги в исследовании непонятных явлений, составивших основу будущей науки об электричестве. С них и начнем рассказ.
В древнем Милете
Рассказывают, что однажды к древнегреческому философу Фалесу, жившему в городе Милете, пришла дочь и протянула ему веретено, сделанное из драгоценного камня — электрона. Финикийские купцы изредка привозили изделия из этого желтого, прозрачного, как первый лесной мед, камня в греческие города. Здесь они продавали их за большие деньги. Фалес не был чересчур богат, но для любимой дочери денег не жалел.
Девушка рассказала, что не раз, уронив веретено на пол и стараясь очистить его от приставшего сора, терла его пряжей. Но при этом упрямое веретено только сильнее притягивало к себе пылинки и нити. Отчего это так?..
Подивился мудрец феномену, но еще больше порадовался наблюдательности дочки. Однако отвечать ей не торопился. Девушка уже давно скрылась в женской половине дома — гинекее, а Фалес все сидел, размышляя над ее вопросом. Финикийцы уверяли, что рождается прозрачный электрон в холодных водах северных морей, где даже солнечные лучи, застывая, сворачиваются в узел. В них-то и берет свое начало желтый, прозрачный камень. Об этом философ слыхал и раньше, а вот о свойстве привлекать к себе мелкие тельца, создавать движение он узнал впервые. Бывалые люди говорили, что странным свойством притягивать к себе железо славятся черные камни из страны Магнезии, населенной магнетами. Люди уверяли, что, питая склонность к железу, тянутся по воле богов черные камни к нему. Но железо благородно, а в магните скрыта живая душа. Почему же электрон питает любовь к простому сору? Всем известно, что только живое способно рождать движение. Не значит ли это, что одушевлен и электрон?
Солнце закатилось, пришло время кликнуть раба, чтобы тот принес светильник. Но философ не сделал этого. В наступившей темноте он обнаружил, что если потереть электрон рукой, он весь покрывается крошечными голубыми искорками. Они вспыхивают и гаснут с легким треском.
Снова и снова трет Фалес веретено сухими ладонями и глядит, не может наглядеться. Сегодня он покажет это чудо ученикам и попробует порассуждать о нем. Может быть, логика рассуждения приведет его к истине…
Под покровом ночи сходятся ученики к дому мудреца. Собираться днем опасно. Славному торговому городу-государству Милету слишком часто приходится браться за оружие. То лидийские цари, то персы подступают к его стенам. В середине VI века до нашей эры город надолго попал под власть персов. На этот раз завоеватели не разграбили и не разрушили его, как обычно: сумели тираны милетские подарками и лестью сохранить свои привилегии, вошли в дружбу не только с персами, но и с лидийцами. Кончились разорительные походы, и никогда еще город не был столь богат. Его торговые суда во всех направлениях бороздят Средиземное море. По берегам Понта Эвксинского (так называли в то время греки Черное море) и по берегам Мраморного моря раскинулись многочисленные милетские колонии и торговые фактории. Но чем богаче тираны, тем страшнее им кажущиеся повсюду заговоры.
Да и не в одних тиранах дело. Учить мудрости — неблагодарное занятие. Сильные мира сего не любят чересчур умных. А Фалес и учен и умен.
И потому собирать учеников он предпочитает по ночам. Может быть, и у древних греков была пословица «береженого боги берегут»? А боги, по глубокому убеждению мудреца, были везде. «Все наполнено богами, — учил он, — все одушевлено ими, и прежде всего основа и начало сущего — вода…»
Сегодня он должен был попытаться объяснить ученикам и понять сам два чуда: притяжение электроном легких телец, которое заметила дочь, и искры холодного и голубого огня, которые появлялись на солнечном камне при натирании его. Почему именно в магнит и электрон вдохнули боги бессмертную Душу?..
В годы, когда жил Фалес главный тон среди софистов — учителей мудрости задавали орфики, последователи учения о душе как о частице божества; тело же они воспринимали как «темницу души». И потому божественная сущность души была у всех на языке. Фалес не отрицал ее существования. Более того, он считал одушевленным весь мир — воду, камни и землю. «Душа, — говорил он, — размещена во всем мироздании». А нельзя ли доказательством этого считать притяжение железа магнитом, а легкого сора — натертым электроном, янтарем по-нашему.
В своем учении Фалес понимал душу как источник движения, как силу, не признавая за нею мистического начала.
Но кем же был этот удивительный философ, основоположник наиболее ранней греческой философии, которая начала демифологизацию науки о мире, изгнав из нее богов и заменив их единым, изнутри присущим миру источником его жизни — водой?
В книге Диогена Лаэртского «О жизни, учениях и изречениях знаменитых философов» сказано: «Итак, Фалес (по согласному утверждению и Геродота, и Дурида, и Демокрита) был сын Эксамия из Клеобулины из рода Фелидов, а род этот финикийский, знатнейший среди потомков Кадма и Агенора. Он был одним из семи мудрецов, что подтверждает и Платон; и когда при афинском архонте Дамасии эти семеро получили именование мудрецов, он получил такое имя первым».
Когда мы говорим о том, что Фалес и другие греческие философы изгоняли из мира богов, вовсе не значит, что они были атеистами в нашем представлении. Никто из них, строго говоря, богов не отрицал. Греческие философы лишь пытались искать причины происходящего в самом мире, в его природе, а не в волеизъявлении высших сил. Потому они и называются натурфилософами.
Древнегреческие натурфилософы стремились истолковать всю природу целиком, сразу. Они желали проникнуть в заповедные тайны первоначал и первопричин всего сущего, старались охватить единым взглядом не отдельные детали, как это делает современная наука, а всю картину мира сразу. При этом они объединяли явления по сходству внешних проявлений, например таких, как притяжение одних предметов и тел другими. И здесь в один ряд попадали притяжение и магнита, и Земли, и электрона-янтаря и притяжение… бабочки цветком… Задавая себе вопросы, отвечая на них, ошибаясь, философы учились рассуждать, учились мыслить, познавать. Ведь всякое познание начинается с сопоставления и объединения внешних качеств, с рассуждений о причинах тех или иных особенностей…
«Око Эллады»
«Оком Эллады» называли древние греки Афины — центр культурной и политической жизни всей страны. Давайте перенесемся мысленно в яркое солнечное утро 334 года до нашей эры, когда в Пирей — афинскую морскую гавань только что вошла длинная и черная от покрывающей ее смолы триера. Так назывались суда с тремя рядами весел по борту и косым парусом на единственной мачте. Пока матросы убирали снасти, на берег, сопровождаемый рабами, сошел пассажир. Небольшого роста, скорее тщедушный, он даже не привлек внимания портовых зевак. Тем более что новоприбывший и не молод. Время расцвета — акмé, — которое, как считали древние греки, наступает у мужчины в сорок лет, для него давно миновало. Редкие волосы и колючий, пронзительный взгляд делают его облик даже неприятным, особенно когда небогатая растительность на лице открывает его тонкие губы, вечно змеящиеся в насмешливой улыбке. Правда, выступает он важно и одет в белую тогу с синей каймой; это значит — человек с достатком…
Примерно так мог выглядеть великий древнегреческий философ Аристотель, когда после битвы при Херонее, решившей судьбу Греции, вернулся в Афины.
Здесь, неподалеку от гимнасии, посвященной Аполлону Ликейскому, философ купил землю и в парке, среди деревьев и цветов, в нескольких зданиях организовал школу. Позже она стала называться Ликеем. По вечерам Аристотель читал лекции для всех желающих. Он учил риторике, разбирал вопросы политики и этики, отвечал на вопросы о феноменах природы. По утрам, окруженный избранными учениками, он прогуливался по дорожкам своего сада, вел дискуссии и пояснял наиболее запутанные вопросы логики и метафизики.
Рассказывают, что порой в полдень раздавался стук в ворота. Рабы-привратники впускали гонцов от прославленного полководца Александра Македонского. Для афинян это был враг, а для Аристотеля — ученик, воспитанник, которым он гордился. Что же привозили гонцы? Послания? Вряд ли. Никаких писем от полководца к философу не сохранилось. Скорее — подарки. Именно благодаря им в Ликее Аристотель собрал великолепную библиотеку и настоящий музей. Невиданные растения, шкуры животных и просто диковинки из разных стран заполнили его комнаты. Откровенно говоря, большинством своих трудов по естественной истории Аристотель в немалой степени обязан этим коллекциям. Не зря он учил, что настоящий философ и в капле должен уметь видеть отражение целого мира.
Но чего стоят все эти диковинки, если в движении обыкновенного камня больше тайн, чем во всех экспонатах. Бросьте камень вверх, бросьте вбок. В любом случае он упадет на землю. А почему? В чем причина падения? Какая сила притягивает вообще все тела к земле?.. Да и одна ли земля притягивает? Вот, например, среди диковинок геркулесов камень. Платон уверял, что поэт Еврипид дал камню название «магнит». То ли по провинции Магнезии, населенной магнетами (геркулесовы камни в изобилии встречались там), то ли по имени пастуха-волопаса Магниса. Говорят, он первым заметил, что гвозди сандалий и железный наконечник пастушеского посоха прилипают к этим камням. Но не в том суть. Почему магнит притягивает к себе именно железо, и только железо, а прозрачный солнечный камень, драгоценный электрон, будучи натерт, привлекает к себе любые легкие частицы?.. Почему, почему, почему???
Первые натурфилософы хотели сразу проникнуть в суть первопричин. А между тем причина притяжения и его механизм и в наши дни представляют для ученых определенного рода загадку, даже с позиций квантовой теории, призванной объяснить, как иногда кажется, необъяснимое. Древние философы, желая охватить единым взглядом всю картину мира, строили, естественно, упрощенную модель. А чтобы скрепить ее, вводили различные допущения.
Так, одним из допущений сначала у Платона, а потом и у Аристотеля была идея о целесообразности. Платон учил о сознательной, целенаправленной душе мира. Аристотель выдвинул понятие о целесообразности природы. Другим допущением явились идеи о наличии у природы цели, а значит, и о жесткой предназначенности каждой вещи, каждого предмета и даже живого существа. Только так мир Платона и Аристотеля становился гармоничным, только так он мог сохранить свою целостность.
В мире Аристотеля каждая вещь должна была знать свое место. Сдвинутая с него, она в естественном движении стремилась вернуться и занять его снова. Вот почему камень, подброшенный в воздух, стремился вернуться к породившей его земле, а огонь, имеющий обиталище в небе, мечет свои искры вверх. Все имеет свое место, свое предназначение. Камням — лежать на месте, пару — подниматься вверх к облакам, дождю — падать вниз, чтобы соединиться с водами. А к чему предназначены птицы? Конечно, чтобы летать. Рыбы — чтобы плавать… Кошки — ловить мышей. Мыши… Так же и солнечный камень электрон, предназначен притягивать мелкие тельца, а магнит — железо…
Все взаимодействия вещей в мире выводил Аристотель из цели, из конечных причин, из того, к чему они предназначены…
Кем предназначены?.. Тут его материалистические позиции не выдерживали. Слишком мало еще люди накопили знаний. И в исходную точку бытия приходилось вводить богов как первопричину всего. Без них было пока не обойтись.
А как быть со странным свойством магнита, свойством притягивать железо? Какое предназначение может управлять этим явлением? Какую силу нужно положить в основу такого притяжения?
«Сила магнита передается от железа к железу подобно тому, как вдохновение музы передается через поэта его рассказчику и слушателю» — так говорил Платон. Аристотель во многом не соглашался с учителем, но другого объяснения не было и у него. Подобно древним философам, Великий Стагирит (как называли Аристотеля, уроженца Стагира) вынужден был считать магнит и янтарь предметами одушевленными. В скрытой душе их и заключалась якобы притягательная «любовная сила».
Двенадцать лет учил Аристотель в афинском Ликее, писал ученые труды и собирал коллекции. Александр воевал. Неожиданно пришло известие о смерти Александра. Молодой полководец, вернувшись из тяжелого индийского похода в Вавилон, заболел и умер. Афины возликовали.
Полные ненависти к покорившей их Македонии, ко всему, что было связано с именем Александра, афиняне обвинили Аристотеля в «нечестии». Такое же обвинение в свое время было предъявлено Сократу — и тому пришлось выпить яд. Скорее всего, аналогичная судьба ждала и Аристотеля. Но если Сократ отказался покинуть город, то Аристотель поступил благоразумнее. Он передал школу своему ученику Теофрасту и, заявив: «Я не хочу допустить, чтобы афиняне совершили новое преступление против философии», бежал в Халкиду на Эвбее, где было его имение, полученное еще от матери.
Правда, уже в следующем году философ умер. Одни биографы утверждали, что от болезни желудка, другие намекали на отравление.
Философы из садов
«Золотом севера» называли жители Средиземноморья загадочный солнечный камень — электрон. И это было правильно. Потому что ни одна из стран, лежащих в благодатном теплом климате, не могла похвастаться собственным янтарем. Оттого так и ценили его в древнем мире, считая порой дороже золота… «За самую маленькую фигурку, изготовленную из него, платят римляне больше, чем за живого здорового человека».
Об этом писал римский историк Плиний и добавлял, что это-де «распутство, которое заслуживает многократного порицания».
Впрочем, Пифей — житель древней Массалии, расположенной на месте современного Марселя, — вернувшийся из далекого путешествия на север, утверждал, что электрон — янтарь — это просто смола, окаменевшая от долгого хранения в земле. Каждую весну на низкие песчаные берега острова Абалус, где обитает дикое племя германцев, волны моря выбрасывают множество разноцветных обломков «солнечного камня». Местные жители собирают его и жгут в своих очагах вместо дров. Пифею не верили.
Плиний писал, что однажды из Рима в отдаленные северные провинции был послан всадник с заданием привезти янтарь для украшения гладиаторских игр императора Нерона. Кем был этот путешественник и куда он ездил, неизвестно. Но в Рим он вернулся с таким грузом «северного золота», какого никогда раньше не видели жители средиземноморской Ойкумены.
Нерон направо и налево дарил драгоценные зерна. Янтарь был в украшениях, янтарем усыпали сетки, ограждавшие зрителей от арены. Янтарь кидали на носилки, на которых уносили раненых и убитых гладиаторов с арены. Но дорога к родине янтаря так и осталась неизвестной.
Со стороны и из нашего далека, когда прошедшие столетия спрессованы до объема нескольких страниц учебника, античный мир может показаться золотым веком просвещения. Он до краев наполнен благородными философами в белых тогах, рассуждающими о судьбах и устройстве мира. Таким он кажется. Но попробуйте расставить имена на карте, где расстояния заменят столетия. И вы почувствуете то же, что человек, резко поднявшийся во весь рост: только что перед самым лицом была стена душистых трав и тяжелых колосьев, но, оказывается, вы на краю пустыни с редкими ростками чудом проросшей горстки семян…
На деле рабовладельческий мир — мир бесконечных войн и узаконенного бесправия. Время беспросветной глупости и злобы обывателей, силы нелепых обычаев, закона сильных и суда толпы. Великие идеи высказывались одиночками, изредка рождавшимися и жившими большей частью «вопреки». Как правило, они влачили горькую долю непонятых и осмеянных, а то и поруганных современниками. Нет пророка в своем отечестве. И они не находили себе нигде места. В течение всей жизни скитались по провинциальным полисам, вечно враждующим между собой, вечно занятым своими ничтожными проблемами.
Стало ли лучше, когда на смену Греции пришел Рим? Римляне освоили греческую культуру и пересадили ее на почву Италии. К сожалению, произошло это слишком поздно. Во-первых, сама цивилизация свободных городов-государств клонилась к упадку. Во-вторых, приняв внешнюю, парадную сторону греческой цивилизации, высшие классы римского общества в глубине души презирали своих учителей. В этом — всё: если нет у учителя авторитета, ученики не воспримут от него ни знаний, ни морали. Плохой учитель для общества страшнее, нежели отсутствие учителя вообще.
В дальнейшем пальма первенства во всех отношениях перешла от Греции к Риму и начался период упадка знаний, в течение которого людям было, пожалуй, недосуг помнить о таких мелких вопросах, как причины притяжения магнита и элёктрона-янтаря.
Может быть, и не стоило бы дальше говорить о тех ничтожных познаниях и нелепых на современный взгляд гипотезах, которые высказывались по интересующему нас вопросу за весь период, предшествующий началу подлинной науки, связанной с именами Гильберта и Галилея, Ньютона, Франклина и Ломоносова… Может быть, если бы не последний всплеск эллинской образованности в эпоху начавшегося упадка, если бы не поэма Тита Лукреция Кара «О природе вещей»…
Блеск и нищета Рима
О жизни Лукреция не сохранилось почти никаких сведений. Известно лишь, что был он уроженцем Рима, жил в первой половине I века до нашей эры, в трудное время обострения всех классовых противоречий своей эпохи. На время жизни Лукреция падают такие периоды, как кровавая диктатура реакционного лидера римских аристократов Луция Корнелия Суллы и борьбы Суллы с Марием и Корнелием Цинной. В том же веке — восстание рабов под предводительством Спартака, потерпевшее жестокое поражение, борьба с морскими пиратами, бесконечные внешние войны, заговор и восстание Луция Сергия Катилины и, наконец, возвышение честолюбивого Гнея Помпея, жестокого Марка Лициния Красса и вначале тонкого дипломата, а потом удачливого полководца и в конце концов главы государства-императора Гая Юлия Цезаря. Бурное время.
Существует предположение, что Лукреций получил философское образование в самой процветающей в то время в Италии неаполитанской эпикурейской школе. Закончив ее, он начал писать философскую поэму «О природе вещей». В ней Лукреций систематически изложил весь античный материализм и особенно подробно атомистическое учение в трактовке Эпикура. Скорее всего, при жизни поэма не была закончена. Отредактировал ее и опубликовал некто Квинт — брат честолюбивого оратора Марка Туллия Цицерона.
В поэме Лукреция значительное место отводится объяснению свойств магнитов. Но не только это заставляет меня обратиться к ее бессмертным строкам. Поэма Лукреция имеет самостоятельную ценность как литературное и философское произведение. Глубоко оптимистичный, материалистический характер ее впоследствии давал силы многим поколениям философов и ученых в самые трудные моменты гонений и собственных разочарований. И мне кажется, что знать, хотя бы в общих чертах, пути развития античной философии, и в том числе произведение Лукреция, обязательно для человека, желающего считаться интеллигентным.
Существует много разных переводов поэмы «О природе вещей» на русский язык. У меня в руках оказалась книга, изданная в знаменательном 1945 году и приуроченная к редкому юбилею — 2000-летию со дня смерти автора. Перевод с латинского текста и его редакция принадлежат Ф. А. Петровскому. И пусть вас не пугает объемистый отрывок, приведенный ниже. Прочтите его. И тогда, если вы не читали поэму раньше, вам, может быть, захочется познакомиться с нею целиком.
Прекрасное объяснение, не правда ли? Написать эти строки, когда мир рушился и в идеологии происходили те же перемены, что и во внешней и внутренней политике, — вот истинное эпикурейство!..
Но почему же, несмотря на все достижения эллинизма, перед человечеством не открылась широкая столбовая дорога к вершинам прогресса и мудрости, а настали «темные века» упадка цивилизации? На такой вопрос, пожалуй, коротко и однозначно не ответишь. Единственное предположение, возникающее у человека, знакомящегося с историей культуры, — это неизбежная цикличность развития. Исторический опыт показывает, что любая древняя цивилизация представляла собой некую систему. В процессе развития в ней накапливались неизживаемые противоречия.
Количество накопленных противоречий воздействовало на структуры системы, изменяло ее качество, снижало жизнестойкость и в конце концов приводило к гибели.
В этом отношении государства и цивилизации похожи на людей: они рождаются, проходят трудный детский период развития. Выжившие мужают, достигают расцвета и старятся. А потом умирают, и на смену им приходят другие государства и другие цивилизации, начинающие свой путь на ином витке спирали, но также со своими трудностями и ошибками начального периода.
Уже к III веку нашей эры классическая цивилизация была окончательно обречена. Большая часть достигнутых знаний оказалась утраченной. Интерес к объяснению феноменов исчез. Однако мысль в своем развитии остановиться не может.
Вы никогда не задумывались, что такое любознательность? Что это за чувство, которое гонит и гонит человека вперед, не давая покоя, заставляет доискиваться до причины наблюдаемых явлений, выяснять то, что кажется непонятным?
Очень интересно отвечают на этот вопрос биологи. «Каждое существо, — говорят они, — должно ориентироваться в окружающей среде, иначе оно погибнет». Академик И. П. Павлов назвал такое стремление к ориентировочной деятельности «ориентировочным рефлексом», или «рефлексом „Что такое?“», и считал его рефлексом безусловным, то есть врожденным и передающимся по наследству. «Биологический смысл этого рефлекса огромен, — писал он в одной из своих работ. — Если бы у животных не было этой реакции, то жизнь его каждую минуту, можно сказать, висела бы на волоске. А у нас этот рефлекс идет чрезвычайно далеко, проявляясь, наконец, в виде той любознательности, которая создает науку, дающую и обещающую нам высочайшую, безграничную ориентировку в окружающем мире».
Любого нормального человека обычно интересует все новое, неожиданное, необычное. При встрече с неизвестным в организме, по мнению биологов, возникает как бы своеобразное напряжение, которое обычно и называют любопытством или любознательностью. Это напряжение выводит организм из равновесия, создает состояние дискомфортности.
Что же призвано удовлетворить возникшую потребность, чем можно снять это напряжение? Ответ очевиден: конечно, познанием! Ну а если опыта мало, накопленных знаний и того меньше, если утеряны методы исследования, потерян интерес к знанию, — что тогда должно помочь людям ориентироваться в созданном ими для себя узком и маленьком мирке? Еще изначально, чтобы сориентироваться в бесконечно враждебном им мире, первобытные люди искали сходство между природными явлениями — стихиями и своими поступками. Приписывали стихиям человеческие характеры. А провалы, зияющие пустоты между отдельными островками знаний заполняли мифами. Так недостаток знания приводил человека к вере в сверхъестественное, подталкивал к созданию богов. Мифы, заполняя пробелы в существовавших знаниях, помогали в создании цельной более или менее картины мироздания.
С деградацией, а потом и с исчезновением натурфилософии мысль обратилась к религии и мистицизму. Постепенно философский мистицизм, который существовал и разрабатывался параллельно наукам и в пифагорейской школе, и в школе Платона, и в дальнейших философских школах, слился с мистицизмом «спасительных» религий. В рабовладельческом обществе при абсолютно безнадежном положении большей части населения возникновение таких религий, обещающих чудесное избавление от тягот бытия, вполне понятно. Главная же особенность этих религий заключалась в том, что знание заменялось вдохновением и в качестве высшего источника истины полагалось откровение, для достижения которого требовался не разум, а вера.
Из всех религий, существовавших в ту пору на территории Римской империи, наиболее преуспевало христианство. Оно наиболее отчетливо говорило о грядущей гибели ненавистного государства высших классов, объявляло богатство, роскошь, а вместе с ними искусство, философию и науку ступенями на пути в ад.
Ярким цветом расцвели на обломках классической культуры мистицизм, абсурдность и упадок — как результат социального и экономического распада рабовладельческих государств. Этим состоянием общей экономической разрухи воспользовались варвары-завоеватели. Они вторглись в пределы Римской империи, завершив уничтожение достижений культуры, покоившихся на широкой материальной организации. Опустели и лишились надзора дороги, мосты, оросительные каналы и акведуки. Строения пришли в упадок и в большинстве своем исчезли. Ум немногих сохранившихся ученых искал пищи в толковании священного писания, а сами ученые искали убежища у церкви или шли чиновниками на службу королям варваров.
Возникает вопрос: почему европейская наука так легко и быстро сдала свои позиции? Английский физик Дж. Бернал писал: «Мы склонны настолько преувеличивать интеллектуальные и художественные достижения греков, что трудно даже осознать, что их знания и искусство гораздо больше влияли на внешнюю сторону, чем на практические и материальные факторы жизни. Красоты греческих городов, храмов, статуй и ваз, совершенство их логики, математики и философии скрывают от нас тот факт, что образ жизни большинства населения цивилизованных стран к моменту падения Римской империи в основном был таким же, что и 2000 лет назад, в период гибели древней цивилизации бронзового века. Сельское хозяйство, продовольствие, одежда, дома не были заметно усовершенствованы. Исключая небольшое улучшение в технике сооружений оросительной сети и дорог, введения новых стилей в монументальной архитектуре и планировании городов, греческая наука находила небольшое применение. Это неудивительно, ибо наука развивалась богатыми гражданами в первую очередь не для целей практического ее применения, которое они презирали… Греческая математика, изысканная, пользующаяся исчерпывающим методом, могла применяться лишь для немногих практических целей из-за отсутствия как экспериментальной физики, так и точной механики. Основным плодом величественной греческой астрономии, не считая астрологических предсказаний, был хороший календарь и несколько маловажных карт. Великая колыбель практической астрономии — искусство мореплавания — из-за отсутствия судов и нежелания плавать по неизведанному океану почти не развивалась.
Другие науки были едва ли чем-то большим, чем довольно хорошо систематизированными каталогами общих наблюдений кузнецов, поваров, земледельцев, рыбаков и врачей… Там, куда вторгалась наука, она порождала наивные или мистические теории, в основе которых лежали элементы природы или тела, путавшие и извращавшие познание природы… Техника в противоположность науке сохранилась в лучшем виде и меньше потеряла».
Не нужно, однако, думать, что в период раннего средневековья упадок цивилизации поразил весь мир. Даже в Римской империи сохранились нетронутыми такие большие города, как Александрия, Антиохия и Константинополь. А за пределами территории подвластной римским императорам цивилизация не только продолжала развиваться, но, например, Китай при династиях Вэй (386–549) и Тан (618–906) переживал подъем как в культурной, так и в экономической жизни. В Средней Азии в то же время процветало Хорезмское царство. Великие периоды были в эти века в Персии и Индии, в огромной империи Сасанидов, раскинувшейся в III–VII веках на Ближнем и Среднем Востоке.
Так, скорее всего, из Китая пришел в Европу компас. От арабов средневековые врачи узнали, что магнит уменьшает головную боль, успокаивает ноющие раны. Еще в глубокой древности эскулапы прописывали своим пациентам носить магнитные браслеты, магнитные нагрудники и магнитные накладки на ноги, шею и даже на голову. С Востока на Запад перекочевало такое важное изобретение, как хомут лошади, заменивший грудной ремень, стягивавший дыхательное горло животного. Хомут перенес главную часть давления на плечи и позволил в пять раз увеличить нагрузку лошади. Китай подарил Европе кормовой руль на морские корабли, а Персия — ветряную мельницу. Китайский способ превращения вращательного движения в возвратно-поступательное позволили соорудить механический молот, а коленчатый рычаг — перейти обратно от возвратно-поступательного движения к вращательному.
В 1269 году в Западной Европе появилась едва ли не первая самостоятельная научная работа Петра Перегрина из Марикура. Называлась она «Письма о магните».
Но должно было пройти еще триста с лишним лет, прежде чем англичане Норман и Гильберт подхватили эту эстафету.
Глава вторая. В стране трех Вильямов и королевы Елизаветы
Свистит ветер в вантах. Гудят барабанным гулом темно-красные паруса с намалеванными на них осьмиконечными крестами. С волны на волну переваливается тяжелый груженый галеас, принадлежащий только что основанной Ост-Индской компании. На высоком мостике капитан. Время от времени он сверяет курс по прибору, спрятанному в тяжелый ящик из мореного дуба. Там на дне, в закрытом сосуде, плавает на куске легкой коры крохотная железная стрелка. Где бы ни скитался корабль, как бы ни трепали его жестокие штормы, черный конец стрелки упрямо тянется к путеводной Полярной звезде…
Астрологи уверяют, что там, в небе, на конце хвоста Малой Медведицы, находится магнитный камень. К нему-то и тянутся все магниты Земли…
Трудно сказать сегодня, кто первым придумал использовать магнит для указания верного пути в открытом океане. Может быть, китайцы, а может быть, финикийцы. В Европу «указатель пути» попал довольно поздно. Правда, уже в XI веке он был подробно описан в одном из манускриптов. А в XV веке, отправляясь на поиски Индии в «океан мрака», магнитным указателем пользовался Колумб…
Если заглянуть в вахтенный журнал нашего галеаса да разобрать каракули рук, не привычных к тонкому гусиному перу, можно установить, что корабль, о котором идет речь, направляется в королевство Английское, в славный торговый город Лондон. И что на дворе начало XVII века, а точнее, 1601 год, месяц февраль, а день 25-й…
Не попробовать ли и нам на время представить себя на борту этой тяжелой и малоповоротливой парусно-гребной посудины? Что, если отважиться вместе с представителями «Общества торговых предпринимателей» ступить на английскую землю? Мы попадем в царствование королевы Елизаветы, во времена Шекспира, Гарвея и Гильберта — трех первых Вильямов, принесших славу своему государству… Мы попадем в начало деятельности Френсиса Бэкона — великого философа, перевернувшего мировоззрение целой эпохи…
Итак, мы на галеасе. Это довольно старый корабль испанской постройки. Не исключено, что он был отбит и захвачен англичанами во время разгрома «Великой армады». Ведь со времени поражения колоссального испанского флота в 1588 году прошло всего тринадцать лет. Под нашими ногами палуба — пятьдесят метров в длину, — не так мало для XVII века, не правда ли? Сотня гребцов-галерников. Смотрите, кое-кто из них прикован к своим скамьям цепями — очевидно, каторжники. И над всем этим — три мачты с мощным парусным оснащением.
Да, вон еще пушки на батарейных палубах. А на шканцах виднеются кирасы солдат. — Зачем вооружение? Ведь мы на мирном торговом судне!
Все правильно. Аркебузиры и пушки — просто меры предосторожности. Прибрежные воды всюду кишат пиратами.
Продолжительная война с Испанией, несмотря на победы, опустошила сундуки подданных ее величества. Королеве и парламенту нечем даже заплатить жалованье солдатам и матросам. Обнищавшие, изголодавшиеся ветераны сбиваются в ватаги. Одни уходят под флагом «веселого Роджера» в морские просторы, другие становятся «зелеными братьями» в королевских лесах.
Деньги! Всем в Англии нужны деньги! Самостоятельным крестьянам-йоменам, чтобы поправить разрушенное хозяйство, бесчисленным ремесленникам-мастерам — для восстановления запустелых мастерских. Деньги нужны помещикам-землевладельцам, графам, лордам. Нужны самой королеве. А где их взять? Поговаривают, будто лорды и даже королева снаряжают каперские суда, которые грабят испанцев, переправляющих золото из Нового Света в Европу. Иначе за что получил «железный пират» Френсис Дрейк титул баронета из рук королевы вместо «пенькового галстука»?..
Все больше становится тех, кто в поисках счастья покидает берега «доброй старой Англии». Другой морской бродяга, Уолтер Рэли, (ныне как и Дрейк, тоже сэр) отвез в 1585 году первых поселенцев-колонистов на берега Северной Америки. На острове Роанок основали английское поселение, названное в честь незамужней королевы Виргинией («вирго» — по-латински «дева»). Потом туда плавали и другие корабли…
Нет, нет, историческое время, в которое мы с вами попали, очень интересное. И я уверен, что нас ждут прелюбопытнейшие встречи.
Но вот, слава всевышнему, и берег! Корабль входит в устье Темзы. Пользуясь приливом, капитан направляет судно вверх по реке в Лондон. Наши спутники начинают готовиться к высадке. Последуем и мы их примеру…
Прежде всего переоденемся. Лучше всего подойдет застегнутый доверху черный камзол с высокими оплечьями и длинными рукавами. Он, правда, зачем-то толсто подбит ватой и туго-на-туго простеган. А вот и такие же толстые, словно сшитые из ватного одеяла, короткие подушкообразные панталоны. Зачем все это? В Англии в феврале вовсе не так уж холодно. Кроме того, в этом одеянии буквально не повернуться… Что?.. Еще надо надевать высокий накрахмаленный воротник, который режет шею, и толстый суконный плащ?.. Ну и мода!
Впрочем, кое-что в ней может оказаться полезным. Туго наваченный камзол и панталоны предохраняют от кинжала наемного убийцы. А в плаще запутывается шпага противника при уличной ссоре… Кстати о шпагах. К началу XVII века их вместо поясной портупеи стали носить на широких перевязях через плечо. Это и удобнее и легче. Только надо следить, чтобы шпага не была чересчур длинной, а стоячий воротник слишком высоким. По указу королевы в стране введена должность особых надсмотрщиков. Они обламывают концы чрезмерно длинных шпаг и обрезают воротники. Но предварительно налагают на модников и драчунов штраф…
Наш корабль медленно поднимается вверх по реке. Зеленые холмы уступают место строениям. Потянулись доки. Скоро город.
Смотрите, за городской чертой на зеленом лугу стоит высокое деревянное здание с башенкой. Что-то знакомое в его облике, правда? Ба, да это же знаменитый лондонский театр «Глобус»! Вон и вывеска видна. В это время в нем играет труппа великого трагика Бербиджа. На своих плащах актеры носят герб покровителя театра лорда-камергера. И в их числе состоит поэт и драматург Вильям Шекспир. Актер, правда, он неважный. Но уже несколько лет, как его трагедии развлекают и толпу, и знатную публику. Жаль, нет у нас времени с ним познакомиться. Может быть, удалось бы, наконец, разрешить загадку творчества Шекспира: сам он писал свои пьесы или под его именем скрывался кто-то из вельмож елизаветинской эпохи? И в наши дни, в двадцатом веке, нет-нет да вспыхнет вновь дискуссия на эту тему. Но у нас другая задача. И потому — вперед!
Неповоротливое судно уже у причала, и мы выходим в город. Не удивляйтесь узким улицам с канавами для нечистот. Мы с вами в Лондоне начала XVII века. Осторожно! Прижмитесь спиной к стене. Из-за поворота вылетели верховые. Они скачут, не разбирая дороги. Не посторонись мы вовремя — кому-нибудь пришлось бы заглянуть в эти открытые и днем и ночью двери. Это больница святого Варфоломея. Совсем недавно здесь начал работать молодой хирург Вильям Гарвей, вернувшийся на родину после окончания Падуанского университета. Там он получил диплом и степень доктора медицины. Впрочем, чтобы иметь врачебную практику в Англии, ему нужен еще один диплом — местный… Интересно, что в XX веке, почти три столетия спустя, этот обычай свято сохраняется английскими врачами. Так они оберегают корпорацию от иностранцев и сохраняют свои доходы.
Гарвей пока никому не известен. Но пройдет совсем немного лет, и имя его прославится. Он откроет тайну кровообращения и станет одним из основоположников научной физиологии.
Может быть, попытаться у него узнать, как и где найти его знаменитого тезку и коллегу — лейб-медикуса английской королевы Вильяма Гильберта? Правильнее его, конечно, называть сэром Уильямом Джилбертом Колчестерским — так называют его англичане. Но остановимся на том, что привычнее…
О! Оказывается, доктор Гильберт в Виндзоре. Он сопровождает королеву и сегодня должен показывать магнитные опыты ее величеству. Вы спросите, какое отношение придворный врач имеет к магниту? Самое непосредственное! Год назад, в 1600 году, из-под печатного пресса вышел его обширный труд «О магните, магнитных телах и о великом магните — Земле. Новая физиология, доказанная множеством аргументов и опытов». Шесть книг, написанных на прекрасном латинском языке. Сэр Вильям чрезвычайно учен!..
Вам не совсем понятно, почему лейб-медик занимается исследованиями магнита? Сейчас попробую объяснить.
Дело в том, что о магните с незапамятных времен ходили самые невероятные слухи. Знахари шептали, что магнит возвращает молодость, красоту и здоровье. Об этом писал даже сам великий Гебер — алхимик и врач, живший на грани VIII и IX веков. Был он арабом, и его настоящее имя звучало как Джабир Ибн-Хайян, латинисты переделали его в Гебера.
Писал о магните и другой арабский ученый — знаменитый Аверроэс, настоящее имя которого тоже звучало непривычно для европейского уха — Абуль-Валид Мухаммед Ибн-Ахмед Ибн-Мухаммед Ибн-Рошд. Он жил в XII веке в Кордове и Севилье и, как все средневековые лекари, уверял, что толченый магнитный камень с водой — прекрасное слабительное.
Обо всем этом Гильберт знал. А поскольку семидесятилетнюю королеву не могла не волновать проблема сохранения молодости и красоты, залогом чего является, как известно, исправное функционирование желудка, то ее придворный врач просто обязан был изучать свойства магнита.
Отдадим Гильберту должное. После многолетних опытов он осмелится, несмотря на авторитеты, утверждать, что прием толченого магнитного камня внутрь «вызывает мучительные боли во внутренностях, чесотку рта и языка, ослабление и сухотку членов». Правда, при этом и он соглашался с тем, что все же магнит «возвращает красоту и здоровье девушкам, страдающим бледностью и дурным цветом лица, так как он сильно сушит и стягивает, не причиняя вреда».
Вы скажете: «Он же противоречит самому себе!» Правильно, но его последнее утверждение могло быть и данью авторитетам, и маленькой ложью во спасение. Представьте на минутку себя на месте королевы. Многие годы ваш лейб-медик занимается какими-то опытами, уверяя, что ищет способ сохранить ваше августейшее здоровье. И за это вы платите ему приличное вознаграждение. Затем, много лет спустя, он выпускает в свет ученый труд, из которого становится ясно, что лекарства, коими он вас пользовал, на деле могут только ухудшать самочувствие… Боюсь, что после этого лейб-медику не поздоровилось бы… Гильберт был умен и не понимать этого, конечно, не мог.
Ну, а теперь, уяснив себе состояние дел и познакомившись заочно с нашим героем, отправимся в Виндзор…
Вечер в Виндзоре
Виндзор — красивейшее место в графстве Беркс. От центра Лондона примерно километров двадцать. Здесь, на правом берегу Темзы, еще в XI веке Вильгельм Завоеватель построил замок. Потом его много раз перестраивали, украшали. И в конце концов Виндзор сделался любимым местом жительства английских королей.
Лошади еще не успели притомиться, когда за поворотом дороги показались деревья парка…
В Виндзоре всегда весело: охоты, театральные представления, торжественные приемы. Правда, возраст Елизаветы уже не тот… Сегодня она предпочитает тихие развлечения. Днем в нижнем дворе, в капелле святого Георгия, происходит церемония посвящения в рыцари ордена Подвязки. А вечером решено на очередном журфиксе устроить демонстрацию чудес доктора Гильберта.
Мы не станем объяснять, как нам удалось попасть в небольшое общество, которое собралось после захода солнца в покоях королевы. Главное — мы в числе приглашенных и никого не удивляет наше присутствие. С большинством кавалеров и дам мы незнакомы, но кое-кого узнаём. Вот, например, главное, как нам кажется, действующее лицо: высокий шестидесятилетний джентльмен. Он слегка лысоват. Бритый подбородок выдает в нем человека, не принадлежащего к придворной аристократии. Одет он скромно: в черном атласном камзоле с испанским воротником и в наброшенном плаще. Висячие усы не позволяют заподозрить в нем и священника.
Это доктор Вильям Гильберт. Он переставляет различные предметы на столе, приготовленном для опытов. Все ждут королеву…
А вот среди гостей и еще знакомое лицо: высокий лоб, внимательные глаза, горящие внутренним беспокойством. Человеку немного за сорок. По сравнению с остальными он молод. Пышные кружева подпирают аккуратную бородку. Пожалуй, костюм и облик выдают его некоторое тщеславие, а манера держаться — честолюбие. Но есть в нем одновременно и что-то виноватое. Это Френсис Бэкон — младший сын лорда-хранителя печати и всего-навсего солиситор — стряпчий лондонского суда. Странно, что он оказался здесь. Канцлер казначейства да и влиятельный лорд Бурлей — муж его тетки — не жалуют молодого Бэкона. Один считает его опасным оппозиционером, другой — просто «мечтателем». Сюда, на ученый вечер, он, скорее всего, приглашен как философ.
Елизавета вошла и тихо опустилась в приготовленное кресло у камина. Вечером особенно заметно, как она немолода. Кажется, что веснушки и темные пятна с возрастом расплылись и создали общий нездоровый фон и без того не слишком красивого ее лица. Прическа из рыжеватых, густо выбеленных сединой волос, перевитых жемчугом, поредела. Голова ее все еще высоко поднята. Но не заслуга ли это высокого воротника? И не тяжелое ли платье, расшитое золотом, не дает согнуться стану этой пожилой и усталой женщины?
Впрочем, глаза у королевы зорки и блестят любопытством. Она машет платком, давая знак начинать.
— Ваше величество! — Гильберт говорит мягко, приятным голосом, как и подобает врачу. — Я собираюсь, если будет на то божья воля, не умаляя заслуг тех, кто говорил о том до меня, изложить здесь перед вами открытую мною, с помощью многих трудных и дорогостоящих экспериментов, истину, которая противоречит мнению многих других философов, даже самых древних… Почему магнитная стрелка, применяемая на кораблях вашего доблестного флота, всегда показывает одно направление?.. Почему?
Гильберт обводит взглядом собравшихся. Здесь самые мудрые люди королевства: тонкие политики, дипломаты, военачальники и флотоводцы. Что-то они ответят?
— Позвольте, сэр Вильям… — Слово берет седобородый лорд адмиралтейства. — Какая же это загадка? Всем морякам известно, что намагниченное железо направляется к северу, поскольку ему сообщается сила полярных звезд, подобно тому как за солнцем поворачивают свои головки цветы…
Придворные одобрительно кивают головами. Говорящий прав — кто не знает, что в небе имеется большой магнитный камень?..
Лейб-медик берет со стола каменный шар, выточенный из магнетита.
— Ваше величество! Я не намереваюсь прибегать к голым и утомительным умозаключениям или измышлениям. Мои аргументы, как вы легко можете видеть, основаны только на опыте, разуме и демонстрации. Этот шар, выточенный с немалыми расходами из магнитного камня, я назвал тереллой, что означает «маленькая земля», «Земелька». Я подношу к ней магнитную стрелку — и вы видите?.. Джентльмены, все видят, как один конец стрелки притягивается к одному полюсу тереллы, а второй — к другому?.. Не так ли ведут себя и стрелки компасов, установленных на кораблях флота ее величества? И не значит ли это, что вся наша Земля является неким большим магнитом?..
Придворные переговариваются: «Сэру Вильяму не откажешь в проницательности и ловкости в доказательствах». А Гильберт продолжает:
— Век мудрого правления вашего величества даровал человечеству неисчислимые богатства: открыт Новый Свет, изобретено книгопечатание, телескоп, компас. Эти открытия стали источниками нового могущества, открыли новые горизонты, но в то же время предложили человеческому гению и новые задачи. Как решить их? Здесь может помочь только опыт…
— Доктор Гильберт совершенно прав, когда говорит об опыте!
Чей это голос? Придворные и даже сама королева повернули головы. Реплика принадлежала Бэкону. Почувствовав всеобщее внимание, он продолжал:
— Опыт есть основа науки. Но какой опыт?.. Разве количество бессистемно проделанных экспериментов приводит к пополнению копилки знаний? Надо не просто увеличивать количество опытов, а создать новый метод. И тогда, опираясь на него, выработать правила для произведения опытов. Только тогда они приведут к изобретению нового. А изобретение — высшая цель науки. Экспериментирование же наугад только вводит в заблуждение, а не просвещает людей…
Гильберт казался спокойным, хотя руки его и задрожали.
— Если ваше величество позволит мне продолжать, то, возможно, я своими опытами сумею ответить сэру Френсису.
Придворные перешептывались.
Лорд-канцлер, наклонившись к королеве, шептал ей что-то на ухо. Глаза Елизаветы блестели. Она обожала споры, которые не затрагивали интересов королевы и государства.
— Продолжайте, сэр Вильям!
Гильберт стал водить магнитной стрелкой по поверхности тереллы.
— Взгляните, ваше величество, на разных удалениях от полюсов стрелка по-разному наклоняется, изменяя свое горизонтальное положение. Это обстоятельство было замечено еще двадцать лет назад верным подданным вашего величества, мореходом и строителем компасов Робертом Норманом. Он открыл наклонение магнитной стрелки к горизонту и тем самым доказал, что точка притяжения для нее находится не на небе… — Гильберт слегка поклонился в сторону лорда адмиралтейства: зачем наживать себе врагов при дворе! — …а на земле.
Его слова заставляют протиснуться вперед двух адмиралов. Их интересует: нельзя ли использовать способность магнитной стрелки не только для указания направления север — юг, но и для определения местонахождения корабля в открытом море?
— Наши моряки верят, что магнитную стрелку притягивают громадные железные горы, которые находятся на севере. Мореплаватели рассказывают, что эти ужасные горы притягивают даже неосторожно приблизившиеся корабли. Они вытягивают из них гвозди, и суда разваливаются, обрекая на гибель команду…
Гильберт терпелив. Он улыбается и напоминает об арабских сказках «Тысяча и одна ночь», где приводится подобный рассказ.
— Посмотрите, как ведет себя стрелка возле тереллы. Ее наклонение уменьшается к экватору, и, напротив, на магнитных полюсах стрелка изо всех сил стремится встать вертикально. Все дело в том, джентльмены, что наша Земля суть огромный магнит.
Затем Гильберт кладет небольшие магнитные стерженьки в легкие кораблики и пускает их плавать в узкое корыто с водой. Всплескивают руками дамы, наблюдая, как устремляются друг к другу суденышки со стерженьками, повернутыми друг к другу разноименными полюсами. И как расходятся те, на которых стержни смотрят друг на друга одинаковыми концами. Присутствующие в восторге.
Вот уж поистине сокрушающий ответ этому выскочке Бэкону… Действительно, победа была очевидной. Королева улыбается. А Гильберт продолжает:
— Если ваше величество соблаговолит согласиться с выводом, что Земля — магнит, то остается сделать один шаг до допущения, что и другие небесные тела, в особенности Луна и Солнце, наделены также магнитными силами. А коль скоро так, то не причина ли приливов и отливов, не причина ли движения небесных тел заключается в магнетизме?..
Вряд ли кто-нибудь из присутствовавших мог понять всю глубину высказанного Гильбертом предположения. Один лишь Бэкон готовился вновь возразить. И он непременно сделал бы это, потому что Гильберт поддерживал учение польского астронома Николая Коперника, а Бэкон движение Земли отрицал. Но в это время кто-то больно наступил ему на ногу, и молодой стряпчий увидел рядом побелевшие от гнева глаза дяди…
Лорд-канцлер снял с пальца кольцо с крупным бриллиантом.
— Прошу вас, сэр Вильям, проверьте, не пропадет ли сила вашего магнита, если положить рядом этот камень? Ведь, кажется, есть мнение, что бриллианты уничтожают притяжение?..
— Милорд, — отвечает врач, — боюсь, что одного камня, даже с вашей руки, недостаточно, чтобы проверить это утверждение. А у меня таких драгоценностей нет…
Взгляды присутствующих обратились к королеве. Поколебавшись, Елизавета приказала принести несколько крупных камней из сокровищницы. Такая игра ей нравилась. Во-первых, королеве всегда доставляло удовольствие любоваться блеском своих бриллиантов. Во-вторых, она была женщиной. И это лишняя возможность похвастаться. А в-третьих… В-третьих, было, конечно, забавно посмотреть, не уничтожат ли драгоценные камни силу магнита.
Гильберт обложил магнит семнадцатью крупными алмазами и поднес к нему другой магнит. Раздался щелчок. Оба стержня слиплись. Присутствующие захлопали в ладоши.
— Ваше величество может убедиться, что и это мнение древних оказывается ложным… Однако силой притяжения обладает не один магнит. Древние и новые писатели упоминают, что желтый электрон-янтарь, будучи натерт, притягивает солому и прочие легкие тельца. Я же обнаружил, что не только это вещество обладает притяжением. Взгляните…
Гильберт укрепил в держателе из темного дерева один из бриллиантов королевы и стал натирать его полой плаща.
— Сэр Вильям, мы надеемся, что после этого опыта камень не исчезнет и не испортится? — беспокоится одна из присутствующих дам.
— Случись так, это было бы великим открытием. И ее величество, как истинная покровительница наук, я уверен, ни секунды не пожалела бы о такой потере. Корона Англии не обеднеет от такой жертвы.
Придворные изумляются ловкости, с которой лейб-медик парирует обращенные к нему слова. А королева подумала, что ее врач не зря упоминает о том, что научные искания стоят денег. Вдруг они и впрямь пригодятся на флоте. Пожалуй, придется выделить ему средства на проведение опытов… Только немного.
А Гильберт тем временем уже подносит к натертому алмазу соломинку, наколотую на зубочистку. И все видят, как под влиянием неизвестной силы соломинка тянется к камню…
— Точно так же притягивают легкие тела сапфир и рубин, опал, аметист, берилл и горный хрусталь. Даже простое стекло и непрозрачные сера и смола обладают подобной же притягательной силой.
Долго продолжаются опыты. Гильберт забавляет присутствующих тем, что незаметно, водя магнитом под листом пергамента, поворачивает брошенные на его поверхность железные ключи и шпоры. Он заставляет танцевать обрывки бумаги, поднося к ним натертую стеклянную палочку, и фигурку, выточенную из прозрачного янтаря-электрона.
— Многие тела после натирания принимают силу электрона — электризуются, — продолжает свои объяснения лейб-медик, — многие, но не все… Сколько бы мы ни терли благородный жемчуг и слоновую кость, прекрасный паросский мрамор и алебастр, они не приобретают электрической силы притяжения. Не электризуются и металлы…
— Но тогда природа магнитной силы и силы электрической должна быть различна? — Это восклицание непроизвольно вырвалось из уст Бэкона, вызвав снова ропот неудовольствия.
Гильберт задумался, но лишь для того, чтобы поточнее сформулировать ответ. Все эти вопросы тысячу раз продуманы им в тиши кабинета и за лабораторным столом.
— Сэр Френсис прав. Об этом я уже сказал в своей книге. Слишком много различий между проявлениями магнетизма и электричества, чтобы считать их природу единой. Магнитная сила постоянна. Она — свойство, присущее телу, в духе великого Аристотеля. Притяжение же электрической силой создается лишь трением. Кроме того, магнит притягивает только железо, но его сила не боится ни воды, ни огня. Электрическая же сила притягивает многие вещи, но она капризна и зависит от погоды, уничтожаясь при влажности… В чем причина электрического притяжения? Некоторые философы считают, что трением изгоняется из тел тончайшая жидкость, служащая для их связи. Она-то и вызывает электрическое притяжение, подобно тому как воздух заставляет стремиться к центру Земли все тела, когда их лишают опоры…
Королева зевнула. Ученая беседа наскучила всем. Один лишь Бэкон, казалось, готов был слушать до бесконечности. Но его глаза так часто загорались блеском сдерживаемого возражения, что Гильберт старался не смотреть в его сторону. Он устал. Не доверяя слугам, Гильберт сам собирает приборы и откланивается почти незамеченным.
Поспешим вслед за ним и мы. Тем более что придворные вновь увлеклись дворцовыми сплетнями, разговорами о лошадях, о собаках для травли лисиц…
«Из доказательств наилучшее — есть доказательство опытом», — напишет Бэкон несколько лет спустя. И тут же добавит: «Однако нынешние опыты бессмысленны. Экспериментаторы скитаются без пути, мало продвигаясь вперед, а если найдется серьезно отдающийся науке, то и он роется в одном каком-нибудь опыте, как Гильберт в магнетизме».
Странное высказывание для того, кто во главу угла всей новой науки требовал поставить экспериментальный метод. Впрочем, сегодня нам трудно сказать, насколько принципиальные побуждения двигали непоследовательным Бэконом в оценке трудов лейб-медика Елизаветы.
Зато совсем иначе звучит отзыв другого современника Гильберта, итальянского ученого Галилео Галилея: «Величайшей похвалы заслуживает Гильберт… за то, что он произвел такое количество новых и точных наблюдений. И тем посрамлены пустые и лживые авторы, которые пишут не только о том, чего сами не знают, но и передают все, что пришло им от невежд и глупцов».
Жаль, что сам Гильберт не узнал об этой блестящей оценке. В марте 1603 года умерла королева, а несколько месяцев спустя и ее врач. В анналах истории осталось, что перед смертью Гильберт завещал все свое имущество Лондонскому обществу медиков. Однако пожар уничтожил приборы. Осталось лишь сочинение «О магните…» да имя на обложке.
Много это или мало? Научные труды быстро стареют. На достижения первооткрывателей наслаиваются работы последователей, и те скоро начинают казаться невероятной архаикой. Впрочем, перелистаем желтые листы шести книг, переплетенных в телячью кожу. Попробуем пробиться через старинную латынь и выпишем свойства магнита, сформулированные Гильбертом:
«1. Магнит в различных своих частях обладает различной притягательной силой; на полюсах эта сила наибольшая.
2. Магнит всегда имеет два полюса: северный и южный, кои весьма различны по своим свойствам.
3. Разноименные полюсы магнитов притягиваются, одноименные отталкиваются.
4. Земной шар есть большой магнит.
5. Получить магнит с одним полюсом невозможно.
6. Магнит, подвешенный на нитке, располагается всегда в пространстве таким образом, что один его конец указывает на север, а другой — на юг».
Что же, с тех пор прошло много лет. Магнетизм веществ широко применяется в науке и технике. Без знания законов магнетизма были бы невозможны ни энергетика, ни радиотехника, морская и космическая навигация, приборостроение, автоматика и телемеханика, ЭВМ… Этот список можно продолжить до бесконечности, поскольку явления магнетизма важной составляющей частью вошли в саму основу нашей цивилизации.
А много ли, положа руку на сердце, новых важных свойств магнита мы узнали со времени Гильберта? Увы! Черный камень из страны магнетов по-прежнему хранит главные свои тайны в неприкосновенности.
А Гильберт? Сохранилась ли память о нем среди суеты и обилия новой информации нашего перегруженного века? Какой памятник мы — потомки — поставили великому создателю науки о магнетизме, человеку, подарившему нам в дополнение к магнетизму еще и термин «электричество»?
В память о нем единица напряженности магнитного поля в международной системе единиц «СИ» носит сегодня название «гильберт». И прав английский поэт Джон Драйден, написавший, что «Гильберт будет жить, пока магнит не перестанет притягивать».
Почему земля — магнит?
Гильберт был уверен, что Земля состоит из магнитного камня. И ей присущи шесть свойств, сформулированных им. Для последующих веков этого объяснения стало мало. Можно составить длинный список гипотез, предложенных позже для пояснения сути наблюдаемого явления. Ученые разбирали причины земного магнетизма, не зная, по сути дела, ответа на вопрос: почему магнит — магнит?
Высказанные предположения можно разделить на две группы: первая — геомагнетизм имеет космическое происхождение; вторая — геомагнетизм — явление чисто земного характера. Потом, правда, появится еще и третья группа гипотез, согласно которым геомагнетизм вообще есть универсальное свойство материи, находящейся в движении. Но об этом чуть позже…
Когда ученые подсчитали, каким должно быть магнитное поле Земли, если оно создается полем Солнца и даже всей Галактики, то получили ничтожную величину. Поле Земли сильнее. Гипотезу космического происхождения геомагнетизма пришлось оставить. После космоса естественно было искать причину во внутреннем строении самой Земли. Возникло несколько интересных гипотез, которые основывались на предположении о жидком состоянии земного ядра, состоящего из хорошо проводящего материала, скорее всего — из железа. В массе такого ядра неизбежны течения, разделение и движение зарядов, а следовательно, должны были возникать электрические токи, которые могли намагничивать Землю. Одним из авторов подобной гипотезы был известный советский физик Я. И. Френкель, много сделавший в области теории магнитных явлений. Но для признания гипотез второй группы не хватало единого мнения о состоянии земного ядра. Многие считали его твердым.
В конце XIX века, изучая форму короны Солнца, астрофизики начали подозревать наличие у светила магнитного поля и недоумевали: откуда оно могло взяться? Профессор Кембриджского университета и член Лондонского королевского общества Артур Шустер высказал вскользь идею: а не является ли магнетизм универсальным свойством всякого вращающегося тела?
За разработку этой любопытной гипотезы взялся русский физик-экспериментатор Петр Николаевич Лебедев, работавший в Московском университете. Он придумал весьма остроумный эксперимент: заставить вращаться металлическое кольцо и посмотреть, не станет ли оно при этом магнитным.
Кольцо в опыте Лебедева крутилось со скоростью 35 000 оборотов в минуту. Рядом стоял магнитометр, превосходящий по чувствительности все приборы мира… Петр Николаевич предполагал, что под влиянием центробежной силы отрицательные заряды-электроны в атомах несколько сместятся. В результате поверхность тела получит некоторый отрицательный заряд, что и должно вызвать появление магнитного поля… Увы, магнитометр поля не обнаружил. Тем не менее в статье, описывающей указанный эксперимент, русский ученый высказал весьма оптимистические надежды…
И вот 1947 год — год возрождения забытой гипотезы. Профессор Манчестерского университета Патрик Мейнард Стюарт Блэкетт, член Лондонского королевского общества, высказывает предположение, что появление магнитного поля вокруг вращающегося тела — закон природы. Более того, опираясь на известные данные о скорости вращения Земли, Солнца и белого карлика — звезды Е-78 из созвездия Девы, Блэкетт дает формулу, позволяющую рассчитать зависимость магнитного поля от вращения тела. В нее вошли такие мировые константы, как скорость света и гравитационная постоянная, что весьма соблазняло ученых и наводило на мысль: а не путь ли это к единой теории поля, над которой безрезультатно бьются вот уже много лет теоретики во главе с Эйнштейном?
Далее Блэкетт сам решает проверить правильность своих предположений. И вот «в чистом поле», то есть подальше от возможных источников посторонних магнитных полей, которыми полны города, и промышленные предприятия, возводится «экспериментальное здание». Строго говоря, сарай, построенный без железных деталей. Чувствительность магнитометра, установленного в сарае, позволяет заметить изменение магнитного поля в десятимиллиардную долю гаусса — ничтожную величину. Наконец, ночью с известными предосторожностями привозят двадцатикилограммовый цилиндр из чистого золота. Золото — заведомо немагнитный металл. Цилиндр устанавливается в том же сарае. Блэкетт не собирается его крутить, считая, что достаточно и того, что вращается Земля… Если формула, составленная им, справедлива, магнитометр отметит появление магнитного поля у золотого цилиндра. Если же не отметит, то…
Нет! Смысл статьи, опубликованной ученым после эксперимента, сводился именно к этому короткому отрицанию. Нет! Хитроумно задуманный и тонко поставленный эксперимент опроверг гипотезу.
Правда, может, стоило бы все-таки заставить цилиндр вращаться?.. Вспомним физику: при движении электрического заряда у него появляется магнитное поле. Но обнаружить его, двигаясь вместе с зарядом, невозможно. А ведь Блэкетт с магнитометром двигались вокруг земной оси одновременно с цилиндром. Нет ли здесь чего-нибудь похожего на случай с движущимся зарядом?..
Кажется, Блэкетт собирался поставить второй опыт с вращающимся цилиндром. Но, по его же словам, после первой неудачи охладел к самой идее. На Земле наступал космический век. Он принес новые результаты и поставил многие «старые» вопросы по-новому…
Советские автоматические станции опустились на Луну. При небольшом удельном весе и небольшой общей массе у Луны жидкого металлического ядра быть не может. Значит, если верна гипотеза Френкеля и других, у нее не должно быть магнитного поля… Так и оказалось. Наши автоматы на Луне это подтвердили. Но почему тогда и у Венеры межпланетные автоматические станции не сумели найти магнитного поля? Ведь Венера, по идее, должна быть сходна своим строением с Землей: массы близкие, плотности — тоже, значит, и жидкое ядро быть должно. Правда, Венера, в отличие от нашей планеты, летит по своей орбите вокруг Солнца, еле поворачиваясь вокруг своей оси.
Не льет ли это воду на мельницу гипотезы Блэкетта? Тем более что и Юпитер вроде бы подтверждает это…
Но тут и на Земле были обнаружены новые интересные факты. В пятидесятых годах нашего века ученые окончательно установили, что многие горные породы во время их образования намагничивались. При этом направление их намагниченности естественно совпадало с направлением геомагнитного поля. Раз возникнув, намагниченность во многих случаях с тех пор не менялась. Не значит ли это, что, определив ее для горных пород различного возраста, мы сумеем определить и всю историю магнитного поля нашей планеты?..
А что? Никаких видимых противоречий в высказанном предположении нет. Правда, дело это, конечно, не простое. Однако ученые — народ трудолюбивый. Они отработали вполне убедительную методику восстановления магнитного поля Земли для прошедших геологических эпох. Потом собрали образцы из разных мест земного шара. Исследовали их. Обработали и обобщили результаты и…
В 1963–1968 годах магнитологи А. Кокс, Р. Доэлл и Г. Далримпл опубликовали серию работ. В них они сопоставили намагниченность 240 образцов, взятых из различных районов земного шара, возраст которых был точно определен. Результаты их исследований оказались поразительными. Получалось, что за истекшие последние четыре с половиной миллиона лет жизни нашей Земли (срок весьма скромный), планета четырежды (!) меняла полярность своего магнитного поля на противоположную. Недопустимое легкомыслие для солидного космического тела… Может быть, в исследования ученых вкралась ошибка? Ведь изменения геомагнитного поля не могут пройти бесследно для жизни всей планеты. Слишком многое оказывается с ним связано…
Потрясающее открытие было подтверждено и работами специально оборудованного судна «Гломар Челленджер», пробурившего в океанском дне множество скважин и добывшего из них колонки керна. В них тоже были обнаружены слои с нормальной и обратной намагниченностью. При этом обращение полярности происходило не скачками, в результате какого-то катаклизма, а постепенно. В течение нескольких тысячелетий геомагнитное поле убывало, а потом снова нарастало, но уже с противоположным знаком. Такие периоды бывали в истории Земли и в более древние времена. А как сейчас?
Приближенно мы и сегодня можем рассматривать геомагнитное поле, как и во времена Гильберта, в виде поля небольшого линейного магнита («магнитной палочки»), спрятанного в центре Земли. Магнит этот наклонен примерно на 11° относительно оси вращения планеты. Само же поле как бы состоит из двух частей: большей — от «магнитной палочки» и меньшей, зависящей, возможно, от намагниченности горных пород. Измерения за последние сто пятьдесят лет показывают, что большая часть геомагнитного поля — дипольная — убывает. И довольно быстро — примерно на 5 % за столетие. Экстраполируя результаты, можно прийти к выводу, что через 2000 лет магнитное поле нашей планеты снова «опрокинется». Выходит, мы живем в эпоху обращения полярности…
А ведь это оно, магнитное поле Земли, отклоняет в полярные области потоки заряженных частиц, которые выбрасывает из своих недр Солнце. Оно же образует радиационные пояса вокруг планеты, знание свойств которых так важно для обеспечения безопасности космонавтов. Магнитное поле участвует в работе космической и наземной радиосвязи, радионавигации. Наконец, между состоянием магнитного поля Земли и климатом, как утверждают некоторые ученые, существует весьма существенная зависимость.
Что же произойдет, когда оно уменьшится до минимума, а затем станет даже обратного знака?..
Нет, человеку далеко не безразлично состояние и эволюция всей магнитосферы Земли. Весьма насущные проблемы требуют от геофизиков детального знания как количественных характеристик магнитного поля Земли, так и тенденций его изменения. И здесь предстоит еще большая работа.
Ну, а почему же все-таки Земля — магнит? Ведь именно так мы поставили вопрос в заголовке раздела. Вопрос не легкий. Сегодня наиболее правдоподобным ответом на него может быть, пожалуй, одна из последних гипотез. Я имею в виду гипотезу о динамомеханизме в жидком земном ядре.
По современным представлениям Земля — довольно сложная система. Это вращающийся толстостенный шар, стенки которого состоят из вещества мантии, а внутренняя полость заполнена хорошо проводящей электрический ток жидкостью, в самом центре которой плавает твердое ядро.
При вращении планеты внешний слой ее жидкого пласта может несколько отставать от вращения коры и мантии, порождая внутри проводящей жидкости течения…
А теперь закройте на минутку глаза и представьте себе: в слабом магнитном поле, созданном геомагнитными материалами, вращается замкнутый контур из хорошего проводника… Да ведь это не что иное, как генератор — динамо. Отставая от общего вращения, проводящий слой пересекает силовые магнитные линии слабого изначального магнитного поля, и в нем возбуждается электрический ток. Но этот электрический ток обладает собственным магнитным полем, которое складывается с начальным и усиливает его. Большее магнитное поле порождает и более сильный электрический ток… Получается обычный генератор с самовозбуждением.
Самое интересное, что эта гипотеза позволяет объяснить и периодическую смену полярности геомагнитного поля. Для этого электромагнитные процессы в земном ядре нужно смоделировать и представить в виде работы двух взаимодействующих дисковых динамо, в которых ток одного подпитывает магнитное поле другого и наоборот.
Основания для такой аналогии есть; уравнения, описывающие механизм движения в жидком слое земного ядра, схожи с уравнениями для цепочек взаимодействующих динамо.
Магнитное поле такой системы периодически меняет свою полярность. Так что с математической точки зрения способность геомагнитного поля к «самоопрокидыванию» перестает быть загадочной. Вот только узнать бы точно, как устроено ядро Земли…
Вы упрекнете в том, что мы слишком отклонились от выбранного маршрута путешествия в прошлое и невольно перешли к понятиям современности? Но ведь и мы живем не в XVII веке и вооружены знаниями своего времени. Задача автора, рассказывающего об истории науки, восстановить картину прошедших эпох, чтобы стал понятнее главный вопрос — как дошли люди до появления тех чудес, что нас окружают сегодня.
Глава третья. Серные шары магдебургского бургомистра
Следующая остановка в нашем путешествии сквозь время и пространство приходится на середину XVII столетия. Город Магдебург. Не успев приехать, мы сразу понимаем, что время для посещения выбрано не лучшим образом. На территории Германии, раздробленной на бесчисленные княжества, догорает Тридцатилетняя война — первый, но, к сожалению, не последний общеевропейский конфликт. Разделившись на два лагеря, государства пытаются доказать свои права диктовать волю «всему христианскому миру». В едином блоке с испано-австрийскими Габсбургами, поддерживая императора, (сначала Матвея, а потом подряд двух Фердинандов), выступало папство, польско-литовское государство и католические князья Германии. В антигабсбургскую коалицию в разное время, кроме немецких протестантских князей, заинтересованных в сохранении своих земель и независимости, вступили Чехия и Дания, Голландия, Швеция, Россия, Англия и, наконец, Франция. Но основные бои разворачивались в центре Европы, где владетельные немецкие князья не могли договориться между собой. В результате в последний период войны, охватывающий 1635–1648 годы, и союзники, и противники одинаково вытаптывали нивы, разоряли города. Мародеры шведско-французских войск ничем не отличались от мародеров имперско-испанских. Население разграбленных княжеств вело непрерывную и ожесточенную партизанскую войну с теми и с другими.
Но военный перевес явно склонялся в сторону Франции и Швеции. Возникла даже перспектива раздела Германии между этими странами, когда в 1648 году был заключен Вестфальский мир.
Магдебург особенно пострадал в войне. После долгой осады ландскнехты Габсбургов захватили штурмом и разграбили город. Они перебили почти все население, а потом сожгли Магдебург дотла. Но подошли войска шведского короля, и наемники отступили. Вместе со шведами возвратились на родное пепелище успевшие уехать именитые горожане, среди которых был и молодой сын местного пивовара Отто Герике. Страшная картина открылась их глазам. Но люди редко предаются отчаянию подолгу. Оставшимся в живых предстояло немало работы: нужно было прокладывать улицы среди руин, возводить новые мосты. Вот когда пригодилось образование сына пивовара. Не напрасно он столько лет изучал правоведение, математику и механику в Голландии и в германских университетах, а потом служил инженером в шведских войсках. Герике с жаром принимается за работу.
Профессия инженера довольно древняя. Сначала так называли тех, кто управлял военными машинами, потом добавили к ним саперов, подрывников. В XVI веке в Голландии появились первые гражданские инженеры — специалисты по строительству дорог и мостов.
Постепенно, как сказочная птица Феникс из пепла, встает на берегу Эльбы новый Магдебург. Но положение города непрочно. Войска то одной, то другой воюющей стороны располагаются в нем на постой. А после заключения мира саксонский курфюрст вообще прислал в него постоянный гарнизон Нелегко горожанам содержать прожорливых солдат. И вот возникает мысль: а не послать ли молодого пивовара-инженера ко двору? Пусть попробует уговорить курфюрста отозвать гарнизон и разрешить заменить его городской милицией. Не зря же Герике, кроме механики, учился еще и правоведению?..
Сложная миссия увенчалась успехом. И город избирает удачливого дипломата бургомистром. Магдебуржцев не остановило даже то, что Герике одновременно со своими многочисленными обязанностями увлекался физическими экспериментами. Он вытягивал воздух насосом из плоской бутыли, и она лопалась со страшным звоном. Он велел отковать два медных полушария, снабдил их краном, сложил и тоже откачал воздух. Полушария так слиплись, что и шесть впряженных лошадей не могли оторвать половинки друг от друга. Но стоило открыть кран и впустить туда воздух, как они сами собой свободно распались… Чудеса! Конечно, лучше бы он только варил пиво, как-то солиднее для бургомистра. Но поскольку научные занятия не мешали городским делам и доходам богатеев, горожане смотрели на чудачества Герике снисходительно. А когда, показав кое-что из своих «кунштюков» при дворе курфюрста, Герике добился и новых льгот для Магдебурга, люди стали даже им гордиться. Молва разнесла не только быль, но и небылицы об ученом бургомистре по всей Германии. Знатные особы специально стали приезжать в Магдебург, чтобы поглядеть на знаменитый барометр, установленный Герике возле своего дома, познакомиться с физическими приборами, изобретенными им, а заодно и отведать пива. Профессия пивоваров была в роду Герике наследственной.
Должность бургомистра и частые поездки ко двору отвлекают Герике от любимых занятий. Но, как истинный немец, он тщательно записывает результаты всех опытов, надеясь, что когда-нибудь аккуратность сослужит ему добрую службу.
Был ли Отто Герике ученым? Вряд ли. Скорее — изобретателем. Это не менее достойная категория людей, снедаемых неутолимым зудом любознательности в сочетании с желанием все испробовать, все сделать своими руками. Сегодня мы бы назвали его физиком-экспериментатором. Некоторые биографы высказывали предположение, что для Герике внешний эффект был важнее проникновения в суть наблюдаемого явления. И потому тихие, неэффектные опыты с магнитами и электрической силой, добываемой трением, его не увлекали… Вряд ли это справедливо. Познакомившись с трактатом Гильберта, он задумал повторить описанные опыты, но при этом поставить их с размахом. Так, чтобы даже самые заядлые скептики уверовали в силу науки и… в мастерство самого Герике.
Но дабы слабые проявления электрической силы были заметны, нужно научиться добывать большее количество электричества, чем это делал Гильберт, натирая зерна янтаря и серные шарики, насаженные на палочки.
И вот толстяк бургомистр спешит к мастеру-стеклодуву. О, он задумал хитрую штуку! Пусть сначала мастер выдует ему большой стеклянный пузырь, величиной не меньше чем с детскую голову. В этот пузырь он велит налить расплавленную серу. А когда та охладится и застынет, стекло можно разбить. У него в руках останется большой шар из серы, на котором от трения соберется, конечно же, больше электричества, чем добывал врач английской королевы…
Для середины XVII века это была довольно сложная технологическая задача — изготовление большого шара из серы. Сложная и дорогая. Но немецкие мастера славились своим умением.
Прошло время, и шар отлит, освобожден от стеклянной оболочки, отшлифован и даже насажен на железную ось с рукояткой, чтобы удобнее было его укреплять на станине. Получилась первая в истории науки и техники электрическая машина… Ах, если бы он знал, что нет никакой надобности в сере, что стеклянный шар, натертый сухой ладонью, электризуется так же, как и сделанный из серы! Но Герике этого не знал. Он лишь повторял опыты, уже описанные великими авторитетами, и старался подметить то, чего те не заметили.
Герике с восторгом наблюдает, как танцуют пушинки над натертым шаром, не рискуя опуститься. А те, что все-таки опускаются, отскакивают от шара прочь. Экспериментатор снимает шар со станины и преследует пушинку, заставляя ее лететь в желаемом направлении. Он управляет ее полетом… «Э! — говорит он себе. — Похоже, что наэлектризованное тело не только притягивает, но и отталкивает легкие тельца. В чем же здесь причина?» У Гильберта о причинах ни слова. Иезуит Афанасий Кирхер наполнил свой труд о магните баснями, вроде того что магнит не любит чеснока и увеличивает свою силу, ежели его обернуть красной тряпкой или окунуть в горячую кровь козла… В 1639 году вышла еще одна книга — итальянского монаха-естествоиспытателя Никколо Кабео. В ней немало рассуждений о причине притяжения как магнита, так и наэлектризованных тел: «Из натираемого тела начинается истечение невидимой жидкости, коя расталкивает прилегающий к телу воздух и производит в нем завихрения. Вихри эти и увлекают притягиваемые легкие тельца». Ну что же, путаное, конечно, но все-таки объяснение. А вот как быть с отталкиванием?
Герике заметил, что стоит дотронуться до оттолкнувшейся от шара пушинки, как она снова устремляется к шару. А коснувшись его поверхности, уносится прочь… В один из теплых солнечных дней такая пушинка стала преследовать нос самого экспериментатора, и, как он ни отворачивался, она коснулась его и тут же полетела снова к шару. Чудеса!
Пожалуй, до него никто с электрическим отталкиванием не проделал столько опытов. Во всяком случае, ни в одной из книг об этом не написано. Может быть, это его открытие?!
Кроме того, он обнаружил, что электрическая сила распространяется по льняной нитке на расстояние целого локтя от серного шара. А сам шар, будучи хорошо натерт, светится в темноте слабым синеватым светом и, испуская крохотные искры, тихо потрескивает…
Бургомистр привязывает на длинную нитку легкий шарик из бузины к потолку и подносит к нему натертый серный шар. Куда бы он ни повернулся, маленький шарик всюду следует за большим, оборотясь к нему строго одной своей стороной. «Уж не так ли и Луна управляется силами, истекающими из Земли? — думает бургомистр. — Может быть, электрические и магнитные силы помогут объяснить строение космоса?»
Эта весьма живучая идея была высказана, как вы, наверное, помните, еще Гильбертом. Не отрицал и Галилей связи между суточным вращением Земли с ее столь наглядными магнитными силами. Задачу выяснить гармонию мира и построить «архитектуру Вселенной» ставил перед собой астроном Иоганн Кеплер. Самые главные задачи века!
Гильберт родился через год после смерти Коперника. Иоганн Кеплер родился через 28 лет после смерти польского астронома. Галилео Галилей был на шесть лет младше Кеплера, а Отто фон Герике родился, когда тридцатилетний Кеплер, переехав к Тихо Браге, на должность ассистента, только-только потерял своего патрона.
Система мира — главное, что волновало и интересовало всех естествоиспытателей, астрономов, философов. Какие силы объединяют небесные тела, в чем причина непревзойденной мировой гармонии? В той или, иной форме этот вопрос был, есть и будет одним из основных в человеческом познании всех времен. При этом смысл его мало меняется от количества сложных и архисложных теорий, облеченных в непроницаемые для непосвященных математические одежды.
Конечно, сесть бы ему за стол, обдумать все, описать результаты опытов в книге, в которой не будет ни грана выдумки, а только то, что он видел и испытал сам… Но где там! Проклятая служба не оставляет ни минутки свободного времени.
Как-то на рейхстаге в Регенсбурге он демонстрировал свои опыты и машины перед самим императором и собравшимися курфюрстами. Удостоился похвалы. А потом некто по имени Каспар Шотт описал все его приборы и опыты да и издал в виде книги… Спасибо, что упомянул имя Герике, а не себе присвоил славу экспериментатора. Между тем его собственное сочинение подвигается вперед трудно. Никогда он не думал, что писание требует столько времени и усилий. Наконец в 1663 году он отдает рукопись амстердамскому издателю. Теперь остается только ждать.
Незаметно бежит время. Он уже не безвестный экспериментатор и не безродный пивовар. За научные заслуги император возвел его в дворянское достоинство. Вот только годы не ждут…
Ему уже семьдесят, а его книга, прекрасное правдивое описание опытов с великолепными рисунками, которые так дорого ему стоили, все еще не может увидеть света.
Лишь в 1672 году вышла книга из-под пресса типографии. Герике был счастлив. Его не расстроило даже то, что в качестве гонорара пришлось довольствоваться семьюдесятью пятью экземплярами первого тиснения да обещанием книгоиздателя прислать еще двенадцать со второго, коли оно будет. Жаль вот только, много времени прошло и мало его осталось. Сколько лет у него украли неблагодарные городские дела и политика!
Устал он на посту бургомистра. А в отставку все не увольняют. Наконец просьба удовлетворена. Можно будет заняться любезными сердцу экспериментами. Наконец-то горожане стали чаще видеть громоздкую фигуру своего «десятипудового бургомистра» (именно такое прозвище дали ему насмешники) в окнах домашнего кабинета. Да только продолжалось это недолго.
Через два года после его отставки в Магдебурге началась чума. Новые власти все делают не так, а его не слушают. Старик!.. Обидевшись, он покидает родной город и уезжает к единственному оставшемуся сыну в Гамбург. А там вскоре и умирает в возрасте 84 лет.
Книга Отто фон Герике быстро разлетелась по европейским странам и побудила многих естествоиспытателей повторить и проверить описанные опыты. И это было прекрасно, потому что, проверяя, ученые невольно изменяли условия эксперимента и получали новые результаты, накапливали новые факты.
В Италии опыты с электрическим притяжением и отталкиванием вели члены Академии дель Чименто. В Англии Роберт Бойль, опытный экспериментатор, нашел, что все тела обнаруживают большую электрическую силу, если их перед натиранием чисто вытереть и согреть… Не оттого ли теплым солнечным днем даже нос почтенного магдебургского бургомистра принял такое живое участие в игре с пушинкой?..
Однако славу Бойля составляли его пневматические эксперименты. И он не мог не проверить, как ведут себя наэлектризованные тела в пустоте. Оказалось, что электрическая сила не зависит от наличия воздуха. Но что же она тогда собой представляет?..
А тут пришло новое сообщение. На этот раз из Франции. Некто Пикар, изготовляя трубку для барометра, заполнил ее ртутью и перевернул, чтобы в запаянном конце осталась торичеллиева пустота. Вечером, случайно встряхнув прибор, он обнаружил слабое свечение ртути. «Живое серебро» светилось, будто фосфор, когда экспериментатор встряхнул трубку. В чем тут было дело?..
Опыт этот породил много споров. Одни считали, что в ртути присутствует особый «меркуриальный фосфор». Другие осторожно говорили, что причиной свечения может быть электризация стеклянных стенок трубки при встряхивании ртути. Тогда к единому мнению не пришли. Нужны были дальнейшие эксперименты, исследования.
Как возникла солнечная система?
Вы никогда не задумывались над этим вопросом? Правда, кое-кому может показаться, что вроде бы не место в книжке, посвященной электричеству, говорить о космогонии. Но это только на первый взгляд. Главное проявление электрических и магнитных сил — в притягивании и отталкивании. А разве это не те воздействия, которые нужны для того, чтобы собрать вместе пыль и обломки вещества, летающие в космосе, закрутить их в огромную карусель, разделить на части и сформировать из главного кома звезду, а из комков поменьше — планеты?
Нет, нет, не отмахивайтесь от такой идеи.
Несколько лет тому назад в издательстве «Молодая гвардия» вышла моя книжка «Занимательно о космогонии», в которой я рассказывал о различных гипотезах, созданных людьми, чтобы объяснить происхождение планет, звезд и галактик. Я получил довольно много писем от читателей, в которых было немало своих гипотез, составленных на разных уровнях знакомства с наукой. В большинстве своем они интересны тем, что их авторы думали о больших проблемах, возводя фундамент собственного мировоззрения.
В современной космогонии отсчет времени жизни космогонической гипотезы с участием электромагнитных сил ведется обычно от 1912 года. Именно тогда известный астроном К. Биркеланд попытался серьезно ввести в механизм образования Солнечной системы эти силы. Поскольку первоначальная туманность должна была во что бы то ни стало состоять из смеси заряженных частиц, Солнце вполне могло сыграть роль «сепаратора» и распределить бестолково летающий вокруг него рой частиц по слоям или кольцам.
Правда, тогда все планеты по своему составу должны резко отличаться не только друг от друга, но и от оставшихся обломков, залетающих к нам на Землю в виде метеоритов. Между тем метеориты, падающие на Землю, почему-то имеют очень сходный с нею состав… Нет, похоже, что-то в гипотезе Биркеланда оказалось недодуманным.
После окончания второй мировой войны шведский астрофизик Ханнес Альфвен развил предположения, высказанные Биркеландом в начале века. Он представил, что туманность, окружавшая светило, состояла из нейтральных частиц, а вот Солнце обладало сильным магнитным полем. Под действием излучения Солнца и собственных столкновений атомы ионизировались. При этом ионы попадали в ловушки из магнитных силовых линий и увлекались вслед за вращающимся светилом. Постепенно Солнце теряло свой вращательный момент, передавая его газовому облаку.
Правда, и в этом случае атомы более легких элементов должны были ионизироваться вблизи Солнца, а атомы тяжелых элементов — дальше. Следовательно и ближайшие к Солнцу планеты должны бы состоять из наилегчайших элементов, то есть из водорода и гелия, а более отдаленные — содержать в себе железо и никель… Увы, астрономические наблюдения настойчиво говорят об обратном!
Электромагнитные силы должны были играть важную роль в формировании планетной системы, но какую? И вот английский астроном Фред Хойл разрабатывает новый вариант гипотезы…
Сначала, как и полагалось, в недрах огромной туманности, изначально обладавшей магнитным полем, зародилось Солнце. Оно быстро вращалось, и туманность становилась все более плоской, похожей на диск. Этот диск постепенно разгонялся, забирая движение у центрального светила. Момент количества движения переходил в основном к диску, в нем образовались планеты. Солнце же постепенно притормаживалось.
Хойл считал, что момент от Солнца передавался не всем частицам туманности одинаково, а в основном газообразным, которые легче превращаются в ионы. В своей работе ученый так и пишет: «Приобретая момент количества движения, планетное вещество удалялось от солнечного сгущения. Нелетучие вещества конденсировались и отставали от движущегося наружу газа. Именно с этим процессом связан тот факт, что планеты земной группы: 1) имеют малые массы; 2) почти полностью состоят из нелетучих веществ; 3) находятся во внутренней части системы».
Подобный механизм, по мнению Хойла, создавал условия для существования возле Солнца некой каменножелезной зоны, которая в широком промежутке между орбитами Марса и Юпитера переходила в область, где, напротив, преобладали вода и аммиак, а дальше… Дальше планеты должны были состоять из веществ еще более легких, чем составные части Юпитера и Сатурна. И вот тут-то получался «прокол», ибо плотность вещества Урана и Нептуна снова растет!..
Нет, что и говорить, желание привлечь к образованию Солнечной системы электрические и магнитные силы вполне похвально, но доводы пока не очень убедительны. Пока следует признать, что даже частичное привлечение электрических и магнитных сил в качестве созидающих при образовании солнечного семейства надежд не оправдало. Здесь еще предстоит работать, работать…
Глава четвертая. В лондонском королевском обществе
На площади Пикадилли в Лондоне, перед Барлингтон-Хаузом, в наши дни всегда полно машин. Однако современные автомобили не портят вида этого старого здания с тремя разномастными этажами и балюстрадой на крыше. Более того, скопление транспортных средств даже как-то подчеркивает значимость строения. Не ищите на нем вывеску или табличку. Любой лондонец и так вам скажет, что здесь помещается Королевское общество. Это его современное помещение.
Лондонское королевское общество для развития естественных наук было основано в 1660 году. Это одно из старейших научных учреждений мира, насчитывающее в своих списках немало славных имен. Избираются в общество, как правило, подданные Великобритании или Ирландии, и не больше двадцати пяти человек в год. Кроме них, могут быть добавлены три или четыре иностранных члена. И уж тут, можете быть уверены, англичане сто раз взвесят, прежде чем предложат эту честь иностранцу, хотя в наши дни общество и насчитывает около шестисот членов.
Совсем не то было в годы, в которые нам предстоит отправиться, чтобы познакомиться с некоторыми английскими работами по электричеству. В начале XVIII века здание, в котором собирались «F.R.S.» (Fellows of Royal Society — члены Королевского общества), было другим. Заседания происходили в старом, уже тогда порядочно обветшавшем Грешем-колледже, завещанном науке богатым лондонским коммерсантом Томасом Грешемом еще при королеве Елизавете. Туда мы и пойдем…
Потертые каменные ступени вводят нас в дом довольно мрачного вида. Еще более угрюмое впечатление производит зал заседаний — большая комната с высокими стрельчатыми окнами. Посередине — длинный стол, накрытый грубым сукном. Вокруг стола — стулья, а за ним у стен — простые деревянные скамьи, на которых размещались джентльмены в шляпах и плащах, это и были «F.R.S.». А шляпы в ту пору джентльмены снимали лишь в церкви и перед королем. Стулья пока пусты. Они предназначены для важных титулованных гостей и для докладчика. За столом, спиной к пылающему камину, сидит председатель собрания — президент общества, рядом с ним — непременный секретарь.
В помещении лютый холод. Председательствующий, как и остальные, закутан в толстый теплый плащ. Впрочем, даже в таком виде мы не можем не узнать его — сэр Исаак Ньютон!..
Да, с 1703 года, после смерти коллеги, помощника и одновременно непримиримого врага, куратора-попечителя и организатора опытов Роберта Гука, Ньютон согласился возглавить общество. Несмотря на полное отсутствие каких-либо способностей к руководству, его почти четверть века ежегодно переизбирали на этот пост, и он председательствовал на собраниях, восседая на мешке, набитом по традиции овечьей шерстью. Великому ученому вовсе не обязательно было быть тогда и великим организатором.
Надо признать, что со смертью Гука оборвалась и блестящая пора выдающихся совместных опытов в Лондонском королевском обществе. Кабинет с великолепной коллекцией приборов, инструментов пришел в упадок. Джон Бернал в книге «Наука в истории общества» цитирует впечатления посетителя, побывавшего в Грешем-колледже в 1710 году. Коллекция инструментов «не только была сколько-нибудь аккуратно прибрана, но, наоборот, покрыта пылью, грязью и копотью, и многие инструменты были сломаны и окончательно испорчены. Стоит только попросить тот или иной инструмент, как оператор, обслуживающий посетителей, обычно отвечает: „Его украл какой-то негодяй“ — или, показывая его обломки, заявляет: „Он испорчен или сломан“; и так они заботятся об имуществе».
Правда, определенным прогрессом явился переезд общества в 1710 году, по настоянию Ньютона, в новый дом на Флит-стрит, но это, так сказать, успех в административно-хозяйственном плане.
Причина упадка в научном отношении заключалась в том, что начало XVIII столетия вообще характеризуется как период затишья в английской науке. Иссякли стимулы для усилий поставить науку на службу ремеслу. Предприимчивые купцы-дворяне, открывавшие в XVII столетии новые земли, уступили свое место более богатым, но менее любознательным спекулянтам новыми землями. А для спекуляций знания законов природы были необязательны. В упадке же экспериментального искусства среди членов Королевского общества сказалась и многолетняя личная неприязнь Ньютоца к Гуку. Но тем интереснее отметить немногочисленные эксперименты, которые все же ставились на его заседаниях…
Вот отворяется дверь, ведущая во внутренние помещения Грешем-колледжа, и два оператора вносят какой-то станок, похожий на ножное точило. Такая же станина, большое колесо с ручкой, а наверху вместо точильного камня прилажен стеклянный шар, из которого выкачан воздух. Следом за установкой появляется и ее изобретатель, Френсис Гауксби — демонстратор, подготавливающий опыты для очередных заседаний. После смерти Гука он занял его место, вступив в должность одновременно с новым президентом.
Операторы задергивают шторы на окнах. В сумрачном помещении становится совсем темно. Затем один из операторов начинает вращать ручку машины, а Гауксби прижимает ладони к шару… И, о чудо! Натертый шар начинает светиться. Точь в точь как светились барометрические трубки при встряхивании заполняющей их ртути.
Разве это не ответ на вопрос о природе свечения? Разве это не решающее доказательство того, что свет есть результат электризации, а не какого-то там «меркуриального фосфора» в духе алхимиков прошлых веков? Но опыт на этом не кончается. Остановив вращение, экспериментатор подносит к погасшему и темному шару руку. И тотчас же большая, едва ли не в дюйм (около 2,5 см) величиной, голубая искра с треском выскакивает из наэлектризованного прибора и ощутимо клюет поднесенный палец…
Значит, электричество рождает не только силу притяжения, но и искры… Интересно бы узнать, холодные они или горячие? Ученые джентльмены по очереди подносят пальцы к вновь и вновь электризуемому шару и вскрикивают, ощутив укол. Все это чудесно и непонятно. Правда, кто-то вспоминает, что несколько лет тому назад некий доктор Уолл, натерев янтарь, также извлек из него искру, предположив, что ее свет и треск представляют собой в некотором роде молнию и гром… Но природа атмосферных явлений была в то время совершенно неизвестна людям. Многие продолжали считать молнию вспышкой воспламеняющихся серных паров, накапливающихся в атмосфере. И блестящая догадка Уолла осталась незамеченной. Сам Гауксби, подобно своим предшественникам, полагал, что заряженные тела являются источниками некоего «эффлувиума» — истечения, переходящего с наэлектризованных тел на ненаэлектризованные. Оттого-то, дескать, последние и светятся вблизи наэлектризованных тел. Иногда вместо своей машины со стеклянным шаром Гауксби применял для электризации длинные стеклянные трубки.
Ньютон не оставался равнодушным к демонстрациям электрических явлений. Как и другие «F.R.S.», он с любопытством смотрел на манипуляции хранителя приборов, снисходительно восхищался результатами, но не больше. Главные работы Великого Физика были уже позади, и его больше интересовали вопросы истории, хронологии и… религии. Нет, должного энтузиазма не было. Опыты Гауксби не производили такого впечатления, как когда-то, скажем, эксперименты Бойля и Гука или Герике. И внимание к чуть заметным проявлениям электричества со стороны ученого мира XVIII столетия было недостаточным. А после смерти Гауксби эти работы в Лондонском обществе и вовсе захирели.
Хорошие и дурные проводники сэра Стефена Грея
Мы знакомимся с сэром Стефеном Греем году в 1729-м. Почтенному джентльмену за шестьдесят. Он учен, любознателен, довольно богат, член Лондонского королевского общества… Впрочем, нет. Заветный титул «F.R.S.» он получит лишь через три года, незадолго до своей смерти. Мало сохранилось о нем сведений в истории. Говорили, что был он будто сначала оптиком. Но шлифование линз в XVII веке было общим увлечением людей, желавших прослыть не чуждыми просвещения.
В описываемое время Грей пытался выяснить: изменяется ли характер электризации стеклянной трубки от того, закрыта она пробкой или нет? Он заткнул с обоих концов длинную стеклянную трубку пробками и принялся натирать стекло.
Вроде бы характер электризации оставался прежним. Но вот что удивительно: контрольные клочки бумажек притягивались не только стеклом, но и пробками. Значит, электричество перешло на пробки. Ну, а если воткнуть в пробку сосновую щепочку?.. Прекрасно, и по ней распространяется таинственная материя. А если заменить щепочку проволокой подлиннее? Прекрасно, просто превосходно… Маленький шарик из слоновой кости, насаженный на конец проволоки, воткнутой в пробку, отменно шевелил легкие контрольные обрывки бумаги. «Интересно, — подумал экспериментатор, — на какое же расстояние вообще способна распространяться электрическая сила?..»
Внизу постучали. «Это Уилер! Как нельзя кстати!» Грей вышел на балкон. Действительно, внизу стоял его старый друг, священник Гранвилль Уилер, почтенный член Лондонского королевского общества.
Грей, свесившись вниз, объяснил суть задуманного эксперимента. Он заменил проволоку длинной бечевкой с тем же шариком на конце. Натер стеклянную трубку и опустил конец бечевки с балкона вниз. Уилер проверил наличие электризации — шарик притягивал сухие бумажные обрывки. Значит, электричество есть!
— Но ведь тут не меньше двадцати футов! — воскликнул пораженный священник. — Давайте еще удлиним веревку. Я попробую привязать конец с шариком другой бечевкой к крыше противоположного дома…
Дело сделано. Но сколько ни натирал Грей стеклянную трубочку, шарик никаких признаков электризации не проявлял. Куда же девалось электричество? «Может быть, оно по толстой веревке перебралось на крышу? — предположил Уилер. — Не заменить ли нам поддерживающую веревку тонкой нитью?»
Грей послал слугу, и тот заменил бечевку шелковинкой. Снова опыт и прекрасный результат налицо: шарик наэлектризован! В увлечении почтенные джентльмены не замечали, как бежит время. Они все увеличивали и увеличивали свою «линию передачи», и электрическая сила послушно бежала по веревке дальше и дальше. Правда, когда одна из шелковых нитей оборвалась и они заменили ее медной проволокой, зацепленной за водосточный желоб, опыт опять не удался.
— Не кажется ли вам, Уилер, что в деле проведения электричества суть не в тонкости удерживающей нити, а в ее материале?..
Это был интересный вывод, и оба друга вполне его оценили. Значит, разные вещества должны по-разному проводить электричество. Одни лучше, другие хуже…
Все последующие дни были заполнены опытами. Грей обнаружил, что не только шелк, но и волосы, смола, стекло и другие материалы не пропускают через себя электрическую силу. И это позволяло использовать их для сохранения электричества. Он сажал собаку на смоляную подставку и заряжал ее натертой стеклянной трубкой. И все время, пока животное не сходило с подставки, оно сохраняло в своем теле сообщенное электричество. Он позвал мальчика-грума и за шиллинг уговорил его лечь на приготовленные волосяные петли, подвешенные к потолку. Потом он сообщил ему электрическую силу, и мальчик пальцем стал притягивать с пола пушинки и обрывки бумаги.
А однажды Грей убедился, что электризация тел возможна и без прямого касания, стоит поднести к телу заряженную стеклянную трубку. Об этом писали некоторые естествоиспытатели, но им мало кто верил.
«Интересно, а где хранится в теле запасенное электричество?» Такая мысль пришла ему в голову после множества проделанных экспериментов. И тогда он придумал и поставил эксперимент, сделавший честь его исследовательскому таланту. Он заказал два одинаковых по размерам куба из сухого соснового дерева. Один сплошной, другой полый. Подвесил их на шелковых нитях и прикрепил к боковине каждого по листочку фольги. Затем, натерев стеклянную трубку, поставил ее между кубами точно посредине, правильно ожидая, что оба тела при этом через наведение (или, как мы говорим сегодня, индукцию) наэлектризуются одной силой. И что количество электричества в них, показанное отклонением листочков фольги, позволит судить о распределении таинственной материи.
Листочки отклонились одинаково. Значит, оба куба восприняли одинаковое количество электричества. Но поскольку один из них, сколоченный из дощечек, был полым, то следовало сделать вывод, что распределяется электричество только по поверхности кубов. Прекрасный опыт, и блистательный результат!
Гильберт, а за ним и Герике делили все тела на электрические, то есть те, которые при натирании приобретают способность притягивать, и неэлектрические (в основном это были металлы) — не приобретавшие при натирании способности притягивать легкий сухой мусор. А вот Грей обнаружил, что трением можно наэлектризовать в принципе любые тела. Только в одних, например в смоле, янтаре, стекле, электрическая сила сохраняется долго, а из других (например, из металлов) она тут же уходит, стоит к этим телам прикоснуться. Однако, если металлический предмет обособить, лишить связи с землей, иначе говоря, если его изолировать, то и в нем можно возбудить трением электрическую силу. В двух палочках, стеклянной и металлической, Грею удалось почти тридцать дней сохранять электрическую силу, подвесив их к потолку на шелковинках. Но коли так, то классификация, предложенная Гильбертом, неверна. И все тела следовало бы делить просто на хорошие и плохие проводники, а не на электрические и неэлектрические тела вообще.
Попросив у Уилера железный ключ, Грей намагнитил его и показал, что, наэлектризованный, он притягивает к себе легкие предметы ничуть не меньше и не больше, как если бы и не был намагничен вовсе. Это говорило о том, что магнитные явления не мешают электрическим, равно как и наоборот…
Впрочем, выводы пусть делают другие. Потому что тут сразу же возникал вопрос, от которого стремились уйти и Грей, и Уилер: что же является таинственным носителем этих новых сил, названных Гильбертом электрическими? Ответом могла быть только гипотеза…
Результаты своих опытов Грей аккуратно публиковал в журнале, издаваемом обществом. Он никогда не спешил с выводами и не создавал никаких гипотез. После смерти Ньютона англичане, ошеломленные тем, что среди них жил такой гений, следовали заветам сэра Исаака иной раз излишне буквально. Может быть, именно поэтому Стефен Грей скромно описывал в своих сообщениях результаты опытов и не пытался их объяснять, хотя целый ряд из них противоречил утверждениям великих авторитетов…
Однако может ли ученый, исследователь наблюдать и изучать, скажем, некое явление, не задумываясь над его сутью? Вряд ли…
Каждый исследователь обязательно создает для себя, так сказать, рабочую модель — упрощенное представление изучаемого процесса. По-видимому, и у Грея было смутное представление об электричестве как о чем-то, «что пронизывает все наэлектризованное тело и наполняет все поры этого тела».
Такой взгляд не был новостью для английской науки. Еще в начале XVIII столетия, когда Гауксби проводил свои опыты, наблюдая истечение какой-то светящейся эманации с острия сильно наэлектризованного тела, Ньютон, видевший эти эксперименты, не раз уходил с заседаний общества в глубокой задумчивости. Сэр Исаак был признанным лидером сторонников «действия сил на расстоянии» в пустом мировом пространстве, но под влиянием опытов Гауксби он снова и снова возвращался к гипотезе эфира, заполняющего Вселенную.
Впрочем, и Гауксби, и Грей отлично понимали, что, прежде чем говорить о сущности электричества, следует накопить о нем как можно больше сведений.
— Грей был прекрасным, необыкновенно остроумным экспериментатором, — говорил Уилер на заседании общества, посвященном памяти скончавшегося друга. — И нам остается только пожалеть, что идея начать исследования в этой области пришла к нему так поздно.
О «стеклянном» и «смоляном» электричестве
Расстояние от Лондона до Парижа невелико, и известия Королевского общества быстро достигали берегов Сены. И здесь, несмотря на ревнивое неприятие французами всего английского, идеи Ньютона и достижения британских физиков внимательно изучались. Пожалуй, можно сказать, что эти идеи одним из первых естествоиспытателей на континенте воспринял Шарль Франсуа де Систерне Дюфé — директор Парижского ботанического сада. А когда в лондонском журнале Дюфе прочел сообщение об опытах Грея, ботаника навсегда потеряла его. Впрочем, искренним поклонником пестиков-тычинок он никогда не был…
В юности родные определили его на военную службу, к которой Шарль Франсуа не имел ни малейшей склонности. Дослужившись до скромного чина младшего армейского офицера, Дюфе подал в отставку по причине слабого здоровья и с удовольствием стал заниматься наукой. Больше всего его привлекала химия. А там подвернулась возможность поступить в Парижский ботанический сад. Дюфе постарался ее не упустить. Служба есть служба.
В 1703 году его назначили директором этого научного учреждения. А за заслуги в области химии приняли в Парижскую академию наук. Тут-то и познакомился он с опытами Грея. Надо сказать, результаты английского исследователя поразили Дюфе. Он повторил целый ряд его экспериментов и сумел передать электричество по бечевке на расстояние в 1256 футов (то есть почти на 377 метров!)… Рекорд! Успехи всегда окрыляют человека. И директор ботанического сада прочно «заболевает» электричеством…
Он повторил буквально все опыты, описанные Греем, и дал им высокую оценку. Он дюжинами придумывал собственные опыты, ставил их в своем кабинете один или с помощниками. Дюфе пробовал электризовать самые разнообразные вещества. И каждый раз аккуратно записывал результаты в рабочую тетрадь. Скоро у него скопилось таких записей столько, что он смог сделать первый вывод: «Тела, наименее склонные сами становиться электрическими, легче всего притягиваются и переносят наиболее далеко и в наибольшей степени электрическую материю, между тем как тела, наиболее склонные сами становиться электрическими, наименее приспособлены воспринимать электричество от других и передавать его на значительное расстояние». Простим ученому несколько тяжеловатый слог его формулировок. Ведь он был первым, кто решился на обобщение, да и жил он все же двести пятьдесят лет назад. Тогда люди и думали и говорили не так кратко, как мы.
Вывод Дюфе, конечно, еще не закон. Но его появление знаменует собой то, что в изучении электричества наступает пора перехода от мифов, объединяющих разрозненные факты, к законам, которые приводят факты в систему.
Наступил день, когда Дюфе сделал главное свое открытие. Он уже давно замечал, что обрывки бумаги и соломинки, наэлектризованные натертой стеклянной палочкой, отталкиваются ею, но притягиваются натертым янтарным шариком. То же самое происходило и в том случае, если наэлектризовать бумажки, скажем, натертой копаловой смолой, янтарем или испанским воском. В этом случае обрывки станут отталкиваться от предметов, сообщивших им электричество, но притянутся натертыми стеклянной палочкой или горным хрусталем… Получалось, будто в природе существует не одно электричество, а два: «стеклянное» и «смоляное». И все тела делились на две группы: одни воспринимали «стеклянное» электричество, другие — «смоляное». Третьего сорта таинственной силы найти не удавалось…
В ту пору жил в Париже католический священник по имени Жан Антуан Нолле (1700–1770). Принадлежал он к ордену иезуитов, был хорошо образован, начитан и увлекался физикой. Аббат Нолле (именно под таким именем его знает история науки) был вездесущ. Его короткая фиолетовая сутана с небольшим воротником была хорошо известна в научных кругах. Знакомый со всеми более или менее известными французскими естествоиспытателями, он состоял в переписке и со многими зарубежными учеными, не пропускал заседаний Парижской академии и время от времени бывал при дворе. Он читал популярные лекции по физике в самых разных аудиториях, сопровождая их эффектными опытами. Однако ученым аббат Нолле все-таки не был. Популяризатором — да, любителем, информатором — кем угодно из околонаучной публики, но не ученым. Хотя его заслуги перед наукой достаточно заметны.
В XVIII веке беззаботная жизнь французских аббатов в качестве приживалов побуждала многих молодых людей, особенно младших членов дворянских фамилий, не имевших надежды на наследство, посвящать себя духовному званию. Орден, в который они вступали, помогал им устроиться домашними учителями, духовниками или просто друзьями в знатные и богатые дома. При этом они должны были быть чем-то интересны своим хозяевам. Приходилось приноравливаться к их вкусам, кто избирал своей профессией сплетни, кто — литературу, а кто — и науку. Так, иезуиты, например, считая одной из главных своих задач воспитание и обучение юношества, открыто поощряли занятия науками среди членов ордена. А потому среди них было немало и серьезных ученых.
Имя аббата Нолле еще не раз встретится в нашей книжке, и потому читатель вправе знать, кем же был в действительности этот человек, немало сделавший для развития физики XVIII столетия.
Попробуем ранним весенним утром 1735 года последовать за проворным физиком в сутане, после того как он вышел из собственного дома… Париж — его бульвары, улицы… Смотрите, крепкие ноги привели аббата к ботаническому саду. Вот он всходит на крыльцо, поднимает дверной молоток… Да ведь это дом, в котором живет директор этого славного научного заведения, небезызвестный нам Шарль Франсуа де Систерне Дюфе…
— Как это кстати, господин аббат, что вы заглянули ко мне! — говорит Дюфе, встречая гостя на пороге. — Я задумал воспроизвести опыты сэра Стефена Грея по электризации человека, и мне нужен помощник. Этот болван Жюльен, мой препаратор, сбежал от страха…
Нолле огляделся. У стола с бумагами стояла прислоненная к креслу стеклянная трубка — главный прибор для добывания электричества. С потолочной балки вниз спускались подвешенные петли из шелковых шнурков.
— Мой бог, зачем эти приспособления, дорогой Дюфе? Они так напоминают собой дыбу, что я чувствую себя гостем парижского прево.
Пока Дюфе залезал в петли и располагался в них так, чтобы ни рукавом, ни краем камзола не коснуться пола, аббат Нолле натирал трубку и болтал, рассказывая о последних научных новостях вперемежку со сплетнями! Приятный разговор, вести о случившемся, анекдоты — постоянный арсенал светскости. В ходе беседы он то и дело касался стеклянной трубкой подвешенного на петлях естествоиспытателя, сообщая ему электрическую силу. Но как узнать, когда электричества накопилось достаточно?
— Ах, Дюфе, придумали бы вы, право, инструмент, с помощью которого можно было бы видеть степень электризации.
— Уже!
— Что уже?
— Уже придумал. Взгляните на эту кисточку из растрепавшихся нитей шелкового шнурка. Чем больше вы сообщаете мне электричества, тем дальше нити расходятся друг от друга. Смотрите, как они ощетинились. Это свидетельствует о том, что я полон, полон электричеством.
— Превосходная мысль. И такая простая… Но позвольте мне проверить то же старым и надежным способом.
Аббат поднес Дюфе фарфоровую тарелку, наполненную обрывками бумаги. Естествоиспытатель протянул к ним палец, и обрывки зашевелились.
— Ну как, вы довольны? Убеждены? — Дюфе улыбнулся. Аббат согласно склонил голову. — Вот что, передайте мне, пожалуйста, вон ту стеклянную палочку, которая лежит на столе. Мы посмотрим, по всей ли ее длине электричество распространится равномерно.
Нолле протянул требуемое. Но когда Дюфе хотел взяться за палочку, из его руки выскочила вдруг большая голубая искра, раздался треск, и оба исследователя почувствовали уколы. Это было настолько неожиданно, что оба вскрикнули, а потом засмеялись.
В том же году Дюфе опубликовал подробное сообщение об изучении им электрических искр и голубоватого свечения, которым бывали окружены электризуемые тела. «Возможно, — писал он, — что в конце концов удастся найти средство для получения электричества в больших масштабах и, следовательно, усилить мощь электрического огня, который во многих из этих опытов представляется (если можно сопоставлять нечто очень маленькое с чем-то очень большим) как бы одной природы с громом и молнией». Это было первое в истории науки опубликованное высказывание об электрической природе молнии.
Теперь все дело упиралось в «средства для получения электричества в больших масштабах». Это понимал не только Дюфе. К сожалению, он рано умер, всего 41 года от роду. Но поисками средств и способов получать большее количество электричества заняты были многие. Интересовался ими и аббат Нолле. Он сразу оценил новые возможности для эффектных демонстрационных опытов, которые могли бы давать электрические искры.
Начиная с середины XVIII века опыты с электричеством, получаемым от трения, стали любимым развлечением образованных людей. Изумительные и совершенно непонятные свойства электризуемого тела уже не только притягивать к себе пушинки и соломинки, но и светиться, рождать искры, сопровождаемые треском, который отдаленно напоминал грозовой гром, — все это приводило людей в подлинный восторг.
Но как, как научиться добывать больше электричества?
В одном из писем из-за границы ученый-корреспондент писал аббату Нолле о том, что профессор физики в Виттенберге, некто Георг Матиас Бозе, усовершенствовал электрическую машину своего соотечественника профессора Гаузена, сделав ее весьма производительной. Имя, упомянутое в письме, было отцу Нолле знакомо. Христиан Август Гаузен — профессор в Лейпцигском университете тоже проводил публичные опыты с электризацией трением. Пользовался он при этом, как и Дюфе, длинной стеклянной трубкой. Как-то один из слушателей предложил герру профессору заменить трубку шаром. Если насадить шар на ось с рукояткой, натирать стекло будет значительно удобнее. Гаузен послушался совета и скоро стал обладателем невиданного до того электрического снаряда.
Он необыкновенно гордился «своей» машиной, некогда уже изобретенной Герике и Гауксби, но потом прочно забытой потомками. Видимо, тогда для нее еще не пришло время. Другое дело теперь. Изобретениями и усовершенствованиями, а то и просто постройкой электрических машин стали заниматься многие любители физики.
Профессор физики в Виттенберге Георг Бозе заметил, что если отводить электричество от стеклянного шара свинцовой трубкой, то действие его усиливается. Сначала такую трубку — «собиратель электричества», или кондуктор, — профессор давал в руки ассистенту, тщательно изолированному от пола, потом ее стали подвешивать возле машины на шелковых шнурах, осуществляя связь с шаром с помощью тонкой проволочки, воткнутой в трубку. Наконец, трубку-кондуктор укрепили на станке самой машины.
Электричества такие машины давали значительно больше, чем просто стеклянные трубки. Искры получались крупнее. Опыты с электричеством захватывали все больше и больше людей самых различных профессий. Некоторые даже бросали первоначальные свои занятия ради новой отрасли знаний. Большая часть из них, конечно, так и осталась дилетантами на всю жизнь, но некоторые…
Респектабельный профессор греческого и латинского языков в Лейпцигском университете Иоганн Генрих Винклер, совершенствуясь в опытах, укрепил для усиления действия своей электрической машины на одной оси четыре стеклянных шара и заставлял двух человек натирать их ладонями. Потом кто-то предложил заменить шары цилиндрами, а руки людей кожаными подушками, набитыми волосом. Это были дельные предложения. В один прекрасный день почтенный латинист также улегся на шелковые петли, наэлектризовал себя до такой степени, что искрой, выскочившей из пальца, зажег спирт в блюдце. Сенсационный опыт! Профессору рукоплескали. Фокус обошел все города Европы. А сам Иоганн Генрих Винклер, забросив греческий и латынь, принял кафедру физики в том же университете.
Построил себе электрическую машину и аббат Нолле. К этому времени англичанин Генри Майлс зажег по способу Винклера фосфор и горючие пары, а его соотечественник Вильям Ватсон заставил вспыхнуть порох…
Стремление познакомиться с новыми электрическими явлениями охватило всех. Те, кому не удавалось побывать в физических лабораториях, удовлетворяли свое любопытство в ярмарочных балаганах, там за небольшую плату электризовали всех желающих. «Даже в среде ученых трезвость взгляда уступила место некоторого рода опьянению, — писал Ф. Розенбергер в „Истории физики“, изданной в прошлом веке, — и как сто лет тому назад все объяснялось воздушным давлением, так теперь электричество приводилось в связь со всевозможными проблемами и считалось причиной самых разнообразных явлений».
Иначе говоря, явления, причины которых были неясны, отдавались во власть новой силе.
Всеобщее увлечение благотворно подействовало на развитие науки, и за какие-нибудь тридцать последних лет XVIII столетия люди узнали об электричестве больше, чем за всю прошлую историю науки. Появились первые теории электричества, и новая область знания «созрела для математики» — были открыты первые количественные законы.
И все же электричества машины давали мало!.. Надо было искать способы его накопления, а также возможности измерять накопленное количество.
Глава пятая. Рождение лейденской банки
Вторая половина XVIII столетия.
Соборный настоятель небольшого городка Каммин в Померании, некто Эвальд Георг фон Клейст, тоже потихоньку занимался электрическими опытами. Он не публиковал своих результатов — зачем вводить во искушение прихожан? — и довольствовался домашними восторгами. Одно огорчало отца настоятеля: электрическая машина, счастливым обладателем которой он являлся, была до чрезвычайности маломощной. Оттого и искры, которые случалось извлекать из ее кондуктора благочестивому экспериментатору, были едва видны при свете дня.
Однажды, в счастливые часы занятий любимыми опытами, Клейст решил зарядить железный гвоздь. Он вставил его для изоляции в бутылочку из-под микстуры (отца настоятеля мучил кашель) и поднес к кондуктору машины. Несколько оборотов стеклянного шара — и гвоздь должен быть заряжен.
Трудно сегодня предположить, для чего понадобилось Клейсту вытаскивать гвоздь из бутылки. Но… понадобилось. Держа склянку в одной руке, почтенный священнослужитель другой взялся за головку гвоздя и получил весьма ощутимый электрический удар. Клейст даже не испугался. Он удивился: откуда? Его хилая машина не способна была давать и десятой доли того электричества, силу которого он почувствовал. Впрочем, что толку в раздумьях? Если результат опыта непонятен, его нужно в точности воспроизвести еще раз… Еще и еще… Оказалось, что немаловажную роль играет не только гвоздь, но и рука, обхватывающая склянку. Раз за разом гвоздь в бутылке исправно, накопив электричество от маленькой машины, щелкает экспериментатора по пальцу электрическими ударами. «Накопление электричества!» Вы чувствуете, это же совсем новое свойство неведомой силы. А что будет, ежели налить в склянку с гвоздем спирт или ртуть? Не получит ли она еще большую способность накапливать электричество?.. Ого! Удары усилились — значит…
Через некоторое время, убедившись в том, что он открыл новый способ накапливать электричество, фон Клейст описал результаты своих опытов в письме и послал его в Данциг тамошнему протодиакону. Однако протодиакон физикой не увлекался. Впрочем, будучи человеком обязательным, он передал сообщение камминского соборного настоятеля бургомистру Даниэлю Гралату, человеку вполне просвещенному. Совсем недавно тот организовал в своем городе общество естествоиспытателей, которое жаждало деятельности. И потому новинка фон Клейста была как нельзя более кстати.
Бургомистр Гралат начал с того, что взял бутыль большего объема и с большим гвоздем. По-видимому, все бургомистры — по должности своей — любят, чтобы дело выглядело крупно и эффектно, — вспомним Герике. Гралат научился заряжать эту систему, используя в качестве обкладки вместо собственной ладони фольгу. Затем ему пришло в голову составить из таких бутылей батарею и тоже зарядить ее. А затем… Бедные члены данцигского общества естествоиспытателей… Бургомистр предложил двадцати человекам взяться за руки и образовать цепь, а затем крайним в цепи коснуться пальцами гвоздя и обкладки бутыли… Эффект был потрясающий!
В истории науки и техники часто бывает, что изобретения малые и большие делаются одновременно разными людьми и совсем в разных местах.
В то же время в университете славного города Лейдена занимал кафедру физики профессор Питер ван Мушенбрёк (1692–1761). Собственно говоря, как ученый господин профессор не представлял собою особой величины. Но в Лейденском университете была прекрасная лаборатория, древние традиции и слава. Лучи этой славы привлекали учеников, ученики давали доход профессору Мушенбрёку. Сам же он умел красно и значительно говорить, надувать щеки и трясти париком, рассказывая о своих опытах. Такое поведение и по сей день может ввести неискушенного человека в заблуждение. А уж двести-то с лишним лет назад находилось немало простаков, называвших герра профессора не иначе как великим Мушенбрёком.
Однажды слепая фортуна подсунула Мушенбрёку ученика — некоего Кунеуса. Это был богатый лейденский горожанин, желавший поразвлечься опытами не иначе как в лаборатории «великого ученого». Там он, познакомившись с электрической машиной, пытался наполнить электричеством… банку с водой. Сама идея, по воззрениям того времени, была вовсе не такой уж нелепой. Из многочисленных опытов было известно, что вода электризуется. Почему же было не попробовать сохранить электричество в воде? И вот Кунеус налил в банку воду, взял ее в руку, опустил в нее металлический стержень, соединенный с кондуктором электрической машины, и стал крутить шар. Некоторое время спустя стержень потребовалось вынуть. И тогда, дотронувшись до него другой рукой, Кунеус испытал «ни с чем не сравнимое потрясение».
Отдадим должное Мушенбрёку. Он был ученым и потому тут же решил проверить на себе открытие гостя. Сильный электрический удар поверг его в такое изумление, что «испытать его еще раз я не согласился бы даже ради французской короны». Именно так писал он позже, вспоминая о «своих» опытах.
И уж конечно, одним из первых узнал о лейденском эксперименте вездесущий аббат Нолле. К тому времени он состоял в переписке буквально со всем ученым миром. Его письма часто заменяли собой научные журналы, которых было в то время слишком мало.
Именно благодаря своей обширной переписке Жан Нолле был не только широко известен, но и пользовался огромным влиянием. Он тут же повторяет и совершенствует усилительную банку, составляет из них батареи и получает все более и более сильные электрические искры.
В Версале, в присутствии короля и придворных, аббат выстраивает сто восемьдесят мушкетеров кольцом. Велит им взяться за руки. Первому дает в руку банку, заряжает ее от машины и предлагает последнему в цепи вытащить металлический стержень… «Было очень курьезно видеть разнообразие жестов и слышать мгновенный вскрик, исторгаемый неожиданностью у большей части получающих удар». Король веселился. Но еще больший интерес вспыхнул в его глазах, когда на столик перед королем, рядом с электрической машиной и батареей лейденских банок, Нолле поставил маленькую металлическую клетку с птичкой. Обернув длинной цепочкой прутья клетки, он намотал другой ее конец на банку. Вторую цепочку, соединенную с металлическим стержнем банки, аббат пропустил через стеклянную трубочку и повесил над жердочкой так, чтобы птичка не могла задевать за нее головой. После этого помощник стал крутить электрическую машину. Придворные затаили дыхание. Наступил момент, когда между цепочкой и метавшимся по клетке воробьем проскочила голубая искра. Раздался треск, и несчастная пичуга свалилась без признаков жизни.
— Браво! — сказал Людовик XV и поднялся с места.
— Браво! — повторили придворные. Толпясь, они поспешили за своим сюзереном прочь от этого ученого служителя бога, продемонстрировавшего им, что электричество может не только развлекать.
Опыты с усилительной банкой, получившей благодаря стараниям того же Нолле название лейденской банки, были настолько эффектны, что их повторяли в салонах и в ярмарочных балаганах. Голубыми искрами, извлеченными из пальца, из носа наэлектризованного человека, поджигали порох и спирт, убивали мышей и цыплят.
В один прекрасный день семьсот благочестивых парижских монахов, взявшись за руки, образовали цепь. И все братья во Христе, как один, высоко подпрыгнули и возопили от страха, когда крайние разрядили на себя невзрачную банку, наполненную таинственной электрической жидкостью…
В Англии опыты с лейденскими банками демонстрировал в Королевском обществе врач Вильям Ватсон. В 1747 году он с помощью нескольких помощников и длинной проволоки соорудил цепь длиной не менее двух миль и «провел» электричество через Темзу. Скоро выяснилось, что характер жидкости, заполняющей банку, не играет никакой роли в ее работе. Ватсон вместо воды или спирта наполнял банку дробью. И результат не менялся. Тогда он вообще заменил содержимое банки еще одной, внутренней металлической обкладкой, соединенной с центральным стержнем. Теперь лейденская банка получила свою окончательную форму.
Правда, его коллега доктор Бевис обложил свинцовыми пластинами просто кусок стекла и получил тот же результат. При этом чем больше были размеры пластин и чем меньше было между ними расстояние, тем большее количество электричества на них накапливалось.
Так в науку об электричестве пришел конденсатор — емкость, заполняемая «электрической материей». Правда, пока что принцип или «механизм» его работы был непонятен, а величина емкости ничтожна.
Однако делать усилительные банки люди научились, научились с ними и обращаться. И наконец буквально все почувствовали необходимость хоть какой-то теории, объясняющей электрические явления…
«Чтобы не было искры»
Некогда совершил я легкомысленный поступок — купил автомобиль. Следующим шагом была сдача экзаменов в ГАИ, чтобы получить удостоверение на право вождения машины. Экзамен делился на две части: теория и практика вождения. Причем в теоретическую часть входили не только правила движения, но и некоторые технические вопросы, связанные с эксплуатацией и мелким ремонтом двигателя, электрохозяйства и ходовой части.
Мне повезло: в билете, который я вытянул, третьим вопросом стояло: «Электрический конденсатор. Устройство. Принцип действия. Роль в системе зажигания». Ну, тут-то я блесну! К тому времени я уже несколько лет преподавал теоретические основы электротехники в Электротехническом институте, вел лабораторные работы и не раз руководил практикой студентов в цехах, где производят конденсаторы. А поскольку два других вопроса в билете не вызывали в моей душе столь же радостного отклика, то и начал я с того, что лучше знал.
Я рассказал экзаменатору о том, что каждый электрический конденсатор представляет собой систему из двух (или нескольких) проводников (обкладок), разделенных диэлектриком, которые обладают взаимной электрической емкостью… Эта емкость значительно больше емкости каждого отдельного проводника (или обкладки) по отношению к другим проводникам и в частности по отношению к земле. При этом я скромно и ненавязчиво показал связь между зарядами из n тел и их потенциалами, вывел формулу емкости плоского конденсатора и изящно перешел к выражению для сферического и цилиндрического конденсаторов. Рассказал, как при подключении к источнику постоянного напряжения на обкладках накапливается электрический заряд, а в диэлектрике создается электрическое поле. При этом я написал выражения для энергии поля, связав его с напряжением и емкостью, и отметил, что она в принципе не велика. Чтобы показать достаточно свободное владение материалом, я сравнил принцип действия электрического конденсатора с действием механической пружины и показал их математическое сходство.
Дальше я рассказал о существующих типах электрических конденсаторов. О том, что они различаются как по роду диэлектрика, так и по устройству, по емкости, по рабочему напряжению.
Я постарался не упустить из виду конденсаторы воздушные и с газообразным диэлектриком, обладающие малым углом потерь; конденсаторы вакуумные и слюдяные, стеклоэмалевые, керамические, бумажные, электролитические и сегнетокерамические…
Экзаменатор молчал, рассматривая мой экзаменационный лист. Я решил, что он ждет от меня чего-то еще, и рассказал о научно-исследовательских работах, направленных на увеличение емкости конденсаторных аккумуляторов.
При слове «аккумулятор» слушатель мой взглянул было на меня с интересом, но потом снова опустил глаза.
Я рассказал о попытках японцев создать конденсатор из активированного угля, обладающего огромной поверхностью на единицу объема, что едва ли не главное для повышения емкости. Я привел удивительные цифры, которые хорошо помнил, показывающие, что японским конструкторам удалось добиться удельной емкости почти в сто миллионов раз больше по сравнению с емкостью обычных конденсаторов. А когда мой экзаменатор не отреагировал и на это, я сообщил, что в современных лабораториях уже есть реальные конструкции конденсаторов, превышающих по емкости во много раз указанные японцами величины…
В общем, я исписал страницы четыре формулами и начертил дюжину графиков, когда экзаменатор хлопнул ладонью по столу и, сказав «хватит!», вызвал следующего.
В комнату вошел паренек с шапкой в руке. Я узнал его: мы познакомились в коридоре, когда он попросил «по-научному» объяснить ему схему зажигания. Он был водителем со стажем, но назначен за какие-то провинности на пересдачу и боялся, что к нему будут придираться.
— Федоров? — строго спросил экзаменатор.
— Так точно! — браво ответил паренек.
Экзаменатор взял у меня из рук билет.
— Зачем нужен конденсатор, Федоров?
— Это чтобы не было искры, товарищ старший лейтенант!
— Молодец! — Он подписал экзаменационный лист и добавил: — Идите, отлично! А вы… учитесь!..
Отныне я стараюсь отвечать на вопросы, не выходя за рамки спрашиваемого.
Между тем история самого конденсатора, начавшись на заре зарождения науки об электричестве, не кончилась и по сей день.
Конденсатор действительно служит для того, чтобы накапливать и сохранять на своих обкладках электрические заряды, а следовательно, и электрическую энергию. Эту энергию, как и всякую другую, можно преобразовать дальше — в механическую, в тепловую, в химическую. Вот только величина ее оказывается очень небольшой. Удельная энергия современного «обычного» конденсатора, широко распространенного в радиотехнике и потому наверняка знакомого читателю, не превышает 10 Дж/кг. Удивительные японские конденсаторы, о которых шла речь, способны накопить больше — 1 КДж/кг. Но чтобы заменить конденсатором бензобак в обыкновенном легковом автомобиле, нужно повысить удельную энергоемкость накопителя электричества еще на два порядка.
Впрочем, конденсатор — накопитель электрических зарядов. Для накопления энергии в технике используются аккумуляторы, преобразующие электрическую энергию в химическую, а потом, по мере надобности, обеспечивающие обратное преобразование. Но об аккумуляторах разговор еще впереди.
Глава шестая. Семь электрических лет Бенджамина Франклина
Жизнь великого гражданина Америки Бенджамина Франклина связана с Филадельфией. Семнадцатилетним парнем приехал он сюда, чтобы начать работать в типографии. Не получив в общем никакого образования, он тем не менее стал одним из образованнейших людей своего времени. В двадцать пять лет Франклин основал в Филадельфии первую в США публичную библиотеку. В тридцать четыре года основал Пенсильванский университет, а еще три года спустя — Американское философское общество.
Сегодня здесь, рядом с Федеральным резервным банком и Фондовой биржей, — Академия естественных наук, университет и институт Франклина…
В центре города — ратуша. Когда-то это было весьма внушительное здание, возвышавшееся над россыпью однодвухэтажных домов и коттеджей. Сегодня он потонул среди поднявшихся стен из стекла, стали и бетона. Но бронзовый Вильям Пенн, основавший город в 1683 году, по-прежнему стоит на его башне.
Именно здесь, в одном из банкетных залов ратуши, и был в 1977 году устроен несколько необычный праздник в честь прославленного гражданина Филадельфии Бенджамина Франклина.
Вечером, когда темное небо усыпали звезды, проблескивающие даже сквозь туман электрического зарева, в ратуше собралось множество народа. Четверо кондитеров внесли на вытянутых руках грандиозный юбилейный торт, уставленный свечками… Свечей было так много, что в одну человеческую жизнь не вместилось бы такое количество лет. Тем временем торт поставили на стол, и какой-то человек с явно электротехническим образованием стал его подключать к какой-то электронной схеме с оптическим устройством, фотоэлементами, усилительными каскадами и реле… Все смотрят на часы. В назначенное время включается ток. Механическая часть системы приходит в движение. Она поворачивает оптическую трубу и нацеливает ее на какую-то звезду. Проходит минута, другая, и двести с лишним свечей одновременно загораются под общие аплодисменты и звон льда в бокалах…
Впрочем, пора объяснить смысл проделанных манипуляций и всего церемониала в целом. Если отнять от 1977 года год рождения Бенджамина Франклина — 1706, получится цифра 271. На торте 271 свеча. Связь понятна?.. Оптическое устройство, повернувшись, нацелилось на звезду, отстоящую от Солнечной системы на 271 световой год. И когда луч света, родившийся одновременно с Франклином, добежал до земли, попал в объектив оптического устройства, прошел через фотоэлемент и замкнул реле, электрическая искра зажгла свечи…
Франклину шел сорок первый год, когда в город приехал некто доктор Спенсер, обещавший, как было указано в афишах, «прочесть лекцию об электричестве и показать слушателям потрясающие опыты». В те времена по городам североамериканских колоний Великобритании ездило немало всякого рода лекторов, знакомивших колонистов с новостями науки и магии, литературы и толкований божественного писания. Для жителей небольших провинциальных городов такие лекции служили немалым развлечением. В тот вечер Бен был свободен, гулял по городу и уже собирался отправиться домой, когда неожиданно возникло предложение пойти на лекцию. На лекцию так на лекцию. Франклиновская компания пребывала в отличном расположении духа, и все направления, как говорится, были для них равновероятны.
Веселый, всегда полный юмора здоровяк Бен Франклин последним протиснулся в дверь. Втайне он рассчитывал посмеяться над незадачливым лектором. Но… был сначала зачарован, а потом окончательно покорен бледными электрическими искорками, которые доктор Спенсер извлекал из повидавших виды машины и лейденской банки. А когда Франклин, несмотря на свою силу и большой рост, присел от неожиданности, испытав «электрический удар», судьба его была решена. Богач, общественный и политический деятель, дипломат, он семь следующих лет своей жизни отдал электрическим исследованиям. Что такое семь лет? Ничтожный срок! Но Франклин успевает за это время сделать столько, на что другому не хватило бы и семидесяти лет.
По самому характеру своему Франклин был практиком. На науку он смотрел как на подспорье человеку в его деятельности. Он занимался исследованиями по теплотехнике и изобрел экономичную «франклиновскую печь», изучал распространение скорости звука в воде и придумал совершенно оригинальный музыкальный инструмент. Назначенный почтмейстером сначала Филадельфии, а потом и всех тринадцати североамериканских колоний Англии, он заинтересовался вопросом: почему почтовые суда из Америки в Европу ходят быстрее, чем в обратном направлении, и, собрав записки и замечания китобоев Коннектикута, составил первую в истории науки карту Гольфстрима. Но ни одно из этих увлечений не шло даже в сравнение с тем рвением, с каким он отдался электрическим опытам.
Для начала он купил, естественно изрядно поторговавшись, весь «кабинет» — все оборудование доктора Спенсера и увез к себе. Здесь он научился обращаться с электрической машиной и лейденскими банками и обнаружил, что если на заряженном кондукторе машины укрепить заостренный металлический прут, то электричество с кондуктора стекает постепенно, без искровых разрядов. Это было интересно.
Он всегда работал увлеченно. О результатах своих опытов писал в Лондон, члену Лондонского королевского общества П. Коллинсу, который тут же докладывал о них на заседаниях общества. Франклин установил, что в работе лейденской банки главная роль принадлежит вовсе не металлическим обкладкам, а диэлектрику непроводящему веществу, разделяющему обкладки, и что заряды на обкладках банки равны друг другу и противоположны. Он писал, что когда электричество передается внутренней обкладке банки, оно отталкивает равное количество электричества из наружной на землю, в результате чего банка оказывается заряженной.
Идеи Франклина были приняты весьма сочувственно европейскими учеными, не имевшими в то время никакой теории для объяснения заряда лейденской банки.
В письме от 1747 года Франклин предложил свою теорию электричества. Он считал, что существует некий электрический флюид — тончайшая жидкость, которая пронизывает все тело. Частицы электрического флюида отталкиваются друг от друга, но притягиваются частицами тел. При этом если в теле появляется избыток электрической жидкости, то оно оказывается наэлектризованным «положительно». Этим термином Франклин предлагал заменить «смоляное» электричество Дюфе. А если в теле существует недостаток электрического флюида, оно наэлектризовано «отрицательно». Так он предлагал называть «стеклянное» электричество Дюфе. Таким образом, единая электрическая жидкость определяла два состояния тел — положительную и отрицательную электризацию. При этом предполагалось, что создавать электрическую жидкость никто не может. Все дело только в ее перераспределении между телами…
Бенджамин Франклин родился в семье ремесленника, переселившегося на американские берега из Англии, где подвергался религиозным преследованиям. В семействе было 17 детей. Бенджамин — младший. И хотя к его отрочеству многие из братьев и сестер уже стали вполне самостоятельными людьми, мальчик не смог получить систематического образования. Он проучился в школе всего год, наловчившись за это время читать и считать, а потом поступил в типографию старшего брата, обязавшись по контракту проработать там бесплатно в течение восьми лет за науку и обучение ремеслу книгопечатания. Одним из немногих удовольствий, выпадавших на долю мальчугана, было в ту пору чтение книжек да лихие запуски воздушных змеев над холмами небольшого полуострова в глубине Массачусетской бухты, где расположился город Бостон.
Не об этом ли увлечении детских лет вспомнил Франклин, когда увидел, как металлический штырь спокойно сводит электрический заряд с лейденской банки на землю? Он всегда интересовался метеорологией. И мысль о том, как защитить дома колонистов от пожаров, вызванных частыми грозами, не раз тревожила его практический ум. Если же считать молнию большой электрической искрой, то нельзя ли с помощью длинного острого металлического шеста разряжать и облака, как лейденские банки, сводя опасные заряды на землю? Но для этого следовало убедиться, что небесное электричество и электричество, получаемое от машины, — одно и то же.
В один из ветреных дней, когда низкие тучи предвещали грозу, Бен соорудил из шелкового платка большой воздушный змей и запустил его под облака. К концу бечевки он привязал металлический ключ, а к ключу шелковую ленту, за которую, в целях безопасности, держался сам. По шелку электричество не передавалось.
Скоро веревка намокла. Где-то вдалеке громыхнул первый гром. Франклин осторожно поднес к ключу лейденскую банку, и длинная голубая искра клюнула центральный электрод. «Браво! Есть электричество! Я его отнял у неба!» Он заряжал одну банку за другой, убеждаясь, что добытое змеем электричество ничуть не отличается от производимого трением. «Прекрасно! Больше я не позволю небесному огню сжигать дома и корабли, убивать людей и наносить ущерб обществу. Заостренные шесты сведут молнии на землю!» Франклин начинает кампанию за повсеместную установку громоотводов.
Вряд, ли будет большим преувеличеним сказать, что громоотвод изобрел Франклин. Правда, в литературе есть сведения, что уже в Древнем Египте жрецы ставили возле храмов обитые медью высокие шесты, которые отводили якобы молнию от храмовых кровель. Так это или нет, проверить сегодня трудно. Особенно ежели учесть, что Египет не лежит в полосе чересчур частых гроз. Правда, там они все-таки случаются. А вот в полярных районах, выше 82-й параллели северной широты и 55-го градуса южной широты, гроз по статистике почти не наблюдается. В средних широтах число грозовых дней колеблется между двадцатью и сорока за год, а в тропиках, особенно в экваториальной зоне, дней с грозами бывает до ста пятидесяти за год!
Впрочем, климат — штука сложная.
Говорят, на острове Ява, что в Малайском архипелаге, общее число гроз за год достигает чуть ли не полутора тысяч. Здесь в течение суток они бушуют по нескольку раз и день без грозы — большой праздник.
Но даже если наши предки и умели устраивать грозозащиту, то нужно сказать, что ко времени Франклина успехи в этой области были прочно забыты.
Свою теорию громоотвода Франклин изложил в письме в Королевское общество от 17 сентября 1753 года. Он предлагал ставить возле домов заостренные железные прутья, поскольку острие станет «высасывать» электричество из облаков мало-помалу и не допустит образования молнии. Да и сама молния, если дать ей путь «надлежащей проводимости», спокойно уйдет в землю, не сжигая и не разрушая строений.
Громоотводы распространились по американским городам довольно быстро. В Европе Лондонское королевское общество напечатало «электрические» письма Франклина отдельной книжкой, и она хорошо разошлась. Однако слишком много людей в Старом Свете уже занимались исследованиями атмосферного электричества, чтобы так сразу принять на веру заключения «янки из-за океана». Даже в Лондоне нашлись члены общества, утверждавшие опасность привлечения молний к крышам зданий путем установки на них заостренных шестов — громоотводов и посему предлагавшие надевать на острия шары… Только шары могли сделать молнию безвредной!
На континенте, бывало, крестьяне приписывали громоотводу засуху, поражающую их поля. Немало было и других вздорных мнений. Правда, время от времени сама природа подталкивала людей на скорейшее решение «острых» вопросов. Французский ученый Луи Араго в своей книге «Гром и молния» пишет: «Утром 18 августа 1769 года гром ударил в башню святого Назария в городе Брешией Под основанием этой башни находился подземный погреб, в котором хранилось 1030 000 килограммов пороха, принадлежавшего Венецианской республике. Эта огромная масса воспламенилась мгновенно. Шестая часть зданий обширного и прекрасного города была разрушена, а все остальное было потрясено так, что угрожало падением. При этом погибло три тысячи человек. Башня святого Назария была вся подброшена на воздух и упала обратно на землю в виде каменного дождя. Обломки ее рассыпались на огромном расстоянии». Нет сомнений, что такие события весьма усиливали интерес к громоотводам в Европе. Исследования атмосферного электричества ширились, захватывая все большее число ученых-естествоиспытателей в самых разных странах. Росло и количество опасных опытов по извлечению искр из наэлектризованных металлических шестов, установленных на крышах…
Хуже дело обстояло с теорией. Если отталкивание положительно заряженных тел теория Франклина объясняла достаточно просто, то такое же отталкивание отрицательно заряженных тел объяснить не удавалось. Но Франклин не унывал. Он вообще никогда не впадал в уныние и не только увлеченно работал, но работал весело. Он смеялся, когда свидетели его опытов вздрагивали от треска синевато-фиолетовых искр. И не только работал весело, но весело и отдыхал. «Ввиду того что наступает жаркая погода, когда электрические опыты доставляют мало удовольствия, мы думаем покончить с ними на этот сезон, завершив все довольно веселым пикником, — писал он в Англию, где у него осталось немало друзей. — На берегах реки Скулкилл искра, переданная с одного берега на другой без какого-либо проводника, кроме воды, зажжет одновременно на обоих берегах реки спиртовки… Индейка к нашему ужину будет умервщлена электрическим ударом и зажарена на электрическом вертеле огнем, зажженным наэлектризованной банкой; мы выпьем за здоровье всех известных физиков… из наэлектризованных бокалов под салют орудий, стреляющих от электрической батареи…» Не этот ли стиль пытались возродить и почитатели ученого в XX веке?
Только семь лет занимался Франклин своими опытами. За это время он не оставлял и общественной деятельности. По его инициативе в Филадельфии возникла «Академия» — учебное заведение, состоящее из средней и высшей школ. Был открыт первый в Америке общественный госпиталь. Его выбрали мировым судьей. А в период начавшейся войны между английскими и французскими колониальными войсками Франклин занимался организацией милиции своего штата. На конгрессе представителей колонии в Олбани Франклин предложил английской администрации план объединения федерации колоний в единое самоуправляющееся государство, но этот проект, естественно, не прошел. Оказавшись в оппозиции проанглийски настроенному губернатору, Франклин вынужден ехать в Лондон, чтобы добиться от правительства метрополии хоть какого-то ограничения прав назначаемых оттуда чиновников. На этом и его ученые занятия прервались. Он проводит в Англии довольно долгое время. Потом возвращается туда еще раз. Пишет политические памфлеты. Едет во Францию с дипломатической миссией…
Последние годы жизни Франклин спокойно живет в кругу своей семьи.
Много читает, интересуется наукой и поддерживает начинающее развиваться аболиционистское движение за освобождение негров. Он был принципиальным противником рабства. И сегодня, подводя итоги этой славной жизни, согласимся, что на его памятнике вполне уместны слова: «Eripuit coelo fulmen, sceptrumque tirannis» — «Он отнял молнию у небес и власть у тиранов».
Господа профессоры академии Петербургской…
Все-таки это было очень удивительно — потереть стекло, обыкновенное, ничем не примечательное холодное стекло, и извлечь из него искру, напоминающую миниатюрную молнию! В середине XVIII века трудно было даже представить себе что-нибудь более впечатляющее. Немудрено, что столько людей самого разного чина и звания занимались электрическими опытами. Цель же у всех была одна — получать от машин как можно более мощные искры. Однако, как ни старались изобретатели совершенствовать свои машины, получались они довольно слабосильными… Да и непонятно было, когда вообще следовало считать тело наэлектризованным. Никто не знал, как измерять количество электрической материи…
По доскам тротуара набережной Васильевского острова в столице Русского государства городе Санкт-Петербурге идут двое. Они держат путь от здания Академии наук к Первой линии Васильевского острова. Развеваются на ветру полы голубых академических кафтанов с черными отворотами. В желтых пуговицах играют лучи низкого солнца. Один из идущих высок. Он телосложения крепкого и шагает широко, размашисто. Второй — более субтилен и идет аккуратнее. Он инстинктивно следит за тем, чтобы пыль от башмаков не садилась на белый жилет и панталоны… Кто же это? Господа профессоры академии. Первый — господин Ломоносов Михайла Васильевич, второй — друг его любезный, господин профессор Рихман Георг Вильгельм, из немцев. Оба с утра присутствовали на заседании академического собрания, а теперь поспешают домой…
В 1744 году академическое собрание Петербургской академии наук обсудило обращение Эйлера, призывающее заняться исследованием причин электрических явлений, и приняло решение: «Произвести также и здесь исследования над явлениями электричества и тщательно изучить все сочинения, написанные по этому вопросу, а те, коих нет здесь, как можно скорее добыть…»
Выполнение этого задания и принял на себя господин профессор Рихман. И первый вывод, который он сделал после предварительных опытов в «электрической каморе» — лаборатории при академии, — заключался в необходимости научиться измерять «силу электрическую». Ибо, лишь зная оную, перейти сможет электричество из области «кунштюков» в область науки.
Горячо участвует в опытах друга и Ломоносов. Рихман составляет программу работ. Ломоносов переводит ее на русский язык. Рихман строит первую в России электрическую машину. Ломоносов помогает ему наметить круг вопросов, на которые надлежит дать ответы.
В 1745 году Рихман сконструировал «электрический указатель». Состоял он из длинной, примерно полуметровой, льняной нити, висевшей вертикально возле линейки, и угловой шкалы. Ломоносов писал, что это была точно «отвешенная нить» и по углу отклонения ее от вертикали можно было измерять электрическую силу. «Подобный указатель является надежным прибором для распознания, больше или меньше градус электричества в той или иной электрической массе» — так характеризовал свой прибор сам изобретатель. Правда, прибор был пригоден только для относительных измерений. Сила воздействия между нитью и линейкой при увеличении расстояния убывала «по некоторому пока еще не известному закону», писал Рихман. «…Я еще до тех пор не буду утверждать, что этим указателем можно точно измерять электричество, пока не будет развита теория электрического вихря».
С этого времени различные приборы для оценки электрической силы или количества электричества, находящегося в наэлектризованном теле, стали появляться и в других странах. Аббат Нолле вместо одной нити стал применять в своем электроскопе две. А англичанин Джон Кантон добавил к ним еще и бузинные шарики. Лет через двадцать с целью уменьшения внешних помех физики стали заключать подобные измерительные приборы в банки и коробки, под стекло. Получились электроскопы и электрометры, которые и по сей день можно видеть в школьных кабинетах физики. Теперь исследователи смогли видеть, в каком теле накопилось больше электричества, а в каком меньше. Научились делить накопленное электричество на порции.
Процесс такого деления происходил так: изолированным ненаэлектризованным металлическим шариком исследователь касался другого, такого же по размерам, изолированного, но наэлектризованного шарика. После этого электроскоп показывал, что на обоих шариках собралось одинаковое количество электричества.
В дальнейшем количество электричества, содержащееся в данном теле, стали называть электрическим зарядом. Два электрических заряда, или два количества электричества, считались одинаковыми, если при прочих равных условиях они оказывали на одно и то же тело одинаковое воздействие, например раздвигали листочки электроскопа на одинаковый угол…
Весть об открытии Франклином воздушного, или атмосферного, электричества разнеслась по всем странам. В России об этом узнали впервые из статьи, переведенной из кёльнской газеты и помещенной в «Санктпетер-бургских ведомостях» в 1752 году. Вот что там было написано:
«Никто бы не чаял, чтоб из Америки надлежало ожидать новых наставлений о электрической силе, а однако учинены там наиважнейшия изобретения. В Филадельфии, в Северной Америке, господин Вениамин Франклин столь далеко отважился, что хочет вытягивать из атмосферы тот страшный огонь, который часто целыя земли погубляет. А именно делал он опыты для изведания, не одинакова ли материя молнии и электрической силы, и действие догадку его так подтвердило, что от громовых ударов следующим образом охранять себя можно: на вершинах строений или кораблей надлежит утвердить железные востроконечныя прутья, перпендикулярно поставленный, вышиною от 10 до 12 футов и для охранения от ржи (то есть ржавчины.-Л.
Как чинили сей опыт в марлийском саду железным прутом, вышиною в 40 футов поставленным, и на электризованном теле утвержденным, во время грому, который шел через то место, где был прут, то бывшия при том персоны вытянули такие искры и движения, которыя подобны тем, кои производятся обыкновенною электрической силою. В Париже 18 мая из утвержденного на 99 футов вышиною и в виноградном саду поставленного прута вытягивали многие искры через полчаса и более в то самое время, как густая туча стояла над тем местом. Сии искры совершенно походили на исходящий из фузеи огонь и причиняли такой же стук и такую же опасность. Другими опытами тоже подтверждено, и явилось, что помощью востроконечных прутов у громовых туч огонь отнять можно».
Спустя некоторое время в той же столичной газете была напечатана еще одна статья. В ней говорилось:
«Понеже в разных ведомостях объявлено важнейшее изобретение, а именно: что электрическая материя одинакова с материей грома, то здешний профессор физики экспериментальной г. Рихман удостоверил себя о том и некоторых смотрителей следующим образом. Из середины дна бутылочного выбил он черепок-иверень, и сквозь бутылку продел железный прут длиной от 5 до 6 футов, толщиною в один палец, тупым концом, и заткнул горло ее коркой. После велел он из верхушки кровли вынуть черепиц и пропустил туда прут, так что он от 4 до 5 футов высунулся, а дно бутылки лежало на кирпичах. К концу прута, который под кровлею из-под дна бутылочного высунулся, укрепил он железную проволоку и вел ее до среднего апартамента все с такою осторожностью, чтобы проволока не коснулась никакого тела, производящего электрическую силу. Наконец, к крайнему концу проволоки приложил он железную линейку, так что она перпендикулярно вниз висела, а к верхнему концу линейки привязал шелковую нить, которая с линейкой параллельна, а с широчайшею стороною линейки в одной плоскости висела.
Описание сих приготовлений к опыту читал он при исследовании объявленного отдаления грома от строения в начале сего июля месяца в академическом собрании членам, и начал уже с начала оного месяца по вся дни следовать, отскочит ли нить от линейки и произведет ли потому какую электрическую силу, токмо не приметил ни малейшей перемены в нити. Чего ради с великою нетерпеливостию ожидал грому, который 18 июля в полдень и случился.
Гром, по-видимому, был не близко от строения, однако ж он после первого удара тотчас приметил, что шелковая нить от линейки отскочила, и материя с шумом из конца линейки в светлыя искры рассыпалась и при каждом осязании причиняла ту же чувствительность, какую обыкновенно производят электрическия искры. У некоторых, державших линейку, шло потрясение по всей руке. Шум исходящей материи был сначала столь велик, что некто, бывший при том на несколько шагов от линейки, шум мог слышать. Во время дождя примечены на линейке электрическия искры, также и после грома.
Все сие продолжалось больше полутора часа, и электрические действия были то больше, то меньше.
В третьем часу пополудни окончилась электрическая сила, и более не слышно было, чтобы гремело. Посему не надобно к тому опыту ни электрической машины, ни электризованного тела, но гром совершенно служит вместо электрической машины…
…Итак, совершенно доказано, что электрическая материя одинакова с громовою материею, и те раскаиваться станут, которые преждевременно маловероятными основаниями доказывать хотят, что обе материи различны».
В июле 1752 года в «Санкт Петербургских ведомостях» появляется еще одно сообщение об опытах Рихмана: опыты с электричеством чрезвычайно интересовали тогдашнее русское общество.
«Сего июля 21 числа г. профессор Рихман имел паки случай примечать электрическую силу громовых туч при некоторых г.г. профессорах и членах академических, также при других ученых и академиках.
В пятом часу пополудни, хотя громовая туча столь же близко нашла, как прежде, однако электрические явления на линейке не в такой силе, как 18 числа, оказались. К цепи приложил он клейстов или мушенброков образец, чтобы умножить электрическую силу, а именно, соединя он железную проволоку с цепью, пропустил в склянку, по горло водою налитую. Горло у склянки было сухо. Склянку он поставил в сосуд, водою налитый, а в судно с водою положил кусок железа. Когда сие железо держали одною рукою, а другою трогали электризованную громом линейку, то чувствовали часто потрясение в обеих руках, так же как при сих обстоятельствах в художественном электризовании обыкновенно делается.
Итак, утверждает он и сие, что материя грома не разнится и в сем от электрической материи. И понеже все тела от распространенной электрической силы электризованы быть могут, то должны все-таки тела, например все металлы, люди, вода, лед, дерево и проч., с проволокою соединенные и надлежащим образом укрепленные, матернею грома быть электризованы, и понеже из проволоки исходят подлинныя электрическия искры, то от сих искр должен спирт винный, самый крепкий, нефть, спирт Фробениев и прочее загореться; и понеже г. профессор Рихман художественным электрическим действием делает блещащимися имена и фигуры, то и натуральным или электрическим действием грома могут блещащимися учинены быть литеры и фигуры.
Итак, гром, сколь он ни страшен, может быть удовольствием и потехою».
Здесь «Ведомости» предлагают использовать электричество для столь любимой в России иллюминации и «огненной потехи» — фейерверков. В те годы никто из естествоиспытателей толком не представлял себе всей опасности производимых экспериментов, хотя опыты по умерщвлению животных проделывались в разных странах. Не существовало и никаких рекомендаций по технике безопасности. Все это привело к тем трагическим последствиям, которыми завершились опыты Георга Рихмана в России.
Гибель профессора Рихмана
26 июля 1753 года над Санкт-Петербургом собралась гроза. Рихман и Ломоносов приготовились «чинить электрические воздушные наблюдения с немалою опасностию для жизни». Дом Ломоносова стоял на Второй линии Васильевского острова. Рихман жил на пересечении Пятой линии и Большого проспекта. И вот загрохотали первые раскаты.
«Что я ныне к вашему превосходительству пишу, за чудо почитайте, для того, что мертвые не пишут, — так начинает Михайла Ломоносов описание этого эксперимента в письме к своему покровителю Ивану Шувалову, — я не знаю еще или по последней мере сомневаюсь, жив ли я или мертв. Я вижу, что господина профессора Рихмана громом убило в тех же точно обстоятельствах, в которых я был в то же самое время. Сего июля в 26 число в первом часу пополудни поднялась громовая туча от норда. Гром был нарочито силен, дождя ни капли. Выставленную громовую машину посмотрев, не видел я ни малого признаку электрической силы. Однако, пока кушанье на стол ставили, дождался я нарочитых электрических из проволоки искр, и к тому пришла моя жена и другие; и как я, так и они беспрестанно до проволоки и до привешенного прута дотыкались, за тем что я хотел иметь свидетелей разных цветов огня, против которых покойный профессор Рихман со мною споривал. Внезапно гром чрезвычайно грянул в то самое время, как я руку держал у железа и искры трещали. Все от меня прочь бежали. И жена просила, чтобы я прочь шел. Любопытство удержало меня еще две или три минуты, пока мне сказали, что шти простынут, а потом и электрическая сила почти перестала. Только я за столом посидел несколько минут, внезапно дверь отворил человек покойного Рихмана, весь в слезах и в страхе запыхавшись. Я думал, что его кто-нибудь на дороге бил, когда он ко мне был послан; он чуть выговорил: профессора громом зашибло».
В официальном описании случившегося говорилось о том, что в этот день, то есть 26 июля 1753 года, заметив, что собирается гроза, Рихман хотел показать грареру Соколову сущность своих электрических опытов. Соколов должен был изобразить их на виньетке к речи Рихмана, которую тому предстояло произнести на торжественном собрании академии…
В сенях дома Рихмана у окошка «стоял шкаф, вышиною в 4 фута, на котором учреждена была машина для примечания электрической силы, называемая указатель электрической, с железным прутом толщиной в палец, а длиною в 1 фут, которого нижний конец опущен был в наполненный отчасти медными опилками хрустальный стакан. К сему пруту с кровли оного дома проведена была сквозь сени под потолком тонкая железная проволока. Когда г. профессор, посмотревши на указателя электрического, рассудил, что гром еще далеко отстоит, то уверил он грыдоровального мастера Соколова, что теперь нет еще никакой опасности, однако когда подойдет очень близко, то-де может быть опасность.
Вскоре после того, как г. профессор, отстоя на фут от железного прута, смотрел на указатель электрического, увидел помянутый Соколов, что из прута без всякого прикосновения вышел бледно-синеватый огненный клуб, с кулак величиною, шел прямо ко лбу г. профессора, который в то самое время, не издав ни малого голосу, упал назад, на стоящий позади его у стены сундук. В самый же тот момент последовал такой удар, будто бы из малой пушки выпалено было, отчего и оный грыдоровальный мастер упал на землю и почувствовал на спине у себя некоторые удары, о которых после усмотрено, что оные произошли от изорванной проволоки, которая у него на кафтане с плеч до фалд оставила знатныя горелый полосы.
Как оной грыдоровальной мастер опять встал и за оглушением оперся на шкаф, то не мог он от дыму видеть лицо г. профессора и думал, что он только упал, как и он; а понеже, видя дым, подумал он, что молния не зажгла ли дому, то выбежал еще в беспамятстве на улицу и объявил о том стоящему недалеко оттуда пикету.
Как жена г. профессора, услышавши такой сильный удар, туда прибежала, то увидела она, что сени дымом, как от пороху, наполнены. Соколова тут уже не было, и как она оборотилась, то приметила, что г. профессор без всякого дыхания лежит навзничь на сундуке у стены. Тотчас стали его тереть, чтоб отведать, не оживет ли, а между тем послали по г. профессора Краценштейна и по лекаря, которые через десять минут после удару туда пришли и из руки кровь ему пустили; однако крови вышло только одна капелька, хотя жила, как то уже усмотрено, и действительно отворена была. Биения же жил и на самой груди приметить невозможно было. Г. Краценштейн несколько раз, как то обыкновенно делают с задушившимися людьми, зажал г. Рихману ноздри, дул ему в грудь, но все напрасно».
Смерть Рихмана потрясла ученый мир. Церковь же потребовала немедленного запрещения «богопротивных опытов», уверяя, что Рихмана постигла «божья кара». Интересно, что Ломоносов заранее предполагал возможность такого вывода. И в письме к Шувалову сделал такую приписку: «…чтобы сей случай не был протолкован противу приращения наук, всепокорнейше прошу миловать науки…»
С речами и статьями, доказывавшими, что смерть Рихмана не есть «божеское наказание», выступали многие ученые в разных странах. Тем не менее канцелярия Петербургской академии наук запретила даже упоминать слово «электричество» на предстоящем торжественном собрании. Все эти меры вызвали временное ослабление интереса к электрическим явлениям.
Ломоносов отдал немало сил для продолжения начатых в России работ. Он пытался найти способы безопасного наблюдения и измерений «электрической громовой силы», написал сочинение «Слово о явлениях воздушных, от электрической силы происходящих». Наконец, по его настоянию академия объявила международный конкурс на лучшую теорию электричества.
Сам Ломоносов не признавал ньютоновского действия на расстоянии в пустоте и предпочитал картезианские вихри в эфире. Не мог он согласиться и с предложенной Франклином теорией электрической жидкости.
К 1756 году, когда окончился срок конкурса, предлагавшего «сыскать подлинную электрической силы причину и составить точную ее теорию», в академию поступило довольно много работ. Лучшей среди всех был признан мемуар, присланный из Берлина и подписанный именем Иоганна Эйлера, сына великого математика. Сам Леонард Эйлер права участвовать в конкурсе не имел, поскольку являлся членом Собрания Петербургской академии. Однако после того, как результаты конкурса были объявлены, Эйлер признался в обмане. Мемуар принадлежал ему. Свои рассуждения Эйлер строил на предположении, что сверхтонкая материя, создающая электрические силы, есть не что иное, как светоносный эфир. И все известные исследователям электрические явления относил за счет «нарушений равновесия в эфире», сгущения его или разрежения вблизи электризуемых тел. Таким образом, он обходился без введения «специальной электрической материи» Франклина.
К тому же 1756 году относится незаконченная и неопубликованная диссертация Ломоносова «Теория электричества, разработанная математическим способом». Ломоносов, как и Эйлер, исходит из эфира, но электризацию тел предполагает результатом вращательного движения частиц эфира внутри самих тел и в окружающем их пространстве.
Обе теории были принципиально новыми, потому что сводили причину электрических явлений не к свойствам мифической электрической жидкости, а к специфическим формам движения эфира, признанного реально существующим наукой того периода. Правда, отрицая движения электрической жидкости, теории Эйлера и Ломоносова носили чисто электростатический характер и приводили к неправильному представлению о грозозащите и об устройстве громоотводов…
Ломоносов писал о двух способах защиты от гроз. Первый заключался в сооружении на пустырях, а не на крышах зданий тщательно изолированных от земли «электрических стрел», «дабы ударяющая молния больше на них, нежели на головах человеческих и на храминах силы свои изнуряла». В этом отношении представления Франклина имели более важное для практики значение.
Второй способ грозозащиты русский академик видел в «потрясении воздухом». Это была дань старым воззрениям, гласившим, что отогнать грозу можно колокольным звоном. Впрочем, мнение о том, что тучи можно разогнать выстрелами из пушек или взрывами пороха, который нужно поднимать вверх на воздушном змее, существовали еще и во второй половине XIX века.
В городе Филадельфии к концу XVII века громоотводы были поставлены на все крупные здания. Лишь на доме, принадлежащем французскому посольству, дипломаты никак не соглашались водрузить спасительный шест. И что же, словно в назидание, в 1782 году в него ударила молния, произведя значительные разрушения.
В конце концов даже те, кто не соглашался с выводами Франклина, вынуждены были признать полезность громоотводов. Люди кинулись в другую крайность. Металлические штыри и заостренные прутья устанавливались на каретах, дамы в Париже носили шляпки с громоотводами. Но лишь после того, как молния ударила в шпиль Петропавловского собора и зажгла его, началась эра строительства громоотводов для России.
Скорость движения прогресса
В период с 1928 по 1933 год три швейцарских физика — Браш, Ланж и Урбан решили попробовать использовать энергию молний для своих опытов. На горе Дженерсо, где атмосфера всегда щедро насыщена электричеством, они подвесили на высоте около восьмидесяти метров над землей металлическую сетку, которая должна была собирать из туч положительные заряды…
Очевидцы рассказывали, что это было страшное устройство, работа с которым требовала отчаянного мужества. Сеть исправно работала, собирая заряды и повышая свой потенциал. Когда он достигал максимума, воздушный промежуток с оглушительным треском пробивала огненная искра длинной более четырех метров! Разряд длился примерно сотую долю секунды, а сила тока при этом достигала десятков тысяч ампер!
В один из недобрых дней во время опасного эксперимента от разряда такой молнии, пойманной в сеть, погиб Курт Урбан, после чего эксперименты на горе Дженерсо прекратились. Правда, прошло совсем немного времени, и они возобновились в других местах. Сейчас группы по изучению атмосферного электричества снабжены чувствительной регистрирующей и предупреждающей аппаратурой, ракетными комплексами… Гудит зуммер, предупреждающий о том, что напряженность электрического поля в воздухе превышает критическую величину. Обстановка грозовая. Дежурные занимают свои места за пультами. Вот нажата кнопка «пуск» — и со «стола» вверх с шипением уходит метровая геодезическая ракета, увлекая за собой тонкий провод. Красно-желтая реактивная струя успевает подняться всего на несколько сотен метров, как окрестность озаряется ярким белым светом. Это разрядилась одна из подошедших туч…
Ежегодно над земным шаром бушует около 45 тысяч гроз. Различные специалисты приводят разные цифры, но это не принципиально. Примерно каждые четыре секунды где-то сверкает молния. И если учесть, что средняя гроза по потенциальной мощности может быть сравнима с атомной бомбой, то просто плакать от бессилия хочется — столько энергии в мире пропадает зря!..
Сегодня ученые много знают о грозах. Их изучают с земли, фотографируют из космоса со спутников. Их изучают изнутри. Сейчас стало обычным явлением, что самолеты, начиненные измерительной аппаратурой, кружатся около эпицентра грозы. Приборы фиксируют силу заряда, напряженность электрического поля, степень ультрафиолетового и рентгеновского излучений при блеске молний.
Наконец, и на земле, в лабораторных условиях, ученые научились получать искусственные молнии. И все-таки… В образовании молнии есть еще немало таинственного для науки. Судите сами: критическая напряженность поля, при которой в лабораторных условиях возникает электрическая искра, равна примерно трем миллионам вольт на метр. А сколько ни измеряли эту величину в облаках с самолетов, получить значений больше двухсот — трехсот тысяч вольт на метр никогда не удавалось. Как же возникают молнии?.. На этот вопрос точного ответа пока у нас нет!
При этом молнии бывают не только в грозовых облаках. Вулканологи, изучающие извержения, много раз отмечали молнии в облаках вулканического пепла. А несколько лет назад мир был взволнован сообщениями о катастрофических взрывах на японских супертанкерах. Самое необычное заключалось в том, что случались они, как правило, во время промывки их колоссальных танков сильной струей воды… Одним из объяснений является предположение, что при промывке возникали облака из электрически заряженных нефте-водяных капель. Создавалось электрическое поле с высокой напряженностью и благоприятные условия для образования электрического разряда…
В свое время (с тех пор, к сожалению, прошло уже довольно много лет) я, окончив авиационное училище, летал штурманом на тяжелых военных машинах. До сей поры помню инструкцию для полетов во время грозы: летать на малых высотах, учитывая сильные восходящие потоки, но не забывая и о возможностях существования нисходящих движений воздуха. Как правило, даже прямой удар молнии нанести сильное повреждение металлическому корпусу самолета не может, но если вы думаете, что ощущение при этом приятное, вы ошибаетесь. Ослепительная вспышка, после которой глаза не видят приборной доски, грохот, заглушающий шум моторов, резкие броски даже тяжелой машины из стороны в сторону и при этом полное неведение относительно пространства, в котором находишься и куда летишь. Радиоприем в грозу прекращался, а радионавигационные приборы показывали все что угодно, кроме истины. На высоте же к перечисленным прелестям добавлялось еще и обледенение. На различных частях фюзеляжа, на плоскостях начинал образовываться лед. Нарастал он неравномерно, нарушал центровку и летные качества самолета. Управлять обледеневшей машиной было трудно.
Главным в инструкции «по грозе» была настоятельная рекомендация: «Встретил на пути грозовой фронт — обойди его».
Сейчас проще. Современному воздушному лайнеру гроза не помеха. Во-первых, высота его полета значительно больше, чем у самолетов с винтомоторными двигателями, во-вторых, скорости, и вообще… Для того и развивается техника, чтобы становиться более надежной, меньше зависеть от природных явлений. Мой отец летал на самых первых самолетах, когда летчик сидел на сиденье, напоминающем велосипедное седло, и имел круговой обзор и «обдув». В дождь не летали, в сильный ветер — тоже. Я начинал свою летную практику на самолете с кабиной, закрытой «колпаком» из оргстекла. В штормовую погоду, при ураганном ветре, конечно, полетов не было, но вообще-то от погоды мы уже зависели мало. Вот если гроза!.. Когда моя дочь собирается в аэропорт, ее тоже еще волнует вопрос: «Вылетим — не вылетим?» Но чаще это уже не связано с погодными условиями. А вот на чем доведется летать моему внуку Николке? Ему пять лет, но аэробус ИЛ-86 для него — такой же, в принципе, транспорт, как трамвай или метро.
Как быстро движется научно-технический прогресс! В течение жизни одного, двух, трех поколений представления о мире меняются коренным образом, а возможности человеческие возрастают неизмеримо…
Сила, которая движет мирами
Если еще в XVII веке большинство наблюдаемых на Земле явлений природы пытались объяснить воздушным давлением, то сто лет спустя его место заняло электричество.
Действию электричества пытались приписать, например, землетрясения. «Разве не могут пустоты и полости внутри земли, заполненные водой, играть роль усилительных лейденских банок?» — спрашивали сторонники этой гипотезы и развивали свою мысль дальше.
«Землетрясения происходят при выравнивании электричества между земной корой и атмосферой!» — утверждали другие. Третьи видели в электричестве причины испарения воды и выпадения дождя. Одна за другой возникло несколько теорий электричества, построенных на основе механических представлений.
Надо сказать, что до Франклина представления большинства исследователей о природе электричества были чрезвычайно смутными.
Электрическое притяжение сначала пытались объяснять теорией истечений. Потом вездесущий аббат Нолле «изобрел новую теорию одновременного оттока и притока электрической материи», которая не в состоянии была объяснить ни разницы в двух видах «смоляного» и «стеклянного» электричества, ни работы электрической машины и лейденской банки. Англичанин Вильям Ватсон, обнаружив опытным путем, что кожаную подушку, натирающую стеклянный диск электрической машины, следует заземлять, заявил, что электричество рождается вовсе не от трения, а получается из земли, переходя с помощью натирающей поверхности на натираемое тело. И здесь оно скапливается.
И наконец, Франклин предположил, что «в природе существует особая „электрическая субстанция“», отличная от обыкновенной материи в том отношении, что частицы последней взаимно притягиваются, а частицы первой взаимно отталкиваются друг от друга. При этом он полагал, что эта субстанция состоит «из чрезвычайно малых частиц, так как они способны проникать в обыкновенную материю, даже в самые плотные металлы, с большой легкостью и свободой, как бы не встречая при этом сколько-нибудь заметного сопротивления».
При этом распределяется электричество только по поверхности тела, как растекающаяся жидкость, образуя в окружающем пространстве «электрическую атмосферу».
Против взглядов Франклина выступил аббат Нолле и многие его сторонники. Французам не нравилось появление в теории американца сил притяжения и отталкивания. Это придавало теории ньютонианский характер. В 1750 году Франция воевала с англичанами в Индии, и все английское было на континенте малопопулярным. Французские исследователи предпочитали видеть сущность электричества не в процессах, которые зарождаются и происходят в самих телах, а в том, что делается в окружающем эти тела пространстве.
Неожиданную поддержку теория Франклина получила в работе Франца Ульриха Теодора Эпинуса, доктора медицины — берлинского профессора астрономии, перебравшегося в Санкт-Петербургскую академию наук на должность профессора физики.
В Берлине вместе со своим учеником Иоганном Вильке Эпинус предпринял исследование турмалина, открыв его электрические свойства. История любопытная, и о ней, пожалуй, стоит упомянуть.
В начале XVIII века в брошюре с забавным названием «Курьезные спекуляции (или умозрения) любителя, который охотно всегда размышляет в бессонные ночи» появилось сообщение о том, что голландцы привезли с острова Цейлон (ныне государство Шри Ланка) удивительный камень турмалин. Будучи нагрет, он притягивал и отталкивал частички золы.
Сначала силу притяжения турмалина считали магнитной. Однако после целой серии опытов Эпинусу и Вильке удалось доказать, что это явление имеет явно электрическую природу. При неравномерном нагреве минерала на его противоположных сторонах возникали разноименные электрические заряды.
Так было открыто пироэлектричество, появление электрических зарядов на поверхности диэлектриков при их нагревании. По сути дела, еще одно новое проявление электрических сил, показывающее их глубокую связь с теплотой. Впоследствии многие ученые пытались создать строгую теорию пироэлектричества. Но и по сей день окончательное слово в этой отрасли знания еще не сказано.
В 1756 году в Петербурге вышел трактат Эпинуса «Опыт теории электричества и магнетизма». Во введении автор рассказывает, как открытый им пироэлектрический эффект в турмалине натолкнул его на мысль о глубоком сходстве электрических и магнитных явлений. Ведь до этого только магнит имел всегда два полюса, а теперь и нагретый турмалин оказался обладателем дипольного эффекта. Вот только почему? В чем причина обнаруженного явления? Однако Эпинус отказывается даже от обсуждения природы сил притяжения и отталкивания. При этом он ссылается на Ньютона, который также не занимался, по его мнению, выяснением причин всемирного тяготения. Правда, при этом автор трактата, чтобы избежать обвинений в эпигонстве, подчеркивает: «Я отнюдь не считаю их, как поступают некоторые неосторожные последователи великого Ньютона, силами внутренне присущими телам, и я не одобряю учение, которое постулирует действие на расстоянии. Действительно, я считаю несомненной аксиомой предположение, по которому тело не может производить никакого действия там, где его нет». Значит, силы притяжения и отталкивания, действующие на расстоянии, в его работе — лишь условное допущение. По мысли Эпинуса, это универсальное свойство электрических зарядов, точно так же как всемирное тяготение, — универсальное свойство масс в механике Ньютона. А за субстанцию, обладающую свойствами электрического притяжения и отталкивания, Эпинус принимает некую единую электрическую жидкость, предложенную Франклином в своей теории.
Частицы электрической жидкости отталкиваются друг от друга, но притягиваются обычной материей. Они свободно проникают через поры одних тел и с трудом преодолевают другие. Первые, как мы можем легко понять, являются проводниками электричества, вторые — изоляторами, в современной терминологии. И все электрические явления, известные современной ему науке, Эпинус делит на два рода. К одному относится все, что связано с переходом электрической жидкости от одного тела к другому. Примером могут являться искры, возникающие при электризации тел. К другому он отнес притяжение и отталкивание.
По аналогии с гипотезами, высказанными в теории электричества, строит Эпинус и теорию магнетизма. Он предполагает существование магнитной жидкости, частицы которой взаимно отталкиваются. И точно так же тела делятся на те, которые проявляют индиферентность, безразличие к частицам магнитной жидкости (они являются аналогами диэлектриков), и тела, притягивающие магнитную жидкость по аналогии с проводниками.
Правда, закон Ньютона утверждал, что все тела природы связаны друг с другом силами притяжения, а если принять теорию единой электрической жидкости, то она приводила к тому, что материальные частицы должны отталкиваться друг от друга. Это обстоятельство немало смущало и самого Эпинуса и его сторонников. Позже ученый выдвинул предположение, что закон Ньютона применим лишь к телам, содержащим естественное количество электрической жидкости. Это позволило обойти затруднения в формальном смысле, но убедительности теории не прибавило. И потому целый ряд выдающихся физиков отказались принять франклиновскую унитарную теорию. Высоко оценивая труды Эпинуса за то, что в них дана приближенная математическая теория взаимодействия электрических и магнитных тел, исследователи все же вернулись к идее двух электрических жидкостей. Интересно, что и для этого случая вычисления Эпинуса оставались справедливыми.
До появления работы Эпинуса физики были уверены, что взаимодействие электризованных тел с неэлектризованными вполне возможно. Эпинус же утверждал, что лишь после того, как заряд одного тела вызовет появление заряда на другом, они приходят во взаимодействие. Это было совершенно новым представлением, которое пришлось весьма кстати впоследствии, когда были открыты явления электрической и магнитной индукции и поляризации тел.
Интересно и утверждение петербургского профессора о том, что электрическая материя существует только в телах и отсутствует в пространстве, где действуют электрические силы. Здесь Эпинус довольно близко подходит к понятию электрического и магнитного поля, которое возникло и получило развитие в физике следующего столетия.
Работы Эпинуса сразу же стали очень широко известны и оказали большое влияние как на взгляды физиков его времени, так и на развитие науки об электричестве. На его работы ссылались Кавендиш и Кулон, о его теории писали Гаюи и французские академики Лаплас, Кузен и Лежандр. О нем писали Вольта и Фарадей…
Впрочем, сам Эпинус недолго занимался в России научной деятельностью. По желанию Екатерины II он в 1765 году принял на себя заботу о воспитании великого князя Павла Петровича. И с тех пор занимался государственной деятельностью в столичном бюрократическом аппарате.
Занятый придворными интригами, участник множества начинаний, Эпинус мало внимания уделял своей должности профессора физики в академии. Это приводило его к столкновениям с Ломоносовым. Взаимоотношения обоих ученых оставляли желать лучшего на протяжении всего их совместного существования в академии.
Гроза, XX век
Скажите, а вы боитесь грозы? Только откровенно. Если да, то — да! Ничего постыдного в этом нет. Гроза — самое величественное, самое красивое и одно из самых… грозных явлений природы. Ведь правда? Я, например, знаю многих в принципе достаточно смелых людей, которые бегут от молнии, а еще пуще от грома.
Давайте попробуем нарисовать в воображении картину этого явления природы. Причем попробуем нарисовать так, чтобы мы с вами были его участниками! Договорились?..
Ну, скажем, так: по пути домой из леса (будем считать, что это был поход за грибами) мы выходим на край поля. Дождь еще не начался, но тучи, низкие, набухшие влагой, обложили все небо. В лесу было темно, как вечером, а вышли на открытое место и здесь света не больше. Того и гляди, польет. Что делать? До дома вроде бы недалеко, да мокнуть не хочется. Пока мы топчемся в нерешительности, раздумываем, то ли под елку спрятаться, то ли под стог забиться, вдалеке начинает погромыхивать Налетают первые порывы ветра, как залпы. Под их ударами поле словно море в бурю: волны идут по хлебу, образуют водовороты из колосьев, подымают смерчи. Решайте скорее. Может быть, лучше переждать? Летние грозы скоротечны…
И вдруг как сверкнет! Все вокруг словно само загорается голубым свечением. Уж молнии-то и нет, а в глазах все стоит и стоит ослепительная вспышка.
Не знаю, как вы, а я всегда после вспышки молнии начинаю считать: «И-раз, и-два, и-три…» Трах-та-ра-рах! — раздается на тридцатой секунде счета раскат грома. Тридцать секунд отделило его от вспышки. Значит, эпицентр грозы еще километрах в десяти. Звуковая волна распространяется в воздухе со скоростью примерно 333 метра в секунду. Далеко это или близко и когда гроза дойдет до нас? Обычно грозы движутся со скоростями не больше сорока километров в час. Раз так, то у нас в запасе как минимум минут пятнадцать. Бежим!
Так и есть! Едва мы на порог, как небо раскололось над самой крышей, гром грянул одновременно с блеском молнии и полил дождь. Косые струи полетели над землей, срывая листья с деревьев, ломая сучья. Блеск молнии и грохот разрядов слились! Но мы под крышей, и оттого в груди поднимается какой-то отчаянный мрачный восторг — вполне в духе дикой, мятущейся красоты природы.
И все-таки где-то в тайниках души у каждого гнездится атавистический страх. Страх, воспитанный поколениями беззащитных предков, когда не было теплых домов с громоотводами, не было знаний, что такое гроза, не было даже могучего бога, единовластного в решении покарать или помиловать. А был маленький, может быть, даже голый одинокий человечек и бесконечная мощь разгулявшейся, ликующей природы. Трах-тара-рах! Трах! Трах! — грохочет гром. Страшно первобытному человеку. Змеи-молнии жалят землю. Черные тучи накрыли ее, как пологом. Где голубое небо? Где ласковое солнце? Куда спрятаться от пронизывающего ветра, от холодного дождя? Может быть, бежать? Бежать быстро, еще быстрее, еще, пока не выскочит сердце из груди и не упадет человек бездыханным. Или, подобно птице и зверю, забиться под дерево, лицом в корни, и лежать тихо-тихо… Ждать, пока добрые силы природы победят злые и окружающий мир снова прояснится и даст место в себе человеку. А кому не даст — тот погибнет.
Замечательный исследователь и собиратель русского фольклора Александр Николаевич Афанасьев писал, что древние люди смотрели на окружающий мир совсем другими глазами, чем мы. Они не отделяли своего существования от остальной природы, чувствовали себя с нею единым целым. В представлении наших предков облака и звери, небесные светила и озера ничем особенно не отличались от самого человека. Все вокруг жило своей жизнью. Враждебные силы боролись друг с другом, а значит, и с человеком. Добрые силы помогали. Все непонятное было враждебно человеку. И прежде всего такие страшные атмосферные явления, как гроза. Чтобы выжить в этой титанической борьбе стихий, человек просил помощи у тех же сил, заклинал небесный огонь, приносил ему жертвы.
Страх перед неведомым породил почитание стихий, их обожествление. И это обожествление, а на самом деле очеловечивание таинственных сил природы делало мир не таким страшным. Если гигантскими процессами управляют боги или бог, а сами боги — как люди, то ничто человеческое им не чуждо. Богов можно упросить, умилостивить, подкупить и… заручиться их помощью, поддержкой. Тут уж грозный мир, еще недавно наполненный мутным туманом страха, прояснялся и становился не столь ужасным.
Это один путь оградить себя от страха — создать всесильного бога, заранее согласившись на смирение. Но есть и другой путь — познание.
Конечно, гроза — зрелище эффектное и могучее, но ведь это всего-навсего атмосферное явление, проявление сил природы при определенных обстоятельствах. Чего же тут страшного? Ведь не пугаемся же мы наступающего вечера или красной зари, не боимся сегодня затмений солнца и луны. Зачем же бояться грозы?
Что такое молния? Электрическая искра, возникающая между разноименно заряженными облаками или между облаком и землей. Гром — треск этой искры. В канале молнии воздух очень быстро нагревается, а нагревшись, расширяется. Возникают звуковые колебания, воспринимаемые нами как гром. Только и всего!
Если вспомнить уроки физики в школе, то и сам механизм образования грозы перестает быть тайной: мощные вертикальные потоки поднимают вверх влажный теплый воздух. Наверху воздух расширяется и при этом охлаждается. Водяной пар конденсируется в капельки воды, которые собираются в кучевые облака. Давление у земли понижается, воздух с периферии устремляется к центру. Возникает ветер. Вот и готова первая стадия грозы.
Вторая стадия начинается с выпадения дождя. На высоте в облаке появляются ледяные кристаллы. Сильные вихри перемешивают наэлектризованные частицы облака, возникают искры-молнии, гремит гром. Восходящие и нисходящие потоки воздуха крутят водяные струи ливня то в одну, то в другую сторону. Вот когда гроза в разгаре!
А потом наступает стадия разрушения грозы. Во всей ее области развиваются нисходящие потоки воздуха.
Не получая больше от земли ни влаги, ни тепла, гроза затихает. Грозовое облако тает. Ветры из сходящихся превращаются в расходящиеся. Вылившийся с высоты холодный воздух, свежий, напоенный озоном, говорит о прекращении грозы.
Вот так! Что же здесь страшного? Обыкновенный феномен природы. Правда, не следует забывать, что для такого вот бесстрастного объяснения понадобились не годы, а столетия страха, мифов, а потом упорного труда собирания фактов и их осмысления. Понадобились думы и рассказы старейшин, колдовские действия магов и жрецов, размышления философов и, наконец, опыты естествоиспытателей. Опыты с неизвестным, опыты, сопряженные со смертельной опасностью, и все-таки — опыты…
В одной из последних книг по метеорологии, в разделе «Возникновение грозы», написано: «В настоящее время хотя причины образования всех видов гроз и неизвестны точно, все же сами грозы уже настолько изучены, что можно указать основные явления, происходящие при грозе…» Главное в этой фразе — ее начало, признающее то, что и по сей день причины образования гроз нам точно неизвестны.
Не может не поражать удивительная способность атмосферы накапливать и удерживать электрический заряд. Сегодня мы знаем, что земля, земная поверхность заряжена всегда отрицательно. В атмосфере содержатся положительные объемные заряды, плотность которых уменьшается с высотой. В целом же для мирового пространства Земля с ее атмосферой, повидимому, электрически нейтральное тело.
Возникает вопрос: а откуда же возникают электрические заряды в атмосфере? Вы, наверное, не раз слышали об ультрафиолетовом и корпускулярном излучении Солнца. Проникая в верхние слои атмосферы, оно разбивает нейтральные молекулы воздуха на заряженные частицы — ионы, ионизирует воздух. То же действие оказывают и космические лучи, пронизывающие всю толщу атмосферы. А у самой поверхности земли воздух подвергается атакам излучения радиоактивных элементов, которые в изобилии содержатся в земной коре.
В конце прошлого века ученые (Стюарт, 1878 год) пришли к выводу, что в атмосфере Земли на высоте примерно шестидесяти километров начинается ионизованная область — ионосфера, проводящий слой атмосферы, который, как скорлупой, охватывает планету. Это позволяет грубо приближенно рассматривать земную поверхность и ионосферный слой как обкладки конденсатора с разностью потенциалов около трехсот тысяч вольт. В районах ясной погоды этот природный конденсатор постоянно разряжается, поскольку ионы под действием сил электрического поля уходят вниз к Земле. А вот в районах грозовой деятельности картина иная. Считается, что в каждый момент времени грозой охвачен в среднем примерно 1 % земной поверхности. В этих районах мощные токи текут снизу вверх, компенсируя «разряд» в «ясных» районах.
Таким образом, грозовые облака — это не что иное, как природные электрические генераторы, поддерживающие в равновесии всю систему сложного электрического хозяйства во всеземном масштабе.
Казалось бы, люди, занявшиеся изучением электрических сил, в первую очередь должны бы обратить внимание на атмосферное электричество. Ведь оно, как никакое другое, ближе всего — под руками. Однако на деле вышло совсем не так. Долгое время исследователи и не предполагали, что молния и крошечная искорка, прыгающая с натертого куска янтаря — явления одной природы и лишь разные по своему масштабу. Вернее сказать, подозрения, конечно, были. Порою они даже высказывались вслух. Но это были лишь подозрения. Глубокое заблуждение древних философов, убежденных в том, что мир Земли не имеет ничего общего с миром Неба, было стойким и держалось долго. Лишь в XVIII веке наступило время объединить наблюдаемые явления и уверенно заявить о том, что небесное и земное электричество — явления одной природы. И только XX столетие объяснило механизм образования грозы. Правда, пока объяснило тоже не до конца.
Этот чудак Симмер
Справедливости ради, пожалуй, нужно рассказать о возникновении еще одной теории электричества, очень сходной с теорией Дюфе, но родившейся независимо, и не во Франции, а в Англии. Эта теория сыграла немаловажную роль в установлении взглядов на природу электричества, торпедировав мнения, высказанные до нее.
Случилось это так. Во время одного из заседаний Лондонского королевского общества сэр Роберт Симмер показал коллегам вовсе незначительный опыт: электрической искрой он пробил бумагу. Края отверстия оказались загнутыми в обе стороны. Почему?..
Джентльмены пожали плечами. Что же, по-видимому, это еще одна загадка таинственного электричества. Многие явления пока что не находят толкований, а если и объясняются как-то существующими теориями, то настолько туманно, что даже сами авторы теорий пишут эти объяснения неохотно.
— Я могу вполне ясно объяснить любое из указанных явлений, джентльмены, — спокойно ответил сэр Роберт, поднимаясь со своего места и подходя к столу. — Но сначала еще один опыт…
Он взял стул и поставил его на стол. После этого естествоиспытатель с великим кряхтением, ибо был он человеком уже не молодым, взобрался туда же, утвердился на стуле и попросил погасить свечи.
Заинтересованные члены общества столпились вокруг. Сэр Роберт снял башмаки. А когда он начал стягивать с ног чулки, кое-кто из присутствующих подался назад… Странное чудачество? Впрочем, англичане уважают чудаков. Даже считают, что чудаки движут прогресс.
Сэр Роберт носил две пары шелковых чулок. На одной ноге у него были два белых чулка, а на второй под белым скрывался черный. Присутствующие не без удивления заметили, что при стаскивании одного чулка с другого между ними пробегали электрические искорки. Впрочем, что же удивительного? Ведь сэр Роберт трением наэлектризовал свою одежду. Но вот чулки сняты…
— Прошу свет!
Свечи были зажжены и поставлены на стол. И все увидели, что снятые чулки надулись, как бычьи пузыри, так что их можно было поставить стоймя. Но главное было не в этом. Симмер поднес два белых чулка друг к другу. Они оттолкнулись и стремительно разошлись в разные стороны.
— Точно так же отталкиваются друг от друга и черные чулки, — лаконично поведал он присутствующим.
Однако стоило ему поднести белый чулок к черному, как тот к нему немедленно притянулся.
— В чем причина различного поведения чулок, отличающихся только цветом, джентльмены?..
Ошеломленные джентльмены молчали. Тогда сэр Роберт продолжил:
— По-видимому, в составе краски?.. Но кто не знает, что черную краску получают красильщики из чернильных орешков и железного купороса? Где же здесь причина притяжения и отталкивания?.. А вот не означает ли продемонстрированный опыт, что в своем естественном (ненаэлектризованном) состоянии все тела содержат в себе два рода электричества — положительное и отрицательное, которые и переходят при трении с тела на тело. И если на теле скопился избыток одного из видов электричества, оно проявляет действия наэлектризованного…
— Браво, сэр Роберт! Это предположение действительно объясняет причины притяжения и отталкивания наэлектризованных разными родами электричества тел…
Так возникла еще одна теория о существовании двух противоположных и нейтрализующих друг друга видах электричества — положительном и отрицательном. Ведь Роберт Симмер не знал, что за двадцать лет до него французский естествоиспытатель Жан Дюфе уже выдвигал подобную гипотезу.
Вначале ученые считали, что унитарная и дуалистическая гипотезы примерно одинаково объясняют наблюдаемые электрические явления. Но скоро обнаружилось, что с помощью взглядов Дюфе-Симмера легче объяснить целый ряд явлений, не поддающихся теории единой жидкости. Легче понять индукцию, то есть электризацию через влияние. А растолковать непонятное до сих пор отталкивание отрицательно заряженных тел с помощью двух электричеств просто ничего не стоит. Нет, нет, определенно очень многое из того, что являлось непреодолимым для унитарной гипотезы, дуалистическая гипотеза объясняла запросто. Были и другие проблемы, разрешившиеся с введением новых взглядов.
Однако время гипотез кончалось. Все острее ощущали исследователи необходимость научиться измерять и рассчитывать силы, определяющие взаимодействие между наэлектризованными телами. «Современные теории, — писал Джон Пристли в 1767 году в своей „Истории электричества“, — не могут дать нам ничего лучшего, как лишь навести нас на новые эксперименты». Для того, чтобы двигаться дальше, нужно было открыть количественные законы, которым подчинялись электрические силы. Нужно было научиться считать!..
Глава седьмая. Основной закон электростатики
Шарль-Огюстен Кулон был военным инженером. Родился он в 1736 году в Ангулеме. Учился в Париже. Окончив учебу, поступил на военную службу и, прослужив несколько лет в разных гарнизонах, вышел по нездоровью в отставку. Следует отметить, что все годы службы он не оставлял научных занятий, интересуясь исследованиями в области механики, магнетизма и электричества. За свои научные работы, послужившие к лучшему устройству компаса, Кулон получил премию Парижской академии. А два года спустя — вторую премию за «теорию простых машин». В 1781 году его избирают членом академии. И скоро он становится одним из генерал-инспекторов министерства народного просвещения.
Изучив явление кручения как деформацию упругих тел, Кулон изобрел крутильные весы — необыкновенно чувствительный прибор, с помощью которого можно было измерять совсем слабые взаимодействия. Состояли они из тоненькой не проводящей электричество палочки, подвешенной горизонтально на конце проволочного волоска. Палочка заканчивалась крохотным бузинным шариком. Рядом находился еще один такой же шарик, насаженный на неподвижный вертикальный изолированный стержень. Наэлектризованные одинаково, шарики взаимно отталкивались. При этом подвижный шарик закручивал проволочный волосок. Законы кручения, найденные Кулоном, позволяли измерять как силу отталкивания, так и силу притяжения заряженных шариков, а потом и магнитов. Проделав множество раз одни и те же измерения, чтобы избавиться от возможной ошибки, Кулон обобщил их и вывел закон, по которому следовало, что электрические заряды взаимодействуют с силой, обратно пропорциональной квадрату расстояния между ними.
Однако раньше Кулона предположение о том, что сила взаимодействия двух наэлектризованных тел должна быть обратно пропорциональна квадрату расстояний между ними, высказал некто Джозеф Пристли в своей ранней работе «История электричества», написанной по настоянию Франклина. В один из своих приездов в Англию Франклин в беседе с Пристли обратил его внимание на то, что пробковые шарики, подвешенные внутри металлического сосуда, не обнаружили никакого воздействия со стороны стенок наэлектризованного сосуда. Сам Франклин не смог объяснить причины наблюдаемого явления. Пристли в конце 1766 года повторил опыт Франклина и высказал предположение: «Нельзя ли заключить из этого опыта, что электрическое притяжение подчиняется такому же закону, как и тяготение, то есть оно изменяется пропорционально квадратам расстояния».
Это предположение не обратило на себя внимания современников. И к тому же оно было только предположением. Доказал же его Кулон!..
В качестве гипотезы о сути электрической материи Кулон принял существование двух электрических жидкостей — положительной и отрицательной. Эту же гипотезу он распространил и на магнитные тела. Его теоретические выводы позволили ученым в дальнейшем вычислять распределение электричества по поверхности тел правильной формы и дали направление применению математического анализа в науке об электричестве.
Так и вошел в науку закон о взаимодействии электрических зарядов под названием закона Кулона.
На первых порах могло показаться, что открытие и опубликование Кулоном закона взаимодействия электрических зарядов не внесло никаких кардинальных изменений в развитие учения об электричестве. Лишь двадцать пять лет спустя, когда французский ученый Пуассон с помощью этого закона решил математическую задачу о распределении заряда по поверхности проводника, исследователи должным образом смогли оценить его значение. Сегодня, оглядывая путь, пройденный человеческим познанием, мы видим, что на период работ Кулона приходится начало новой эпохи в развитии науки об электричестве. Впрочем, прежде чем начинать новую часть истории науки, мы должны познакомиться еще с одним замечательным ученым, предвосхитившим многие открытия, которые сегодня носят имена совсем других людей.
Гений-мизантроп
Спустя более полувека после того, как закон Кулона получил официальное признание, Джемс Клерк Максвелл разбирал рукописи Генри Кавендиша. Среди пожелтевших от времени бумаг он случайно наткнулся на статью, содержащую прекрасное опытное доказательство выдвинутой Пристли гипотезы. Относились эти опыты примерно к 1773 году, то есть на двенадцать лет опережали работу Кулона. Кто же был Генри Кавендиш, оставивший неопубликованным великое открытие века? Его фигура необычна и примечательна, а его труды достойны того, чтобы о них рассказать подробнее.
В 1731 году в семье лорда Карла Кавендиша, герцога Девонширского, родился второй сын. Ребенок увидел свет в благословенной Ницце, где его молодая мать пыталась вернуть себе здоровье, потерянное на берегах туманного Альбиона. Увы, сделать это, повидимому, ни врачам, ни роскошной природе не удалось. Два года спустя, когда ее маленький сын, получивший имя Генри, только начинал говорить, она умерла. Мальчика ждала незавидная судьба младших детей из английских аристократических фамилий. Поскольку отец его сам был лишь третьим сыном в семье герцога Девонширского, Генри не мог наследовать герцогский титул. А в связи с тем, что волей судьбы он оказался младшим в роду, не мог рассчитывать и на фамильное состояние. Усвоив это, Генри раз и навсегда отказался от честолюбивых мыслей, сосредоточив весь свой интерес на естествознании.
Он получил хорошее домашнее воспитание. Отец, увлекавшийся вопросами метеорологии, много времени уделял младшему сыну. Привлекая его к своим опытам, учил строить приборы.
Генри рос нелюдимым, замкнутым ребенком, с недетским взглядом глубоко посаженных глаз. На каждое замечание он реагировал болезненно, подозревая покушение на свою независимость, самостоятельность и гордость.
Поздно по сравнению с окружающими подростками поступил он в Питер-Хаус — самый дешевый колледж Кембриджского университета. Но проучился там недолго.
В Кембридже существует многовековая традиция «страшного экзамена» — трайпоса. Почему он так называется, сказать трудно. Может быть, потому, что некогда экзаменующий восседал на высоком трехногом табурете, пользуясь неограниченным правом язвительного опроса и прямого издевательства над экзаменующимися. А может быть, просто причина заключалась в трехступенчатости испытания и в трех степенях отличий.
В великолепной биографии Д. К. Максвелла, изданной в серий «Жизнь замечательных людей», писатель Владимир Карцев рассказывает: «Экзаменующиеся по математике могли завоевать высшее отличие — „старший спорщик“. Затем следовал „второй спорщик“, „третий“, „четвертый“ и так далее. За ними шли „старшие оптимы“, затем — „младшие оптимы“. Потом — просто бакалавры без отличий. И самый последний получал на всю жизнь прозвище „деревянная ложка“».
Почему на всю жизнь? В этом-то и заключалась, наверное, причина студенческого ужаса перед трайпосом. Место, полученное на этом экзамене, «волочилось потом за выпускником всю его жизнь, и котировался он дальше уже, например, как „мистер Смит, 16-й спорщик такого-то года“. И даже столь большая цифра была достаточно почетна». А каково было в тридцать, сорок и более лет именоваться «мистер Хэйд — деревянная ложка»?
Трудно согласиться с тем, что клеймо, поставленное во время учебы, способствует правильной оценке способностей и возможностей выпускника, а в дальнейшем специалиста. Однако подведение итогов и распределение мест в соответствии с успеваемостью — «1-й ученик», «2-й ученик» и так далее — весьма способствует повышению интереса школьников к своим успехам в зарубежных школах. А многоступенчатые экзамены в колледжах, безусловно, помогают выделять наиболее способных…
Трайпос был немалым испытанием и для самолюбия, и для гордости студента. Кавендиш был всей душой предан математике. Но он не допускал и мысли, что кто-то посторонний может правильно оценить его знания и что он может зависеть от этой оценки в глазах окружающих. Он считал, что только сам мог быть для себя главным экзаменатором. И Генри покидает Питер-Хаус до трайпоса. Он уединяется в своем доме, сводит до минимума потребности, чтобы прожить на имеющийся небольшой доход, и отдается полностью науке.
Примерно с 1764 года он проводит серию исследований газов. Однако и здесь, не желая признавать чей-либо авторитет, полный безразличия к окружающему обществу, не публикует своих результатов.
В эти годы складывается окончательно его характер. Современники рассказывают, что с домашними Кавендиш объяснялся по преимуществу жестами. Так было короче. Он не выносил присутствия женщин и старался не заводить вообще никаких новых знакомств.
В сорок один год он получил огромное наследство от умершего дяди, но это ни на йоту не изменило его привычек. Разве что он стал тратить без оглядки деньги на постановку экспериментов и на пополнение своей библиотеки.
История не оставила нам подлинного портрета этого ученого. Существует только рисунок, являющийся собственностью Британского музея. Он, правда, больше похож на шарж…
«Странная нелюдимость, паническая боязнь женщин, угрюмый характер, молчаливость. Визгливый голос, с каким-то великим трудом исторгающийся из горла. Друзья злоупотребляли его доверием в пользовании его библиотекой. Незнакомцы не могли и думать о приглашении в дом. Все, что он делал, он, казалось, делал с великим трудом: писал, ходил.
Странной казалась его походка, быстрая, но вместе с тем какая-то болезненная и искусственная, нелегкая. Ходил он, чтобы ни с кем не здороваться, посредине мостовой, между экипажами. Ко всему, что не касалось науки, Кавендиш был холодно-безразличен, никогда не слышали, чтобы он о чем-то отозвался более или менее положительно».
Такова характеристика этого человека — воплощения английской эксцентричности и чудачества. И вместе с тем Кавендиш был блестящим ученым. В его манускриптах Максвелл нашел описание удивительных по тонкости, оригинальности замысла и по выполнению экспериментов. Целый ряд великолепных открытий был сделан им за закрытыми дверями домашней лаборатории. Открытий, о которых он и не подумал оповестить ученый мир. Его «труды доказывают, — пишет Максвелл, — что Кавендиш предвосхитил почти все крупные факты, относящиеся к электричеству, которые позднее стали известны ученому миру благодаря работам Кулона и французских физиков».
Закончив одну работу, Кавендиш занимался следующей проблемой, ни словом публично не обмолвившись о сделанных открытиях. Удивительный характер! Впрочем, мизантропия и оригинальность не столь уж уникальные качества гениев — героев истории науки.
Все свои эксперименты Кавендиш проводил, не имея другого источника электричества, кроме ненадежной электрической машины, работающей от трения. И все тончайшие измерения были проделаны фактически без контрольных приборов — они еще просто не были изобретены. Единственным регистрирующим прибором ученого был он сам и его столь же молчаливый слуга Ричард — «физиологический гальванометр».
Неизданные работы Кавендиша остались неизвестны его современникам и потому не могли оказать влияния на развитие мировой науки.
Кавендиш никогда не болел. Лишь на восьмидесятом году жизни, впервые почувствовав недомогание, он понял, что умирает. Потребовал, чтобы никто из слуг не входил в его комнату, а врачу, прибывшему к нему, запретил помогать себе.
Таков был этот удивительный человек, гениальный ученый, во многом опередивший свое время.
Часть вторая. Время законов
Глава восьмая. Невероятное открытие болонского анатома
— Болонья, синьоры, Болонья!!! — Проводник изо всех сил стучит в стеклянную дверь купе. — О мамма мия! Сколько можно спать?! Ведь вы приехали в Болонью!.. Болонья, синьоры, Болонья!!!
Он явно преувеличивает, упрекая нас в сонливости. В итальянских поездах уснуть не так-то просто. Особенно в вагонах второго класса… Но нам действительно пора собираться. Под колесами множатся рельсы, а за окном бегут устрашающие в своей неэстетичности корпуса. Может быть, это заводы сельскохозяйственных машин или мотоциклов. А может быть, предприятия, на которых изготавливается электротехническое и автомобильное оборудование. Болонья, город в Северной Италии, расположенный на пересечении древних торговых путей с речкой Рено, правым притоком реки По. Прекрасное местоположение. До сей поры болонцы утверждают, что если бы правительство больше заботилось о процветании страны, то столицей Италии была бы, конечно, Болонья…
Сегодня Болонья — полумиллионный город. Важный экономический центр, узел железных дорог и муниципальных противоречий. Здесь после второй мировой войны преобладающим влиянием пользуются левые партии. Сегодня… Впрочем, стоп! Побывать в современной Болонье — дело, конечно, интересное, но наш путь в Болонью вчерашнюю и даже в позавчерашнюю — в 1780 год!..
Давайте оглядимся — 1780 год! Исчезли из поля зрения высотные дома, вокзалы и заводские корпуса. Очистился воздух от автомобильных выхлопов, от мотоциклетной трескотни. Кирпичная стена, окружающая город, с двенадцатью воротами-выходами приобрела монументальность.
Мы идем по узким и кривым улочкам вдоль бесчисленных и, увы, уже обветшавших палаццо XIII и XIV веков — времени расцвета города. Многочисленные портики и аркады, зубчатые стены и башенки, выкрашенные в серый и розоватый цвета, придают окружающему определенный колорит. Улицы ведут к центральной площади, но наша цель — знаменитый Болонский университет. За время своего существования, с XI века, он не раз менял свое местонахождение, так что лучше спросить, как пройти. Благо в студентах на улицах недостатка нет… Итак: «Где находится помещение медицинского факультета?» Как же это будет по-итальянски?..
Вот он! Давайте поднимемся на второй этаж, где в лаборатории практической анатомии синьор профессор Гальвани готовит материал к завтрашним занятиям.
О, да здесь не только препараторская! На столе, на котором Гальвани препарирует лягушек, стоит электрическая машина и ряд лейденских банок. Трещат искры. Диковатого вида студент крутит ручку, а под ножом препаратора в сумасшедшем танце дергаются отрезанные лапки болотных квакух… Но дадим слово самому синьору профессору. В первой части трактата о силах электричества при мышечном движении он пишет:
«Я разрезал и препарировал лягушку и, имея в виду совершенно другое, поместил ее на столе, на котором находилась электрическая машина при полном разобщении от кондуктора последней и довольно большом расстоянии от него. Когда один из моих помощников острием скальпеля случайно очень легко коснулся внутренних бедерных нервов этой лягушки, то немедленно все мышцы конечностей стали так сокращаться, что казались впавшими в сильнейшие тонические судороги. Другой помощник заметил, что это удается тогда, когда из кондуктора машины извлекается искра. Удивленный новым явлением, он тотчас же обратил на него мое внимание, хотя я замышлял совсем другое и был поглощен своими мыслями».
Обнаруженное явление было настолько впечатляющим, что Гальвани решил во что бы то ни стало исследовать его и «пролить свет на то, что было под этим скрыто». Он был убежден, что все дело здесь в электрических искрах. Но если слабая искра электрической машины заставляет лягушачью лапку дергаться, то что должно произойти во время грозы, при блеске молнии?..
Послушные ассистенты синьора профессора тут же отправились к соседнему пруду, откуда черпался материал для экспериментов. Правда, злые языки утверждали, что после демонстрации студентам мясистые лапки частенько шли в кастрюльку, обеспечивая не только духовную пищу достопочтенного синьора профессора и его болезненной супруги… Но чего не говорят люди…
Так или иначе, но к началу грозы на железной ограде балкона лаборатории висела впечатляющая гирлянда лягушачьих лапок, нанизанных на медные проволочки. Долгое, томительное ожидание. Наконец подул ветер. Забарабанил дождь, и блеснула первая молния. Отрезанные лапки исправно дергались, правда, не сильнее, чем в лаборатории, и вовсе не в такт с грозными разрядами небесного электричества. Тем не менее эксперимент удовлетворил Гальвани.
«После успешных опытов во время грозы я пожелал обнаружить действие атмосферного электричества в ясную погоду. Поводом для этого послужило наблюдение, сделанное над заготовленными лапками лягушки, которые, зацепленные за спинной нерв медным крючком, были повешены на железную решетку забора моего сада: лапки содрогались не только во время грозы, но иногда, когда небо было совершенно ясно. Подозревая, что эти явления происходят вследствие изменения атмосферы в течение дня, я предпринял опыты.
В различные часы в продолжение ряда дней я наблюдал нарочно повешенную на заборе лапку, но не обнаружил каких-либо движений в ее мускулах. Наконец, утомленный тщетным ожиданием, я прижал медный крюк, который был продет в спинной мозг, к железной решетке, желая посмотреть, не возникнут ли благодаря этому приему мышечные движения и не обнаружат ли они в чем-нибудь отличия и изменения, смотря по различному состоянию атмосферы и электричества».
Лапка задергалась. Но ее сокращение никак не удавалось соотнести с «переменами в электрическом состоянии атмосферы». Гальвани перенес опыты в помещение. Он укладывал лягушачьи лапки на подставки из разных металлов. В одних случаях сокращения были сильнее, в других — слабее. Он пробовал экспериментировать с деревянной дощечкой в качестве подложки, со стеклом, смолой… Эффект не наблюдался.
Казалось бы, все подталкивало Гальвани к тому, чтобы изучить роль разнородных металлов в обнаруженном явлении. Но он по этому пути не пошел. Анатом и физиолог, он решил, что лягушачьи лапки сами являются не чем иным, как источником электричества, неким подобием лейденской банки, а металлы… Металлы в его понимании были просто проводниками открытого им нового «животного электричества». Гальвани записал: «Это было несколько неожиданно и заставило меня предположить, что электричество находится внутри животного».
Опыты Гальвани повторяли буквально во всех странах. Лягушки гибли тысячами во славу новой науки. «В течение целых тысячелетий хладнокровное племя лягушек беззаботно совершало свой жизненный путь, как его наметила природа, зная только одного врага, господина аиста, да еще, пожалуй, терпя урон от гурманов, которые требовали для себя жертвы в виде пары лягушачьих лапок со всего несметного рода. Но в исходе позапрошлого столетия наступил злосчастный век для лягушек. Злой рок воцарился над ними, и вряд ли когда-либо лягушки от него освободятся. Затравлены, схвачены, замучены, скальпированы, убиты, обезглавлены — но и со смертью не пришел конец их бедствиям. Лягушка стала физическим прибором, отдала себя в распоряжение науки. Срежут ей голову, сдерут кожу, расправят мускулы и проткнут спину проволокой, а она все еще не смеет уйти к месту вечного упокоения; повинуясь приказаниям физиков или физиологов, нервы ее придут в раздражение и мускулы будут сокращаться, пока не высохнет последняя капля „живой воды“. И все это лежит на совести у Алоизо Луиджи Гальвани».
Со временем от лягушачьих лапок экспериментаторы перешли к конечностям кроликов и овец, пробовали действие электричества на ампутированной человеческой ноге. Английский врач из Глазго приложил электроды от батареи лейденских банок к трупу повешенного и воспроизвел у него дыхательное движение грудной клетки. А когда покойник под действием электрического разряда открыл глаза и лицо его стало подергиваться, многие из присутствующих лишились сознания от ужаса.
«Гальвани — воскреситель мертвых!» — кричали заголовки газет. Казалось, оставалось совсем немного до исполнения вековечной мечты человечества. Для этого надо было только тщательно изучить «животное электричество Гальвани», найти его источник в теле и научиться заряжать этот источник, когда он иссякает со смертью.
Сначала Гальвани вел только дневники своих опытов. Лишь через десять лет решился он объединить результаты исследований и выпустил «Комментарий о силах электричества в мускульном движении». Книга вызвала большой интерес среди физиков и врачей, наперебой повторявших описанные опыты. Уже давно было известно, что электрические разряды от машин и лейденских банок вызывают конвульсии у людей, подвергавшихся их ударам. И хотя природа таких явлений оставалась неисследованной, медики-практики широко пользовались «электрической жидкостью» для лечения своих пациентов от всевозможных болезней.
Гальвани сравнивал мышцу с лейденской банкой, предполагая, что ее внешняя и внутренняя части заряжаются противоположным электричеством. Именно потому, что нерв — кондуктор этой банки соединяли с поверхностью мышцы, соответствовавшей внешней обкладке, происходил разряд, результатом которого было сокращение мышцы, думал он.
«Волнение, вызванное появлением книги Гальвани среди физиков, физиологов и врачей, — писал историк науки Дюбуа-Реймонд, — можно сравнить лишь с бурей, появившейся в то же самое время на политическом горизонте Европы. Повсюду, где только имелись лягушки и где можно было раздобыть два куска разнородного металла, всякий хотел собственными глазами убедиться в чудесном воскрешении отрезанных членов».
И вдруг в самый разгар, можно сказать, триумфа гальванизма в итальянском «Физико-медицинском журнале» появляется статья профессора физики Павийского университета Алессандро Вольты, который утверждал, что для объяснения опытов Гальвани не нужно предполагать существование какого-то особенного «животного электричества». Дело совсем не в несчастной лягушке и не в отрезанной ноге. Просто Гальвани, сам того не подозревая, привел во взаимодействие два разных металла. Они и породили электрическую силу. А лягушка послужила только проводником. «Я давно убедился, — писал Вольта в письме к профессору Вассали, — что все действие возникает первоначально вследствие прикосновения металлов к какому-нибудь влажному телу или к самой воде. В силу такого соприкосновения электрический флюид гонится в это влажное тело или в воду от самих металлов, от одного больше, от другого меньше (больше всего от цинка, меньше всего от серебра). При установлении непрерывного сообщения между соответствующими проводниками этот флюид совершает постоянный круговорот. И вот, если в состав этого проводящего круга или в какую-нибудь его часть входят в качестве соединительного звена бедренные нервы лягушки, рассеченной таким образом, что только по одним этим нервам должен пройти весь или почти весь электрический ток, или, если таким звеном является какой-нибудь другой нерв, служивший для движения того или иного члена тела какого-либо другого животного, пока и поскольку такие нервы сохраняют остаток жизнеспособности, то тогда, управляемые такими нервами, мышцы и члены тела начинают сокращаться, как только замыкается цепь проводников и появляется электрический ток; и они сокращаются каждый раз, когда после некоторого перерыва эта цепь снова замыкается».
В этих строчках изложена фактическая идея самого Вольты о новом «металлическом электричестве» как источнике «постоянного кругооборота» электрического флюида, то есть электрического тока, и полностью отрицается гипотеза Гальвани о «животном электричестве».
Вольта был к этому времени довольно известен своими исследованиями газов, а также несколькими выдающимися экспериментальными работами по электричеству. Сначала он, как и все, был убежден в правильности взглядов Гальвани. Но постепенно пришел к выводу, что именно металлы «являются в настоящем смысле слова возбудителями электричества, между тем как нервы играют часто пассивную роль». В это же время он обнаружил, что при гальванических опытах вместо металла можно брать уголь, такой же хороший проводник.
Естественно, что Гальвани не мог оставить такой выпад без внимания. Он ответил тем, что в присутствии свидетелей поставил новые опыты: препарировал лягушек железным ножом, положив их на железную же подставку… Лапки сокращались! «Если это происходит и при одном металле, значит, источник электричества находится в животном!» — утверждали сторонники Гальвани.
«Отнюдь! — возражал Вольта. — Даже единый кусок проволоки нельзя считать абсолютно однородным. В нем могут быть примеси других металлов. Он может быть по-разному по длине закален…»
Вместе с племянником Альдини Гальвани препарировал лягушек стеклянными скальпелями, на стекле. Но лапки под ножом дергались. Разве это не достаточное доказательство?..
Тем временем Вольта показывает и измеряет электричество, которое рождается вообще без участия животных, из одних лишь разнородных металлов…
Весь мир физиков разделился на два лагеря. Одни поддерживали Гальвани, другие — Вольта. И трудно сказать сегодня, чем бы кончился этот спор, поскольку оба физика по-своему были правы. Сегодня мы знаем, что в мускулах животных действительно возникает электричество. Так же как в результате контакта заряжаются разнородные металлы. Однако Гальвани из поединка выбыл.
В 1796 году в Северную Италию под предлогом войны с Австрией вторглись французские войска под командованием генерала Наполеона Бонапарта. Французы предполагали разгромить австро-сардинские войска, двинуться на Австрию и захватить Вену. Италия была им нужна как источник продовольствия, денег и удобный путь на Балканы.
Захватывая территорию, французская администрация перекраивала страну. Солдаты грабили захваченные области, подавляли недовольство народа. Болонья вошла в состав новой Цезальпинской республики. Все профессора университета должны были принести присягу на верность новому правительству. Подавляющее большинство так и сделало. Те же, кто не сумел вовремя «проявить гибкость», были уволены. Остался без работы и Гальвани, который не смог заставить себя принести присягу на верность новому политическому строю. Потеряв за несколько лет до этого жену, брошенный учениками, он остался совсем одиноким и без всяких средств к существованию. Говорили даже, что он терпел нужду и на шестьдесят первом году жизни умер от истощения… От голода, синьоры, от голода — другими словами. И это тоже отнюдь не исключительный случай среди тех, кто весь свой талант, счастье и саму жизнь приносил на алтарь науки во имя общества, во имя людей.
Гальвани ошибался в своих взглядах на «животное электричество», его ошибки исправил Вольта. Означает ли это, что Луиджи Гальвани остался в истории науки примером курьезных заблуждений?.. Ни в коем случае! Итальянский ученый по праву считается одним из основоположников учения об электричестве. И его опыты с «животным электричеством» легли в фундамент нового научного направления — электрофизиологии, изучающей электрические явления в живом организме. Электрические процессы лежат в самой основе жизни. Тут и возбуждение нейронов, например в процессах зрения, и передача нервного импульса, электрические процессы в мозге — энцефалография, и так хорошо знакомое нашему веку электрическое исследование работы сердечной мышцы — электрокардиография… Нет, лягушки болонского профессора, как и павловские собаки, вполне заслужили памятник. А сам Луиджи Гальвани навсегда останется в памяти всего человечества.
Первое слово Алессандро Вольты
Недалеко от Милана, у городка Комо, лежит деревня Камнаго. Здесь находилось родовое имение семейства Вольта. В 1745 году на рассвете в господском доме увидел мир хилый младенец, нареченный отцом капелланом именем Алессандро.
У аристократической четы, состоящей из Филиппо Вольты и Маддалены де Конти Инзаи было семь детей. Алессандро считался самым «неудачным». Он был слаб здоровьем и сильно отставал от своих сверстников в развитии. Кроме того, он был упрям. Отданный на воспитание почтенной женщине — супруге мастера по физическим приборам, мальчик до четырех лет не произносил ни слова. И окружающие уже приготовились считать его немым. И вдруг маленький Алессандро заговорил…
Некоторые биографы уверяют, что первым словом, которое он выпалил, было отрицание — «НЕТ!». Ну что ж, «Se non е vero, е ben trovato» — как говорят сами итальянцы[3].
По-видимому, в доме своей ранней наставницы будущий физик познакомился впервые и с физической аппаратурой. И как это часто бывает, впечатления детства определили направление всей жизни. Ему еще не было и восемнадцати лет, когда, поставив ряд опытов по электричеству, он пришел к выводу, что многие из результатов можно объяснить законом Ньютона. Окрыленный этой идеей, он написал письмо «самому аббату Нолле» во Францию. Тот ответил, одобряя начинания молодого человека.
Это одобрение послужило немалым стимулом для Вольты. В двадцать четыре года он пишет диссертацию, основанием которой послужили опыты с лейденской банкой. А через десять лет становится профессором физики в университете города Павии.
Вольта увлекается экспериментированием. Недюжинный изобретательский талант позволяет ему совершенствовать свои и чужие «придумки», доводить их до такого изящества, которое вызывало восхищение бедного на физические приборы времени. Так, усовершенствуя смоляной прибор Эпинуса, предназначенный для изучения электрической индукции, Вольта изобрел электрофор, что означало в буквальном переводе «электроносец». Сегодня может показаться удивительным, насколько он прост. Смоляная лепешка и металлический диск со стеклянной ручкой. Да еще нужна была кошка или, на худой конец, ее шкура. Шкурой натиралась смоляная лепешка и заряжалась при этом отрицательно. В поднесенном медном диске, на стороне, обращенной к смоле, возникало в результате индукции положительное электричество. На стороне противоположной — отрицательное. Этот излишек отрицательного электричества можно было легко отвести в землю. И диск полностью оказывался заряженным положительно. Теперь этот заряд можно было переносить и переводить на другие тела или отправлять в лейденские банки. А сам диск, приблизив снова к натертой смоле, вновь зарядить…
Нехитрый прибор вызвал восторг среди экспериментаторов. Многие пытались произвести его усовершенствование и дальше. И в конце концов электрофор Вольты дал в руки исследователей электрофорную машину. Примерно ту самую, какие по сей день стоят в школьных физических кабинетах.
А Вольта тем временем изобретает очень чувствительный соломенный электроскоп и делает ряд выдающихся изобретений в области химии. Все обширней становится его переписка. Вольта много путешествует, знакомится с выдающимися учеными своего времени. Научные общества наперебой избирают его своим членом. Еще бы — богатый, знатный, хорошо образованный, еще в детстве без труда получивший все то, что выходцам из низов приходилось выбивать себе в зрелом возрасте, тратя на это и силы, и время.
Современники утверждают, что Вольта был высок ростом и хорош собой. Правильное античное лицо его освещалось спокойным взглядом красивых глаз. Говорил он просто и ясно. При необходимости легко переходил к красноречию, но оставался всегда скромным и делал это необыкновенно изящно. Его речь и манера говорить отличались искренностью и убеждали собеседников даже раньше, чем те вникали в содержание его слов. В Фернее он беседовал с Вольтером, в Англии виделся с Пристли, во Франции — с Лавуазье и Лапласом…
Трактат Гальвани поразил Алессандро. И первое время, проверяя все описанные соотечественником опыты, Вольта был вполне на стороне болонского профессора. Однако большой собственный опыт экспериментирования мешал ему полностью признать позиции Гальвани. А тут еще как-то попалась ему книжка швейцарского врача Жан-Жака Зульцера, который писал: «Если два куска металла, один оловянный, другой серебряный, соединить таким образом, чтобы оба края их были на одной плоскости, и если приложить их к языку, то в последнем будет ощущаться некоторый вкус, довольно похожий на вкус железного купороса, в то же время каждый кусок металла в отдельности не дает и следа этого вкуса…»
Но ведь такой же вкус производит и действие электричества. Это Вольта знал хорошо.
И вот он ставит «решающий эксперимент»: четырех своих помощников он водружает на смолу, чтобы изолировать от земли. Первому из стоящих он велит взять в мокрую правую руку цинковую пластинку, а левой коснуться языка своего соседа. Тот, в свою очередь, должен был мокрым пальцем коснуться глазного яблока следующего. Третий и четвертый держали в руках свежепрепарированную лягушку. И кроме того, у четвертого в свободной мокрой руке была зажата серебряная пластинка… Когда серебро касалось цинка, язык второго ощущал кислый вкус, в глазу у третьего вспыхивало световое пятно, лапки лягушки между третьим и четвертым начинали дергаться…
Прекрасный результат! Разве не доказывает он, что никакого «животного электричества» не существует? Все дело в контакте разнородных металлов…
Старая истина гласит, что если своего идейного противника нельзя убедить, то надо постараться его пережить. Вольта так и сделал. После смерти Гальвани количество сторонников «животного электричества» резко пошло на убыль. Но главный удар по гальванизму был впереди.
Предоставим слово современнику той поры — известному французскому ученому Араго, написавшему биографию Вольты: «В начале 1800 года вследствие теоретических соображений знаменитый профессор придумал составить длинный столб из кружков: медцого цинкового и мокрого суконного. Чего ожидать заранее от такого столба? Это собрание, странное и, по-видимому, бездействующее, этот столб из разнородных металлов, разделенных небольшим количеством жидкости, составляет снаряд, чуднее которого никогда не изобретал человек, не исключая даже телескопа и паровой машины». Эти слова не были преувеличением. Я уже рассказывал, какое впечатление на ученых произвело изобретение лейденских банок. «Но банка действует только один раз, — продолжает Араго, — после каждого удара ее надобно снова заряжать; столб же, напротив, действует беспрерывно. Итак, столб есть лейденская банка, сама собою заряжающаяся… Я осмелился бы сказать, что вольтов столб есть чудеснейший снаряд из всех человеческих изобретений». Так заканчивает Араго свое описание.
20 марта 1800 года профессор естественной философии Алессандро Вольта отправил письмо президенту Лондонского королевского общества сэру Джозефу Бэнксу, баронету… Путь от Павии до Лондона неблизкий, а почтовые кареты по дорогам Европы катились неспешно. Поэтому точно сказать, когда послание прибыло в столицу Британского королевства, трудно. Но в конце концов сэр Джозеф получил запечатанный пакет, вскрыл его и прочитал. Письмо было озаглавлено: «Об электричестве, возбуждаемом простым соприкосновением различных проводящих веществ», а главным его содержанием являлось описание «…прибора, сходного по эффектам, т. е. по сотрясению, вызываемому в руках и т. д., с лейденскими банками или с такими электрическими слабо заряженными, но беспрерывно действующими батареями, где бы заряд после каждого взрыва восстанавливался сам собой…».
Хотя президент общества являлся доктором юридических наук и членом королевского тайного совета, а главным событием в его жизни было кругосветное путешествие, совершенное с капитаном Куком, и главной заслугой считалось основание Африканского общества, он не был чужд и проблем естествознания, волновавших его современников.
Не очень разобравшись в излагаемых Вольтой проблемах, сэр Джозеф показал письмо друзьям — лондонскому врачу сэру Антони Карлейлю и бывшему чиновнику Ост-Индской компании, инженеру и любителю естествознания Уильяму Никольсону…
Весна способствует осуществлению творческих планов. 30 апреля Никольсон и Карлейль соорудили по описаниям Вольты столб из семнадцати пластинок и сразу же принялись за опыты. Все получалось так, как и писал итальянский физик… И тут произошло событие…
Однажды, налив каплю воды в углубление цинковой пластинки для осуществления лучшего контакта с проволокой, экспериментаторы заметили, что, когда цепь замыкалась, в воде появлялись пузырьки. Никольсон понюхал и сказал, что похоже на запах водорода. Он взял стеклянную трубку, налил в нее свежей ключевой воды и заткнул пробками, сквозь которые пропустил латунные проволоки. Затем присоединил обе проволоки к противоположным полюсам вольтова столба. И тотчас от конца одной из проволок побежали в воде пузырьки газа, а вторая проволочка на глазах стала темнеть и покрываться налетом. Непонятно, но интересно. Джентльмены смешали полученный газ с равным количеством воздуха и подожгли. Раздался взрыв… Водород! Безусловно водород. Ведь это один из газов, входящих в состав воды.
26 июня того же года, несмотря на лето, сэр Джозеф Бэнкс на собрании членов общества огласил письмо Вольты. А Карлейль с Никольсоном продемонстрировали опыт по разложению воды. Их работа произвела сенсацию. Ученые и до того знали о возможности разложения воды электрической искрой. Но здесь процесс шел непрерывно!.. А сделать «снаряд» Вольты было так просто!..
С быстротой молнии разлетелась новость по научным кругам Европы. Все уважающие себя физики принялись за сооружение вольтовых столбов и за их испытание. Еще бы, такая новость — «снаряд» итальянского изобретателя непрерывно вырабатывал электричество, совсем не так, как это делали электрические машины. Там его нужно было накапливать, а здесь оно тихо текло и текло непрерывным потоком.
В сентябре того же года мюнхенский физик Иоганн Вильгельм Риттер сообщил, что выделил из воды оба газа по отдельности: кислород и водород. И что из медного купороса с помощью итальянского снаряда легко осаждается медь.
Вильям Крюйкшенк, соорудив батарею из шестидесяти пар пластин, сообщил о разложении многих растворов солей с выделением металлов на отрицательном полюсе…
20 октября 1800 года князь Дмитрий Алексеевич Голицын, чрезвычайный русский посланник в Гааге, написал на имя президента Санкт-Петербургской академии наук Генриха Людвига Николаи письмо. В нем он сообщал: «Гальванисты открыли весьма любопытное электрическое явление. Цинковые и серебряные пластинки, положенные попеременно друг на друга и отделенные друг от друга слегка смоченной фланелью, производят толчок и даже электрические искры». Сам Николаи был далек от физических интересов. Но письмо нашло своего адресата. Потому что ровно через год произошло в русской столице событие, о котором сохранилась запись в «Санкт-Петербургских ведомостях» за 1 октября 1801 года. В них сообщалось, что на заседании конференции Академии наук вице-президент Берг-коллегии и член Лондонского королевского общества граф Аполлос Аполлосович Мусин-Пушкин, известный своими трудами в области химии, минералогии и физики, показал немало «куриозных опытов с вольтовым столбцом, состоявшим из 150 элементов». По тем временам это была весьма внушительная батарея. Присутствовавшие немало дивились искусству экспериментатора…
Осенью 1800 года из Парижа прибыло приглашение профессору Алессандро Вольте прочесть курс лекций перед виднейшими физиками Франции. И Вольта, весьма сочувственно относившийся к политическим взглядам Бонапарта, немедленно решил ехать. Путь от Павии до Парижа не слишком длинен. Но эта поездка превратилась в сплошной триумф. Каждый город, в который он приезжал, стремился выразить ему свое внимание. Всех ученых волновал тогда вопрос: можно ли считать эффекты, производимые вольтовым столбом, собственно электрическими? Или, может быть, следует предположить существование еще одного нового вида «тихого электричества» от вольтова столба?
В Женеве в Обществе естествоиспытателей приезжий прочитал доклад о «тождестве гальванизма с обыкновенным электричеством». «Обыкновенным» в ту пору называли электричество, получаемое в процессе трения. А ведь были еще опыты с турмалином. Было «животное электричество» морских скатов и американских угрей, «атмосферное электричество». И теперь еще этот странный вольтов столб… Тут было от чего прийти в сомнение!
В Парижской академии наук создали специальную комиссию по изучению гальванизма. В нее вошли самые известные ученые. «Бессмертные» — так называли французы своих академиков — соорудили по описаниям вольтов столб и повторили все опыты итальянского исследователя перед его приездом. Погрузив один из концов «электродвигательного прибора» в воду и присоединив к другому его концу металлическую проволоку, академики совали руку в чашку с водой и одновременно прикладывали второй электрод к языку, к веку, к кончику носа или на лоб. В момент замыкания цепи следовал такой удар, что некоторые едва не лишались языка. Но… наука требует жертв. Ощущения были столь неожиданными! При наложении проволоки на веко создавалось впечатление вспышки. А когда два электрода от противоположных полюсов батареи вводили в уши, в голове раздавался шум… «Это было нечто вроде треска или лопанья, как если бы кипело какое-то масло или вязкое вещество», — писал сам Вольта. Он предполагал, что в дальнейшем его прибор сможет послужить медикам для излечения болезней. Другого применения гальваническому электричеству он не видел.
Четыре недели понадобилось триумфатору, чтобы добраться до Парижа. Встреча со знаменитостями превзошла все ожидания: было устроено торжественное заседание Академической комиссии, впрочем, правильнее ее называть специальной комиссией Национального института, поскольку после революции национальный конвент постановил упразднить все академии, «как учреждения аристократического характера, позорящие науки и ученых». И 25 октября 1795 года Директория учредила Национальный институт наук и искусств, объединивший под своей эгидой представителей всех отраслей знаний. Членом института состоял и первый консул Бонапарт, который весьма гордился этим званием…
Так вот, после заседания вышеупомянутой специальной комиссии, на котором Вольта также читал доклад о тождестве «обыкновенного электричества» и гальванизма, присутствовал Бонапарт. Он увидел в библиотеке института лавровый венок с надписью: «Великому Вольтеру», снял его, стер окончание так, что получилась надпись: «Великому Вольте», и протянул венок ученому…
Не было, кажется, таких наград, которые не получил бы в Париже итальянский исследователь. Наполеон оказывал ему такое подчеркнутое внимание, что это вызвало немалую ревность со стороны французских коллег. И Вольта, умный и дальновидный Вольта, заспешил домой. Он упорно отказывался от всех лестных предложений, в том числе и от предложения стать членом Санкт-Петербургской императорской академии наук. И торопил отъезд…
В 1815 году он перешел в Падуанский университет, в котором принял пост директора философского факультета.
Последние десятилетия своей жизни Вольта прожил скромно. Ничего существенно нового для науки не сделал. В 1819 году вышел в отставку и удалился на покой в родной Комо. Там и протекли последние годы его жизни.
Вольта был не особенно силен в области теории. Тем не менее причины, вызывающие электрический ток в вольтовом столбе, он должен был объяснить. И он выдвинул так называемую контактную теорию, которая утверждала, что электрический ток возбуждается в результате контакта металлов. Достаточно одного лишь соприкосновения разнородных металлов, утверждал Вольта, чтобы родилась «электродвигательная сила», которая разделяет соединенные положительное и отрицательное электричества и гонит их в виде токов в противоположных направлениях…
Многие ученые видели недостатки этой слабой гипотезы. Многие пытались доказать, что электрический ток возбуждается в результате химических процессов в вольтовом столбе. Но должно было пройти более тридцати лет, понадобился приход в науку Фарадея, чтобы в этот вопрос была внесена ясность. Однако к тому времени итальянский исследователь Алессандро Вольта уже семь лет покоился в фамильном склепе на кладбище того же города, где и увидел свет.
«Огромная наипаче» батарея Василия Петрова
Профессор физики Петербургской медико-хирургической академии Василий Владимирович Петров возвращался с заседания конференции домой затемно. Недалекий сегодня путь от Васильевского острова до Выборгской стороны был в те годы сложным и долгим путешествием… Впрочем, дальняя дорога тоже имела свои преимущества. Под ровный цокот копыт и потряхивание извозчичьих дрожек хорошо думалось. И к тому времени, когда под колесами экипажа застучали доски наплавного моста, ведущего на Выборгскую сторону, и заплескалась вода, Петров пришел к мысли о совершенной необходимости ходатайствовать перед своим начальством о постройке вольтова столба для нужд физического кабинета. Это было детище, созданное им самим из ничего и всей жизнью своею и славою обязанное ему, Василию Петрову…
«Никто не знает, как он выглядел. Его портретов не осталось» — так начинает свое эссе «Размышление перед портретом, которого нет» писатель Даниил Гранин. «Не сохранилось его писем, дневников, его личных вещей. Нет воспоминаний о нем. Есть только его труды. Есть его послужной список, всякие докладные записки, отчеты, отзывы — то, что положено хранить в архивах, тот прерывистый служебный след, какой остается от каждого служивого человека».
Это он, Василий Петров, создал небывалый до того физический кабинет для исследований при Медико-хирургической академии. Он написал замечательное сочинение, посвященное доказательству несостоятельности учения о флогистоне, — «Собрание физико-химических новых опытов и наблюдений». И, не имея систематического образования, к сорока годам прошел путь от провинциального учителя до столичного профессора. Его имя, по выражению «Северного вестника» — петербургского журнала, было известно просвещенной публике, «ибо… он беспрестанно возвышает физику своими открытиями…».
Да, батарея была Петрову необходима! Он даже знал, кому можно было заказать ее изготовление. Существовало в столице механическое заведение некоего Медхера, выдававшего себя за англичанина и поставлявшего физические приборы любителям и научным учреждениям Санкт-Петербурга. Оставалось добиться согласия начальства…
Вряд ли стоит фантазировать, представляя себе хлопоты Петрова и его войну с администрацией. Все это, скорее всего, немногим отличалось от хлопот, требуемых и в наши дни для аналогичных целей. Важно, что в конце концов на длинном лабораторном столе физического кабинета водворился ящик с «вольтовым столбцом», составленным из шестидесяти элементов… Правда, с первых же экспериментов Петрова охватывает чувство разочарования. Он мог только повторять уже известные опыты Вольты и других экспериментаторов. К этому времени «итальянские снаряды» появились в домах и частных лабораториях множества любителей науки. И каждый день приносил сообщения о новых открытиях.
С помощью своей батареи Петров повторил опыты по разложению воды, осадил медь из медного купороса. Попробовал произвести электролиз винного спирта. Ну а дальше? Может быть, если бы удалось построить более мощную батарею, электрическая сила ее расщепила бы и другие вещества? И тогда он, Василий Петров, узнает, из чего они состоят…
Так возникла у него мысль о другой батарее, значительно более мощной, чем у Медхера. И Василий Владимирович начинает претворять мысль в дело. По делам организации физического кабинета Медико-хирургической академии ему пришлось поехать в Москву. Там, в Лефортове, на берегу Яузы, в усадьбе Бутурлина, находилась музейная коллекция редких физических приборов, собранных ее владельцем во время поездок по Европе. Хозяина усадьбы уже не было в живых. Наследники же запросили 28 тысяч рублей. Сумма огромная — не по средствам академии. Но как хотелось-то… Петров предпринимает титанические усилия и добивается санкции самого императора Александра I на покупку.
А в это время в Санкт-Петербурге по записке Петрова перестраивается здание для физического кабинета. В нем должны быть несгораемый пол и плавильная печь, темная комната для оптических экспериментов и приспособления на потолке для подвешивания предметов на шелковых нитях. Он требовал устройства вентилятора в особом «театре для физики» и ледника, балкона для проведения опытов на открытом воздухе и комнаты с эллиптическим водоемом… Короче говоря, это должен был быть кабинет, предназначенный не для хранения научной аппаратуры, а для исследовательской работы. Такого новшества еще не знала отечественная наука.
Поездка в Москву оказалась полезной и для работы над вольтовым столбом. Здесь цинковые кружки стоили более чем вдвое дешевле, чем на берегах Невы. А поскольку платить приходилось из собственных средств… медные кружки Петров заказал уже дома. Обилие забот помогало сдерживать нетерпение. Но вот все, кажется, готово. Плотники сколотили и принесли четыре десятифутовых ящика, общей длиной в 12 метров. Петров сам покрыл их внутренние стенки сургучным лаком. Сюда он один за другим уложил 4200 металлических кружков, проложив между каждой цинково-медной парой бумагу, пропитанную нашатырем. 2100 элементов! Такой батареи не было еще ни у кого из исследователей во всем мире!
Сегодня может показаться: подумаешь изобретение — увеличить количество элементов гальванической батареи с шестидесяти до двух с лишним тысяч!.. Всего-то навсего увеличить количество… Не торопитесь с выводами. Вспомните, что Василий Петров был совсем один. У него не было помощников. Вспомните и о том, что по сегодняшним представлениям напряжение его батареи равнялось примерно 1700 вольтам. Она могла давать довольно большой ток и… быть опасной. Ведь в ту пору почти не было никаких измерительных приборов, кроме ненадежных электроскопов да собственных пальцев экспериментатора. Петров срезал с них кожу, чтобы усилить чувствительность. А тут — 1700 вольт!..
Знал ли он о грозной силе, дремлющей в длинных ящиках, поставленных на деревянный лабораторный стол? Может быть, и не знал. Но интуиция ученого-экспериментатора должна была подсказать ему о ней.
Все приходилось делать своими руками. Он «свивал серебряную книпель для получения снурка в одну лишь линию толщиной», подбирал проводники и покрывал их изобретенной тут же изоляцией из сургучного лака с воском.
Еще не было понятия о напряжении и токе, никто не говорил о сопротивлении. Ни Ом, ни Кирхгоф еще не вывели своих фундаментальных законов, а Петров опытным путем пришел к параллельному соединению сначала проводников, а потом и потребителей «электрической силы».
Он произвел электролиз серного и селитряного эфиров, мятного и гвоздичного масел и обнаружил в составе всех этих жидкостей кислород, потому что электроды батареи при проведении опытов окислялись. Под стеклянным колпаком воздушного насоса он наблюдал явление тлеющего разряда. А погрузив электроды в масло, следил за возникновением искр, которых никогда не бывало в воде. Не значит ли это, что масло хуже проводит электрическую жидкость?.. И Петров вводит термин «электрическое сопротивление».
Он задумывает целую серию опытов по исследованию проводимости различных веществ. Холодно в физическом кабинете. Зябнут пальцы, замерзает вода в стаканах. Прекрасно! Он исследует проводимость льда. И попутно обнаруживает, что в холодном помещении сила батареи иссякает быстрее. Но зато потом восстанавливается в тепле. Он испытывает угольные электроды.
Уголь — традиционный материал в физических исследованиях. Ничего удивительного. Но…
Весной 1802 года, поздним вечером, когда глаза уже устали от беспрерывного мерцания свечей и просятся на отдых, в темной лаборатории под руками ученого вспыхнуло солнце!
«Если на стеклянную плитку или скамеечку со стеклянными ножками будут положены два или три древесных угля, способные для произведения светоносных явлений посредством гальвани-вольтовской жидкости, и если потом металлическими изолированными направлениями, сообщенными с обоими полюсами огромной батареи, приближать оные один к другому на расстояние от одной до трех линий, то является между ними весьма яркий, белого цвета свет или пламя, от котораго оныя угли скорее или медлительнее загораются и от котораго темный покой довольно ясно освещен быть может».
Одна — три линии — это 2,5–7,5 миллиметров. Расстояние пустячное, а ослепительное пламя, вспыхнув, раздулось солнечным лучом, зашипело и ударило в темные окна, вызвав страх у случайного прохожего. Что за свет? Откуда свет? Почему «гальвани-вольтовская жидкость» из батареи превращается в огонь?.. Все эти вопросы, несомненно, обступили первооткрывателя электрической дуги, потребовали своего объяснения. А что мог ответить на них ученый? Нам сегодня может показаться: подумаешь — открытие! Батарея под руками, нужно только сдвинуть угли… Жестокое заблуждение! Во-первых, «огромная наипаче» батарея была хоть и велика, но очень ненадежна. Во-вторых, угли — обыкновенные древесные угли — далеко не лучшие электроды для дуги. И в-третьих, наконец, сама дуга была очень капризным явлением. Чтобы заставить ее гореть от первой проскочившей искры, нужно было обладать величайшим мастерством экспериментатора.
Первым быть всегда и везде сложно. Но делать первый шаг вперед не в альпинистском походе, не на летних каникулах, а в науке, опережая все человечество, не в пример труднее. Не забудьте, пожалуйста, что происходило все то, о чем я сейчас пишу, в век свечи и лучины, когда электрические опыты рассматривались как «куриозные явления», не имевшие в большинстве своем никакого объяснения.
Открытие Петрова не привлекло большого внимания. А описание опыта, изложенное в «Известиях Академии» на русском языке, скорее всего, осталось неизвестным большинству европейских ученых… Совсем иная судьба у повторившегося открытия той же дуги в Англии. Восемь лет спустя очень удачливый и, безусловно, талантливый ученый Гемфри Деви, чьим учеником потом станет Майкл Фарадей, независимо от Василия Петрова обнаружил то же явление и продемонстрировал его коллегам по Лондонскому королевскому обществу. Вот тут недостатка во внимании и в восхищении не было…
В характере Василия Владимировича Петрова поражает не только бескорыстие, но и полнейшее отсутствие всякого тщеславия — черты весьма распространенной для его времени. А он, узнав о повторении своего открытия Деви, ни словом даже не обмолвился о приоритете. Может быть, он худо владел иностранными языками и не мог свободно изъясняться? Отнюдь. Современники утверждают, что Петров одинаково хорошо владел латынью, немецким, английским и французским языками — читал, писал и говорил. Правда, иноземцев, как и Ломоносов, Василий Владимирович не жаловал, больно много их было вокруг в столице, да все с привилегиями, да все хотели, чтобы их считали умнее… Может быть, поэтому все свои статьи писал он только на русском языке. И его труд «Известия о гальвани-вольтовских опытах, которые производил профессор физики Василий Петров, посредством огромной наипаче батареи, состоявшей иногда из 4200 медных и цинковых кружков и находящейся при Санкт-Петербургской медико-хирургической академии» явился едва ли не первой научной работой по электричеству, написанной на русском языке.
Петров был ученым-профессионалом, и вся его жизнь, все его интересы связывались с наукой и с научной деятельностью. Я думаю, что был он чужд мизантропии — свойству, в общем-то, чуждому русскому характеру. И наверное, втайне страдал, наблюдая безразличие окружающих к трудам своим. Не зря же в конце описания опытов поставил он скромную, но весьма знаменательную фразу: «Я надеюсь, что просвещенные и беспристрастные физики, по крайней мере некогда, согласятся отдать трудам моим ту справедливость, которую важность сих последних опытов заслуживает…»
Может быть, для того, чтобы лучше представить себе фигуру Василия Владимировича Петрова, замечательного русского ученого, о жизни которого сохранилось, к сожалению, немного сведений, было бы целесообразно проследить хронологию дат и послужного списка? Я постарался собрать все, что было можно. Взгляните…
19 июня 1761 года в городе Обояни (ныне Курской области) в семье приходского священника родился сын, нареченный Василием. Обученный грамоте и счету дома, был он отдан в церковную школу, где скоро обнаружил удивительные способности и большую любознательность. По совету друзей родители определили мальчика учиться дальше в духовной школе повышенного типа. То был так называемый Харьковский Коллегиум. Однако, почему-то не закончив учебы, в 1785 году переехал Василий в Санкт-Петербург, где вдруг оказался среди казеннокоштных слушателей учительской семинарии. Ему уже немало лет — двадцать пятый год, время зрелости человека, а он все учится. Правда, учится превосходно. Он был человеком, которому учеба доставляла удовольствие. Получать знания, видеть с каждым днем дальше и дальше — может ли быть наслаждение выше этого? Пожалуй, такое свойство характера — одно из непременнейших для будущего ученого.
В 1788 году комиссия по народному просвещению, отбирая среди неокончивших курс, но успевающих семинаристов кандидатов в учителя для горных училищ Урала и Алтая, предложила поехать в Барнаул и Василию Петрову. Он согласился и подписал договор на три года. Незаметно летело время в горной школе при Колыванско-Воскресенских заводах. Учитель Петров вел математику, русский и латинский языки и наставником оказался превосходным. Аттестация его была настолько блестящей, что по окончании договорного срока в 1791 году В. В. Петров получает назначение в Санкт-Петербург преподавателем математики и русского языка в инженерное училище Измайловского полка. По-видимому, несмотря на рутинную обстановку в самодержавной России, министерство народного просвещения держало учителей в поле своего зрения. И лучших переводило в столицу.
В Петербурге Петров не ударил лицом в грязь. Слава о нем как о прекрасном лекторе быстро распространяется в городе. А в 1793 году Санкт-Петербургская медицинская коллегия приглашает его преподавать физику и математику в медико-хирургическом училище при военно-сухопутном госпитале. Петров соглашается, и тут его дарования педагога и исследователя разворачиваются в полную силу. Он задумывает создать физический кабинет, подобного которому не существовало в России. Доброе начинание пришлось ко времени.
В 1795 году училище преобразуют в Медико-хирургическую академию. За заслуги свои в области преподавания, а также в качестве аванса за будущие успехи Василий Владимирович удостоен звания экстраординарного профессора вновь созданной академии. Пока строится здание физического кабинета, Петров ездит в Москву, собирает по домам любителей физические приборы, вывезенные из-за границы. В промежутках между хлопотами он ставит опыты, описывает их. В основном это пока опыты по химии. Энергия Петрова, его деловая хватка, радение об отечественной науке производили впечатление. Он становился заметной фигурой на научном фоне столицы, представленном в ту пору в основном иностранцами. Однако до завоевания окончательного и прочного положения в науке еще далеко.
В 1801 году выходит в свет первый научный труд В. В. Петрова: «Собрание физико-химических новых опытов и наблюдений». Василий Владимирович сразу и безоговорочно примкнул в химии к прогрессивной теории горения Лавуазье, выступив против флогистона. Особенное внимание в это время он уделяет явлению люминесценции. Холодное свечение тел и веществ представлялось непонятным. И тайна холодного света заинтересовала ученого.
Его книга привлекла внимание научной общественности. Он получил звание ординарного профессора и был избран членом-корреспондентом Медико-хирургической академии.
Экспериментальная физика и химия имеют ту особенность, что человек, увлекшийся опытами, уже, как правило, не в состоянии их бросить. Петрову постоянно не хватало средств. Увы, эксперименты стоили дорого, а доходы профессора Медико-хирургической академии оставляли желать большего.
В 1802 году В. В. Петров начинает преподавать во Втором кадетском корпусе. По-видимому, именно в это время он знакомится с опытами Гальвани и Вольты, читает их описания и задумывает повторить.
В 1803 году из печати выходит книга В. В. Петрова «Известия о гальвани-вольтовских опытах…».
В 1804 году выходит в свет третий труд В. В. Петрова — «Новые электрические опыты».
В 1807 году, едва ли не вопреки старейшему академику Л. Ю. Крафту, занимавшему единственную штатную должность на кафедре физики, Петров избирается адъюнктом Академии наук с обязанностью вести записи метеорологических наблюдений и издавать их, а также заниматься реорганизацией физического кабинета.
В 1809 году Петров избран экстраординарным академиком Санкт-Петербургской академии наук, а также академиком Медико-хирургической академии.
В 1810 году Эрлангенское физико-математическое общество в Германии избирает Петрова своим почетным членом.
В 1817 году он становится ординарным академиком С.-Петербургской императорской академии наук. К сожалению, именно в эти годы материальное положение академии значительно ухудшается. Немилость нового президента Уварова сводит все усилия Петрова улучшить состояние дел физического кабинета к нулю.
В 1826 году происходит резкое столкновение Василия Владимировича с вновь избранным академиком Е. И. Парротом, незаслуженно обвиняющим Петрова в запущенном состоянии физического кабинета… И Петров отходит от академических дел. В это же время он начинает слепнуть.
В 1832 году, после операции катаракты, он возвращается было к работе, но… «сверх всякого чаяния».
В 1833 году, в феврале месяце, уволен на пенсию с содержанием 5000 рублей в год. Петрову шел 72-й год…
22 июля 1834 года академик В. В. Петров скончался. Он похоронен на Смоленском православном кладбище. На надгробном камне надпись: «…вся жизнь прекрасная его прошла в трудах неутомимо…»
Таким был путь самородного таланта и выдающегося самоучки Василия Владимировича Петрова, работы которого намного опередили свое время. Фактически не имея систематического образования, он стал одним из самых выдающихся людей своего времени, проделав путь от провинциального учителя до академика.
Его жизнь началась при Екатерине II. Он жил в период Великой французской революции, в условиях нелегкого правления Павла I, вступления на престол Александра I и Отечественной войны 1812 года. В академии шла реорганизация, сменялись президенты. В его жизни, наверное, было немало споров и ссор с иностранцами, которых было слишком много в нашей Академии наук в ту пору, было немало несправедливостей. Но главным в ней всегда оставалась работа, с ее озарениями и наслаждением от научных удач. По отзывам современников, Петров был не только великолепным лектором, но и талантливым учителем, профессором-руководителем. Он оставил после себя учеников, ставших гордостью нашей науки. Сам же Василий Владимирович по праву считается первым русским электротехником и примером для тех, кто идет нелегким путем служения науке и своему народу.
«Электрические» работы в России
Работы Василия Владимировича Петрова побудили многих русских исследователей обратиться к опытам с электричеством. Одна за другой в печати появляются интересные работы. Тут и диссертация Александра Воинова о молнии и громе, и рассуждение Василия Телепнева «о способах возбуждения электричества в телах», и компиляционный труд Афанасия Стойковича «О соломенных и разных других отводах молнии и града». Были работы и других авторов. Не все они оказывались равноценными. Немало в них встречалось наивных утверждений и непрофессиональных выводов. Но уже само обилие работ говорит о том, что передовая русская научная мысль начала XIX века шла в ногу с изысканиями европейских ученых.
В 1803 году в Санкт-Петербурге из-под печатного пресса выходит и еще одна очень любопытная книга, озаглавленная «Краткия и на опыте основанный замечания об електрицизме и о способности електрических махин к помоганию от различных болезней», принадлежащая перу первого русского агронома и писателя Андрея Тимофеевича Болотова.
Эту работу можно еще вполне отнести к «догальваническому» и «до-вольтовскому» периоду. Болотову было в ту пору уже 65 лет. Познакомившись с действием лейденской банки, он увлекся идеей лечения различных болезней с помощью электрического «потрясения». Это был едва ли не последний отголосок всеобщего увлечения лечением электричеством, которое переживала Европа в середине XVIII столетия. Тогда врачи ожидали от новых методов лечения чуда.
Идея применения электричества против нервных болезней уходит в глубокую древность. Есть сведения, что и врачи римской эпохи не были чужды мнения о полезности применения ударов животного электричества. Они заставляли больных людей, особенно страдающих параличом, прикасаться к рыбам, которые производили удар, заставляющий сокращаться мышцы. При этом никто, скорее всего, не понимал причин получаемого эффекта. Впервые предположение об электрическом характере этого действия скатов на человека и на другие живые существа возникло примерно около середины XVII века. В то же время европейские путешественники познакомились еще с одним видом рыб — с электрическим угрем, обитавшим в американских реках. Но только через сто лет высказанные предположения были доказаны исследованиями Уолша, который описал электрический орган ската, помещавшийся между головой и грудным плавником.
Если в середине XVIII столетия многие видели в электричестве панацею от всех болезней, то по прошествии полувека мода на него прошла. И работа Болотова внимания на себя не обратила. С работами В. В. Петрова Болотов, скорее всего, знаком не был.
Можно отметить, что в своей работе Андрей Тимофеевич большое внимание уделяет построению «електрических махин вообще и устроению простейших особенно». Он дает конструкцию своей электрической машины, получающей электричество трением, подробно описывает ее, «чтобы в случае оказавшейся полезности можно было по примеру моему многим и у себя дома, без прибежища к махинистам, а при помощи простейших мастеровых, как, например, столяра и слесаря, их делать и без больших издержек снабжать себя оными».
В 1818 году основатель Харьковского университета Василий Назарович Каразин, человек беспокойного просветительского склада характера и выдающийся общественный деятель, написал мемуар «О возможности приложить электрическую силу верхних слоев атмосферы к потребностям человека».
Он предлагал поднимать на аэростатах «электроатмосферные снаряды», которые собирали бы там электричество и доставляли его на землю для практического использования.
В ту пору Каразин жил у себя в поместье Кручик в Харьковской губернии, где имел прекрасную библиотеку и занимался, со свойственной ему страстностью и энергией, научными занятиями и опытами. У него в имении были оборудованы химическая лаборатория и метеорологическая станция, на которой он в течение десятков лет вел наблюдения. Тут же рядом располагалось опытное поле, с делянками, засеянными различными сортами пшениц. Вообще надо сказать, это был удивительный, интереснейший человек, каких немало в русской истории. Жизнь его — настоящий роман…
Понимая, как нужны удобрения для повышения урожайности почв, Каразин задумался над способом извлечения азотистых соединений из воздуха электрическим путем. Он хорошо представлял себе ничтожность силы существующих источников — вольтовых столбов. И посему решил поставить на службу человеку молнию.
Составив свой проект, Каразин подал его на высочайшее рассмотрение. Бумаги попали на отзыв в Академию наук. Там должным порядком они прошли рецензирование. Проект Каразина рассмотрели академики: Фус, Шуман, Шуберт и Петров. Ни один немец не нашел в поданных предложениях ничего достойного внимания. И лишь Петров написал положительный отзыв…
К сожалению, ни наука, ни тем более техника не готовы были к принятию подобных идей. И предложения Каразина остались без движения.
Все эти примеры говорят о том, что интерес к электричеству распространился на все страны и от соединенных усилий ученых в самое ближайшее время следовало ожидать в этой новой отрасли науки существенных изменений.
Глава девятая. Все гениальное — просто
Каким простым кажется нам сегодня — взять цинковую и медную пластинки, погрузить их в соленую воду и соединить проволокой. И тут же, без всяких наших усилий, по проволоке потечет электрический ток, а вокруг проволоки образуется невидимое магнитное поле. Электрический ток нагреет проволоку — совершит работу. Магнитное поле нашей проволоки с током, взаимодействуя с другим — таким же, оттолкнет или притянет другую проволоку с другим током, приведет ее в движение и тоже совершит работу. Просто! В самом деле ведь очень просто! Но чтобы научиться обнаруживать магнитное поле, ощущение которого не дано человеку, чтобы выяснить взаимодействие электрических зарядов, научиться получать электрический ток и понять его взаимосвязь с магнитным полем, человечество должно было пройти длинный путь.
Рождение электротехники начинается с изготовления первых гальванических элементов — химических источников электрического тока. Связывают его с именем Алессандро Вольты. Однако рассказывают, что, раскапывая египетские древности, археологи обратили внимание на странные сосуды из обожженной глины с изъеденными металлическими пластинами в них. Что это?.. Многое в окаменевших остатках ушедших, канувших в Лету цивилизаций до сих пор не понято людьми. Нелегко восстановить образ минувшего, тем более что часто он оказывается вовсе не таким уж примитивным, как думалось. «А уж не банки ли это химических элементов?» — пришла кому-то в голову «сумасшедшая» мысль. Впрочем, так ли она безумна? Ведь получение постоянного электрического тока химическим путем действительно очень просто. Соленой воды на Земле хоть отбавляй, как и необходимых металлов — цинка и меди. Вместо меди можно было применять серебро и золото… Но оставим эти догадки фантастам…
Первые элементы имели один общий недостаток. Они давали ток лишь первые несколько минут, затем «требовали отдыха». Почему это происходило, никто сначала не понимал. Но с такими «быстроутомляющимися» элементами нечего было и думать затевать какую-то промышленность. И потому усилия исследователей сконцентрировались на проблеме «утомляемости».
Оказалось, что цинк, соединяясь с кислотой, вытесняет из нее водород. Пузырьки газа оседают на металлических пластинках и затрудняют прохождение тока. Физики назвали это явление поляризацией элементов и объявили ему войну.
Примерно в начале 30-х годов прошлого столетия англичане Кемп и Стерджен (изобретатель электромагнита, о котором речь еще впереди) выяснили, что цинковая пластинка, покрытая амальгамой — раствором цинка в ртути, — действует не хуже чистого цинка, но при этом не растворяется в кислоте, когда элемент не работает, то есть когда он не дает тока. Это стало существенным достижением. Следом за ними французский физик, основатель ученой династии Беккерель высказал мысль, что хорошо бы попробовать опускать пластинки в разные сосуды так, чтобы выделяющийся водород тут же химически соединялся с кислородом, образуя воду. Идея понравилась. Но как ее реализовать? Изобретатели всех стран принялись за опыты. И надо прямо сказать, что если в XVIII веке едва ли не каждый образованный человек строил электрические машины, чтобы добывать таинственную силу электричества трением, то теперь всякий исследователь считал своим долгом подарить миру и человечеству новый химический элемент.
На первом этапе наибольший успех выпал на долю профессора химии Лондонского королевского колледжа Даниэля. В стеклянную банку с медным купоросом он поместил согнутый в цилиндр металлический лист. Внутрь вставил глиняный сосуд с пористыми стенками, заполненный разбавленной серной кислотой. В кислоту был помещен цинк. Водород проходил через поры глиняного сосуда, вытеснял медь из купороса. Несколько синих кристалликов, брошенных на дно банки, пополняли убыль меди…
Поляризация была побеждена! Однако у элемента Даниэля нашлись другие недостатки. Так, он имел пониженную электродвижущую силу. Часть электрической энергии тратилась внутри самого элемента на разложение медного купороса.
Соотечественник Даниэля Вильям Грове решил заменить медный купорос азотной кислотой. А чтобы она не разъедала медный электрод, заменил медь платиной… Все получилось в соответствии с ожиданиями: электродвижущая сила возросла. К сожалению, возросла и стоимость такого источника тока: платина — металл дорогой. Правда, Грове и его последователи делали электроды из тончайших листков, согнутых для прочности буквой S. Несмотря на высокую стоимость, элементы Грове нашли довольно широкое распространение в лабораториях многих стран.
Может показаться странным, что никто не додумался заменить платину углем. Принципиальная возможность такой замены была уже известна. Но тут мы не учитываем уровня технологии времени. Никто тогда не умел делать плотных углей. А обычный древесный уголь был слишком пористым. Прошло несколько лет, прежде чем немецкий химик Роберт Бунзен описал способ изготовления угольных стержней из прессованного молотого графита, который выделялся при сгорании светильного газа на раскаленных стенках реторт. Стержни стали прекрасным заменителем платины.
Элемент Бунзена приняли «на ура» не только лаборатории физики, но и первые электротехнические предприятия по гальванопластике, речь о которых впереди. И это несмотря на то, что при работе элемент выделял немало удушливых паров азотной кислоты. Правда, Иоганн Поггендорф заменил азотную кислоту хромовой, не выделявшей вредных испарений. Но производство хромовой кислоты было довольно дорогим делом.
Изобретатели старались вовсю. На страницах научных журналов одно за другим появлялись описания все новых и новых элементов. Ими занимались специалисты, ими занимались любители, ими занимались… В качестве курьеза можно упомянуть, что последний французский император Наполеон Третий, прежде чем навсегда подарить свою корону Республике, «осчастливил» мир тоже конструкцией двух элементов, обладавших некоторой оригинальностью.
Впрочем, во второй половине XIX столетия химические источники тока стали изготавливать в специальных мастерских. Главный их потребитель — телеграф — требовал простоты устройства, дешевизны, устойчивости и надежности в работе. За все это телеграфисты соглашались на самые «слабые» токи.
Можно рассказать еще о многих более или менее удачных попытках изобретательства. Наибольший успех выпал на долю парижского химика Жоржа Лекланше. Он наполнил глиняную банку смесью перекиси марганца с кусочками угля из газовых реторт и поместил туда же прямоугольную угольную призму, которая должна была служить положительным электродом. Эта система заливалась сверху варом или смолой и вставлялась в стеклянную четырехугольную банку, заполненную раствором нашатыря, с цинковым электродом. При этом хлор из нашатыря (хлористого аммония), соединяясь с цинком, давал хлористый цинк. Аммоний распадался на растворяющийся аммиак и водород. Вот тут-то и была ахиллесова пята этого превосходного элемента. Перекись марганца окисляла водород медленно и небольшими порциями. А выделение этого газа зависело от силы тока, который отбирается от элемента. Больше ток — больше выделяется и водорода. Водород же поляризует элемент, и последний быстро «устает». Правда, после некоторого «отдыха» он исправно работает снова. Однако лучше всего им было пользоваться при «малых токах» в телеграфии или в системе сигнализации, где между моментами работы существуют значительные перерывы.
Большое неудобство при использовании элементов Лекланше создавали стеклянные банки с жидкостью. Особенно сетовали на этот недостаток компании пассажирских перевозок. Океанские корабли снабжались сложной и разветвленной системой сигнализации, стараясь не уступать в этом отношении большим отелям. Но корабли подвергались качке… Сначала, чтобы не расплескать жидкость из элементов, их банки наполняли опилками, заливая сверху тем же варом. Но под такой «крышкой» образовывались газы, и элементы стали взрываться… Не скоро научились люди изготавливать «сухие элементы», ставшие в наше время такими обычными. Да, бесчисленные батарейки, работающие сегодня в самых разных электрических и электронных устройствах, не что иное, как многократно усовершенствованный и упрощенный «элемент Лекланше». Впрочем, наряду с ним работают и другие системы — миниатюрные и не очень, они обслуживают цепи, в которых используются «слабые токи».
Великим достижением прошлого века, связанным с исследованием работы тех же элементов, явилось открытие возможности последовательного и параллельного их соединения, когда в первом случае удавалось получить от них суммарное напряжение, а во втором — суммарный ток…
Сегодня эти «чудеса» изучают ребята в седьмом классе в курсе физики, и они, как правило, никого не удивляют.
Вторичные элементы
Давайте еще раз ненадолго вернемся к 1800 году, ко времени, когда Алессандро Вольта построил свою первую батарею. Год спустя исследователи заметили, что если два одинаковых металла погрузить в подкисленную воду и соединить их с вольтовым столбом, то через некоторое время эта система заряжается и становится на короткое время источником тока. При этом положительным оказывается тот ее электрод, который был соединен с положительным полюсом вольтова столба.
Это открытие привлекло внимание. А необходимость бороться с поляризацией — бичом первых гальванических элементов — добавила исследователям усердия.
Грове в 1839 году изобретает «газовый элемент», который получил название «вторичного элемента», поскольку давал ток лишь после зарядки его от какого-нибудь постороннего источника. Однако из-за неудобства пользования «газовый элемент» Грове распространения не получил.
Примерно в 1859–1860 годах в лаборатории Александра Беккереля — второго представителя славной династии французских физиков — работал в качестве ассистента некто по имени Гастон Плантэ. Молодой человек решил заняться совершенствованием вторичных элементов, чтобы сделать их надежными источниками тока для телеграфии. Сначала он заменил платиновые электроды «газового элемента» Грове свинцовыми. А после многочисленных опытов и поисков вообще перешел к двум одинаковым свинцовым листам. Он их проложил суконкой и навил этот «сэндвич» на деревянную палочку, чтобы он влезал в круглую стеклянную банку с электролитом. Затем подключил обе пластины к батарее. Через некоторое время «вторичный элемент» зарядился и сам оказался способен давать достаточно ощутимый ток постоянной силы. При этом, если его не разряжали сразу, заряд электричества сохранялся в нем длительное время.
Собственно, это и было рождением аккумулятора — накопителя электрической энергии. Первые аккумуляторы Гастона Плантэ имели очень незначительную электрическую емкость — они запасали совсем немного электричества. Но изобретатель заметил, что если заряженный первоначально прибор разрядить, затем пропустить через него ток в обратном направлении и повторить этот процесс не один раз, то емкость аккумулятора увеличится. При этом возрастал слой окисла на электродах. Этот процесс получил название формовки пластин и занимал сначала ни много ни мало около трех месяцев…
Как и у всех гальванических элементов, ток аккумулятора тем сильнее, чем больше поверхность соприкосновения электрода с раствором электролита. Эту истину хорошо усвоил Камилл Фор. Он был самоучкой — без специального образования, — с юных лет безраздельно увлеченным техникой. Вынужденный зарабатывать деньги на жизнь. Фор сменил множество специальностей. Был рабочим, чертежником, техником, химиком на английском пороховом заводе, работал и у Плантэ. Разносторонние практические знания сослужили ему добрую службу. После Парижской выставки 1878 года в голову Камилла Фора запала идея нового способа формовки пластин. Он попробовал заранее покрывать их свинцовым суриком. При зарядке сурик на одной из пластин превращался в перекись, а на другой соответственно раскалялся. При этом слой окисла приобретал очень пористое строение, а значит, площадь его поверхности значительно увеличивалась. Процесс формовки протекал значительно быстрее. Аккумуляторы Фора при том же весе запасали значительно больше электрической энергии, чем аккумуляторы Плантэ. Другими словами, их энергоемкость была больше. Это обстоятельство особенно привлекало к ним симпатии электротехников. Но главная причина их возросшей популярности заключалась в другом…
В конце столетия во многих странах на улицах и в домах появилось электрическое освещение. Лампы накаливания питались энергией пока еще маломощных машин постоянного тока. Ранним утром и поздним вечером, когда энергии требовалось больше, на помощь машинам приходили аккумуляторы. Это было значительно дешевле, чем устанавливать дополнительные генераторы. Тем более что в спокойные дневные и ночные часы аккумуляторы могли заряжаться, поглощая излишки вырабатываемой машинами энергии.
Дальнейшее совершенствование свинцово-кислотных аккумуляторов шло по пути улучшения их конструкции и изменения технологии изготовления пластин.
Совсем недавно появилось сообщение, что на Западе разработан гигантский свинцово-кислотный аккумулятор весом 2250 тонн. Он займет площадь около 0,2 гектара и будет предназначен для подключения к электросети в часы пиковой нагрузки. Зарядка его будет производиться в ночное время, когда потребление энергии падает. Применение такого супераккумулятора позволит выровнять работу тепловых электростанций, особенно страдающих от неравномерности нагрузки, и даст значительную экономию нефтяного топлива. Проектная мощность аккумулятора — порядка 45 мегаватт.
Вообще же, несмотря на широкое распространение, свинцовый аккумулятор — довольно капризное детище электротехники. Он требует чистого электролита, без каких-либо посторонних примесей. Аккуратные мотоциклисты и автолюбители это хорошо знают и потому доливают «банки» всегда дистиллированной водой. Аккумулятор не терпит перегрузок. Если ток разряда чересчур сильный, пластины его разрушаются. Не любит он и перегрева, переохлаждения, глубокого разряда, перезаряда… Корпуса свинцово-кислотных аккумуляторов, изготовленные из стекла или пластмассы, хрупки… Все эти недостатки еще на заре развития аккумуляторов заставляли изобретателей искать замену свинцу. Попыток было много. Большинство безуспешных. Удача выпала на долю Эдисона. После многих опытов американский изобретатель построил железо-никелевый щелочной аккумулятор. В наши дни он используется не менее широко, чем его старший брат.
В нем отрицательный электрод выполнен из пористого железа или кадмия с большой рабочей поверхностью. Положительный электрод — никелевый, окруженный окисью трехвалентного никеля. В качестве электролита используется 21-процентный раствор едкого кали или едкого натра. Корпус чаще всего изготавливается из стали.
Правда, ЭДС щелочного аккумулятора ниже, чем у свинцового (всего 1,4–1,3
Электричество в «консервах»
В последнее время внимание научно-исследовательских коллективов во всех промышленно развитых странах направлено на разработку новых типов аккумуляторов и супераккумуляторов. Главная задача — повысить энергоемкость: увеличить количество запасаемой энергии на единицу веса аккумулятора.
Сейчас уже известны и широко используются серебряно-цинковые аккумуляторы. В них отрицательный электрод, как и полагается, сделан из цинка, а положительный из окиси или перекиси серебра. А электролитом служит едкое кали. Их энергоемкость раз в шесть больше, чем у свинцовых. Кроме того, они могут работать при достаточно низких (до — 60 °C) температурах, давать сильные токи и не боятся долгое время находиться в разряженном состоянии. Но серебро дорого. И потому серебряно-цинковые аккумуляторы применяются лишь в исключительных случаях.
Проблема создания энергоемких аккумуляторов приобретает особое значение в связи с бурным развитием транспорта. Автомобили пожирают запасы дорогостоящего горючего и загрязняют атмосферу. Между тем еще в 1898 году француз Ж. Шасслу-Лоба достиг на электромобиле скорости 63 км/ч. А через год гонщик К. Иенатци установил мировой рекорд скорости на суше в 105,9 км/ч на машине, снабженной аккумуляторной батареей массой около двух тонн.
Первый пригодный для эксплуатации русский электромобиль был построен инженером И. В. Романовым в 1902 году в Петербурге. А в Чикаго в начале века количество электромобилей примерно вдвое превосходило количество машин с бензиновыми двигателями. В чем же дело? Почему до сих пор автомобилестроители не перешли на экологически безвредную электроэнергию?
Увы, главная проблема как раз и заключается в накопителях, во «вторичных элементах», как называли когда-то аккумуляторы. Ведь современный свинцово-кислотный аккумулятор весом 5,5 килограмма, который стоит на автомобиле, способен накопить и удержать в себе столько энергии, сколько ее заключено… в рюмке бензина!
40 литров бензина — емкость бака обычной легковой машины — эквивалентны по заключенной в них энергии 4,5 тоннам аккумуляторных батарей. А время заряда-заправки? 40 литров бензина вы зальете за пять, ну, за десять минут. Перезарядка же аккумуляторов длится часами.
Современные электромобили не вписываются в общий темп существующего дорожного движения. Они медленно разгоняются и трудно берут подъемы. Дальность пробега между перезарядками 50–60 километров. А максимальная скорость не больше 80 км/ч. Пока электромобили не конкурентоспособны. Что же делается для того, чтобы вывести их на должный технический уровень?
Те из вас, кто следит за новинками техники, наверняка уже не раз слышали или читали о серно-натриевых или серно-литиевых супераккумуляторах, которые разрабатывались некоторыми фирмами. Натрий — металл, обладающий высокими энергетическими свойствами. В рабочем состоянии и натрий и сера нуждаются в подогреве, чтобы перейти в расплавленное состояние. Их разделяет сосуд из пористой керамики, изготовленной на основе алюминия. Главное свойство сосуда — его способность пропускать только ионы натрия. Для ионов серы и для атомов обоих химических элементов керамическая мембрана — непреодолимый барьер. Таким образом она играет роль как бы твердого электролита. Но хотя натрий и сера плавятся при температуре 97-119 °C, для успешного протекания электрохимической реакции нужен подогрев до 300 °C, не меньше. Правда, серно-натриевый аккумулятор требует постороннего источника тепла только для начала работы. Потом необходимая температура поддерживается за счет тепла, выделяющегося в ходе химической реакции.
Удельная емкость такого супераккумулятора раз в десять, а то и в двенадцать превосходит ту же характеристику свинцово-кислотного. Сернонатриевый элемент дешев. Применяемые в нем материалы не дефицитны. Во время работы из него не выделяются газы, значит, его можно герметизировать. А если добавить к этому еще и простоту заряда, то может показаться, что решение проблемы у нас в кармане. Но попробуем перечислить и недостатки. Сера и натрий огнеопасны. А перед работой аккумулятор необходимо подогревать. Едкие вещества легко разъедают — коррозируют — герметическую оболочку. А ведь натрий так жадно соединяется с водой, что реакция подобна взрыву. Да и расплавленная сера при контакте с воздухом образует ядовитый сернистый газ. Так что, несмотря на герметичность, такой аккумулятор требует большой осторожности при эксплуатации.
Очень похож на только что описанный элемент и хлорно-литиевый аккумулятор, удельная энергоемкость которого еще выше. Но у него серьезным недостатком является ядовитость хлора. А ну как прорвется он где-нибудь! Конечно, бензин тоже не такое уж безобидное вещество, особенно если поблизости есть открытый огонь. Но к свойствам бензина все привыкли. А вот к характеру натрия и лития, хлора и серы относимся пока настороженно.
Специалисты считают, что пока супераккумуляторы еще не могут найти реального применения в обычной технике. Но они разрабатываются, постоянно совершенствуются и считаются весьма перспективными.
В научных журналах нередко появляются сообщения о создании опытных образцов и разработок очень любопытных аккумуляторных батарей. Вот, например, одна из них — литиево-никельгалоидная. В ней работает уже знакомый нам металл литий и неядовитое неорганическое фтористое соединение никеля. Отсутствие газовыделения позволяет и этот аккумулятор сделать полностью герметичным. Он не требует подогрева. Энергоемкость его — на уровне супераккумуляторов, а процесс зарядки длится всего несколько минут. Прекрасно, не правда ли? Но пока этот элемент еще не вышел из стен научно-исследовательских лабораторий. И конкретно говорить о его возможностях рановато.
Разрабатываются воздушно-цинковые аккумуляторы, использующие кислород атмосферы, окисляющий цинковый анод. В них запас энергии будет определяться вообще количеством цинка, способного вступить в реакцию. Пока их еще трудно хранить и у них чересчур малый срок службы. Идея использовать воздух в качестве одной из составляющих системы накопителя энергии, конечно, очень заманчива. Но реализовать ее нелегко.
Интересным и перспективным направлением работ является разработка топливных элементов. Правда, некоторые исследователи считают, что эти системы, занимающие промежуточное положение между гальваническими элементами и аккумуляторами, относятся скорее к электрическим машинам. Они их так и называют: электрохимические генераторы — ЭХГ. В топливных элементах свободная энергия электрохимической реакции переходит непосредственно в электрическую энергию. Вот, например, схема водороднокислородного топливного элемента: газ водород поступает из баллона-термоса, где хранится в сжиженном состоянии, к отрицательному электроду-катализатору. Здесь он ионизуется. Точно так же к положительному электроду поступает кислород. Ионы водорода проходят через ионообменную мембрану, соединяются с ионами кислорода. Образовавшаяся в результате реакции вода — единственный «выхлоп» такого элемента-генератора. Заманчивая перспектива, не так ли?
В качестве топлива может применяться не только сжиженный водород, но и другие вещества. Немало научно-исследовательских лабораторий сегодня работают над тем, чтобы довести водородно-кислородный топливный элемент до промышленного состояния. И есть мнение, что в ближайшее десятилетие нас ожидает здесь настоящая техническая революция.
Белое пятно на карте науки
Недавно в завязавшемся разговоре с приятелями физиками услышал я любопытное суждение: «Самым энергоемким аккумулятором относительно единицы массы была бы шаровая молния…»
Что же это такое? «Шаровая молния — редко встречающаяся форма молнии, представляющая собой светящееся шарообразное или грушевидное тело диаметром 10–20 сантиметров и больше, образующееся обычно вслед за ударом линейной молнии. Существует от 1 секунды до нескольких минут». (Советский энциклопедический словарь. Москва, 1980, с. 1517.)
Не знаю, как вам покажется, но для меня информации в этой статье «не густо». Может быть, попробовать прочитать в том же словаре статью «Молния»? Откроем страницу номер 832… «Молния, гигантский электрический искровой разряд между облаками или между облаками и земной поверхностью, длиной несколько километров, диаметром десятки сантиметров и длительностью десятые доли секунды. Молния сопровождается громом».
Не очень много в этих определениях общего. Да это и понятно. С тех пор как люди перестали видеть в явлениях природы «гнев божий», о шаровой молнии написано множество заметок, статей, книг, и все равно никто из ученых не знает, что это такое.
Вот характеристика этого удивительного явления, составленная по огромному количеству наблюдений:
1. Внутренняя емкость — от 0,1 до 4 кВт·ч.;
2. Время существования — от нескольких секунд до 4 минут;
3. Масса — от 0,5 до 50 г.;
4. Плотность — от 0,0013 до 0,015 г/см3.
Смотрите, какая точность! И все равно никто не знает, что такое шаровая молния. Просто досада какая-то!
Одним из первых ученых, вполне грамотно описавших шаровую молнию, был Доменик Франсуа Араго. Правда, и он больше спрашивал, чем объяснял: «Как и где образуются эти скопления весомой материи, сильно пропитанные веществом молний? Какова их природа?.. По этому поводу в науке существует пробел, который необходимо заполнить».
Эти слова он писал в середине прошлого века, выпуская интереснейшую книгу «Гром и молния». В 1885 году она была переведена и издана у нас в Петербурге.
Араго был уверен, что шаровая молния — это шар с гремучими газами — соединением азота с кислородом, — насквозь пропитанный «веществом молнии». Такой шар, по мнению ученого, возникал в грозовых облаках, заряжался наподобие конденсатора электричеством разных знаков и падал на землю. Изолятором в таком конденсаторе мог служить сухой, уплотненный электрическими силами слой воздуха между заряженными оболочками.
В случае «пробоя» изоляции искра поджигала гремучие газы — и шар взрывался. Если же «пробоя» не происходило, электрическая энергия могла тихо «стечь» с шара — и он так же тихо исчезал.
К сожалению, в гипотезе Араго слова не говорилось о «магниевой материи», игравшей не последнюю роль в жизни шаровой молнии.
Потом было еще много предположений о природе этого загадочного явления. Одни авторы считали, что шаровая молния несет в себе весь запас имеющейся энергии. Другие, напротив, предполагали, что источник ее находится вне шаровой молнии. Может возникнуть вопрос: если положение дел настолько неопределенно, то как могли составить ту конкретную характеристику, которую я привел? Ведь там даны и масса, и плотность, будто шаровую молнию взвесили и пощупали, есть даже энергоемкость… Как ее определили?
В 1936 году в редакцию английской газеты «Дейли мейл» пришло письмо одного читателя из графства Херфордшир. Вот что он писал:
«Сэр! Во время грозы я видел большой раскаленный шар, спустившийся с неба. Он ударил в наш дом, перерезал телефонные провода, зажег оконную раму и затем исчез в кадке с водой, стоявшей под окном.
Вода кипела затем в течение нескольких минут, но когда она достаточно остыла, чтобы можно было поискать шар, я ничего не смог обнаружить в бочке.
У. Моррис. Дарстоун, Херфорд».
Королевский астроном, которого попросили прокомментировать это письмо, сообщил: «По-видимому, то, что видел ваш корреспондент, представляет собой очень редкое явление, известное под названием… шаровой молнии…»
Это сообщение вызвало интерес среди ученых, и они подсчитали примерную энергию, затраченную на кипячение воды в кадушке. Получилось от одного до трех киловатт-часов. Это в свою очередь позволило оценить удельную энергоемкость шаровой молнии как минимум в 100 кВт·ч.
Интересно, что аналогичный «опыт» наблюдал у нас в Закарпатье близ города Перечина С. С. Мах. «В августе 1962 года, — пишет он в письме, — около 11–12 часов вечера в корыто с водой для скота упала шаровая молния размером с теннисный мяч; она светилась цветами радуги в течение около 10 секунд. Вода из корыта почти полностью выкипела, на дне лежали сварившиеся лягушки. Размер корыта 0,3×2,5 м. Глубина слоя воды — 15 см. В двух других корытах также были обнаружены сварившиеся лягушки».
В этом случае описываемая шаровая молния должна была иметь значительно большую удельную энергоемкость. Ведь масса выкипевшей воды — почти 100 килограмм.
Из чего же должна состоять шаровая молния, чтобы произвести такое действие? Это наверняка не «горючее вещество», потому что тогда оно должно обладать фантастической эффективностью.
Напомню, что даже такое «идеальное горючее», как газ ацетилен, имеет энергоемкость во много-много раз меньше. Ученые выдвигали множество гипотез о природе шаровой молнии. И каждую из них время и новые факты низводили с пьедестала.
Интересны представления о шаровой молнии, развитые советским физиком Я. И. Френкелем в 1940 году.
«Яков Ильич Френкель был человеком, которого просто оскорбляло существование непонятных физических явлений… — пишут И. Имянитов и Д. Тихий в книге „За гранью законов науки“, посвященной шаровой молнии. — Широко эрудированный физик, он обладал удивительной способностью сопоставлять весьма отдаленные области знания и в то же время легко отвлекаться от досадных мелочей, часто заслоняющих основные черты явления».
Он считал шаровую молнию вихрем из смеси твердых частиц дыма и пыли с химически активными газообразными продуктами, которые образуются в результате удара обычной молнии. Такой вихрь из раскаленных частиц ярко светится. А циркуляция ионов в нем приводит к возникновению сильного магнитного поля, которое стягивает весь клубок в шар и способствует сохранению его формы.
И действительно, многочисленные наблюдатели отмечают «любовь» шаровых молний к печным трубам и дымоходам. Есть даже свидетельства появления огненных шаров зимой, во время метелей и снегопадов. Не значит ли это, что для существования шаровой молнии необходимы твердые частицы дыма и сажи, пыли и снежинок?..
После взрыва — разряда шаровой молнии в воздухе остается дымок с острым запахом.
По расчетам Я. И. Френкеля, энергоемкость шаровой молнии как максимум — 0,03 кВт·ч.
Нет, похоже, что теория, основывающаяся на энергии горения газов, для объяснения природы шаровой молнии не годится. Придется вернуться к гипотезе чисто электрической природы этого явления. И такое предположение рассматривалось учеными. В 1960 году появилась статья Е. Хилла, в которой он сравнивал шаровую молнию с миниатюрным грозовым облаком, электрические заряды в котором разделены ударом обычной линейной молнии. В небольшом объеме собираются сгустки электрических зарядов различных знаков. Представим себе, шаровую молнию, состоящую, как матрешка, из вложенных друг в друга разноименно заряженных слоев. У нас получится сферический многослойный конденсатор, энергоемкость которого оказывается очень незначительной, в тысячу раз меньше рассчитанной Френкелем.
Между тем по причиненным разрушениям взрыв шаровой молнии приравнивается к взрыву «от сотен граммов до 20 кг тринитротолуола (тола)». Это весьма солидный заряд взрывчатки. Понятно, что такие свойства шаровой молнии не могли не привлечь к ней внимания тех, кто занят разработкой нового оружия. И в декабре 1960 года в американском журнале «Радио. Электроника» появилась сенсационная статья:
«Шаровая молния против ракет.
Шаровая молния, т. е. сгустки плазмы — вещества, находящегося в сильно наэлектризованном состоянии, в котором электронные оболочки атомов сильно разрушаются, может быть использована, по мнению американских физиков, для борьбы против ракет…»
Дальше шло популярное объяснение оригинальной гипотезы выдающегося советского физика П. Л. Капицы, выдвинутой им в 1955 году. Он писал: «Если в природе не существует источников энергии, еще нам не известных, то на основании закона сохранения энергии приходится принять, что во время свечения шаровой молнии непрерывно подводится энергия, и мы вынуждены искать этот источник энергии вне объема шаровой молнии».
Однако, поскольку здесь дело касается плазменного состояния вещества, будет, наверное, правильнее досказать историю искусственной шаровой молнии в третьей части книги, после того как читатель познакомится с плазмой поближе. Так я и поступлю. А те, кому не терпится, могут заглянуть сами в третью часть. Поскольку нашу книгу совсем не обязательно читать последовательно, страницу за страницей…
Глава десятая. Электрический «конфликт» Ханса Эрстеда
Жарким грозовым днем в июне 1731 года молния ударила в дом одного почтенного купца города Уэкфилда. Услышав грохот, испуганный негоциант вбежал в комнату и обнаружил, что небесный огонь разбил ящик, наполненный стальными ножами и вилками, и разбросал все столовые приборы по полу. Кинувшись подбирать имущество, купец обнаружил, что ножи и вилки оказались намагниченными…
Компасные мастера не раз замечали, что у кораблей, пришедших из дальних плаваний и побывавших в жестоких грозовых бурях, компасные стрелки оказывались перемагниченными. Северный конец указывал на юг, а южный — на север. Это случалось на тех судах, мачты которых принимали на себя удары молний.
Молния, молния… Но ведь молния — это не что иное, как огромная электрическая искра…
7 сентября 1753 года в здании Санкт-Петербургской императорской академии господин профессор Франц Ульрих Теодор Эпинус прочел на конференции трактат «О сходстве электрической силы с магнитною».
Дальше оставалось только доказать и подтвердить на опытах связь электричества с магнетизмом. Только… Но это-то «только» и не удавалось никому из физиков. Английский химик Гемфри Дэви, соорудив гигантский вольтов столб, состоящий из двух тысяч пар пластин, и получив электрическую дугу, обнаружил, что пламя дуги отклоняется магнитом. Но это было не совсем то… Пламя есть пламя.
Уже были найдены многие связи между электричеством и светом, между электричеством и звуком, даже между электричеством и теплом. А вот убедительно показать, что связь электричества с магнетизмом существует, никак не удавалось. Правда, мюнхенский физик Иоганн Вильгельм Риттер утверждал, что всякий вольтов столб есть магнит, поскольку ток от него, пропущенный через серебряную проволоку, делает ее магнитной. Но Риттер пользовался славой гениального, но сумасбродного человека, и к его словам не очень-то прислушивались.
В 1802 году Джан Доменико Романьози — адвокат, получивший кафедру публичного права в Падуе и одновременно увлекавшийся электрическими опытами, — обнаружил отклонение магнитной стрелки током, проходившим по серебряному проводнику. Романьози хотел было описать открытое явление в подробном мемуаре, но так и не собрался.
Похожие результаты наблюдал в своей лаборатории в Генуе профессор химии Джузеппе Моджиони в 1804 году.
А директор Политехнического института в Вене Иоганн Иозеф Прехтль, желая изучить магнитные свойства вольтова столба, подвешивал его на шелковых нитях. Он писал: «…в природе все явления имеют значение или притягательных, или химических действий электричества… так что в сущности магнетизм и химизм суть главные ветви общей науки, электрицизма».
Сегодня даже удивительно читать столь проницательные суждения, во многом соответствующие нашим воззрениям. Но в 1810 году это было лишь мнением, лишенным экспериментального подтверждения. Подобные догадки продолжались до 15 февраля 1820 года.
В тот день в Копенгагенском университете должен был читать лекцию о связи электричества с теплотой профессор Ханс Кристиан Эрстед. Сорокатрехлетний ученый был довольно известной фигурой в Дании. Родившись в семье аптекаря, он получил диплом фармацевта, а потом доктора философии. Его научные интересы были широкими и разносторонними. За интересные работы по получению хлористого и металлического алюминия Эрстед был принят в члены Датского королевского научного общества и стал его непременным секретарем. Он много ездил, совершая научные путешествия по европейским государствам и знакомясь с учеными разных стран.
Эрстед был хорошим лектором и умелым популяризатором науки. Немудрено, что на его лекции собиралось достаточно много студентов. В те годы свободного посещения лекций студенты попросту игнорировали тех профессоров, которые читали плохо или худо знали предмет.
Рассказывая о нагревании проволоки под действием протекающей в ней электрической жидкости, профессор Эрстед подошел к столу, чтобы показать опыт: подключить к полюсам вольтова столба платиновую проволочку и дать желающим потрогать, чтобы убедиться в том, что она стала горячей. Такой опыт в те времена вызывал настоящий восторг очевидцев.
Как случилось, что на столе рядом с нагреваемой проволокой оказался компас, сказать сегодня невозможно. Прибор не имел никакого отношения к теме лекции. И его присутствие здесь было чистой случайностью. Но это была «Великолепная Случайность».
Столь же прекрасным было и то, что один из студентов, которого, по-видимому, не слишком интересовали электрические чудеса с нагреванием, заметил, что при включении гальванической цепи магнитная стрелка почему-то дергается. И надо же было этому студенту задать вопрос о причине обнаруженного явления… Он был, по-видимому, все-таки любознательным молодым человеком. Как жаль, что мы никогда так и не узнаем его имени…
Эрстед даже растерялся от неожиданности вопроса.
— Я не понимаю, господин студент, о чем вы говорите.
— Но я говорю о том, что видел собственными глазами. В момент включения вами, господин профессор, цепи стрелка компаса отклонилась.
— Вы уверены, что это было так? — медленно переспросил Эрстед, оглядывая демонстрационный стол. Он сразу заметил, что один из проводов, идущий от батареи, образовал петлю и лежал на компасе почти параллельно стрелке.
— Но я могу поклясться, что все было именно так! — воскликнул возмущенный недоверием студент и стал продвигаться к столу сквозь группу товарищей.
— Не двигайтесь! — закричал Эрстед. — Я сейчас повторю опыт, ничего не изменяя. Господа, я прошу всех следить за стрелкой и сказать мне, что вы увидите.
Он снова замкнул цепь и едва не оглох от дружного вопля студентов: «Отклонилась!»
Сколько времени Эрстед ждал этого момента! На какие только ухищрения не шел, чтобы обнаружить связь электричества с магнетизмом. А все оказалось так просто…
— Отклонение магнитной стрелки, господа, может быть вызвано единственной причиной… — голос его дрожал от волнения и прерывался, — …электрическим конфликтом, то есть воздействием на магнитную стрелку перемещающейся в проводнике электрической жидкостью.
Пять месяцев спустя из печати вышел небольшой мемуар Эрстеда, озаглавленный «Опыты, касающиеся действия электрического конфликта на магнитную стрелку». В нем было изложено правило, уже очень похожее на формулировку закона: «Гальваническое электричество, идущее с севера на юг над свободно подвешенной магнитной стрелкой, отклоняет ее северный конец к востоку, а проходя в том же направлении под стрелкой, отклоняет ее на запад».
Но почему все происходило именно так, а не иначе, Эрстед объяснить не мог.
Свой труд, изложенный в небольшом мемуаре, напечатанном на латинском языке, Эрстед разослал во все известные научные общества, в редакции физических журналов и физикам, занимающимся вопросами электричества.
Интересно отметить, что, по мнению Эрстеда, магнитные свойства проводник с током проявлял лишь в том случае, когда находился в нагретом состоянии. Что это — ошибка или ограниченность мышления, привычка просто следовать букве эксперимента и ни шагу в сторону?..
Следом за сообщением Эрстеда появился целый поток сообщений об исследовании нового явления. Опыт Эрстеда видоизменяли, исследовали со всех сторон. Нашли, что холодный проводник, по которому течет электрическая жидкость, также хорошо отклоняет стрелку, как и нагретый. В разных странах физики стали вспоминать, что о сродстве вольтова столба и магнита уже давно велись разговоры и открытие Эрстеда вовсе не так уж и ново. Нашлись и такие, что утверждали, будто бы проделывали аналогичный опыт и не раз получали сходный результат, но не обратили, дескать, на него внимания…
В том-то и заключалось и заключается величие таланта. Мало поставить удачный опыт и обнаружить неизвестный до того эффект. Нужно еще осознать важность своей находки!..
«Наш великий Ампер»
Доменик Франсуа Жан Араго был удивительным человеком. На его долю в жизни выпало столько приключений, что их хватило бы на толстый роман. И вместе с тем Араго был серьезным ученым.
Прежде всего он был, пожалуй, астрономом. С 1830 года он — непременный секретарь Парижской академии наук и директор знаменитой Парижской обсерватории. Но еще до того он увлекался оптикой — исследовал законы света вместе с Френелем.
В 1820 году в Женеве Араго увидел на собрании натуралистов повторение опытов Эрстеда. И конечно, тут же решил познакомить с ними своих соотечественников. Вернувшись домой, он собрал нехитрую установку с вольтовым столбом и продумал программу экспериментов.
Чтобы стрелка компаса легче вращалась, понадобилось подпилить железную опорную иглу. Работа несложная.
И вот цепь замкнута и магнитная стрелка отклоняется от серебряного проводничка, подключенного к вольтову столбу. Но что это? Какая-то грязь?.. Араго протирает серебряный проводник и снимает с него налипшие железные опилки. Однако стоит ему положить проводник на стол, как опилки вновь налипают на него…
Араго выключает ток, и опилки осыпаются с серебряной проволоки. Включает — и они снова облепляют ее, будто серебро стало магнитом. Серебро — магнитом! Чудо! Счастливое открытие! Араго сразу же осознал его важность. Немагнитный в принципе серебряный проводник, когда он подключен к вольтову столбу, становится магнитом! Интересно! Очень интересно!! Но почему?
Снаружи раздался стук. У порога стоял дурно одетый человек — обвисшие поля шляпы, мятый камзол. Это Ампер, академик Андре Мари Ампер — самый гениальный и самый рассеянный из его друзей. Пыль на его башмаках — доказательство того, что он уже давно вышел из своего дома на улице Фоссе де Сен-Виктор и бродил по Парижу или по его предместьям, не разбирая дороги, как всегда, погруженный в свои мысли.
— Входите, входите, мой друг! — В голосе Араго звучала неподдельная нежность. Он искренне любил этого нескладного и такого несчастного человека, вечного отшельника и глубокого мудреца. — Входите и давайте вашу шляпу. Я ее положу здесь отдельно от других, чтобы вы не спутали… — Араго вспомнил тот случай, когда после бурных споров по вопросам метафизики в одном из парижских домов Ампер схватил по рассеянности треуголку присутствовавшего священника и ушел в ней домой, оставив духовному отцу свою круглую шляпу.
Ампер улыбнулся.
— Вы жестоки. А я-то бежал к вам, чтобы рассказать, к каким замечательным выводам пришел, обдумывая опыты Эрстеда… Вы знаете, его открытие знаменует собой начало новой эпохи в электричестве — электричестве не статическом, неподвижном, а, наоборот, движущемся, выливающимся из гальванических батарей, подобно потокам…
Араго проводил друга наверх в лабораторию и усадил в кресло.
— Я вижу, что и вы не чужды гальваническим увлечениям? — лукаво спросил Ампер, кивая на приборы и вольтов столб, приготовленные на столе.
— Вы правы. Я воспроизвел опыт Эрстеда и, как мне кажется, обнаружил новое, никем доселе не замеченное явление. Может быть, оно заинтересует вас?..
Он замкнул цепь и приблизил проводники к опилкам. Тотчас же они облепили проводники и ощетинились, как иглы. Ампер протянул к цепи руку. Араго выключил ток, и опилки легким дождем ссыпались в ладонь Амперу…
— Прекрасно! — Ампер вскочил с места. — Это только лишний раз доказывает, что я прав. Покоящиеся заряды не взаимодействуют с магнитной стрелкой. Но стоит им прийти в движение, и они превращают серебряный проводник в магнит. Провод — в магнит! Превосходно! — Он на мгновение задумался. — А как вы думаете, станут взаимодействовать два провода с текущими в них потоками зарядов, как магниты?..
Он уже не ждал ответа. Мысль его заработала. Глубоко внутри началась та таинственная, никому не ведомая работа, результатом которой бывает озарение и новые идеи…
Ампер стремительно шагал по набережной Сены, находясь в том счастливом состоянии духа, когда то, о чем так много и упорно думалось, представляется вдруг если еще не совсем ясным, то проступающим и уже понятным в целом, будто наплывающее строение в клубах утреннего тумана, тающего под лучами солнца.
Мальчишки плыли по течению, весело перекликаясь друг с другом. И Амперу вдруг пришла в голову мысль о простом правиле, с помощью которого можно всегда определить направление отклонения магнитной стрелки протекающим током. Он решил его назвать «правилом пловца». Если пустить человека плыть по направлению тока лицом вниз, то северный конец стрелки всегда отклонится под действием этого тока вправо… Браво, Андре!.. А теперь токи… Он оглянулся. Как было бы хорошо начертить все это, поставить стрелки, определить направления… Вот и кусочек мела нашелся в кармане… Какое счастье, что рядом с ним его черная доска…
Парижане — сдержанная публика, когда дело касается чьих-то чудачеств. Но это уж… извините, мсье… Сначала один, потом двое, наконец, пятеро прохожих оглянулись в недоумении на пожилого, дурно одетого господина, который в самозабвении расчерчивал мелом… заднюю стенку чьей-то кареты.
18 сентября 1820 года на заседании Парижской академии наук академик Андре Мари Ампер начал свою знаменитую серию докладов по электромагнетизму.
— При самом начале явления, открытые Эрстедом, мсье, — говорил Ампер, стоя на возвышении, — по справедливости названы электромагнитными. Однако в явлениях, о которых хочу говорить я, магнит не участвует. И потому правильнее будет дать им общее название электродинамических…
Первый опыт, на который меня подтолкнули блестящие эксперименты нашего общего друга академика Араго, я проделал с двумя прямыми проволоками, по которым протекает электричество от вольтова столба. И мое открытие заключается в том, что две параллельные соединительные проволоки взаимно притягиваются, когда электричество движется по ним в одном направлении, и отталкиваются, когда направления токов противоположны…
По комнате, где происходило заседание, пролетел шепот. Открытие Ампера было так просто и, как все простое, гениально. Оно вызвало разные чувства у присутствующих. Араго гордился своим другом. Био слушал с неослабевающим интересом, изредка поглядывая на молодого Савара, с которым его связывала дружба. Семидесятилетний Лаплас дремал. Однако было здесь и немало тех, кого с первых же слов Ампера начала снедать зависть.
— Подумаешь, открытие! — говорили они. — Притяжение и отталкивание токов — это не более чем видоизмененное притяжение и отталкивание заряженных тел, известное еще со времен Дюфе…
Ампер живо реагировал на это возражение.
— Одинаково наэлектризованные тела взаимно отталкиваются, два же одинаковых тока притягиваются… и, соприкоснувшись, остаются соединенными, как магниты.
— Но позвольте, — говорили завистники, — в чем же новизна открытия коллеги Ампера? Эрстед доказал действие тока на магнитную стрелку. Но если два тела способны действовать на третье, то они должны действовать и друг на друга… Не означает ли это, что взаимное притяжение и отталкивание проводов суть следствие, вытекающее из опытов все того же Эрстеда?..
И они садились на место, внутренне торжествуя, внешне же притворно сожалея, что слава поспешного открытия их коллеги исчезает, как дым… И снова вскакивал Ампер. Он предлагал сомневающимся вывести из опытов Эрстеда
Четыре понедельника подряд в октябре 1820 года выступал Ампер с трибуны академии, докладывая о результатах своих исследований. Потом он выступал еще и еще… Он свернул провод в спираль и, пропустив по нему ток, обнаружил, что получившийся соленоид ничем по своим свойствам не отличается от обыкновенного магнита.
— Каждый магнит, мсье, я в этом уверен, — с жаром говорил Ампер коллегам, — представляет из себя множество естественных соленоидов, по которым текут крошечные круговые токи. Именно гальванический ток, циркулирующий в каждой частице вещества, создает ее природный магнетизм. Электрический ток определяет магнитные свойства тела…
Пока оси этих круговых токов ориентированы беспорядочно внутри тела, магнитные свойства не могут себя проявить, ибо в среднем они компенсируют друг друга. Но стоит всем осям по какой-то причине стать параллельными, выстроившись по ранжиру, и тогда железо и сталь становятся магнитами…
Это была настоящая революция во взглядах на природу магнетизма. Фактически Ампер предлагал отбросить всякое представление о невесомых магнитных субстанциях и заменить их действием электрического тока. Резюмируя сказанное, Ампер писал:
«Я свел явления, наблюденные г. Эрстедом, к двум общим фактам.
Я показал, что ток, существующий в самом вольтовом столбе, действует на магнитную стрелку так же, как и ток соединительного провода.
Я описал опыты, при помощи которых я установил притяжение или отталкивание всей магнитной стрелки под действием соединяющей проволоки.
Я описал приборы, которые предполагал соорудить, и, между прочим, гальванические винты и спирали.
Я указал, что последние будут производить во всех случаях те же действия, что и магниты.
Затем я коснулся некоторых подробностей относительно своего воззрения на магниты, согласно которому они обязаны своими свойствами единственно электрическим токам, расположенным в плоскостях, перпендикулярных их оси.
Я коснулся также некоторых подробностей относительно подобных же токов, предполагаемых мною в земном шаре. Таким образом, все магнитные явления я свел к чисто электрическим действиям».
Ну, это уж он зря! Да еще так безапелляционно! В зале академии немало сторонников и убежденных приверженцев гипотезы «магнитной жидкости», легко объясняющей природу магнетизма. Первым со своего места поднялся Жан Батист Био. Он ожесточенно напал на высказанные Ампером предположения и предложил опытом, только опытом доказать истинность новой гипотезы. Био грудью встал на защиту «магнитной жидкости», такой привычной и удобной, а главное, наглядной…
Дело заключалось в том, что в то время, когда Ампер занимался изучением взаимодействия проводников с током, Био вместе с двадцатидевятилетним военным хирургом Феликсом Саваром, увлекшимся физикой, исследовал законы воздействия тока на магнитную стрелку. Результатом этих исследований явился важный закон электродинамики, сформулированный, естественно, в привычных терминах представлений о «магнитных жидкостях» или «магнитных субстанциях». Вот прочтите, каким он был в первой редакции: «Если неограниченной длины проводник с проходящим по нему вольтовым током действует на частицу северного или южного магнетизма, находящуюся на известном расстоянии от середины провода, то равнодействующая всех сил, исходящих от провода, и общее действие провода на любой — южный или северный — магнитный элемент обратно пропорциональны расстоянию последнего от провода». Трудная формулировка, согласен. Не вдруг и запомнишь. А уж применять ее и того труднее. Но она была
Правда, очень скоро старый и мудрый Лаплас проанализировал этот обобщенный, интегральный закон и показал, что в случае не бесконечно длинного проводника, а конечного — так называемого элемента тока — сила этого воздействия убывает обратно пропорционально квадрату расстояния. Получился тот самый дифференциальный закон Био-Савара-Лапласа, который изучают ребята сегодня в школе.
Амперу трудно было возражать Био, поскольку во многих своих выводах ученый опирался на интуицию. Экспериментальных данных по-прежнему не хватало. И должно будет пройти сорок лет, прежде чем Максвелл сумеет подтвердить правоту Ампера теоретически, а потом уже в нашем веке американские физики Самуэль Джексон Барнетт, Альберт Эйнштейн и нидерландский физик Вандер Иоханес де Гааз найдут пути экспериментального подтверждения сформулированного Максвеллом вывода. В 1821 году Био торжествовал…
В 1821 году, устав от изнурительных опытов, которые он проводил в собственной квартирке на улице Фоссе-де-Сен-Виктор, за столиком, сделанным своими руками, и с неуклюжими приборами, изготовленными сельским слесарем, Ампер заявил, что переходит к составлению теории. В ней он хотел в ясной математической форме описать и привести к единству все многочисленные результаты опытов и электродинамические явления.
Пожалуй, именно с этого момента французы и стали называть этого близорукого и рассеянного чудака Ампера «наш великий Ампер».
К сожалению, период оживления и бурной работоспособности продолжался недолго. Медленно, но верно Ампер впадал в обычную апатию, и прежнее уныние овладевало им еще в большей степени, чем раньше. Все труднее бывало браться по утрам за перо. Все ненавистнее становился ему задуманный капитальный труд «Теория электродинамических явлений, выведенная исключительно из опытов». Ему не хотелось даже читать. Насколько в детстве и в юности любил он книги, настолько теперь чувствовал к ним отвращение. Ничто не могло пробудить его интереса, ничто не способно было увлечь. Ко всему прочему добавились еще и страдания от сильной стенокардии.
Еле-еле закончив книгу свою, он оказался неспособен даже разбить текст на главы и параграфы и дать оглавление. Последние годы своей жизни Ампер провел в ужасном состоянии.
Трудная жизнь гения
Он родился 22 января 1775 года в городе Лионе, в семье Жан-Жака Ампера и Жанны-Антуанетты Сарсей-де-Сютьер. Отец его был торговцем. Но вскоре после рождения сына Жан-Жак оставил свое дело и переселился в небольшое имение близ Лиона. И здесь у его маленького сына стали одна за другой раскрываться способности. Например, он считал, не зная цифр и не умея писать. При этом он пользовался камешками, бобами. А когда у него их отнимали — сухариками…
Многим может показаться удивительной игра ребенка в арифметические вычисления. Но Араго в биографии Ампера пишет: «Я знаю, правда, не школьника, но отличного ученого, который в наших академических заседаниях часто перемножает большие числа; однажды я удивился его занятиям, и мой товарищ сказал: „Вы забываете удовольствие, которое я испытываю, когда деление не открывает ошибки в моем умножении“».
В конце концов такое занятие ничем не отличается от разгадывания кроссвордов, пасьянса или рисования квадратиков на листе бумаги. Разве что требует чуть большего воображения.
Научившись читать, Ампер обнаружил в отцовской библиотеке двадцатитомную «Энциклопедию» и прочел ее всю от корки до корки, все статьи в алфавитном порядке. Детская память крепка, и много лет спустя, уже в зрелом возрасте, Ампер часто поражал друзей своей эрудицией и осведомленностью в самых разных областях знаний.
Прочитав в «Энциклопедии» легенду о Вавилонской башне, о том, как бог смешал языки, чтобы люди перестали понимать друг друга и никогда бы не достроили башню до неба, Ампер решил, по примеру Лейбница и Декарта, восстановить древний единый язык человечества. Это была нелегкая задача, но юноша отлично справился с ней. Он «изобрел» всеобщий язык, написал его грамматику и словарь и даже сочинил поэму на этом языке. Причем многие, слышавшие ее, утверждали, что новый язык Ампера отличался благозвучием и красотой.
В 1793 году Амперов постигло страшное несчастье. Глава семейства, занимавший должность мирового судьи в Лионе, был в ходе революционных событий казнен как аристократ и враг народа. Восемнадцатилетний сын его тяжко переживал смерть отца. Казалось, он потерял рассудок. Более года он был абсолютно безучастным ко всему происходящему вокруг него, оставаясь немым, «смотрел на окружающее без глаз и без мысли».
Но однажды в руки Ампера попалась книга Жан-Жака Руссо «Письма о ботанике» и несколько стихов Горация, он вдруг ожил. В юноше пробудилась задремавшая было любознательность.
Он с прежней страстью принялся за изучение латинского языка, античных поэтов и… ботаники.
Ампер был чрезвычайно близорук. Даже близкие предметы казались ему размытыми тенями без определенных очертаний. Он представления не имел о красоте окружающей природы. И вот как-то во время поездки в почтовой карете он взял в руки очки случайного попутчика и водрузил их на нос. Случайно они оказались ему впору. И перед молодым человеком раскрылся мир во всей своей величественной прелести. Трудно описать восторг, который охватил его…
Ампер снова вернулся к математике. В Лионе образовался дружеский кружок из любознательных молодых людей, собиравшихся для того, чтобы обсудить волновавшие умы научные проблемы.
Характер Ампера был крайне неуравновешенным и столь же широк диапазон интересов. Часто из одной крайности он кидался в другую. Так, уже став профессором математики в Бурге, он написал интересное рассуждение о будущем химии. Однако сложные политические обстоятельства 1801 года испугали его. Смелые предсказания стали казаться ему греховными. Он впал в мистицизм и начал обвинять себя в преждевременном открытии тайн. Счел это внушениями сатаны и бросил свое сочинение в огонь…
В Париже жизнь его текла беспорядочно. Не имея средств, Ампер вынужден был искать работу и получил должность университетского инспектора. Далекий от реальной жизни, он должен был ездить по департаментам, инспектировать и писать длинные отчеты о расходах на мебель, губки, мел и тому подобные мелочи. Ампер не был в состоянии довести даже собственную рукопись до вида, пригодного к набору. А между тем чиновники требовали от него точности и аккуратности в отчетах, в которых он не видел никакого смысла.
И вообще, если не считать занятий наукой, все существование Ампера в Париже было сплошным несчастьем. Умирает его жена, оставив мужу трехлетнего сына Жан-Жака. Чтобы дать сыну мать и освободить сестру от забот о малыше, Ампер женится во второй раз. И тут уж ему действительно не повезло. Знаменитый физик, человек глубоко интеллигентный, Луи де Бройль в 1940 году, несмотря на свою обычную сдержанность, охарактеризовал мадам Ампер так: «Вторая его жена оказалась мегерой, а ее родители не лучше».
Ампера буквально третировали в доме супруги, пока он не покинул ее кров, найдя убежище в здании министерства внутренних дел. Лишь купив дом на Фоссе-де-Сен-Виктор, он почувствовал себя в безопасности.
Не радовал ученого и сын. Ампер ввел двадцатилетнего Жан-Жака в модный салон сорокатрехлетней мадам Рекамье — супруги банкира. И молодой человек влюбился без памяти в стареющую красавицу. До самой смерти своей возлюбленной, в течение тридцати с лишним лет, поэт и лингвист Жан-Жак Ампер питал к ней нежные чувства и хранил верность. А старый Ампер мечтал о том, чтобы сын завел собственную семью и женился на дочери его друга по академии Жоржа Кювье…
В мае 1836 года больной и страдающий Ампер выехал из Парижа на юг, в Марсель, чтобы поправить свое здоровье. Однако надежды были тщетны. И 10 июля, после приступа жестокой лихорадки, Ампер скончался. Весть о его смерти была в тот же день передана по марсельскому телеграфу в Париж…
«Что» или «сколько»?
Нельзя сказать, чтобы теория Ампера, несмотря на ее математическую строгость, вызвала всеобщее воодушевление среди физиков и была сразу и повсеместно принята как руководство к дальнейшим исследованиям. Отнюдь!
Прежде всего путаные описания Ампера сильно уступали в строгости его математическим выводам. Но главной причиной было то, что Ампер отбрасывал такие привычные для всех понятия, как магнитные жидкости, заполняющие тела. Он сводил все явления взаимодействия магнитных тел только к «вольтаическим токам». Эти токи окружали, по его мнению, частицы металла чуть ли не наподобие декартовых вихрей…
В то время многие физики стремились выяснить природу таинственного электромагнетизма. Что является носителем электрических и магнитных сил? В учении о теплоте в архив были сданы взгляды о теплороде — материальной субстанции, переносящей тепло. В оптике исследователи сошлись на признании наитончайшего всепроникающего эфира — светоносного невесомого вещества, не оказывающего никакого сопротивления движениям планет. А в учении об электричестве все еще господствовали таинственные электрические и магнитные жидкости с их неясными свойствами и противоречивыми ролями…
Большинство ученых старались вообще не задумываться о природе наблюдаемых явлений, уверяя, что нужно заниматься вопросами только количественной оценки результатов, как это делал Ньютон, и не «выдумывать» причин.
Характерный пример, иллюстрирующий такой метод работы, — создание теории Вильгельмом Вебером. Он рассматривал лишь видимые проявления электромагнитных взаимодействий, не вдаваясь в природу самого взаимодействия. «Законы зависимости сил от заданных физических условий, — писал Вебер, — называются фундаментальными законами, а последние в соответствии с задачами самой физики предназначены не для того, чтобы дать объяснения силам на основе истинных их причин, а только лишь предложить отчетливо сформулированный и практически пригодный общий метод количественного определения сил в единицах измерения, принятых физиками для пространства и времени».
Однако прежде чем перейти к рассказу об открытии первых количественных законов электричества, позволивших перейти к промышленному применению «куриозных» аппаратов и породивших в будущем такую мощную отрасль производства, как электротехника, следует вспомнить еще о некоторых открытиях, совершенных в это же время.
В 1821 году жил в Берлине некто Томас Иоганн Зеебек — врач по образованию. Врачебной практикой он не занимался и, имея средства к существованию, довольно давно вел физические исследования. Имя его было настолько известно в научном мире, что в 1814 году Берлинская академия наук приняла его в состав своих членов.
Зеебек пытался обнаружить действие на магнитную стрелку замкнутого контура из разнородных металлов без включения в него вольтова столба. Он замыкал медную катушку гальванометра висмутовым диском, и каждый раз, когда его рука нажимала на один из контактов, магнитная стрелка чуть-чуть отклонялась. Почему?.. Может быть, влажные руки создавали условия для возникновения «вольтаического тока»?.. Он подложил под пальцы стекло и снова надавил на контакт. Стрелка осталась в неподвижности. Прекрасно!.. Но радоваться было рано. Через некоторое время стрелка все-таки отклонилась. Почему же не сразу, а через некоторое время? Что изменилось и что осталось тем же от того, что он положил под пальцы стекло? Устранен непосредственный контакт спая металлов с пальцами, но там же осталось тепло рук, которое теперь нагревает этот спай с некоторым запозданием из-за стеклянной прокладки… Не тепло ли — причина дополнительного магнетизма, вызывающего отклонение магнитной стрелки?
Через некоторое время Зеебек пишет статью, в которой заявляет, что «теплота, которая сильнее передается одному из мест контакта металлов, является причиной магнетизма». А посему он и дает название открытому им новому явлению «термомагнетизм»!
Зеебек всесторонне исследовал новое явление и обнаружил, что эффект, названный им «магнитной поляризацией», усиливается как с увеличением числа «термомагнитных» пар, так и с ростом разности температур. И в заключение сделал вывод, что даже магнетизм Земли имеет ту же природу, является термомагнетизмом, который рождается от нагревания вулканами сплошного пояса руд и металлов, опоясывающего Землю.
Как только физики узнали о новом открытии, сразу же во многих лабораториях опыты Зеебека были повторены. Эрстед и Фурье пришли к выводу, что это вовсе не термомагнетизм, а термоэлектричество и что Зеебек, исходя из ошибочных представлений, ошибся и в сути явления. Они составили батареи из большого числа металлических пар и наблюдали химическое действие электрического тока, получающегося от батареи. А затем вскоре удалось получить от такой батареи и электрическую искру. Теперь уже сомнений не оставалось: тепло, подведенное к спаю (или контакту) разнородных металлов
Через тринадцать лет после открытия Зеебека парижский часовщик, бросивший свое ремесло, Жан Шарль Атаназ Пельтье обнаружил, что в местах спаев двух разнородных металлов, в зависимости от направления тока, тепло либо выделяется, либо поглощается. Явление получило название «эффект Пельтье».
Так новые открытия все ближе и ближе подталкивали ученых к необходимости признания того, что силы природы могут превращаться одни в другие или переходить из одной формы в другую.
С тех пор прошло много лет, но и сегодня пока еще термоэлектрические генераторы используются лишь в качестве маломощных источников электроэнергии. Их устанавливают на навигационных буях, на маяках… Множество полупроводниковых термоэлементов, соединенных между собой, нагреваются солнечным теплом. Тепловая энергия непосредственно переходит в электрическую, но… коэффициент полезного действия таких установок слишком пока мал.
Зато обратный эффект, открытый парижским часовщиком, используется значительно шире. Наверное, наш читатель тоже не раз видел бесшумные холодильники «на полупроводниках». Бесшумные, без движущихся частей и агрегатов, экономичные, но пока… Опять это «пока». Увы, пока еще очень маломощные.
И все-таки у эффекта Зеебека и Пельтье есть будущее. Скорее всего, оно будет сильно отличаться от того, каким оно виделось первооткрывателям новых явлений, может быть, даже от того, каким видим его мы — люди конца восьмидесятых годов двадцатого столетия. Полупроводниковая, криогенная техника в сочетании с термоэлектрическими явлениями еще не сказала свое последнее слово.
Однако давайте не прерывать исторический ход повествования, ведь мы находимся еще только в первой четверти прошлого, девятнадцатого столетия. И новые явления, которые открывают любознательные физики, носят характер «качественного чуда», неожиданности. Люди еще не умеют даже как следует измерять и описывать новые силы. Но чем больше сведений об электричестве и магнетизме накапливалось у исследователей, тем настойчивее требовались для них количественные законы. На повестку дня властно вставал вопрос «СКОЛЬКО?»…
Глава одиннадцатая. Основной количественный закон электрической цепи
В широко известном сочинении конца прошлого века «Очерк истории физики» Фердинанда Розенбергера в одном из примечаний написано: «Георг Симон Ом (не смешивать с его братом Мартином Омом, знаменитым математиком)…» Прекрасный пример исторической несправедливости современника. Кто из нас знает сегодня «знаменитого математика» Мартина Ома, получившего известность в первой половине XIX века в связи с построением арифметики натуральных чисел? Пожалуй, только специалисты. Тогда как имя Георга Ома знакомо всем ученикам средней школы, начиная с седьмого класса.
Как-то во время поездки в ФРГ, в Кёльне, на одной из боковых улочек, отходящих от площади перед знаменитым собором, на глухой стене бывшей церковной школы, выкрашенной пронзительной охрой, увидел я металлическую плиту с барельефом и надписью, гласившей, что здесь учительствовал Г. С. Ом. Всего-навсего скромная черная доска на глухой стене… Между тем именно Ом дал в руки ученым первый количественный закон электричества. Что мы вообще называем законом природы? Это прежде всего устойчивое, повторяющееся и очень существенное отношение между наблюдаемыми явлениями. Закон, говорил Фридрих Энгельс, это «форма всеобщности».
Законы существуют независимо от нашего желания и даже вообще от сознания людей. Просто мы их еще далеко не все знаем. И вот открытие (точнее — познание) законов природы является главной задачей естествознания. Нужда в количественной оценке разнообразных действий гальванизма ощущалась давно, и многие пытались это сделать. Однако удача улыбнулась скромному учителю математики.
Георг Симон Ом родился 16 марта 1789 года в городе Эрлангене, в семье ремесленника-слесаря. Отец его был достаточно умным человеком, чтобы внушить своим сыновьям любовь к математике и физике с детства…
Окончив гимназию, Ом поступил в университет, но скоро бросил учебу и стал школьным учителем в небольшом швейцарском городке… Из школы в школу, из одного города в другой кочует учитель математики Ом, занимаясь в промежутках между уроками гальваническими опытами. В то время многие физики пытались выяснить, как зависит действие гальванической батареи от качества и от рода металла, из которого сделана проволока, замыкающая ее полюсы. Сделать это было нелегко, поскольку «электровозбудительная сила» любой гальванической батареи быстро падала. Восстанавливалась она лишь постепенно. Такая неустойчивость в работе очень мешала исследователям. И потому, как только Зеебек сконструировал термоэлемент, дававший ток постоянной силы, проблема была решена. Ому о термоэлементе рассказал немецкий физик Иоганн Поггендорф — издатель журнала «Аннален дер фюзик», бывший в курсе всех научных новостей своего времени.
В 1827 году в своей крохотной лаборатории в Кельне Ом соорудил элемент, состоящий из висмутового стержня, впаянного между двумя медными проволоками. Опустив один из спаев в кипящую воду, а другой в мелко наколотый лед, он приступил к опытам. Скоро Ом пришел к выводу, что электрический ток ведет себя точно так же, как водный поток в наклонном русле: чем больше перепад уровней и свободнее путь, тем поток сильнее. Так же и с током: чем больше электровозбудительная сила батареи и меньше сопротивление току на его пути, тем сила тока больше.
Местные физики очень благосклонно отнеслись к результатам работ Ома. Но ни в одной другой стране они известны не были. Профессор прикладной физики Парижской школы искусств и ремесел Клод Серве Пулье в октябре 1831 года сообщил Парижской академии, что открыл количественное соотношение между «электровозбудительной силой», током и сопротивлением. При этом он ни словом не упомянул имени Ома. Но затем вынужден был признать, что читал сочинение немецкого физика о гальванической цепи и что согласен с тем, что Георг Ом сформулировал этот закон первым. Эта довольно скандальная история принесла ту пользу, что вслед за Пулье о работах Ома узнали и другие французские физики. Узнали о его работах и в Англии.
Сам же первооткрыватель количественного закона продолжал оставаться скромным учителем. Лишь в 1833 году он получает место профессора физики в Политехнической школе города Нюрнберга. В 1841 году Лондонское королевское общество наградило Ома почетной медалью. А изобретатель широко распространенного и по сей день прибора — «мостика Уитстона» — Чарлз Уитстон приветствовал Ома, написав, что «наконец-то столь долго господствовавшие туманные представления количества и напряженности уступили место определенным понятиям сил и сопротивлений, установленным Омом». В 1849 году, когда Ому уже исполнилось шестьдесят два года, его пригласили наконец в Мюнхенский университет на должность экстраординарного профессора. И лишь за два года до смерти произвели в ординарные профессоры.
Ом был всю жизнь великим тружеником. К сожалению, его преследовали неудачи. У него был ряд прекрасных работ по акустике. Он установил важный закон о восприимчивости человеческим ухом лишь простых гармонических колебаний. Однако эти труды признания не получили. И лишь через восемь лет после смерти Ома Гельмгольц смог доказать справедливость его выводов.
В конце 40-х годов, задумав создать стройную теорию молекулярной физики, Ом успел написать и издать всего один том своего труда, когда внезапный удар лишил его возможности исследовать и жить.
Через двадцать семь лет после смерти Ома его именем назвали общепринятую единицу сопротивления. Тогда в Мюнхене «дорогому соотечественнику» воздвигли памятник.
Правило Ома оказалось настоящим законом. Все теоретические и опытные проверки показали его точность. И сегодня закон Ома, который гласит, что в замкнутой цепи сила тока прямо пропорциональна ЭДС и обратно пропорциональна полному сопротивлению цепи, является одним из трех китов, на которых стоит электротехника.
Три кита электротехники
Когда преподаватели начинают читать студентам курс «Теоретических основ электротехники», то на самых первых лекциях главное внимание всегда уделяется четкому доказательству трех законов: закона Ома и двух законов Кирхгофа. Они просты, их сегодня нетрудно понять, но лишь к концу курса, который продолжается полтора года (три семестра), студенты постигают всю глубину этих несложных соотношений. Это действительно те три кита, на которых держатся все расчеты электрических цепей.
Студенту Густаву Роберту Кирхгофу только-только исполнился двадцать один год, когда он, получив доступ в лабораторию физики, приступил к самостоятельным исследованиям. Густава Роберта занимал вопрос о том, как течет ток по проводникам различной конфигурации, как распределяется электричество по участкам электрической цепи и какие правила позволят находить распределение токов в разветвляющихся проводниках?..
Нельзя сказать чтобы это были такие уж сложные исследования. Важно было правильно сформулировать и поставить задачу. А потом, обобщив результаты экспериментов, попытаться увидеть закономерности и вывести обобщенное правило — закон. Было бы неверным считать, что до Густава Роберта Кирхгофа эта задача никому не приходила в голову. Для некоторых частных случаев ее решали еще Ом, Ленц и Уитстон. Брались за нее и другие физики и по мере надобности делали требуемые выводы. Но в общем виде ее в 1845 году решил Кирхгоф. Он написал, что «если через систему проволок, связанных между собой произвольным образом, проходят гальванические токи, то:
1. В случае, если проволоки 1,2….,n сходятся в одной точке и токи, направленные к ней, считать положительными, то сумма всех токов будет равна нулю.
2. В случае же, если проволоки 1,2…,n образуют замкнутую фигуру, то сумма произведения тока в каждой из них на собственное сопротивление проволоки должна быть равна сумме всех электровозбудительных сил на всем пути 1, 2…,n».
Окончив Кенигсбергский университет, Кирхгоф примерно через год сформулировал окончательно эти закономерности, и оба его правила совместно с законом Ома легли в «математические основания динамического электричества».
С тех пор прошло больше полутораста лет, и сегодня на экзаменах на вопрос о законах Кирхгофа большинство студентов браво отвечают: «Первый закон: „Сумма токов, притекающих к узлу, равна сумме токов утекающих“. А второй: „В замкнутом контуре сумма падений напряжения равна сумме ЭДС“». Просто, правда? Но это — через сто пятьдесят лет…
Что же касается дальнейшей научной судьбы самого Густава Роберта, то она была вполне благоприятной. Следующий цикл его работ касался главным образом исследований в области теории деформаций, движения и равновесия упругих тел, а также течения жидкостей. Кирхгоф показал себя знающим механиком, защитил докторскую диссертацию и перешел в знаменитый Гейдельбергский университет ординарным профессором. Там он совместно с Робертом Бунзеном положил начало спектральному анализу. А в пятьдесят пять лет возглавил кафедру математической физики в Берлине и написал обширный четырехтомный труд «Лекции по математической физике». Эта книга сыграла большую роль в развитии науки.
Уильям Стёрджен — изобретатель электромагнита
23 мая 1825 года на заседании Британского общества искусств за длинным столом, заставленным различными электрическими приборами и внушительной батареей из вольтовых столбов, сидел высокий джентльмен с военной выправкой и благородным, хотя и несколько грубоватым лицом. Лет ему было за сорок. Скорее всего, его можно было принять за отставного военного.
Когда члены общества собрались, председатель коротко представил гостя: «Мистер Уильям Стёрджен — эсквайр», — и сказал, что мистер Стёрджен любезно согласился показать обществу ряд своих приборов для электромагнитных экспериментов и познакомить со своим изобретением…
После открытия Эрстеда опыты с электричеством и с магнитами вновь стали популярны среди образованной публики. Поэтому собравшиеся не без интереса следили за ловкими руками экспериментатора, демонстрировавшего по большей части знакомые всем и лишь слегка усовершенствованные приборы. Но вот Стёрджен сделал паузу и с некоторой торжественностью открыл большой футляр. Там лежал согнутый подковой черный лакированный стержень из мягкого железа, обмотанный блестящей медной проволокой.
Изобретатель положил прибор на весы. Английская система мер всегда отличалась замысловатостью, и я не стану перечислять фунты и унции, поставленные на другую чашку весов. Общий вес прибора составил что-то около двухсот граммов. Экспериментатор подвесил прибор на штатив и подключил к вольтовой батарее. Концы подковы, обретя магнитную силу, притянули к себе железную полосу. Стерджен стал нагружать полосу гирями: одна, другая, третья… — полоса держится: пятая, десятая… Лишь когда вес притянутого железа в 18 раз превзошел вес самого магнита, груз оторвался.
Это было неслыханно! Как удалось Стерджену так увеличить подъемную силу? Ведь ни один естественный магнит не в состоянии поднять и пятой доли такого груза… И вообще, кто такой этот джентльмен?
Люди становятся чрезвычайно предприимчивыми, если их любопытство задето. К сожалению, не всегда такой интерес направлен на должное.
Прошло всего несколько дней, и ученый Лондон узнал все подробности об изобретателе электромагнита. Оказалось, что Уильям Стерджен родился в семье сапожника. До девятнадцати лет он был практически малограмотен, находясь в обучении у коллеги родителя по цеховой принадлежности. По-видимому, предначертанная судьба не устраивала Уильяма. И в один прекрасный день, улучив момент, парень удрал от благодетеля в Вест-Морленд, где поступил в армию.
Рядовому Стерджену определенно повезло. Сержант, у которого он оказался в подчинении, был начитанным и добрым человеком. Видя тягу молодого солдата к знаниям, он принялся снабжать Стерджена книжками, которые тот читал в свободное время. По-видимому, последнего оказывалось достаточно, потому что Уильям Стерджен не только приохотился к чтению, но и научился ставить немудреные опыты по химии и физике. Более того, со временем он научился разбираться в различных механизмах и в дальнейшем всю жизнь обожал ремонтировать часы.
Очень скоро Стерджен понял, что знаний его слишком мало, чтобы разобраться хотя бы в описаниях экспериментов, помещенных в простых книгах.
И он стал учиться. Учиться с той же настойчивостью, с какой умел делать все.
Минуло почти пятнадцать лет со дня побега из отчего дома. Уильям Стерджен стал отличным механиком, умелым экспериментатором и образованным человеком, знакомым с латынью и естествознанием, с математикой и физикой. Купив на собранные за годы службы деньги токарный станок и инструменты, отставной солдат пробует свои силы в изготовлении приборов для любителей научных развлечений. И добивается определенного успеха. Успех приносит заказы. Заказы ведут к полезным знакомствам. Благодаря поддержке одного из влиятельных ученых Стерджен получает место лектора в военной Академии Ост-Индской кампании.
И вот его первое публичное выступление в Лондоне с изобретенным электромагнитом. Солдат-ученый! Даже для невозмутимого английского общества это не могло остаться незамеченным.
Но что, собственно говоря, открыл Стерджен, что изобрел?.. Об усилении магнитной силы в присутствии мягкого железа знали еще древние греки и римляне. А однорядная катушка, которая проявляла магнитные свойства, стоило пропустить по ней электрический ток, являлась не чем иным, как «соленоидом Ампера». Что же — объединил одно известное с другим известным и за это удостоился мировой славы?
Именно так! Мы не называем его ученым-первооткрывателем. Но в объединении частей известного для получения нового качества лежит суть изобретательства. И здесь Стерджен — подлинный изобретатель электромагнита. Это ему первому в голову пришла мысль согнуть железный прут подковой. Сколько с тех пор прошло времени, а подковообразные магниты применяются до сих пор.
Со временем его имя становится все более и более известным. О нем говорят ученые. О его магните пишут физики. В доме Стерджена появляются первые ученики. И среди них Джеймс Прескотт Джоуль, сын богатого манчестерского пивовара, — один из первооткрывателей в будущем закона сохранения энергии, который не питал склонности к профессии отца.
Стерджен пишет несколько статей и немало раздосадован, когда снобы из «Философикл трансэкшенс» отказываются их опубликовать Он заявляет себя издателем нового научного журнала «Анналы электричества Стерджена», где, к слову сказать, появились и первые статьи Джоуля. Джоуль был талантливым учеником, и его учитель был счастлив этим обстоятельством. Продолжая работы учителя, Джоуль, например, сконструировал многополюсное электромагнитное устройство, весом в 5,5 килограмма, которое удерживало более тонны груза. Это не могло не поражать окружающих.
В 1840 году, когда Стерджену было уже под шестьдесят, манчестерцы предложили ему пост директора своего музея. Место почетное, но не прибыльное. А изобретатель по-прежнему тратил большую часть дохода на электрические и магнитные опыты. Десять лет спустя он умер, так и не дождавшись ни признания, ни почестей. Многим из англичан сегодня даже имя его не знакомо. И только старая надпись на могильной плите напоминает: «Здесь лежит изобретатель электромагнита».
Еще при жизни Стерджена электромагниты захватили воображение людей и стали модой. Изобретатели всех стран и народов пытались чисто опытным путем увеличить их притягивающую силу. Правил для расчетов и конструирования не существовало. Врачи использовали электромагниты для лечения, шарлатаны — для предсказания судьбы, фокусники и любители научных развлечений — для показа чудес.
Одно из первых применений мощных электромагнитов на практике началось с конструированием подъемных кранов на сталелитейных заводах. Это нововведение вызвало сначала целую бурю, поскольку предприниматели тут же уволили рабочих, занятых раньше переноской железа. Правда, со временем кое-кого из уволенных удалось приспособить к делу. И тоже не без помощи электромагнита. В цехах и на проезжих дорогах появились люди с тяжелыми батареями за спиной и с электромагнитами в руках. «Магнитные Биллы», — называли их обыватели. В обязанность «магнитных Биллов» входила очистка улиц и помещений от железного мусора. Особенное значение это стало иметь, когда по дорогам, теряя болты и гайки, побежали первые автомобили.
Стали применять электромагниты и на мельницах для очистки зерна, на рудниках — для разделения полезной и пустой породы.
Во второй половине века свойства электромагнита привлекали внимание военных. В Соединенных Штатах Америки в военном ведомстве проходили опробование два электромагнитных проекта. Один из них заключался в создании сверхсильного магнита для защиты крепостных стен прибрежных фортов от артиллерийского обстрела… Суть проекта заключалась в том, что сверхмощный магнит должен был притягивать к себе вражеские снаряды, отклоняя своей силой траектории их полета. Сегодня такая идея кажется смешной. Но сто лет назад на одном из фортов ее пытались воплотить в жизнь. Под командой бравого офицера матросы соединили рельсами казенные части двух старых осадных орудий, получив внушительную раму в форме буквы «П». Стволы пушек имели не меньше полуметра в диаметре и около пяти метров в длину. На них намотали обмотки из многих миль торпедного кабеля и пропустили по кабелю ток…
Очевидцы рассказывали, что уже за десять миль в открытом море стрелки корабельных компасов теряли уверенность. Однако для притягивания снарядов противника сила магнита была явно недостаточной.
Второе предложение касалось создания магнитного корабля-ловушки. Для этой цели кабелем обмотали целый броненосец и пустили по кабелю ток. Получился плавающий электромагнит со стальным сердечником, который должен был сбивать с толку магнитные стрелки компасов на судах противника. Однако и эта затея потерпела фиаско. Магнитная защита компасов на кораблях легко компенсировала влияние поля корабля-ловушки. Много было всевозможных попыток приспособить магнитные силы для службы человеку. И многое получилось. Оглянитесь вокруг, сколько электромагнитов работает в самых обычных домашних приборах. Тут и телефон, и магнитофон, даже простой дверной звонок… Нет, Уильям Стерджен вполне достоин того, чтобы мы сохранили в своей памяти его славное имя.
Кстати, сегодня вновь вспыхнул интерес к электромагнитным устройствам, предназначенным для ускорения макроскопических тел. Это вполне понятно. Космическим ракетам при запуске приходится тащить с собой наверх огромную массу топлива. Полезный гру: i равен всего нескольким процентам от стартового веса. А нельзя ли придумать устройство, способное зашвыривать в космос снаряды без «накладных расходов»? Речь может идти о пушке.
Читатель наверняка помнит идею Жюля Верна: послать на Луну корабль с людьми, выстрелив его из огромной пушки. Идея неприемлемая в связи с гигантскими перегрузками, которые не вынесет человек. А если без людей?.. Расчеты показывают, что в принципе такая установка может быть создана, если заменить пороховую пушку — электромагнитной… И вот в Канберре лаборатория национального Австралийского университета, работая совместно с американскими лабораториями в Лос-Аламосе и Ливерморе (Калифорнийский университет), а также совместно с фирмой «Вестингауз» построила «рельсовую пушку». Это некое подобие простейшего электромагнитного ускорителя, состоящего из двух проводящих ток рельсов, вмонтированных в трубу, напоминающую артиллерийский ствол. В систему посылаются импульсы электрического тока. Между рельсами быстро движется плазменный разряд — электрическая дуга, подталкивающая вперед «снаряд» из непроводящего материала.
Последнее достижение — выталкивание «снаряда» (им являлся пластмассовый кубик весом в 3 грамма) со скоростью до 10 километров в секунду. Этого уже достаточно, чтобы вывести груз на орбиту. К сожалению, по выходу из канала ствола «снаряд» мгновенно разрушился под воздействием ускорения, которое в 5 миллионов раз превзошло ускорение силы тяжести. Изобретателям придется применить какие-то дополнительные меры, чтобы «сгладить» режим ускорения к концу пути разгона — к выходу «снаряда» из ствола пушки.
«Массовый ускоритель», основанный на явлении выталкивания сверхпроводящего замкнутого тока в «снаряде» под влиянием магнитно-дипольного взаимодействия этого тока с замкнутыми токами мощных катушек, расположенных вдоль ствола и включающихся синхронно, был предложен еще в 1974 году в качестве средства для доставки минералов, руд, богатых алюминием, с Луны. Однако теоретические расчеты показали, что подобные же «массовые ускорители» могут быть построены и на Земле и использоваться для запуска космических аппаратов. Длина таких «пушек» должна быть несколько километров.
Новые устройства могут найти себе применение и в термоядерной физике. Впрочем, у «массовых ускорителей» есть не только сторонники, но и противники. Будущее покажет их целесообразность и рентабельность в технике.
Для нас же важно то, что еще далеко не все возможности электромагнита использованы людьми.
На старом синхроциклотроне
Если выехать из Ленинграда по шоссе на юг, то минут через сорок мелькнет справа на обочине большая бетонная плита с надписью «Гатчина» и с контурным рисунком, на котором у старинной башни с высоким шпилем начертан символ атома. В древней Гатчине находится гордость ленинградцев — Ленинградский институт ядерной физики (ЛИЯФ) имени Б. П. Константинова Академии наук СССР, один из самых молодых исследовательских центров нашей страны. Здесь ведутся фундаментальные исследования по проблемам ядерной физики, по физике элементарных частиц, физике твердого тела, по молекулярной радиобиологии и по проблемам прикладных наук.
Однажды меня и еще двух ленинградских писателей пригласили в институт на «Праздник книги». Ученые, даже те, кто занимается сложными теоретическими вопросами мироздания, любят читать: кто приключения и фантастику, кто исторические книжки о прошлом науки, о политике, о дипломатии и войнах, а кто и «про любовь». Мы втроем и представляли все три вида перечисленной литературы. Прежде чем ехать, мы поставили условие — побывать на ускорителе.
Мне хотелось еще раз осмотреть его огромный электромагнит, поскольку я писал книжку рассказов об электричестве. Товарищи мои интересовались научными буднями физиков.
Вы ведь, наверное, знаете, что ускорители заряженных частиц делятся на линейные и циклические. В линейных ускорителях заряженные частицы летят по прямой, подгоняемые нарастающим электрическим полем. А в циклических ускорителях (в бетатронах и фазотронах, синхротронах и циклотронах, синхрофазотронах и синхроциклотронах) частицы много раз проходят через ускоряющее устройство, двигаясь по круговой орбите в поперечном магнитном поле сильного электромагнита.
Ускорители заряженных частиц находят очень широкое применение как в науке, так и в современной технике. Они используются в ядерной физике и физике высоких энергий, в дефектоскопии, для получения изотопов, для ускорения химических реакций и еще для множества промышленных применений, равно как в медицине и в биологии…
Циклотрон в принципе состоит из трех основных частей: большого и мощного электромагнита, генератора переменного напряжения высокой частоты и вакуумной камеры с небольшим количеством какого-нибудь газа в ней. Раскаленная вольфрамовая нить в центре камеры испускает электроны. Под воздействием не очень большого, порядка тысячи вольт, электрического напряжения они ускоряются и разбивают атомы газа на заряженные частицы — ионы, то есть ионизируют газ. Мощное магнитное поле заворачивает заряженные частицы, и они начинают кружиться в камере. Если теперь надеть на вакуумную камеру два электрода в виде половинок консервной банки и подвести к ним переменное напряжение, то ионы под действием этого напряжения станут разгоняться. Траектории их полета из окружности превратятся в спирали, и на последнем витке частицы можно вывести из циклотрона через какое-нибудь специальное окно и направить на требуемую мишень. Принцип циклического ускорения сегодня, пожалуй, самый распространенный.
Одна из первых таких машин была построена у нас в Советском Союзе, а еще точнее, в Ленинграде, под руководством Игоря Васильевича Курчатова в 1932 году. Это был, конечно, очень скромный прибор. Но, накопив опыт, группа Курчатова взялась за проектирование циклотрона для Ленинградского физико-технического института. Этот ускоритель должен был стать самым большим в Европе. Пуск машины намечался на первое января 1942 года. Но 22 июня 1941 года началась Великая Отечественная война…
По окончании второй мировой войны циклотрон перестал быть новинкой. Появились и другие модели циклических ускорителей.
В Гатчине, где располагался филиал Физико-технического института имени А. Ф. Иоффе, в 1967 году пустили синхроциклотрон. Его проектированием и строительством руководил профессор Д. Г. Алхазов. Сразу круг исследований института значительно расширился. К работам по ядерной физике, физике твердого тела и физике элементарных частиц прибавились исследования по молекулярной биологии, радиобиологии и генетике. В июле 1971 года филиал института был преобразован в самостоятельный научно-исследовательский институт. И стал называться: Ленинградский институт ядерной физики (ЛИЯФ) АН СССР.
На его-то «старый добрый» синхрофазотрон нас и повели…
Круглое здание, в котором смонтирована атомная машина, с прилегающими к нему корпусами расположено среди зеленого массива. Сосны, трава. Мы прошли через проходную, надели белые халаты. Потом выгрузили из карманов ключи, сняли часы… В противном случае после визита к большому магниту они показывали бы точное время лишь два раза в сутки.
И вот вход в экспериментальный зал синхроциклотрона: предупреждающие световые табло, система кнопок. Невидимые механизмы открывают перед нами «дверь» — в сторону по направляющим рельсам отъезжает глыба тяжелого бетона. Впереди коридор и ярко освещенный зал, огромный, круглый, как цирк. В середине — громадина электромагнит, выкрашенный зеленой масляной краской. Вокруг — бесчисленные приборы. В разные стороны от синхроциклотрона отходят трубы, окруженные измерительной техникой. Это тракты пучков — пути, по которым из камеры выводятся разогнанные частицы. Вот эти голубые трубы — пи-мезонные тракты. А этот светло-серый — мю-мезонный тракт. Здесь летит пучок протонов для медицинских исследований. А вот это — тракт импульсного нейтронного пучка. Сгустки нейтронов проскакивают за 20 наносекунд.
Нано! По-гречески — «карлик», составная часть слов, служащих для обозначения миллиардной доли исходной единицы. Наносекунда — это 0,000 000 001 секунды. Пожалуй, такой промежуток времени так же трудно представить себе, как и энергию синхроциклотрона в один гигаэлектронвольт. Здесь «гига» — соответственно составная часть слова, служащая для наименования единиц, кратных миллиарду. Гигаэлектронвольт — миллиард электронвольт. А «гига», как вы, наверное, уже догадались, происходит от греческого слова «гигантский».
Мы обходим машину вокруг, слушаем пояснения и проникаемся почтением. Старое, но грозное оружие физики. Сейчас в институте строится новый ускоритель, более мощный, более совершенный. Но и этот еще не выходит в отставку, он еще послужит…
Чтобы разрядить сгустившуюся атмосферу пиетета, наш сопровождающий вытаскивает из кармана халата здоровенный гаечный ключ и ставит его торцом на ладонь. Ключ стоит. Более того, когда мы пытаемся его положить, он снова вскакивает, как ванька-встанька… Вот оно проявление мощного магнитного поля, из-за которого пришлось снять часы. Невидимое, неслышимое, неощутимое человеком и вместе с тем такое необходимое для поддержания жизни на планете. Мы так привыкли к проявлению магнетизма в окружающем мире, что порой на вопрос «что это?» отвечаем, пожав плечами: «Обыкновенный магнит». Обыкновенный… Кто из нас с вами думает при этом, что загадка «обыкновенного магнита» до сей поры так и не разгадана учеными.
То, что мы понимаем под магнетизмом сегодня, — это также совокупность явлений, обусловленных магнитным взаимодействием, которое передается и осуществляется с помощью магнитного поля. Сегодня мы знаем, что все вещества в той или иной мере обладают магнитными свойствами. Это и понятно: электроны, протоны и нейтроны, из которых построены все атомы, обладают магнитными моментами. Но при этом одни вещества внешне магнитных свойств не проявляют или проявляют их слабо (это диа- и парамагнетики), а другие — ферромагнетики — взаимодействуют сильно и могут даже самопроизвольно намагничиваться.
Мы объясняем магнитные свойства вещества на основании законов квантовой механики. Знаем, что магнитные поля существуют у многих космических тел и играют очень важную роль в важнейших астрофизических и планетных явлениях. Магнитные свойства ряда веществ мы широко используем в электро- и радиотехнике, в автоматике и вычислительной технике, в телемеханике, в морской и космической навигации, в геофизических методах разведки полезных ископаемых, наконец, для контроля качества металлических изделий, но… Как и во времена Гильберта и Стёрджена, мы по-прежнему не знаем природы взаимодействия двух магнитов, не представляем механизма взаимодействия магнитных полей.
В 1931 году замечательный английский физик П. А. Дирак опубликовал статью, в которой наряду с фундаментальным квантом электричества — электроном он вводил и квант магнетизма — «уединенный» северный или южный магнитный полюс, который передвигается наподобие элементарной частицы. Это было очень неожиданно. Все ведь привыкли к тому, что любой магнит, начиная от крошечного электрона и до огромного сверхпроводящего соленоида, всегда имеет не менее двух полюсов. Как же может существовать одиночный магнитный полюс — магнитный монополь?..
Но ведь электрические заряды существуют в виде монополей? В 1897 году английский физик Дж. Дж. Томсон открыл эту фундаментальную частицу — электрон, — и с тех пор все наблюдающиеся электрические заряды оказывались кратными ее заряду. То есть электрический заряд квантовался.
То же условие предположил Дирак и для магнитного заряда. Теоретически он даже вычислил его величину. Оставалось только найти его экспериментально… Может возникнуть вопрос: а для чего, собственно говоря, так уж необходим нам магнитный монополь? Вернемся на минутку к электрону: развитие его теории способствовало созданию теории относительности. А из нее выросла физика XX столетия — квантовая теория взаимодействий гравитационных, электромагнитных, сильных и слабых сил. Без электронов не заговорило бы радио, не замерцали бы телевизионные экраны, не защелкали бы ЭВМ системы управления и регулирования, не засверкали бы лазеры…
Подтверждения существования магнитного монополя ждут теории, основанные на точной симметрии между электричеством и магнетизмом. Монополь Дирака подтвердил бы правильность новой физической теории «Великого объединения», которая позволяет три вида взаимодействий — слабое, электромагнитное и сильное — рассматривать с единых позиций. В науке о Вселенной — космологии подтверждение физического существования монополя дало бы основание считать, что наша Вселенная действительно родилась в результате «большого взрыва». Я уж не говорю о практических возможностях. О! Какие невиданные новые источники энергии мы бы построили! Создали бы микрогенераторы и микродвигатели невиданных мощностей. Осчастливили бы медиков и биологов… Да что там говорить. Разве мог кто-нибудь в 1897 году предсказать, к чему приведет открытие крошечного электрона?
Самый первый эксперимент по поискам магнитного монополя был проведен в год выхода дираковской статьи — и неудача! Затем, в начале сороковых годов, повторение попытки — и снова неудача. В 1951 году — тот же результат при поисках монополей в метеоритах, в потоках космического излучения. Позже — поиски в донных отложениях на огромных глубинах Тихого океана, на самых мощных ускорителях в мире… Нет! Нет и нет!..
В 1975 году группа американских физиков под руководством Прайса сообщила, что нашла!! Вроде бы нашла! Как будто нашла следы неизвестной частицы, которая могла бы быть магнитным монополем. Однако и они приняли желаемое за действительное.
В 1982 году в Стенфордском университете на установке СКВИД после двухсот дней наблюдения Бласу Кабрере удалось заметить резкое нарастание тока. Это могло быть лишь в том случае, если через сверхпроводящий ниобиевый контур пролетел монополь… Однако большинство ученых отнеслось к сообщению скептически. А повторить эксперимент не удалось. Значит, открытие по-прежнему не состоялось.
И вместе с тем они должны существовать. Правда, значение массы магнитного монополя определяется в 1016 миллиардов электронвольт! При такой его величине их не удастся получить даже на ускорителях со встречными пучками — не хватит просто энергии. И все-таки охота за монополями продолжается. И магнит, простой магнит, который нам хорошо знаком, оказывается, еще далеко не раскрыл своих тайн. И кто знает, когда это раскрытие состоится окончательно?
Глава двенадцатая. Майкл Фарадей — король физиков
Сегодня вряд ли найдется человек, не слыхавший имени Фарадея. О его открытиях написано много книг. Известны и основные этапы его жизненного пути: от ученика переплетчика к лаборанту, а затем ассистенту профессора Гемфри Дэви и, наконец, к члену Лондонского королевского общества, профессору и директору лаборатории Британского королевского института. И все-таки о жизни самого ученого сказать можно немногое. Внешне она была не очень примечательна. «Великие события, — как писал когда-то Больцман по поводу „тихой“ биографии другого ученого, Густава Кирхгофа, — совершались исключительно в его гстпове». Вот, например, каким вспоминает Фарадея французский химик Дюма:
«Фарадей был среднего роста, жив, весел, глаз всегда наготове, движения быстры и уверенны; ловкость в искусстве экспериментирования невероятная. Точен, аккуратен, весь — преданность долгу… Он жил в своей лаборатории, среди своих инструментов; он отправлялся в нее утром и уходил вечером с точностью купца, проводящего день в своей конторе. Всю свою жизнь он посвятил постановке все новых и новых опытов, находя, в большинстве случаев, что легче заставить говорить природу, чем ее разгадать…
Моральный тип, явившийся в лице Фарадея, поистине явление редкое. Его живость, веселость напоминают ирландца; его рефлектирующий ум, сила его логики напоминают шотландских философов; его упрямство напоминало англичанина, упорно преследующего свою цель…»
Я не стану пересказывать биографию Фарадея, что потребовало бы многих страниц и явилось известным повторением работы, уже проделанной ранее другими. Я приведу лишь несколько фактов из его детства и юности. Фактов, сыгравших, как мне кажется, важную роль в жизни этого ученого, поучительных и в наши дни для тех, кто питает склонность к науке.
«Мое образование, — рассказывал Майкл Фарадей, — было самым заурядным и включало в себя начальные навыки чтения, письма и арифметики, полученные в обычной дневной школе. Свободное время я проводил дома и на улице». Когда Майклу исполнилось двенадцать лет, его школьные годы кончились. Так было принято в той среде, к которой принадлежал Фарадей. Вопросы образования вряд ли беспокоили его родителей. Не могли помочь в этом деле советами и дяди Майкла. Хотя один из них «был кровельщиком, другой — сапожником, третий — фермером, четвертый — даже мелким торговцем, это были люди труда, скромные и честные».
«Не остается сомнений в том, что Фарадей вырос среди людей, принадлежащих к обширному классу, живущему тяжелейшим физическим трудом, в условиях, в которых он мог получить лишь немного духовной пищи», — писал биограф ученого, доктор Бен Джонс, в книге «Жизнь и письма Фарадея», выпущенной в 1870 году.
Неподалеку от дома Фарадеев на Бландфорд-стрит находилась небольшая книжная лавка и переплетная мастерская Жоржа Рибо. Сюда и поступил учеником переплетчика Майкл.
Трудно сегодня сказать, когда именно и по какой причине юный подмастерье переплетчика заинтересовался содержанием книг, над которыми работал ножницами и клеем. Впрочем, явление это не исключительное. Среди старых переплетчиков было немало книгочеев и знатоков книги. Но Фарадей, начав читать, вскоре оставил без внимания романы и описания путешествий — естественное «чтиво» для человека его возраста и образования. Больше всего его привлекали статьи из Британской энциклопедии с описаниями опытов и аппаратов для экспериментирования.
Однажды кто-то сдал в переплетную Рибо популярную книжку «Беседы по химии», написанную некой госпожой Марсе. Кажется, она была супругой врача. Книжка попала к Фарадею. Непритязательные опыты, описанные простым и доступным языком, возбудили воображение юноши. Самостоятельный характер и недоверчивость, свойственные возрасту, побудили проверить то, о чем говорилось в книге. Особенно важно это было сделать, когда результат описанного опыта выходил за рамки привычного ожидания. Здесь его мог убедить только факт. «Пожалуйста, не думайте, чтобы я был глубоким мыслителем или отличался ранним развитием, — писал он. — Верил столько же в „Тысячу и одну ночь“, сколько в „Энциклопедию“. Но факты были для меня важны, и это меня спасло. Факту я мог доверяться; но каждому утверждению я мог всегда противопоставить возражение. Так проверил я и книгу г-жи Марсе с теми небольшими опытами, на производство которых у меня были средства, после чего мне пришлось убедиться, что книга соответствует фактам, насколько я их понимал». Так оценивал сам Фарадей значение этой немудрящей книжки в своей жизни.
Как важно вовремя получить именно ту духовную поддержку, которой жаждет сердце. Перевести юношеский нигилизм в жажду познания, показать роль Его Величества Факта и научить добывать факты самостоятельно…
Проверить слова учителя на опыте почти равноценно собственному открытию. Это не значит, конечно, что каждый проделавший дюжину домашних экспериментов к тридцати пяти годам станет членом Королевского общества. Но то, что в будущем он более критично отнесется к чужому мнению, проявит независимость и самостоятельность убеждений, — на это, пожалуй, надеяться можно.
Майкл Фарадей не был исключительным ребенком. Живой и общительный, он отличался от других мальчиков его возраста, может быть, только несколько большей любознательностью, недоверчивостью к словам и упорством самостоятельного характера.
«Мой хозяин, — писал Фарадей, — позволял мне иногда посещать вечерние лекции физики, которые читал господин Татум в своем собственном доме. Я узнал об этих лекциях по объявлениям, вывешенным в окнах лавок, недалеко от его дома. Плата за вход была 1 шиллинг. Брат Роберт дарил мне деньги на лекции».
Фарадей побывал на лекциях блестящего исследователя и талантливого лектора, профессора химии Королевского института сэра Гемфри Дэви и остался в полном восторге от того, что увидел и услышал. К этому времени в его жизни наступила пора больших перемен. Срок ученичества в переплетной мастерской подошел к концу. Майкл перешел к другому хозяину, стал самостоятельным двадцатилетним рабочим парнем и должен был трудиться без всяких скидок и послаблений. Трудовой день не оставлял ему, как и всякому другому английскому рабочему, времени на посторонние дела. И Майкл с тоской смотрел, как химические приборы и электрическая машина, сделанная его руками, покрываются пылью. Он уже не представлял себе жизни без экспериментов. Надо было что-то решать.
В переплетную часто заходил некто по имени мистер Дэне — член Королевского института. Это он снабдил Фарадея билетами на лекции Дэви. Наблюдая за тем, как мается молодой человек, Дэне посоветовал обратиться с просьбой к профессору Дэви: не найдет ли тот для него работу в лаборатории? Майкл с радостью ухватился за эту идею. Для подкрепления своей просьбы и доказательства серьезности намерений Фарадей переписал начисто прослушанные им лекции Дэви, красиво переплел и приложил к письму… Потянулись дни ожидания. Может быть, важный сэр и не ответит на послание переплетчика, как не отвечали другие, раньше… Но вот однажды вечером Фарадея, который уже спал после работы, разбудил стук. Он вскочил с постели, отворил дверь и увидел на Веймонт-стрит прямо перед домом, в котором жил, карету. Лакей подал ему записку. Это было приглашение посетить сэра Гемфри на следующее утро.
Случай помог Фарадею. Во время одного из опытов в лаборатории взрывом обожгло глаза Дэви. И он пригласил Майкла временно поработать у него переписчиком. Можно себе представить, как трудно было молодому человеку потом возвращаться к опостылевшему ремеслу. Но наступил день, когда Дэви уволил своего ассистента, а его место предложил Фарадею.
В том же году осенью Дэви предложил Майклу поехать с ним в качестве секретаря в путешествие по Европе. Майкл с радостью согласился. Его, правда, несколько смущало то, что на первых порах ему пришлось бы выполнять еще и обязанности камердинера сэра Гемфри, поскольку старый слуга ехать отказался. Но в конце концов это были мелочи по сравнению с интересными встречами и множеством блестящих экспериментов, которые производил его патрон в лучших лабораториях Европы. Так прошел год и полтора. Путешествие, возможно, продолжилось бы и дальше, если бы не несносный характер леди Гемфри Дэви. Она умудрялась отравлять существование и мужу, и его ассистенту. И в конце концов вынудила их прервать свои ученые занятия и поездку и возвратиться в Англию.
Надо сказать, что, несмотря на мелкие неприятности, путешествие необыкновенно обогатило Майкла Фарадея. Расширился его кругозор, он познакомился со многими выдающимися представителями европейской науки и получил прекрасную выучку как экспериментатор. По возвращении в Лондон он некоторое время продолжал работать в лаборатории Дэви, а затем стал ассистентом профессора Бранда. И «так покойно, ловко и скромно исполнял на лекциях свою работу, что в то время говорили: „Лекции Бранда текут как по маслу“».
К этому времени относится одно весьма знаменательное событие в жизни Фарадея, сыгравшее большую роль в его дальнейшей деятельности.
Исследователи давно заметили, что пламя зажженного газа или даже обыкновенной свечи часто начинает мигать в такт со звуком. Более того, в определенных условиях пламя само начинает звучать в тон музыки, усиливая воспроизводимые звуки. Эта способность пламени приходить в колебания долгое время оставалась необъясненной, пока профессор Август Делярив не дал своей теории явления.
Проверяя выводы Делярива, Фарадей рядом простых, но очень эффектных и убедительных опытов доказал ошибочность этой теории. «Открытие ошибки в работе опытного исследователя, — пишет в своих воспоминаниях Джон Тиндаль — друг и сотрудник Фарадея, — составляет эпоху в жизни молодого ученого; и когда это обстоятельство, как в случае с Фарадеем, порождает уверенность в себе, оно неизбежно влечет за собою прекрасные последствия».
Фарадей поверил в себя. С этого момента его самостоятельные работы, анализы и исследования по оригинальности замысла и по виртуозности выполнения превосходят все, что делается в Королевском институте. Его авторитет начинает беспокоить даже самого сэра Гемфри Дэви. Стареющий ученый испытывает невольное чувство зависти к успехам своего бывшего ассистента. А Фарадей, почувствовав свою силу, буквально рвется вперед, торопится, подстегиваемый проснувшимся честолюбием, и порой… допускает ошибки…
Рождение электродвигателя
Однажды в лабораторию Дэви, бывшего в ту пору уже президентом Королевского общества, зашел вице-президент доктор Волластон. Его занимала мысль о способе превратить замеченное Эрстедом отклонение электрическим током магнитной стрелки в ее непрерывное вращение. Волластон полагал, что можно получить и обратное действие, то есть вращение проводника с током около магнита. Однако ни один из поставленных им опытов не привел пока к успеху.
Фарадей с интересом слушал беседу ученых. Мысль его заработала, и он тут же предложил идею приспособления иглы к магниту на чувствительном подвесе. Волластон высказал сомнение в успехе. А Дэви, как обычно, предложил: «Попробуйте…» И Фарадей стал пробовать.
Задача, поставленная Волластоном, оказалась труднее, чем думали сначала. Фарадею пришлось еще раз перечитать все, что было написано по этому поводу, и немало поломать голову, прежде чем у него родилась идея установки для эксперимента. Нужна была конструкция, в которой ток действовал бы только на один полюс магнита. Тогда силы взаимодействия заставят проволоку с током совершать вращательное движение.
Тем временем наступили рождественские каникулы. Джентльмены, обладающие достаточным состоянием, разъехались по традиции из Лондона. Фарадей остался едва ли не один в институте. Этим летом он женился на сестре своего приятеля и получил от администрации квартиру больше той, в которой жил раньше. Теперь у него был свой кабинет.
Утром первого рождественского дня после посещения церкви молодая чета вернулась домой. Сара направилась на кухню поколдовать над индейкой и пудингом, а Майкл остался в столовой протирать графины и накрывать на стол. Впрочем, он был чрезвычайно доволен, когда зашедший кузен жены сменил его за этим занятием. Кузен вытащил из кармана маленькую веточку вечнозеленой омелы, и Майкл, по обычаю, поцеловал под нею Сару. Потом он тут же улизнул к себе в кабинет. Там на столе стояла уже почти готовая установка, с помощью которой он надеялся получить желаемое взаимодействие магнита и электрического тока. На деревянной подставке с медным штативом стояла рюмка, унесенная из хозяйства супруги, наполненная ртутью. На дне рюмки лежал кусочек воска, в который был вставлен вертикально небольшой магнитный стержень. Один из его полюсов на полдюйма выдавался над поверхностью ртути. От шарнира в конце поперечины на штативе шел прямой медный проводник, достаточно длинный, чтобы погрузиться в ртуть тоже на полдюйма, и проткнутый сквозь пробку для придания ему плавучести. Рядом с установкой стоял вольтов столб. Фарадей подключил один полюс батареи к сосуду с ртутью, а другой — к медному проводнику. Тот дрогнул и стал медленно вращаться вокруг полюса магнита. Замысел Волластона наконец осуществился! Фарадей перевернул магнитный стержень и снова замкнул цепь. Проволока послушно стала крутиться в другую сторону…
— Сара! Роберт! Посмотрите, посмотрите! — закричал он.
Конечно, ни супруга Фарадея, ни ее кузен не знали физики. Но оба с затаенным дыханием смотрели, как по поверхности ртути, налитой в обычную рюмку, без всяких усилий со стороны Майкла бесшумно вращалась тоненькая проволочка.
Вряд ли и сам Фарадей в ту минуту полностью осознавал все значение содеянного. Ведь перед ним фактически был первый в мире электрический двигатель! Но он, безусловно, понимал, что первым из людей превратил электрическую энергию в механическую.
Не теряя ни минуты, рискуя съесть пережаренную индейку и пригоревший пудинг, он сел и написал статью о своем открытии, а потом отослал ее в редакцию. Через несколько недель статья в том виде и в той редакции, в какой написал ее Фарадей, появилась на страницах журнала.
А спустя еще несколько дней среди членов Королевского института пополз слух, что Фарадей ни много ни мало украл идею доктора Волластона и, не упомянув даже имени вице-президента в своей статье, пытается присвоить себе славу первооткрывателя магнитного вращения. Источником обвинения был как будто сам президент Дэви, который, конечно, несколько сгустил краски.
Фарадей понимал свою оплошность, казнил себя за поспешность и очень переживал. Он пытался объясниться, предпринял множество усилий, чтобы оправдаться и вернуть себе доброе имя. Он поехал к самому Волластону, чтобы принести извинения…
В общем, этот промах дорого обошелся Фарадею. Но зато он на всю жизнь запомнил правила бережного обращения с чужими идеями. И всегда неукоснительно их выполнял.
Он занимается то химией, то физикой, и везде ему сопутствует удача. В 1824 году наступил момент, когда Фарадей вплотную подошел к исполнению заветной мечты — вступлению в члены Лондонского королевского общества. Несмотря на славу искуснейшего экспериментатора, быть принятым в ряды этой почтенной организации оказалось не просто. Лишь после многих хлопот и волнений Фарадей был принят. Текст предложения о его приеме гласил: «М-р Майкл Фарадей, джентльмен, замечательно сведущий в химических науках и автор нескольких статей, опубликованных в „Трудах Королевского общества“, выражает желание стать членом общества; мы, нижеподписавшиеся, на основании личного знакомства рекомендуем его, как человека в высшей степени заслуживающего этой чести, человека, который, вероятно, станет полезным и ценным членом общества». Рекомендацию подписали более двадцати человек. И первыми стояли подписи Волластона и Дэви. Теперь Фарадей мог писать перед своим именем буквы «F.B.S.» — «член Королевского общества».
Познакомившись с работами Фарадея, конструированием электродвигателей занялись многие исследователи. Сначала это были модели, совершающие возвратно-поступательное движение, как в паровой машине. Появились двигатели с качающимися якорями. Но это были малоперспективные направления.
От нового двигателя желательно было получить чисто вращательное движение. И на это были направлены усилия изобретателей.
«Mobilis in mobile»
Помните ли вы, чьим девизом были слова, приведенные в заголовке? Означают они «подвижный в подвижном» и являлись девизом подводного корабля «Наутилус» из бессмертного романа «Двадцать тысяч лье под водой», написанного французским писателем Жюлем Верном в 1867 году. Запомните эту дату. А теперь переберем в памяти некоторые подробности конструкции фантастического «Наутилуса». Длина — 70 метров. Максимальная ширина — 8 метров. Водоизмещение — 1500 тонн…
По сегодняшним меркам — габариты довольно скромные. Но вспоминаем дальше: двойной корпус из стали повышенной прочности позволял подводной лодке погружаться на любую глубину. При этом мощный прожектор разгонял мрак мира безмолвия на полмили вперед. Не поднимаясь на поверхность, «Наутилус» мог пройти до 4000 километров!..
Откуда автор серии романов «Необыкновенные путешествия» черпал технические идеи для своих произведений?..
Однажды настойчивая английская журналистка Мэри Бэллок уговорила Жюля Верна показать ей свой рабочий кабинет, ввести ее в «тайное тайных». Ей пришлось подняться по узкой винтовой лестнице на верхний этаж, где она увидела скромную небольшую комнату со столом, рабочим креслом и кроватью.
— Как, и это все? — удивилась журналистка.
И тогда хозяин дома повел ее коридором, сплошь увешанным географическими картами, и отворил дверь в соседнюю комнату, заставленную книжными шкафами. Это была библиотека. Всевозможные труды по географии и записки путешественников, книги по геологии, физике, химии, по астрономии и технологии бесчисленных производств заполняли шкафы. Тут же находилась великолепная картотека, составленная самим Верном и содержащая интересные сведения по всем отраслям знаний.
Громадный стол посредине был завален газетами, журналами и бюллетенями научных обществ. Когда он успевал все это прочитывать и что мог он найти для фантазий, опережающих время, в научной литературе своей эпохи?.. Между прочим, не так мало… Мы остановились на подводной лодке. Давайте-ка посмотрим, что делалось в мире в этом направлении к 1867 году?..
1863 год. Во Франции спущена на воду подводная лодка, изобретенная капитаном Буржуа и инженером Брюном: 41,5 метра длины, 6 метров ширины и 3,5 метра высоты. Лодка вооружена шестовой миной и благодаря машине, работающей на сжатом воздухе, развивает скорость до 5 узлов. После удачных испытаний и лестных отзывов комиссии лодка сдана порту.
1866 год. В России на Кронштадтском заводе построена и спущена на воду подводная лодка конструкции петербургского фотографа Александровского: длина — 110 футов (33,5 метра), ширина — 13 футов (3,9 метра), высота — 12 футов (3,6 метра). Водоизмещение — 220 тонн. Движение силой сжатого воздуха, который хранился в двухстах газгольдерах. Испытание прошло удачно. Однако, когда в дальнейшем лодку опустили на глубину 14 саженей (примерно 30 метров), обшивка не выдержала и судно затонуло.
Строились в ту пору лодки в Англии, строились в Америке, так что сама идея подводного плавания, как говорится, витала в воздухе. Но что оживляло жюльверновский «Наутилус»? Давайте прислушаемся к диалогу, который ведут между собой капитан Немо и его пленник профессор Аронакс…
«— Тут, господин профессор, я должен буду дать вам некоторые разъяснения, — сказал капитан Немо, — не угодно ли выслушать их?
Помолчав немного, он сказал:
— В природе существует могущественная сила, послушная, простая в обращении. Она применима в самых различных случаях, и на моем корабле все подчинено ей. От нее исходит все! Она освещает, отапливает, приводит в движение машины. Эта сила — электрическая энергия!
— Электрическая энергия? — удивленно воскликнул я.
— Да, сударь.
— Однако ж, капитан, исключительная быстроходность вашего корабля плохо согласуется с возможностями электрической энергии. До сей поры динамическая сила электричества представлялась весьма ограниченной и возможности ее чрезвычайно ничтожны.
— Господин профессор, — отвечал капитан Немо, — способы использования электричества на корабле значительно отличаются от общепринятых…»
Вот, оказывается, в чем дело — электричество! Таинственные, сверхмощные гальванические элементы, использующие, по словам капитана Немо, извлеченный из морской воды хлористый натрий, то есть обычную поваренную соль, в соединении со ртутью. Они давали электрический ток и питали насосы и двигатели, освещали, отапливали и осуществляли вентиляцию подводной лодки наравне с десятками еще других работ.
Впрочем, поскольку капитан Немо был уверен, что его пленник, как и он сам, отныне навсегда связан с подводным кораблем, он не скрывал от профессора Аронакса ничего…
«— Вы видите, — сказал капитан Немо, — я пользуюсь элементами Бунзена, а не Румкорфа. Последние не дали бы мне такого высокого напряжения. Батарей Бунзена у меня не так много, но зато работают они на большой мощности. Электрическая энергия, выработанная батареями, передается в машинное отделение, приводит в действие электромоторы, которые через сложную систему трансмиссий сообщают вращательное движение гребному валу. И несмотря на то что винт в диаметре равен 6 метрам, скорость вращения его доходит до 120 оборотов в секунду.
— И вы развиваете скорость…
— Пятьдесят миль в час.
Тут крылась тайна, и я не настаивал на ее разъяснении. Как может электричество дать столь высокое напряжение? В чем источник этой сверхмощной энергии? В высоком ли качестве арматуры нового образца, в которой индуктируется ток? В системе ли трансмиссий неизвестной дотоле конструкции, способной довести силу напряжения до бесконечности? Я не мог этого понять…»
Электричество! Жюль Верн был убежден, что именно оно «в будущем заменит ветер, воду и паровые двигатели», преобразует технику, коренным образом изменит жизнь общества. Откуда у писателя была такая уверенность? Но попробуем продолжить наши розыски в истории техники прошлого столетия.
На службе второму отечеству
Летом 1839 года праздношатающиеся гуляки облепили набережную Невы, ибо узрели чудо. От Петропавловской крепости отвалила двенадцативесельная шлюпка с единственным пассажиром. Он сидел на корме — плотный невысокий господин в цивильном костюме. Тонкие губы крепко сжаты, брови насуплены. Несколько дружных гребков — и шлюпка на середине реки. По команде матросы осушили весла. Пассажир, сказав несколько слов с сильным немецким акцентом, нагнулся и стал колдовать над ящиком, уставленным стеклянными банками, от которых тянулись толстые провода к машине, соединенной с большими колесами, наподобие мельничных, спущенными с бортов в воду. Шлюпку уже изрядно снесло течением, когда под руками пассажира раздался негромкий треск и колеса завертелись. Повернувшись носом против течения, шлюпка пошла, разрезая свинцовую невскую волну. Пошла сама, против течения!
Так состоялось первое в мире практическое испытание электрического двигателя, который был сконструирован и построен в России и питался от батареи гальванических элементов Грове. Изобретателем двигателя и был тот самый господин на корме. Звали его Борисом Семеновичем Якоби.
Жюлю Верну было десять лет, когда по свинцовым волнам реки Невы поплыла против течения шлюпка, приводимая в движение электродвигателем Якоби. Я не знаю, был ли знаком французский романист с трудами российского изобретателя, но можно предположить, что был. Потому что основные работы Бориса Семеновича Якоби публиковались не только в «Известиях Санкт-Петербургской академии наук», кстати — на французском языке, но были напечатаны и в Германии — в физико-химическом журнале «Анналы», издаваемом Иоганном Поггендорфом, а также были изданы Парижской академией наук.
Исследователи обычно разбивают весь путь технической эволюции электродвигателя на несколько этапов. Самый первый, от опыта Фарадея в 1822 году, охватывает эпоху создания моделей, которые показывали возможность преобразования электрической энергии в механическую. Это, по сути дела, предыстория, заканчивающаяся описанием Якоби практического образца в «Известиях Парижской академии наук» в 1834 году. Начинается оно так: «Г. Якоби из Кенигсберга послал в академию заметку об изобретенной им магнитной машине, в которой магнетизм является движущей силой. Вот описание его машины…» И заканчивалась статья известием, что «сообщение г. Якоби передается на рассмотрение гг. Амперу и Беккерелю».
Мориц Герман Якоби родился в Потсдаме в 1801 году и учился в Геттингенском университете по специальности архитектора. В 1835 году Якоби переехал в Россию на должность профессора гражданской архитектуры в Юрьевском (ныне Тартуском) университете. Однако герра профессора более архитектуры привлекали изыскания в области «приложения электромагнетизма к движению машин». И потому он не колеблясь принял предложение Петербургской академии наук и был прикомандирован к комиссии для «исследования электромагнитных притяжений и законов намагничивания железа».
Это был крутой поворот в жизни «немецкого специалиста». Потому что в отличие от многих других Якоби сразу и навсегда связал свою судьбу с Россией. Он сменил подданство, принял более привычное для русского слуха имя Бориса Семеновича и женился на русской — Александре Григорьевне Кохановской. Тридцать девять лет оставшейся жизни отдал Якоби служению России, считая ее «вторым отечеством, будучи связанным с нею не только долгом подданства и тесными узами семьи, но и личными чувствами гражданина». Так писал он, отвечая на неизбежные вопросы со стороны властей к натурализовавшемуся иностранцу.
В России Якоби встретился с Ленцем. Это был счастливый случай в жизни обоих. Связанные дружбой, оба ученых бок о бок трудились в новой, развивающейся области науки об электричестве. Ленц, как мы назвали бы его сегодня, был теоретиком. Якоби — экспериментатором и очень изобретательным человеком.
Казалось бы, после такого блестящего начала, каким явилось испытание двигателя на Неве, от Якоби следовало ожидать дальнейшего совершенствования и усовершенствования своего двигателя. Тем более что слава о нем прокатилась по всей Европе. Однако, дав подробное описание конструкции и принципа работы двигателя, Якоби обстоятельно проанализировал его экономическую эффективность и… пришел к выводу о нецелесообразности его применения. Паровая машина пока что побеждала.
Нет, конечно, Борис Семенович был убежден, что гальваническая батарея со временем станет и более надежной, и более дешевой установкой. Он сам много сил приложил, исследуя разнообразные химические элементы. Но трудностей на пути к конкурентоспособному по сравнению с паровой машиной электрическому двигателю в своей статье не скрывал. Это обстоятельство изрядно поохладило пыл тех, кто питал необоснованные иллюзии о возможности беспредельного увеличения полезной работы электрического тока за счет совершенствования магнитоэлектрических машин. Но о том речь дальше…
Занимаясь поисками более надежных источников питания для своего двигателя, Якоби обратил внимание на то, что слой меди, оседающей на электроде, нарастает исключительно равномерно, повторяя в точности все неровности и все царапинки на поверхности электрода. При этом осажденный слой было довольно легко отодрать. Счастливая мысль поразила Бориса Семеновича. Он снял медную табличку с входной двери, на ней было выгравировано его имя, сунул на место медного электрода и скоро получил точное негативное изображение надписи. Он взял тяжелый медный пятак и получил оттиск с одной и другой стороны. Это было чудесное открытие. И очень своевременное. Дело в том, что в России готовилась реформа перехода на денежную систему ассигнаций взамен кредитных билетов. И дело затягивалось изготовлением точных клише, таких, какие не могли бы оказаться подделанными фальшивомонетчиками. Изобретение Якоби снимало проблему. Изобретатель получил возможность организовать мастерскую гальванотехники. В заказах недостатка не было. Статуи и барельефы для Исаакиевского собора, для Зимнего дворца, для Большого театра в Москве, для Петропавловского собора и других зданий. На электродах гальванопластических ванн оседала не только медь… Более 45 пудов золота пошло на золочение куполов соборов Санкт-Петербурга и храма Спасителя в Москве, все эти заказы выполнили мастерские гальванопластики. А Якоби, чтобы познакомить со своим изобретением европейских ученых, сделал гальванопластическую копию с металлической пластинки, на которой было выгравировано: «Фарадею от Якоби с приветствием». Копия поехала в Англию, в адрес «короля физиков», откуда скоро пришел ответ: «Меня так сильно заинтересовало Ваше письмо и те большие результаты, о которых Вы даете мне такой обстоятельный отчет, что я перевел его и передал почти целиком издателям „Философикал мэгэзин“ в надежде, что они признают эти новости важными для своих читателей…»
Фарадей не ошибся. Мастерские гальванопластики стали возникать во всех странах. А отчет Якоби, представленный на Всемирной выставке 1867 года в «Записках Академии наук», оказался едва ли не самым популярным экспонатом.
Заслуги Бориса Семеновича Якоби в области электротехники весьма значительны. Он создал целый ряд приборов, в которых к тому времени нуждалась наука и развивающаяся промышленность. Среди них телеграфный аппарат и линия связи между Зимним дворцом, Царскосельским дворцом и Главным штабом; изобрел способ гальванопластики, первый электродвигатель. Наконец, во время Крымской войны он разработал новый метод подрыва мин с помощью магнитоэлектрической машины. Большая жизнь всегда знаменуется большой работой, и «второе отечество» сделало все, чтобы имя Якоби не оказалось забытым…
Великое открытие
С момента открытия Эрстедом влияния электрического тока на магнитную стрелку исследователей стала преследовать мысль: а нельзя ли решить и обратную задачу: превратить магнетизм в электричество? Во Франции над этой задачей ломали себе голову Ампер и Араго. В Швейцарии — профессор механики Женевской академии Жан Даниэль Колладон. В Америке — молодой физик Джозеф Генри, известный как создатель одного из самых сильных электромагнитов в мире. В Англии над той же проблемой бился Фарадей.
Сегодня, когда мы читаем, что крупнейшие ученые бились над тем, что так легко получается в школе на уроках физики, в душу проникает сначала недоумение, а потом может родиться и пренебрежение к тем, кто за постановку простого школьного опыта был удостоен звания «Великий ученый». Здесь имеет смысл объяснить, что в те времена поставить дюжину опытов вовсе не означало двенадцать раз взять необходимые приборы, катушки с проводом и магниты, составить нужную электрическую цепь и записать значения отклонений стрелок на приборах. А потом на основании известных законов рассказать, что в этой цепи происходит.
Во времена Фарадея все обстояло не так. Мало того, что экспериментатор должен был придумать сам опыт. У него не было никаких приборов. Их тоже предстояло изобрести. В лабораториях мира не существовало даже изолированной проволоки. И никто ни малейшего представления не имел о тех законах, по которым должно развиваться электрическое воздействие и реакция электрической цепи. Все это предстояло еще открыть.
Первым Ампер предположил, а потом и доказал, что вокруг проводника с током образуется магнитное поле. Так он объяснил причину эффекта, обнаруженного Эрстедом. Исследователи сразу подумали: если постоянный ток в проводнике наводит постоянное магнитное поле, то почему бы постоянному магнитному полю не навести в проводнике постоянного тока? Надо только найти правильное расположение того и другого и подобрать достаточно сильный магнит…
Сегодня, пожалуй, каждый знает, что, будь это именно так, мы получили бы вечный двигатель, работающий без потребления энергии. А это абсурдно. Из ничего — ничего и не бывает. Но это знаем мы с вами 150 лет спустя. А тогда даже закон сохранения энергии еще вовсе не казался столь уж безоговорочным.
Установить в наши дни, кто первым заметил эффект наведения тока в проводнике магнитным полем, довольно трудно. Рассказывают, что швейцарский профессор Колладон, намотав две обмотки на один каркас и включив во вторую гальванометр, заметил, что стрелка прибора дергается при включении в первичную обмотку электрической батареи. «Может быть, что-то трясет прибор?» — подумал Колладон и… отнес гальванометр в другую комнату. Теперь, замкнув рубильник, он вынужден был ходить из одного помещения в другое. И когда доходил до прибора, стрелка всегда мертво стояла на нуле.
Некоторые историки науки уверяют, что американец Джозеф Генри первым заметил, как при движении магнита возле проводника в проволоке появляется электрический ток. Он даже собирался написать об обнаруженном явлении статью. Да все откладывал, поскольку именно в это время вел переговоры с Принстонским колледжем, где собирался занять место профессора физики… И упустил время. В Америку пришел журнал со статьей Фарадея…
Майкл Фарадей поражал окружающих своей аккуратностью. Каждый из своих опытов он подробно записывал в дневник, рисовал схему и составлял выводы, которые удавалось сделать. Записав еще в 1822 году: «Превратить магнетизм в электричество», Майкл не раз возвращался к этой мысли, придумывал то один опыт, то другой. Очевидно, он знал, что этой проблемой интересуются и другие экспериментаторы, потому что в 1831 году принялся за нее вплотную и работал как одержимый. Каждое утро он в одно и то же время являлся в лабораторию. Его ассистент отставной сержант артиллерии Андерсон спрашивал: «Будем ли мы сегодня работать, мистер Фарадей?» — и, получив неизменно утвердительный ответ, отправлялся готовить инструменты и приборы.
Джон Тиндаль, многие годы друживший с Фарадеем, писал о качествах характера ученого: «Самым выдающимся из них была любовь к порядку. Самые запутанные и сложные вещи в его руках располагались гармонически. Кроме того, в прилежании к труду он выказывал немецкое упорство. Это была порывистая натура, но каждый импульс давал силу, не позволявшую ни шагу отступить назад. Если в минуты увлечения он решался на что-нибудь, то этому решению оставался верен и в минуты спокойствия». Наверное, потому, поставив однажды перед собой задачу «превратить магнетизм в электричество», он девять лет спустя все-таки ее решил.
В то утро 29 августа 1831 года он, как и раньше, включил батарею в приготовленную Андерсоном катушку и зафиксировал толчок, который испытала стрелка гальванометра, включенного во вторичную обмотку. Толчок — и стрелка на нуле. При выключении то же самое, только стрелка отклонялась в другую сторону. В чем тут дело?
Вместе с Андерсоном он тщательно проверил установку. Но никаких причин для странного поведения стрелки не обнаружил. Тогда он решил изменить условия опыта. Заменил батарею заряженной лейденской банкой. А обмотки Андерсон намотал на кольцо из мягкого железа. При наличии железного сердечника толчки стрелки стали гораздо сильнее. Фарадей снова и снова изменяет условия экспериментов и постепенно приходит к определенному выводу. Причина наведения — индукции — тока во вторичной обмотке заключается в движении магнита. Именно в движении! Он бросается к дневнику: «Электрическая волна возникает только при движении магнита, а не в силу свойств, присущих ему в покое».
Это было решение! Решение задачи, поставленной без малого десять лет тому назад. Андерсон с неодобрением смотрит, как его сорокалетний шеф — вы подумайте, такой солидный человек! — пляшет в лаборатории нечто напоминающее зажигательную ирландскую джигу.
Железное кольцо с двумя обмотками явилось прообразом будущих трансформаторов, без которых электрификация нашей эпохи вряд ли была бы вообще возможна. Впрочем, мы еще встретимся с этой проблемой.
Рождение генератора
Фарадей прекрасно понимал значение сделанного им открытия. Он заключил, что когда постоянный ток проходит по первичной обмотке, сама она, как и вторичная обмотка, приходит в особое «электротоническое» состояние. По-видимому, думал он, это есть «состояние напряжения и может быть рассматриваемо как эквивалентное току электричества, по крайней мере равное тому току, который получается, когда это состояние индуцируется или прекращается…».
Не удивляйтесь туманности и некоторой неловкости формулировок, помните, что не только еще не было терминологии, но и сам эффект, наблюдаемый ученым, был вовсе не так ясен, как сейчас.
Идея электростатического увлечения зарядов в соседнем проводнике была во времена Фарадея чрезвычайно распространена среди физиков. Ведь и Ампер в 1822 году пришел к ошибочному выводу, что «ток электричества стремится возбудить в проводниках, около которых он проходит, ток электричества одного с ним направления».
Девять лет спустя Фарадей на опыте убедился, что возбужденные токи имеют противоположное направление первичным. И к тому же возникают в виде импульса, короткого броска… Ах, сколько мучений доставили Майклу Фарадею попытки сформулировать общее правило для направления индуцированных токов. Он публикует два правила: 1) гальванический ток вызывает в приближаемой к нему параллельной проволоке ток противоположного направления, а в удаляемой — ток того же направления; 2) магнит вызывает в перемещающемся возле него проводнике ток, зависящий от направления, в котором проводник в своем движении пересекает магнитные линии.
Год спустя молодой профессор Петербургского университета Э. X. Ленц заметил, что Фарадей дал два правила для одного и того же явления. «Сейчас же по прочтении статьи Фарадея, — писал он, — я пришел к мысли, что все опыты по электродинамической индукции могут быть легко сведены к законам электродинамических движений, так что если эти последние считать известными, то этим самым будут определены и первые… Мое представление оправдалось на ряде опытов».
И дальше Ленц формулирует свое правило: «Если металлический проводник движется поблизости от гальванического тока или магнита, то в нем возбуждается гальванический ток такого направления, что если бы данный проводник был неподвижным, то ток мог бы обусловить его перемещение в противоположную сторону; при этом предполагается, что покоящийся проводник может перемещаться только в направлении движения или в противоположном направлении».
Сегодня это замечательное правило, сыгравшее огромную роль в истории электричества, формулируется проще: «Индукционный ток имеет такое направление, что его магнитное поле препятствует изменению того магнитного поля, которое вызвало появление индукционного тока».
Между тем Фарадей форсирует работу в лаборатории. Его эксперименты становятся удачнее и яснее. Он вспоминает загадочный опыт Араго, показанный в 1824 году, и глубоко задумывается… «Если вращать медный диск вблизи магнитной стрелки или магнита, подвешенного таким образом, что он может вращаться в плоскости, параллельной плоскости диска, то магнит стремится следовать движениям диска; при вращении магнита диск следует за его движением».
Записывая эти строчки в журнал своих «экспериментальных исследований», Фарадей уже прикидывал, какой практический выход может из него следовать. «Получив электричество из магнита вышеописанным образом, я полагал, — пишет он дальше, — что опыт г-на Араго может стать источником получения электричества, и надеялся, что путем использования электрической индукции земного магнетизма мне удастся сконструировать новую электрическую машину…»
Воодушевленный этим намерением, он вместе с Андерсоном устанавливает между полюсами большого магнита Королевского общества вращающийся медный диск. Соединяет два скользящих контакта с гальванометром и велит отставному сержанту крутить ручку, заставляющую диск вращаться. Гальванометр показывает наличие электрического тока. Фарадей счастлив. Так был создан прообраз первого в мире электрического генератора.
Описанное десятилетие с 1820 по 1831 год было весьма урожайным в физике. На ученых буквально обрушился поток самых разнообразных электромагнитных явлений, открытых экспериментаторами. Нужно было осмыслить их теоретически, привести в порядок и «разложить по полочкам». Первым, как я уже говорил, за это принялся Ампер. Но его теория появилась до открытия электромагнитной индукции. Затем в 1845 году немецкий физик Франц Нейман теоретически обобщил результаты опытных работ Фарадея и Ленца. А другой ученый, Густав Теодор Фехнер — физик, физиолог и философ, — попытался распространить на явление электромагнитной индукции теорию Ампера. Третью попытку построить теорию электричества и электромагнетизма в том же 1845 году предпринял профессор Лейпцигского университета Вильгельм Эдуард Вебер. Все они старались создать математический фундамент теории электромагнитных взаимодействий.
Фарадей же, который не знал математики, со своей стороны, старался построить качественную физическую картину всех наблюдаемых им явлений. «Примененный Фарадеем в его исследованиях метод состоял в постоянном обращении к эксперименту в качестве средства проверки правильности его идей и к постоянному развитию идей под прямым влиянием эксперимента» — так писал Максвелл в своем «Трактате об электричестве и магнетизме».
Фарадей всегда подчеркивал, что он высказывается только как экспериментатор. Его теоретические выводы сильно отличались от формализованных теорий Неймана и Фехнера, Вебера и других теоретиков, и многие ученые, как правило, игнорировали их. Научный мир с изумлением воспринимал его сообщения о новых экспериментальных открытиях, но относился скептически, чтобы не сказать саркастически к его теоретическим взглядам. Они считались как бы некоторым хобби виртуозного экспериментатора. А зря, потому что в дальнейшем именно качественные идеи Фарадея восторжествовали над всеми математическими теориями.
Правда, для этого они должны были также быть облечены в строгую математическую форму. И это сделал Джемс Клерк Максвелл в шестидесятых годах прошлого века сначала в статьях, а потом в капитальном труде под названием «Трактат об электричестве и магнетизме», вышедшем в свет в 1873 году.
Первая же статья Максвелла «О фарадеевских силовых линиях» была им написана еще студентом Кембриджского университета и доложена Кембриджскому философскому обществу в 1855 году. Автору шел тогда всего двадцать четвертый год… Но уже тогда он писал: «Современное состояние учения об электричестве представляется особенно неблагоприятным для теоретической разработки. Законы распределения электричества по поверхности проводников были выведены из опытов. В некоторых своих частях математическая теория магнетизма была установлена, между тем как в других — недостает опытных данных… Современная теория электричества и магнетизма, охватывающая все относящиеся сюда явления… должна строго удовлетворять законам, математическое выражение которых уже известно, и, кроме того, давать способы вычисления явлений в тех предельных условиях, когда известные формулы неприменимы».
Прошло несколько лет, и Максвелл создал такую теорию, создал классическую электродинамику со своими знаменитыми уравнениями, удовлетворяющими всем тем требованиям, которые были выдвинуты в его юношеской статье.
Майкл Фарадей — человек
Конечно, Фарадей занимался не только опытами. Он много работал, но умел со вкусом и отдыхать, время от времени отправляясь с женой по традиции в Бат или Брайтон на модные курорты.
«Он не любил светского общества, но театр привлекал его и приводил в лихорадочное опьянение, — пишет французский физик Дюма. — Закат солнца в деревне, буря на морском берегу, альпийские туманы возбуждали в нем живейшие ощущения; он понимал их, как художник, бывал взволнован, как поэт, или анализировал их, как ученый. Взгляд, слово, жест — все выдавало в таких случаях тесную связь его души с душой природы».
Фарадей был чужд зависти и самомнения, нередко встречавшихся в среде ученых. Не получив систематического образования, он всю жизнь стремился к самосовершенствованию. И «его совершенство, — как говорил тот же Дюма, — которое, как я думал, было у него врожденным, было плодом постоянного самонаблюдения и непреклонной душевной твердости». Когда его назначили директором лаборатории в Королевском институте и ему, как профессору, предстояло читать лекции, Фарадей целый год учился ораторскому искусству, учился четко и ясно излагать свои мысли. Он просил друзей указывать ему на неточности и ошибки, которые допускал на лекции. А его ассистент обязан был не только следить за ходом его изложения, но и время от времени класть на кафедру перед ним картонки с надписью «Помедленнее», если он начинал торопиться, или «Заканчивайте», когда он увлекался. «Зачем столько подготовки к тому, чего лучше вас не знает никто из слушателей?» — спрашивали его. «Мало самому знать, — кротко отвечал Фарадей, — нужно уметь передать свои знания другим».
Фарадей любил читать лекции. Для детей он вел рождественский цикл, рассказывал о химии, физике, об электричестве и о теплоте. Совсем недавно на прилавках книжных магазинов появилась (и уже в который раз!) его книжка «История свечи» — непревзойденный шедевр научно-популярной литературы. Именно при Фарадее рождественские лекции для детей в Королевском институте стали традицией.
Фарадей рассказывал на них о свече и лампе, о печной трубе и о золе. Может быть, в этом и заключался их успех? Ведь это так важно: определить, что именно должно быть интересно человеку в его возрасте сегодня и что будет ему в пору понять и усвоить завтра.
В последние годы жизни память Фарадея стала ослабевать, притуплялся острый ум. Он сам обнаружил у себя признаки подступившей старости и постепенно отказался от всех занимаемых должностей. Он отклонил предложение королевского двора о возведении его в рыцарское достоинство и дважды отказывался от высокой чести стать президентом Королевского общества.
В пятницу 20 июня 1862 года Фарадей на середине прервал свою лекцию в Королевском институте. Подойдя к краю эстрады, он внимательно вгляделся в зал и неожиданно поделился со слушателями мыслью о том, что, пожалуй, слишком долго находится здесь… Присутствовавшие поднялись и долго аплодировали старому ученому. Больше Фарадей не читал, не входил в лекционный зал и не поднимался на кафедру. Дома в дневнике он так объяснил причину своего ухода: «Здесь я провел счастливые годы, но настало время уйти из-за потери памяти и усталости мозга. Причины:
1. Колебания и неопределенность в доказательствах, на которых лектор должен настаивать.
2. Неспособность извлечь из памяти ранее накопленные сокровища знаний.
3. Тускнеют и забываются прежние представления о своих правах, чувстве собственного достоинства и самоуважения.
4. Сильная потребность поступать справедливо по отношению к другим и неспособность сделать это. Удалиться».
Какую силу духа и стойкость надо было иметь для такого вывода и поступка! Фарадею было в то время 70 лет.
«Ученый должен быть человеком, который выслушивает любое предположение, но определяет его справедливость сам. Внешние признаки явлений не должны связывать суждений ученого, у него не должно быть излюбленной гипотезы, он обязан быть вне школ и не иметь авторитетов. Относиться почтительно он должен не к личностям, а к предметам. Истина должна быть главной целью его исследований. Если к этим качествам еще добавится трудолюбие, то он может надеяться приподнять завесу в храме природы», — писал Майкл Фарадей.
Эмилий Христианович Ленц
Имя Ленца уже не раз встречалось в нашем повествовании, и читатель имел возможность сделать вывод о том, что этот ученый сыграл весьма важную роль в развитии учения об электричестве. Время Фарадея-Ленца было сложным для науки. Экспериментаторы накопили множество разнообразных сведений об электрических явлениях, а объяснения не находили.
В ту пору довольно большой круг интересовавших физиков явлений объяснялся присутствием и поведением «невесомых жидкостей». Так, тепловые явления старались объяснить поведением «теплорода», способного переливаться из одного тела в другое. Проявления магнетизма — существованием «магнитной жидкости», действие электрических сил — наличием «электрической жидкости». Причем физиков немало смущало то обстоятельство, что, с одной стороны, электричество можно было «добывать» трением, с другой — при помощи гальванических элементов, то есть химическим путем. В 1821 году добавилось термоэлектричество Зеебека. Затем Фарадей показал, что можно получать электричество еще и индукционным путем…
Многочисленные дурно поставленные непрофессионалами опыты при этом давали разноречивые результаты, а следовательно, приводили и к неверным выводам. Так, одно время считалось, что к токам, полученным путем фарадеевской индукции, не применимы законы, выведенные для гальванических токов от химических элементов. В свою очередь, «гальванические явления» считались отличающимися от «истинно электрических», демонстрируемых электрической силой, получаемой от трения и накапливающейся в лейденских банках. Возникало впечатление, что явления разных электрических сил обусловливаются разными причинами. Одни от собственно электрического флюида и «гальванической жидкости», другие от «индукционной электрической жидкости». В условиях такой путаницы следовало прежде всего проникнуться идеей о единой природе и единых законах для любого электрического тока, подтвердив это экспериментами. Сделать это впервые удалось Э. X. Ленцу.
«Тотчас же по просматривании мемуара Фарадея, — писал он в своем знаменитом докладе Петербургской академии наук 29 ноября 1833 года, — мне показалось, что все без исключения опыты электродинамического распространения (индукционных токов. —
После убедительных экспериментов Ленц дал обобщенный закон индукции, о котором речь уже шла. То есть, размышляя о физической сущности исследованного явления, он пришел к обобщению: «Ежели мы хорошо уясним себе приведенный выше закон, то мы сможем вывести заключение, что каждому явлению движения под действием электромагнитных сил должен соответствовать определенный случай электромагнитной индукции». Выражаясь современным языком, можно сказать
Вместе с Якоби Ленц установил, что любая магнитоэлектрическая машина, которая служит для производства электрического тока, может быть использована в качестве электродвигателя, если через ее якорь или «арматуру», как тогда говорили, пропускать ток от постороннего источника.
Ленц родился в старинном прибалтийском городе Дерпте (ныне город Тарту в Эстонской ССР) в 1804 году и получил при крещении имя Генрих Фридрих Эмиль.
Шестнадцати лет поступил он в Дерптский университет, где очень скоро обратил на себя всеобщее внимание выдающимися способностями и серьезным отношением к учебе.
В 1823 году наш знаменитый мореплаватель Отто Евстафьевич Коцебу пригласил молодого человека принять участие в кругосветном путешествии на шлюпе «Предприятие» в качестве физика и натуралиста экспедиции. Ленц, естественно, согласился и блестяще справлялся со своими обязанностями в течение всего плавания. Свидетельством его успехов является то, что сразу по возвращении Ленц был принят адьюнктом Петербургской академии наук и четыре года спустя, едва достигнув 26 лет, стал ординарным академиком.
Деятельность свою в Академии наук Ленц начал с реорганизации лаборатории физики и постановки целой серии работ по электричеству и магнетизму. Именно там, независимо от Джоуля, вывел он закон, утверждающий, что количество тепла, выделяющееся в проводнике при прохождении тока, прямо пропорционально сопротивлению проводника и квадрату силы тока. Затем он повторил опыты Дэви, обнаружившего, что при нагревании электрическое сопротивление провода растет, и нашел закон, по которому должна меняться электропроводность металлов с изменением температуры.
В то же время он преподавал в Морском кадетском корпусе, возглавлял кафедру физики и физической географии в Петербургском университете. Был избран сначала деканом физико-математического факультета, а потом и ректором. Он преподавал в Михайловском артиллерийском училище, читал лекции в Главном педагогическом институте, и везде вокруг Ленца теснились молодые люди — ученики и помощники. Позже из этой школы вышли замечательные ученые, сыгравшие видную роль в развитии физической науки.
Многие достижения Ленца опережали время, и о них забывали. А через полвека — открывали вновь, называя краеугольными камнями нарождающейся электротехники.
Когда в 1831 году Фарадей открыл новое явление, которое мы сегодня называем электромагнитной индукцией, современники вполне оценили огромное значение открытия. Многие тут же включились в работу, черпая первые сведения из перепечатанных во многих журналах фарадеевских «Исследований по электричеству». Другие горестно сетовали по поводу того, что великий экспериментатор «на самую малость» опередил их собственные работы на ту же тему. Находились и такие, кто пытался представить себя соучастниками события… Между тем строгого понимания сути нового явления не было ни у кого. Даже сам Фарадей делил открытое им явление на два вида — на «магнитоэлектрическую» и «вольтаэлектрическую» индукцию. И для определения направления индуцируемого тока давал существенно разные правила в обоих случаях.
Я уже говорил, что многие ученые позволяли себе снисходительно относиться к теоретическим построениям своего английского коллеги. И потому до бесконечности переиначивали формулировки Фарадея и давали свои правила для токов, подчас совершенно неверные.
Ленц, которому едва исполнилось 29 лет, подошел к актуальному вопросу со свойственной ему строгостью и вывел свое знаменитое правило, которое вот уже полтора столетия наизусть заучивают школьники, а потом повторяют студенты электротехнических вузов.
Можно перечислить для наглядности те основные направления в электромагнетизме, которыми занимался Эмилий Христианович, кроме работ по электромагнитной индукции. Здесь труды по нагревательному действию электрического тока и не менее знаменитый закон Джоуля-Ленца. Причем в этой работе ему пришлось сделать строгое обоснование и разъяснение закона Ома, в котором все еще сомневались современники. Ленц первым высказал принцип эквивалентности, согласно которому, как мы сегодня знаем, всякая динамо-машина может быть электромотором. Он поставил убедительные опыты, подтверждающие загадочный эффект Пельтье, по замораживанию воды возле спая висмута и сурьмы, через который пропускался гальванический ток. Нельзя не вспомнить его замечательные работы совместно с Якоби, посвященные вопросу о действии электромагнитов. Они пришлись на то время, когда сооружение этих приборов почиталось за искусство. И все эти фундаментальнее открытия и труды находились на самых главных направлениях развития молодой науки об электричестве, на рубеже перехода от «гальванизма» к современной электротехнике.
Его трудолюбие и разносторонность невероятны. Кроме всего, Ленц был еще геофизиком и океанографом, университетским профессором и администратором, преподавал во множестве учебных заведений, являлся академиком и непрерывно вел научную работу. Он написал несколько учебников и руководств, которые пользовались большой популярностью и выдержали не одно издание. При этом его лекции и учебники, его научная работа отличались всегда замечательной ясностью и строгой систематичностью.
Фигура Эмилия Христиановича Ленца в истории физики, в истории науки занимает видное место как по своим научным результатам, так и по нравственному облику, являясь примером честного и беззаветного служения своей родине — России.
Часть третья. Время большой энергетики
Глава тринадцатая. Наш электрический век
Сначала приведу несколько впечатляющих, на мой взгляд, цифр.
В 1913 году мощность всех электростанций России составляла около 400 тысяч киловатт, а выработка электроэнергии — примерно 2 миллиарда киловатт-часов в год.
В 1980 году советские электростанции выработали 1 295 миллиардов киловатт-часов электроэнергии, а к 1985 году ее количество должно увеличиться до 1 550-1600 миллиардов киловатт-часов. Разделите сами одну цифру на другую, чтобы почувствовать рост нашей энергетики. В 800 раз!..
Может возникнуть вопрос: зачем людям столько энергий и почему спрос растет в основном на электрическую энергию, на самый ее молодой вид из всех освоенных человечеством за историческое время?
Провозглашая лозунг: «Коммунизм — это есть Советская власть плюс электрификация всей страны», В. И. Ленин видел в электрификации могучий рычаг для подъема промышленности и всего народного хозяйства страны. Все последующие годы подтвердили ленинскую мысль. Научно-технический прогресс невозможен без развития энергетики или, как теперь говорят, без развития топливно-энергетического комплекса, без сплошной электрификации. Чтобы больше производить продуктов питания, промышленных товаров, нужна механизация производственных процессов. Но подавляющее большинство машин и механизмов, средств механизации и автоматизации имеют электрическую основу. Электричество работает в системах зажигания автомобилей и самолетов, приводит в движение станки. Электричество освещает и обогревает дома и теплицы.
Гигантские генераторы электростанций вырабатывают самую универсальную энергию, которая не только проще всего транспортируется по проводам на далекие расстояния, но и чрезвычайно легко превращается в другие виды энергии. Свет, тепло, информация — все основные составляющие современного комфорта зависят от электроэнергии. Отнимите ее у человечества — и цивилизация пойдет прахом. Без электричества мы не просто окажемся в прошлом веке. Огромной части человечества станет угрожать опасность прямой гибели — вот насколько тесно в жизнь современного общества, в самый фундамент его существования вошла электрическая энергия.
Вот почему во всех главных документах нашей партии — в отчетных докладах Центрального Комитета КПСС съездам — такое большое внимание уделяется развитию и решению топливно-энергетических задач. Дело это не простое.
Но давайте для наглядности представим себе современную энергетическую цепь начиная с первого звена — превращения любого вида энергии в электромагнитную. То есть исключив строительство плотин, добычу топлива или полезных ископаемых и так далее.
Превращение всякого другого вида энергии в нужную нам — электромагнитную — осуществляется с помощью некоторого устройства, аппарата или машины, которую называют генератором. Слово это латинское и в переводе обозначает — производитель. Мы превращаем одни вещества в другие, высвобождая энергию химических связей, и преобразуем ее в электрическую. Мы крутим ротор генератора в магнитном поле, используя силу падающей воды, и превращаем механическую энергию в электричество. Нагреваем термопары, используем энергию разлетающихся или, наоборот, сливающихся атомов, пользуемся энергией ветра, солнца…
Кстати, я надеюсь, вы помните, что термин «энергия» происходит от греческого названия действия или деятельности. Им мы обозначаем общую количественную меру различных форм движения материи.
Не сетуйте, читатель, на это отступление. Определить терминологию, когда наука и техника развивается такими стремительными темпами, — дело далеко не последнее. Итак, я повторю, первое звено нашей электроэнергетической цепи — генератор!
Следующее звено — линия электропередачи, ЛЭП. Это сооружение из многокилометровых воздушных проводов, подвешенных на высоких опорах, или подземных и подводных кабелей со всевозможными вспомогательными устройствами. Главная задача ЛЭП — экономичная передача электрической энергии от генератора к приемнику, от электростанции к потребителю.
Наша страна славится своими просторами. Однако большая доля населения и промышленности сосредоточена в ее европейской части, тогда как основные источники электроэнергии — топливно-энергетический комплекс — располагаются в восточной части государства. И с каждым годом для транспортировки энергии по региональным энергетическим системам и по единой энергетической сети нам приходится строить линии электропередачи на все большие и большие расстояния.
Из школьного курса физики вы должны помнить, что мощность потерь всегда зависит от величины тока в проводнике. В то же время передаваемая мощность пропорциональна произведению силы тока и напряжения. Значит, чем выше мы поднимем напряжение, тем меньше нам понадобится сила тока для передачи одной и той же мощности. А чем меньше ток, тем ниже потери. Именно этими соображениями руководствуются проектировщики и строители, испытывая на полигонах модели линий электропередачи на сотни и тысячи киловольт.
Третье звено — потребитель, от электродвигателя и до… Пожалуй, сегодня не то что перечислить основных потребителей, но даже обозначить их границы невозможно. Мы живем в электрическом веке, этим все сказано. Однако, чтобы не нарушать принятую историческую последовательность, давайте еще раз вернемся по времени назад, для того чтобы посмотреть, когда же люди успели так круто изменить ход развития цивилизации и неразрывно связать его с электричеством? С чего началась на Земле «большая энергетика»?
Тайна «Р. М.» и первые электромашины
Создание электрического генератора явилось одним из важнейших этапов в истории электротехники. Более того, появление промышленных машин, вырабатывающих сначала постоянный, а потом и переменный ток, представляет собой одно из самых крупных событий в истории техники, ничуть не меньшее, чем, например, изобретение паровой машины. После короткого, но бурного пути развития электромашинный генератор, как главный мощный источник электрической энергии, стал символом и основой цивилизации XX столетия, несмотря на то что придуман, разработан и усовершенствован во всех своих принципиальных чертах был он еще в прошлом веке…
26 июля 1832 года, возвратившись в Лондон после воскресного уик-энда, Фарадей нашел в почтовом ящике письмо, адресованное на его имя. В конце текста стояли две буквы «Р. М.». Странно! Никого из знакомых с такими инициалами у ученого вроде бы не было. А впрочем, он не раз получал письма и от незнакомых людей. И Фарадей углубился в чтение: «Сэр! Прочитав в отчетах института Ваш интересный доклад о магнетизме, я сделал попытку произвести эксперимент, который удался мне сверх моих ожиданий, и я думаю, что если его провести в более широком масштабе, то он дал бы много интересного…» Дальше анонимный экспериментатор описывал техническую модель магнитоэлектрической машины переменного тока, с помощью которой ему удалось получить искры и разложить воду. Основные принципы машины были настолько глубоко продуманы и так правильны, что они на много лет вперед определили собою конструкции более поздних изобретателей. Но это выяснилось позже, не будем забегать вперед.
Фарадей был поражен. Иным состоянием не объяснить того обстоятельства, что уже на следующий день он отправил полученное послание в редакцию журнала, сопроводив его собственным письмом:
«Джентльмены! Вчера, по возвращении в город, я нашел закрытое письмо — оно анонимное, и я не имею возможности назвать его автора…» Майкл Фарадей хорошо помнил уроки щепетильности, преподанные ему жизнью в начале научной карьеры, и потому заканчивал свое письмо в весьма осторожных тонах: «Осмеливаюсь думать, что лицо, написавшее письмо, ничего не имеет против его опубликования; со своей стороны я не хотел бы быть исключительным обладателем этого анонимного научного сообщения, из опасения, чтобы в свое время, в будущем, из этого не возникло недоразумения касательно даты сообщения.
Однако, если вы опубликуете письмо, то соблаговолите передать от меня благодарность его автору.
Примите и пр. М. Фарадей
Королевский институт
27 июля 1832 г.».
Оба письма были опубликованы. В том же 1832 году в Падуе итальянский аббат профессор физики и механики местного университета Сальваторе даль Негро построил магнитоэлектрическую машину переменного тока, основанную на принципе возвратно-поступательного движения. Почтенный аббат предполагал, что подобное устройство «может сделаться подходящим взрывным аппаратом», поскольку ему удавалось извлекать из него изрядные электрические искры. Однако в дальнейшем предложенный принцип распространения не получил.
А вот машина, построенная сыновьями французского изобретателя физических приборов, братьями Пикси, стала широко известна в Европе. Она поражала современников своими размерами — один только подковообразный магнит ее весил около 100 килограммов, имела она и приспособление для выпрямления тока. В истории сохранилось описание этой машины, и, возможно, кому-нибудь из читателей будет интересно его прочесть: «Подковообразный магнит… укреплен таким образом на оси, что может быстро вращаться около нея. Прямо перед ним неподвижно укреплен изогнутый подковой железный стержень, противустоя своими концами полюсам магнита, но не касаясь их. Этот стержень обвит пятьюдесятью метрами медной проволоки с шелковой оболочкой, и один свободный конец проволоки погружен в чашечку с ртутью, а другой не доведен до соприкосновения с последней и укреплен в таком положении. При быстром вращении магнита искры проскакивают между ртутью и концом проволоки с такою быстротою, что сливаются друг с другом… От сего аппарата получаются сильные удары в руки, он разлагает воду и т. д.».
Похожую в принципе машину сконструировал в Лондоне профессор Уильям Риччи. И вообще с этого момента началась работа многих изобретателей над созданием магнитоэлектрических генераторов, в которых генерация тока происходила либо за счет движения катушек в поле постоянных магнитов, либо наоборот — перемещения магнитов относительно неподвижно установленных катушек.
Первые машины были все уникальными конструкциями. Каждый изобретатель старался внести в нее что-то свое, что-то новое. Да и возможностей для этого было на первых порах предостаточно. Однако со временем вся сумма технических знаний, необходимых для постройки электрогенераторов, телеграфа, гальванотехнических устройств и первых ламп дугового освещения, начала складываться в особую отрасль науки и техники — электротехнику, которая быстро превращалась в самостоятельную новую техническую науку.
Переменный ток на первых порах не находил себе применения. Поэтому все внимание конструкторов было направлено на создание машин постоянного тока.
Впрочем, прежде чем продолжить наше путешествие по истории создания электрогенераторов, небезынтересно закончить вопрос о тайне «Р. М.» — анонимного изобретателя первой магнитоэлектрической машины.
В конце марта 1833 года утренняя почта редакции журнала «Философикэл мэгэзин» принесла письмо из Дублина, подписанное теми же инициалами:
«Джентльмены! Несколько дней тому назад я случайно прочитал в вашем журнале письмо, которое было мною послано г. Фарадею. Я весьма обязан ему за оказанное моему сообщению внимание…»
По-прежнему анонимно автор сообщает дополнительные сведения о своей конструкции. «Р. М.» исправляет ошибку первоначального эскиза и, хотя и не столь ясно, как последующие изобретатели, например Пачинотти, приходит к идее кольцевого якоря. Это тем более важно отметить, что кольцевой якорь (изобретенный и построенный в 1860 году) открыл новую главу в истории электрической машины. Он позволил начать промышленное использование динамо-машин.
Судя по рисунку и описанию «Р. М.», все его мысли имели удивительно правильное направление. Тем загадочнее была тайна его имени. Однако любопытство это не было удовлетворено. До сего дня историки так и не знают, кто скрывался за короткой подписью из двух букв. И имя, может быть, еще одного гения электротехнической мысли нам неизвестно…
От магнитоэлектрической машины к динамо
Многие ученые и изобретатели, увлекшись открывшимися перспективами превращения механической энергии в электрическую, строили и совершенствовали магнитоэлектрические машины. Большинство из них носило характер демонстрационных моделей. Однако генератор, разработанный Б. С. Якоби для подрыва минных запалов, и громоздкая машина французской фирмы «Альянс», предназначенная для питания дуговых ламп и устройств гальванотехники, уже служили техническим целям. И все-таки слишком много было у первых генераторов принципиальных недостатков, чтобы они могли получить быстрое и широкое распространение.
Прежде всего следовало бы отметить быстрое размагничивание постоянных магнитов, после чего машина превращалась просто в груду тяжелого металла. Но и в новых, только что созданных генераторах многое не удовлетворяло потребителей. Поскольку первоначальные якоря обладали явно выраженными полюсами, магнитный поток сильно пульсировал и большая часть энергии тратилась на перемагничивание. Постоянный ток тоже не одинаковым, меняя свою силу.
Внимание изобретателей было устремлено на улучшение выпрямления получаемого тока. Для этого они разрабатывали всевозможные приспособления — коммутаторы — до тех пор, пока не появился коллектор, сохранившийся в почти неизменном виде до наших дней.
Мощные машины, построенные в начальном периоде, тратили столько энергии на потери в стали, что их приходилось непрерывно охлаждать. Естественно, что это съедало значительную долю вырабатываемой мощности.
Все эти недостатки как бы сами собой указывали путь, по которому должна была двигаться конструкторская мысль. И люди не оставляли эти подсказки без внимания.
В 1851 году немецкому полковому врачу Вильгельму Йозефу Синстедену, занимавшемуся исследованием электрической машины, пришла в голову идея: а почему бы не заменить в машине громоздкий и такой ненадежный постоянный магнит электромагнитом? Мысль кажется простой до очевидности. Но это сейчас, сегодня. А тогда пришлось ждать ее реализации довольно долго. Сначала питание обмоток электромагнита (в дальнейшем будем называть их обмотками возбуждения) предполагалось от батареи гальванических элементов. Но это нарушало смысл, главное предназначение первых машин — полностью заменить собой гальванические элементы. Поэтому так кстати пришлась идея английского физика Генри Уайльда, задумавшего заменить батарею еще одной магнитоэлектрической машиной. Он попробовал привести свой замысел в исполнение и получил первый генератор с независимым возбуждением.
И тогда целый ряд инженеров предложили почти одновременно в разных странах питать обмотки возбуждения не от отдельной машины, а от собственного якоря. Родился принцип самовозбуждения, ознаменовавший новую эру в электромашиностроении.
Понятно, что такой переворот не мог пройти гладко. Документы того времени наполнены взаимными обвинениями изобретателей в плагиате. Одной из первых таких машин с использованием принципа самовозбуждения явился генератор Сорена Хиорта — датского изобретателя, имя которого редко упоминается в истории техники.
С. Хиорт был судебным чиновником. Увлеченный техническими идеями, волновавшими его время, он с целью самообразования посещал Копенгагенский университет, где слушал лекции X. Эрстеда. В дальнейшем, работая на железной дороге, молодой изобретатель пытался применить на ней электродвигатель. Опыты привели его к открытию явления самовозбуждения. И в 1852 году он представил научному обществу в Копенгагене описание и чертежи машины с самовозбуждением, а два года спустя взял английский патент на такую машину. Позже он усовершенствовал замысел и осуществил свою конструкцию.
Сорен Хиорт, по воспоминаниям современников, был очень энергичным человеком. Казалось, все сосредоточилось в его руках: патент, опытный образец машины… Почему же открытый им принцип самовозбуждения не получил развития и не был практически реализован сразу?
В биографии Хиорта написано: «Сын крестьянина. Образование получил самоучкой». Никакой промышленной базы и средств для ее организации у него не было. Он несомненно опередил время, совершив скачок вперед в ходе практического развития электрической машины. Все это и привело к тому, что его идеи не нашли в практике общества достаточно подготовленной почвы.
Интересно отметить и еще одно обстоятельство, которое могло отрицательно повлиять на оценку его работ. Скомбинировав генератор с самовозбуждением вместе с электромагнитным двигателем, Хиорт получил нечто вроде вечного двигателя. Однако еще в 1775 году Парижская академия наук отказалась рассматривать проекты вечных двигателей, объявив их химерой. А после того как был открыт закон сохранения энергии, вера в возможность осуществления подобного устройства была окончательно подорвана во всем мире. Люди же, разрабатывающие подобные неосуществимые проекты, теряли в глазах общества всякий авторитет.
Переход электрических машин на принцип самовозбуждения стал крупным шагом в развитии электромашиностроения. Неудивительно, что вокруг вопроса о приоритете в этой области разгорелись бесконечные споры.
Долгое время конструирование электромагнитов, в том числе и для электрических машин, не выходило за рамки интуиции изобретателей, что, разумеется, сильно сдерживало развитие новой техники. Но вот в 1872 году доцент Московского университета Александр Григорьевич Столетов защищает докторскую диссертацию на тему «Исследование о функции намагничения мягкого железа». Работая в лаборатории Кирхгофа в Гейдельберге, Столетов проделал большое количество опытов за время своей шестимесячной командировки и фактически разработал основы методов расчета магнитной цепи. А с 1880 года, после открытия немецким физиком Эмилем Габриэлем Варбургом явления гистерезиса, когда всем стало ясно, что циклическое намагничивание ферромагнетиков связано с потерей механической, а следовательно, и электромагнитной энергии, исследователи смогли перейти от грубой эмпирики к осмысленному, достаточно строгому проектированию электрических машин, аппаратов и приборов.
В Германии с середины прошлого столетия работало мощное электротехническое объединение, занимавшееся выпуском сначала принадлежностей для телеграфных сетей, а затем и прочего электротехнического оборудования. Во главе этого объединения стоял немецкий инженер, талантливый изобретатель и предприниматель Эрнст Вернер Сименс. Он получил хорошее образование в Берлинской инженерноартиллерийской школе. Он и его братья, тоже инженеры, имели прекрасные связи. Технические бюро и заводы Сименса возникали не только в странах и городах Западной Европы. В России Сименс строил телеграфную сеть, организовав мастерские в Петербурге. Отделение фирмы, перебравшись через океан, открылось даже в Филадельфии…
Но наш рассказ относится ко второй половине прошлого столетия. Вернер Сименс торопил сборку первого генератора с самовозбуждением, справедливо опасаясь, что его обгонят. Стремясь не упустить приоритет и отлично понимая значение принципа самовозбуждения для дальнейшего развития электромашиностроения, он берет через своего брата, жившего в Англии, английский патент. И месяц спустя этот младший «английский» Сименс читает в Лондонском королевском обществе доклад о новом принципе. В то же время в Берлине от имени Вернера Сименса в Академии наук выступает с сообщением профессор Магнус.
Чтобы у читателя не оставалось даже тени сомнений на этот счет, вот строки письма Вернера Сименса его брату Вильгельму в Лондон: «…машина будет готова через несколько дней. Сделай и ты изыскания, чтобы Уайльд, который также близко стоит у цели, не опередил нас.
Магнитное электричество сделается дешевым, станет доступным и применимым для освещения, гальванометаллургии и т. д., и даже малые электромагнитные машины, получающие силу от больших, станут весьма полезными…
Берлин, 4 декабря 1866 г.».
Чтобы нагляднее продемонстрировать гонку, которую устроили конструкторы электрических машин, достаточно сказать, что в тот же день и на том же заседании, на котором читал доклад Вильгельм Сименс, члены Лондонского королевского общества слушали Чарлза Уитстона, своего коллегу и профессора физики Лондонского королевского колледжа, который изобрел иное (параллельное) соединение обмотки электромагнитов с цепью якоря, то есть предложил принцип шунтовой машины. Но несмотря на то, что это явилось несомненным шагом вперед, развития шунтовая машина в первые годы не получила. Применение ее началось лет десять спустя.
Примерно через месяц после этого заседания, на следующем своем собрании, члены общества слушали доклад Джемса Клерка Максвелла, в котором тот дал математический анализ работы машины с самовозбуждением. К сожалению, большинство практиков-электриков того периода не обладали достаточным математическим образованием, чтобы понять глубокий смысл сжатого изложения великого теоретика. В истории развития электромашиностроения это, пожалуй, первая теоретическая работа. Современники не придали ей должного значения и скоро забыли.
Вернер Сименс первым назвал электрическую машину без постоянного магнита динамоэлектрической машиной. Название прижилось. И на выставочных стендах стали появляться новые и новые конструкции динамо-машин, все более и более приближающиеся принципиально к тем генераторам, которые работают на «фабриках электричества» и в наши дни.
Я уже говорил, что одним из крупных недостатков первых электрических машин являлась сильная пульсация вырабатываемого тока. В 1856 году Вернер Сименс совместно с техником и компаньоном Иоганном Георгом Гальске патентует изобретенный двух-Т-образный якорь и строит магнитоэлектрическую машину, обладавшую значительными преимуществами по сравнению с другими конструкциями.
Четыре года спустя во Флоренции доктор Антонио Пачинотти предложил новую конструкцию якоря. «В 1860 году мне представился случай, — писал Пачинотти в журнал „Иль нуово чименто“, — построить для кабинета технологической физики Пизанского университета маленькую модель мною изобретенной электромагнитной машины…»
Кольцевой зубчатый якорь Пачинотти — яркое и исключительно удачное изобретение — не нашел практического применения. Может быть, причина заключалась в том, что сам Пачинотти был далек от практических задач. А может быть, виной явилась плохая информированность изобретателей разных стран.
Лишь через десять лет бельгиец Зиновий Теофиль Грамм, служивший в парижской фирме, производящей магнитоэлектрические машины, столяром, совместно с техником Эрдлем Луи Шарлем д’Ивернуа выправил патент на такой же кольцевой якорь, но без зубцов. А поскольку выработка не резко пульсирующего тока стояла на повестке дня с большой остротой, их изобретение получило весьма широкую огласку и признание. Грамм оказался весьма деловым человеком и организовал в Париже свою фирму, эксплуатирующую это усовершенствование. Более того, он применил кольцо Пачинотти для самовозбуждающейся машины, получив таким образом едва ли не первый практически вполне годный для промышленной эксплуатации генератор.
Выпустив на время из рук инициативу в создании конкурентноспособных динамо-машин, Вернер Сименс поставил задачу перед своими сотрудниками — перехватить производство. Для этого следовало прежде всего внести какое-то усовершенствование, чтобы оградить себя от патентного иска. И вот главный инженер фирмы Фридрих Гефнер-Альтенек видоизменяет якорь Грамма. Известно, что чем большая поверхность якоря проходит под полюсом электромагнита, тем индукционный ток в нем больше. И Гефнер-Альтенек вытягивает кольцевой якорь Грамма в цилиндр и делает его в виде барабана. Были введены и еще некоторые усовершенствования, позволившие фирме «Сименс и Гальске» приступить к выпуску собственных динамо-машин.
Некоторое время между конкурирующими фирмами и в среде инженеров шел спор, какой тип генераторов лучше — Грамма или Сименса. Но со временем все пришли к выводу, что разницы практически никакой нет. Тем более что то в одном месте, то в другом стали появляться динамо-машины разных конструкций. В начале 80-х годов Эдисон построил машину с нижним расположением якоря. «Сименс и Гальске» и фирма Грамма тут же почти одновременно перевернули эдисоновскую машину и построили динамо с верхним расположением якоря. Шуккерт в Нюрнберге сплюснул якорь и всю машину в плоское кольцо. Вышли на рынок многополюсные машины, более мощные и еще более совершенные. Но…
Изобретатели уже давно заметили, что для некоторых целей, главным образом для питания дуговых ламп, можно пользоваться невыпрямленным, первоначальным током переменного направления. При этом, поскольку коллектор становился ненужным, конструкция машины сильно упрощалась.
Сначала генераторы переменного тока находили себе применение только для нужд освещения, и динамо-машины, вырабатывавшие постоянный ток, держали первенство. Но скоро в действие вступили и другие факторы, стимулировавшие развитие машин, вырабатывающих переменный электрический ток.
«Русский свет»
Создание экономичного генератора электрического тока оживило усилия изобретателей, искавших области практического применения электрической силе помимо телеграфии. Уже первые исследователи гальванизма заметили, что проволока, по которой идет электрический ток, нагревается, накаливается и может даже раскалиться до яркого свечения и расплавиться. Кроме того, в 1802 году В. В. Петров указал на возможность освещения «темных покоев» с помощью электрической дуги. Он же исследовал электроразрядное свечение в разреженном пространстве под колпаком. Те же явления позже были изучены Дэви и Фарадеем…
Освещение!.. Сейчас даже трудно представить себе, что всего полтораста лет тому назад оно являлось проблемой общественной жизни. С начала XIX века в дома горожан проникает газовое освещение, пришедшее на смену свечам и лампам с жидким горючим. Сначала газовый свет казался великолепным. О лучшем нечего было и мечтать. Однако этот триумф газа был недолгим. Уже к середине века газовое освещение перестало удовлетворять людей из-за своих многочисленных недостатков. Оно было тусклым, небезопасным в пожарном отношении и вредным для здоровья.
На фабриках и на заводах, где трудовой день длился по четырнадцать часов в сутки, отсутствие яркого освещения тормозило рост производительности труда и замедляло технический прогресс. Все это способствовало усилению работы изобретателей над новыми видами электрического освещения: над дуговыми лампами, лампами накаливания и газоразрядными лампами.
Раньше других появились достижения в разработке дуговых ламп, хотя первое время их прогресс сдерживался отсутствием надежных источников тока, не было и хороших углей. Древесные угли, которыми пользовались Петров и Дэви, быстро сгорали и были непрочны. Выход нашел Роберт Бунзен — известный химик, изобретатель цинко-угольного элемента. Он предложил использовать твердый нагар, остающийся на раскаленных стенках газовых реторт. Из отбитых кусков этого нагара удавалось выпиливать короткие стержни, которые хорошо проводили ток и сгорали значительно медленнее. Позже этот нагар стали молоть и из порошка формовали стержни требуемого размера и необходимой однородности.
Вторая трудность, назовем ее «проблемой регулятора», заключалась в том, что угли сгорали — и расстояние между ними увеличивалось. Дуга становилась «неспокойной», свет из белого превращался в голубой, начинал мигать и гас. Нужно было придумать механизм, поддерживающий между концами углей одинаковое расстояние.
Изобретатели предложили много устройств. Большинство из них имело тот недостаток, что в одну цепь невозможно было включить несколько ламп. Поэтому каждый источник энергии первое время работал на один светильник.
Но вот в 1856 году в Москве изобретатель А. И. Шпаковский осуществил осветительную установку с одиннадцатью дуговыми лампами, снабженными оригинальными регуляторами. Правда, и они не решали проблему «дробления света».
Первым разрешил ее изобретатель В. Н. Чиколев, применивший в 1869 году в дуговой лампе дифференциальный регулятор. Этот принцип регулирования, развитый в дальнейшем многими инженерами и изобретателями, применяется и в настоящее время в прожекторных установках.
Примерно к тому же времени относятся и удачные опыты по применению ламп накаливания и даже первых газосветных трубок. Но самую важную и решающую роль в переходе от опытов по электрическому освещению к его широкому внедрению в практику сыграли работы русского электротехника П. Н. Яблочкова…
В 1875 году Яблочков вместе с другим изобретателем, Н. Г. Глуховым, организовал в Петербурге мастерскую физических приборов. Компаньоны с увлечением конструировали электротехнические новинки, ставили опыты, обсуждали грандиозные проекты… К сожалению, оба оказались плохими предпринимателями и финансовые дела их «предприятия» шли из рук вон плохо.
Однажды, получив заказ на изготовление установки для электролиза поваренной соли, Яблочков занялся поисками наивыгоднейшего расположения угольных электродов в растворе. Случилось так, что, укрепляя параллельно угли, он случайно коснулся концом одного конца другого. Вспыхнула дуга. Она не прерывалась до тех пор, пока угли не сгорели. Павел Николаевич, мысли которого были заняты обдумыванием устройства дуговой лампы, сразу же понял, что перед ним простое и безусловное решение проблемы…
Финансовый крах оторвал его от занятий. В октябре того же года Яблочков уезжает во Францию, где поступает в Париже в электротехнические мастерские, изготавливающие телеграфные аппараты и электрические машины. Здесь он доводит свое изобретение и получает на него патент. Два параллельно поставленных угольных стержня с прокладкой из каолина присоединялись к клеммам гальванической батареи или машины постоянного тока. Наверху стояла угольная перемычка — «запал», который быстро сгорал при включении. Немало пришлось поэкспериментировать Павлу Николаевичу. Угли сгорали неравномерно. Положительный электрод уменьшался быстрее, и пришлось его делать толще…
Простота конструкции и безотказность в работе «электрической свечи» Яблочкова привели к тому, что успех изобретения превзошел самые смелые ожидания. Технические журналы и мировая пресса пророчили наступление новой эпохи…
В 1876 году русский изобретатель представил свою удивительную «свечу» на Лондонской выставке. И там она стала гвоздем программы. А год спустя предприимчивый француз Денейруз добился учреждения акционерного «Общества изучения электрического освещения по методам Яблочкова», в котором предложил изобретателю солидный пакет акций. Благодаря изворотливости предпринимателя одна из самых посещаемых знатью парижских улиц — Авеню де ль’Опера и площадь Оперы, а также магазин «Лувр» сменили тусклое газовое освещение на яростный блеск электрической дуги, пылающей на концах параллельных углей. Чтобы смягчить нестерпимый блеск дуги, каждую свечу заключили в матовый колпак. И молочно-белые шары сияли на улицах Парижа, как спустившиеся с неба звезды.
Это было так прекрасно, что из Парижа «русский свет» не только шагнул в другие города, но и пересек границы государств и континентов. «Из Парижа электрическое освещение распространилось по всему миру, — писал сам Яблочков, — дойдя до дворца шаха персидского и короля Камбоджи». Русский изобретатель стал европейской знаменитостью.
Яблочков не останавливается на достигнутом. Он пробует питать «свечу» от машины переменного тока и находит, что это еще удобнее. Теперь угли не нужно делать разной толщины, они сгорают равномерно. Да и машина переменного тока оказывается проще. Ей не требуется коллектор. Работы Яблочкова заставили многих конструкторов задуматься над совершенствованием генераторов переменного тока, дали толчок их развитию. Одновременно русский изобретатель первым предложил использовать индукционные катушки, ставшие, по существу, первыми трансформаторами с разомкнутой цепью. Появилась возможность одновременного включения нескольких свечей в цепь, питаемую одной машиной.
Павел Николаевич страстно мечтал о возвращении на родину. Он хотел взять реванш за постигшие его там неудачи. Став богатым человеком, он решил выкупить свои привилегии у компаньонов и создать «товарищество» в России. Это ему в конце концов удалось. И вот как описывал его возвращение другой русский электротехник, Владимир Николаевич Чиколев: «Он поселился в роскошных апартаментах „Европейской гостиницы“, и кто только не бывал у него: светлости, сиятельства, высокопревосходительства, превосходительства без числа, городские головы… Яблочкова всюду приглашали нарасхват, везде продавались его портреты, в газетах и журналах ему посвящались сочувственные, а иногда и восторженные статьи…» Наконец в Петербурге было учреждено товарищество «Яблочков-изобретатель и К°». Мастерские стали изготавливать осветительные приборы конструкции Яблочкова для России. Однако, когда первый бум прошел, дела товарищества пошли на спад.
Сам Яблочков был только изобретателем и совершенно непрактичным человеком. Условия для развития электротехники в технически отсталой России были сложными. А компаньоны изобретателя заботились только о прибылях. Кроме того, скоро и сам Яблочков, сравнивая возможности своих «свечей» с лампами накаливания, понял бесперспективность дугового освещения. Сорока шести лет, тяжело заболев, он писал: «Проработав всю жизнь над промышленными изобретениями, на которых многие люди нажились, я не стремился к богатству, но я рассчитывал, по крайней мере, иметь на что устроить для себя лабораторию, в которой я мог бы работать не для промышленности, но над чисто научными вопросами, которые меня интересуют. И я, возможно, принес бы пользу науке, как я это сделал для промышленности, но мое необеспеченное состояние заставляет оставить эту мысль… Я в настоящее время имею на личном счету только нищету, грудную болезнь… Вот мой баланс за 17 лет работы…»
«Господин Лодыгин, это изумительно!»
Темным осенним вечером 1873 года толпы петербуржцев спешили на Пески (ныне это район Советских улиц). Там их ожидало чудесное зрелище. В двух уличных фонарях керосиновые лампы были заменены какими-то стеклянными пузырьками, от которых шли провода в толстой резиновой оболочке к «световой машине». Рядом суетились люди. Прилично одетый господин в длинном расстегнутом пальто что-то прикручивал, соединял. Провода лежали прямо на панели и путались под ногами. Но вот застучала машина, зачихала, завертела якорь генератора, и пузырьки на столбах вспыхнули ярким светом. Люди вынимали припасенные газеты, сравнивали, на каком расстоянии от старого керосинового или фотогенного фонаря и нового можно разобрать буквы. Разница была впечатляющей.
Присутствующие поздравляли изобретателя: «Господин Лодыгин, это прекрасно! Господин Лодыгин, это изумительно!»
В общем-то, изобретение лампы накаливания было случайным или попутным, что ли. Замахивался он на нечто большее…
Александр Николаевич Лодыгин родился 6 (18) октября 1847 года в Тамбовской губернии, в имении отца. С юных лет — обычная карьера для отпрыска небогатого провинциального помещика: кадетский корпус в Воронеже, а потом Московское военное училище. Однако военная служба не прельщала молодого человека. И, отслужив положенный срок, он подпоручиком выходит в отставку. А как же семья?.. Отец против. Отец негодует, лишает поддержки. И отставной военный из дворян поступает на Тульский оружейный завод сначала молотобойцем, потом слесарем. Одновременно он изобретает. Идеи и образы небывалых машин теснятся у него в мозгу, не дают спокойного сна. Лодыгин задумал построить «электролет» — летательную машину тяжелее воздуха, которая будет приводиться в действие электричеством. Но кому в Туле нужен «электролет» типа геликоптера? И Лодыгин едет в столицу, в Петербург.
Он передает свой проект в Инженерное управление военного министерства, рассказывает о нем репортерам столичных газет. В газетах появляются сенсационные описания его машины, а министерство молчит. Министерству наплевать на геликоптер.
В 1870 году Лодыгин решает предложить свой проект Франции, которая воюет с пруссаками. Но нет денег на поездку. Знакомые студенты с шапкой по кругу собирают 98 рублей, и Александр Николаевич уезжает. Однако на одной из промежуточных станций чемодан с чертежами «электролета» у него украли. Все! Катастрофа! Без чертежей, без денег, практически без языка — ох уж этот французский из кадетского корпуса!
Лодыгин поступает слесарем на завод, а вечерами по памяти восстанавливает чертежи. Поддерживает его Феликс Турнашон — командир бригады аэронавтов. Веселый, воинственный француз, хорошо знавший известного писателя Жюля Верна и зачитывавшийся его романами, видит в молодом русском воплощение Робура-завоевателя.
Несмотря на трудности, чертежи восстановлены. Комитет национальной обороны ассигновал 50 тысяч франков на постройку «электролета Лодыгина», но… Боши вошли в Париж. Война проиграна. А патент «на применение электричества в воздушной навигации» получили братья Гастон и Альфред Тиссандье — воздухоплаватели.
Так, не родившись, «электролет» умер. Впрочем, от него осталась незначительная деталь. Для освещения своего летательного аппарата Лодыгин предлагал лампочку накаливания. Вернувшись в Россию, он получает привилегию на нее и, имея уже некоторый опыт, патентует изобретение в ряде европейских государств.
В кругу друзей изобретатель рассказывал, как однажды, спроектировав изображение вольтовой дуги на экран, он обратил внимание на то, что свет исходит лишь от самых кончиков раскаленных углей. «А что, ежели бы удалось раскалить весь уголь?» Так пришла ему в голову мысль от двух угольных полюсов, соединенных дугой, перейти к одному тонкому углю: А чтобы тот не перегорал, Александр Николаевич заключил его в герметическую стеклянную колбу. «Как только весь кислород израсходуется, — рассуждал он, — разрушение угольного стерженька прекратится».
С этой мысли начались его поиски, опыты и пробы. В ту пору через Неву строился Литейный мост. Лодыгин предложил осветить место подводных работ. Это явилось прекрасной демонстрацией возможностей нового вида освещения.
В 1874 году Александр Николаевич Лодыгин получил привилегию на производство ламп своего изобретения и организовал «Товарищество электрического освещения А. Н. Лодыгин и К°». Увы, капитал товарищества составлял всего десять тысяч рублей. А электротехническая промышленность России была в руках иностранцев. Всего было мало, все было дорого. Прошел год с небольшим, и компания потерпела финансовый крах. Лодыгин поступает слесарем в петербургский Арсенал. Правда, скоро он переходит на должность инженера. И тогда произошла такая любопытная история…
В конце 70-х годов прошлого века на верфях Северо-Американских Соединенных Штатов по заказу Петербургского Адмиралтейства строились корабли. На их приемку выехал в Америку лейтенант русского флота А. Н. Хотинский. Он взял с собой несколько ламп Лодыгина. Может быть, чтобы оборудовать помещения кораблей? А почему бы и нет? Изобретение запатентовано было в России, во Франции, в Великобритании, в Австрии, в Бельгии… Случилось как-то, что молодой лейтенант показал русские лампы изобретателю по имени Томас Эдисон, которому новинка чрезвычайно понравилась. Американец принялся за усовершенствование русского изобретения.
«Конечно, трудно установить, насколько описанное обстоятельство имело влияние на изобретение Эдисона. Но то обстоятельство, что изобретение Лодыгина было известно в Америке, явствует из судебного разбирательства в процессе между Эдисоном и Сваном», — пишет известный историк электротехники профессор М. А. Шателен. Американский суд аннулировал спорные привилегии обоих изобретателей, мотивируя свое постановление тем, что уже существуют лампы Лодыгина. Говорили, что Эдисон проделал тысячи опытов, прежде чем у него в руках оказался стеклянный пузырек с угольной нитью из бамбукового волокна. Из пузырька был выкачан воздух. Американский изобретатель разработал все звенья системы электрического освещения и начал массовый выпуск ламп.
Но еще до того коротким победным маршем прошла по миру «свеча Яблочкова», затмив лодыгинское изобретение более ярким свечением.
В 1884 году Александр Николаевич Лодыгин снова уезжает во Францию, а оттуда в США. Он изобретает еще несколько типов ламп накаливания, в том числе с металлическими нитями, и первым предлагает для нити накаливания вольфрам… Но ему не везет и в Америке. Лодыгин возвращается во Францию, затем в Россию, конструирует приборы электрического отопления, респираторы, электропечи для плавки металлов.
В Петербурге он один из основателей электротехнического отдела Русского технического общества. Но постоянная нужда грызет его и гоняет с места на место. Он снова уезжает за границу и возвращается на родину лишь после революции 1905 года. К сожалению, и тогда место для изобретателя нашлось лишь на трамвайной подстанции…
В 1918 году Александр Николаевич снова уезжает в США. В 1923 году советские электротехники избирают его почетным членом Общества русских электротехников. Однако их письмо, посланное за океан, уже не застало Лодыгина в живых.
Свеча Яблочкова и лампы накаливания убедительно показали, что электрическое освещение обладает неоспоримыми преимуществами по сравнению с газовым.
Английский парламент организовал специальную комиссию, которая должна была учинить следствие над подсудимым… электрическим освещением, сравнивая его достоинства с освещением газовым. По порядку, не отступая от традиций британского суда, члены комиссии «допросили» многих видных ученых, после чего был вынесен вердикт. Так называется решение присяжных заседателей в судебном процессе о виновности или невиновности подсудимого. Решение было единодушным — электрическое освещение признавалось лучшим по сравнению с газовым, а «свеча Яблочкова» — лучшей по сравнению со всеми другими источниками света, известными в ту пору…
Сообщение об этом оригинальном «судилище» для собрания электротехнического отдела Русского технического общества подготовил Д. А. Лачинов. Он же написал о том статью и в первый номер нового русского журнала «Электричество».
По просьбе В. Н. Чиколева Дмитрий Александрович Лачинов разработал ряд формул для определения освещенности поверхностей. Чиколев использовал эти формулы в своей статье «Об электрическом освещении улиц, мостов и площадей». Но для того чтобы окончательно вытеснить газ, следовало прежде всего решить проблему централизованного производства электричества и проблему электростанций и придумать способы передачи электроэнергии на расстояние. Тогда можно было использовать ее для питания установок электропривода. Пока же редкие электродвигатели использовались только на более или менее крупных предприятиях, которые имели свои достаточно мощные блок-станции с машинами постоянного тока.
Глава четырнадцатая. Энергия по проводам
Весь ход развития практического применения электрической энергии требовал ее централизованного производства. Но для этого нужно было научиться ее экономично транспортировать к потребителям, удаленным на достаточно большое расстояние. Легкость превращения электрической энергии в любую другую форму и ее чрезвычайно быстрое распространение по проводам делали поставленную задачу необыкновенно заманчивой. Именно потому, начиная с 70-х годов прошлого века, проблема электропередачи становится главным направлением в развитии электротехники.
Трудностей было немало. Прежде всего следовало изобрести технологию производства проводников, заложить основы совершенно новых отраслей техники — кабельной и электроизоляционной.
Вы помните, как изолировал В. В. Петров провода сургучом, смешанным с воском? П. Л. Шиллинг применял для изоляции проводов своего телеграфа пеньку, пропитанную озокеритом. А подземный кабель тогда представлял собой провод, изолированный бумажной пряжей и уложенный в стеклянные трубки, которые соединялись между собой резиновыми манжетами.
В 1949 году, в начале строительства ленинградского метрополитена, рабочие откопали кабель, проложенный еще Б. С. Якоби более ста лет назад. В деревянном желобе лежала проволока, изолированная суровыми нитками, пропитанными изоляционной массой из воска и канифоли и заключенная в стеклянные трубки.
Позже Якоби предложил применять для изоляции проводов гуттаперчу. А после изобретения способа вулканизации каучука в 1839 году стал применяться для изоляции и этот материал. Дороги были первые провода…
Однако главной трудностью в передаче энергии на расстояние были потери. Постоянный ток, проходя по проводам, отдавал большую часть своей энергии на нагрев проводников. Как уменьшить потери? Пробовали увеличивать сечение проводников — получилось.
Но расчеты показали, что это слишком дорогая цена.
Пожалуй, самым первым опытом передачи энергии на расстояние, получившим широкую известность, явился эксперимент французского инженера И. Фонтена. На Венской международной выставке 1873 года Фонтен проложил кабель длиной более километра между двумя машинами Грамма. Одна из них давала ток, другая работала в режиме двигателя. Однако потери оказались столь велики, что сам экспериментатор пришел к выводу, что экономичная передача энергии на сколько-нибудь значительное расстояние вряд ли возможна.
Я не зря подчеркиваю экспериментальный характер этой работы. В то время еще не существовало теоретического анализа явлений, происходящих при подобной передаче энергии, и до каждой истины изобретатели должны были доходить опытным путем.
Тем важнее и интереснее оказался вклад Д. А. Лачинова, который он внес в решение этой важнейшей проблемы. В том же 1880 году Дмитрий Александрович написал классическую работу, охватив в ней все основные вопросы теории электродвигателей, электрогенераторов и электропередачи. Статья называлась «Электромеханическая работа и элементарная теория электродвигателей (динамоэлектрических машин)» и явилась важной вехой в развитии теории электротехники. Впервые в истории им были сформулированы законы передачи электроэнергии на расстояние и определен путь дальнейшего развития электротехники.
Годом позже французский физик Марсель Депре повторил выводы Дмитрия Александровича Лачинова в статье «Передача электрической работы на большие расстояния».
Русское техническое общество назначило Д. А. Лачинова генеральным комиссаром русского отдела Всемирной электрической выставки, которая должна была открыться в Париже в 1881 году. И Дмитрий Александрович с честью представил русскую электротехническую науку и технику как на выставке, так и на Всемирном конгрессе электриков, последовавшем за ее открытием.
Лачинов был очень разносторонним ученым, прекрасным товарищем, душой кружка петербургских физиков. Однако, потеряв трудоспособность, он, как и многие русские интеллигенты, остался без средств к существованию. И 25 октября 1902 года умер в возрасте 60 лет в больнице благотворительного общества.
Письмо мавра
Ноябрь в Англии не самый лучший месяц года. Погода промозглая, сыро и холодно. В комнатах темно. Однако утро началось как обычно. Чашка кофе. Увы, в одиночестве. Через месяц исполнится год, как умерла Женни, друг, помощник, жена, с которой они прожили тридцать восемь лет и которая так мужественно принимала на свои плечи все тяготы эмиграции. А через месяц за Женни-старшей последовала и Женни-младшая, дочь, ставшая прекрасным публицистом… Маркс встряхивает поседевшей гривой все еще густых волос и принимается за дело. Он просматривает газеты, что-то отчеркивает, загибает листы… Одна, другая, третья… Вот, чуть не пропустил. Совсем маленькое, незаметное сообщение об электрической выставке в Мюнхене и об опытах Депре, передавшего силу по проводам с помощью электричества в Мюнхен из Мисбаха…
Мисбах… Мисбах. Конечно, Маркс прекрасно знал это место. Маленький городок километрах в пятидесяти от Мюнхена. Там еще находятся старые угольные шахты, на которых шахтеры работают в жутких условиях. Интересно, почему именно оттуда решили вести линию электропередачи? Сколько он просил выслать сюда в Англию, в Вентнор, статьи об исследованиях этого Депре! Успехи в развитии электричества давно его интересуют.
Маркс был убежден, что электричество идет на смену «Его Величеству Пару» и что это знаменует собой экономическую революцию, следствием которой будет революция политическая. Он придвинул к себе бумагу и обмакнул перо.
«Вентнор, 8 ноября 1882 г.
Дорогой Фред!
Что скажешь ты об опыте Депре на Мюнхенской электрической выставке? Уже около года Лонге обещал мне достать работы Депре (специально для доказательства, что электричество допускает передачу сил на большое расстояние при посредстве простой телеграфной проволоки). Близкий Депре человек, д-р д’Арсонваль, состоит сотрудником „Justice“ и напечатал несколько статей об исследованиях Депре. Лонге, по своему обыкновению, каждый раз забывал прислать мне это…»
Почерк Маркса тонкий, неразборчивый. Как умела его разбирать Женни, которая переписывала для печати все его рукописи!.. Впрочем, Энгельс тоже читает его легко. Последнее время он много занимается вопросами физики и, естественно, не мог пропустить бурного развития новой отрасли науки. Энгельс читал работы Фарадея, познакомился с трактатами Максвелла. Пожалуй, он мог бы считать, что подкован в научном смысле вполне прилично. Однако технических подробностей экспериментов, проводимых в разных странах, Энгельс тоже не знал.
«Дорогой Мавр, — писал он Марксу поздним вечером 11 ноября. — Меня очень интересуют подробности о произведенных в Мюнхене опытах Депре… Открытие делает возможным использование всей колоссальной массы водяной силы, пропадавшей до сих пор даром.
Твой Ф. Э.».
В житейском смысле Марсель Депре был, пожалуй, неудачником. В своих работах он пришел к тем же выводам, что и Лачинов, но все его попытки осуществить «электрическую передачу энергии» заканчивались неудачами, поскольку линии имели очень низкий коэффициент полезного действия.
В 1882 году, когда городские власти Мюнхена решили устроить в столице Баварии «электрическую» выставку, для демонстрационной электропередачи выбрали линию телеграфа. Организатор выставки инженер Оскар фон Миллер пригласил Депре, с которым был знаком еще по парижской выставке прошлого года.
В Мисбахе на шахтах имелась небольшая паровая машина, мощностью в две лошадиные силы, и динамо-машина Грамма постоянного тока. В принципе она могла развивать до 2000 вольт электродвижущей силы.
Но что поставить на выставке в качестве демонстрации переданной на расстояние силы? Устроители задумывают взять вторую, аналогичную машину Грамма, поставить ее в режим двигателя, соединить с центробежным насосом и заставить последний перекачивать воду в резервуар, установленный на высоте нескольких метров. Оттуда вода должна низвергаться водопадом…
Вы можете улыбнуться: странный, дескать, способ демонстрации. Но здесь, по-видимому, вступали в силу национальные привязанности — немцы обожают водопады. Я был свидетелем, как почтенные обыватели выезжают в субботу за город, чтобы выпить кружку пива под шум падающей воды. Время от времени ее спускает из накопителя бармен с помощью обычного поплавкового затвора от бачка, веревка к которому спрятана за пивной стойкой. Вы бы видели, как радуются эти люди, когда начинает работать «вассерфалль», как кричат «ура» и поднимают кружки… за падающую с высоты двух-трех метров воду!
Миллер собирался перекачивать воду на высоту четырех метров!
К сожалению, машина Грамма на шахтах Мисбаха была старой и шелковая изоляция ее проводов сомнительной. Депре тянул и тянул с началом эксперимента, пока 10 сентября из Нью-Йорка не пришло известие о пуске Эдисоном первой в мире «фабрики электричества». Так называли тогда электростанции, обслуживающие клиентов энергией. Шесть динамо-машин конструкции Эдисона по 125 лошадиных сил каждая должны были обеспечить питанием несколько тысяч ламп, 617 подъемных машин и 55 лифтов. Правда, расстояние от всех абонентов не превышало нескольких километров. Поэтому Эдисон не боялся потерь в подземных кабелях. Но все равно дальше оттягивать демонстрацию было нельзя.
15 сентября у бетонного ложа искусственного водопада, декорированного зеленью и снабженного вывеской «Марсель Депре. Силовая электропередача Мисбах-Мюнхен. Расстояние — 57 километров» собрались люди. Вечером, когда последние посетители покинули выставку, Миллер послал по телеграфной линии сигнал, и вслед за тем двигатель заработал. Несколько минут спустя по бетону вниз полились первые струи поднятой воды. Браво! Что из того, что установка работала с перебоями, что передача энергии шла с КПД всего 22 %. Это было началом начал и исходным пунктом для многих дальнейших работ в этой области.
В тот же день Миллер послал телеграмму: «Париж, Академия наук. Мы счастливы сообщить вам, что опыт Марселя Депре, имевший целью передачу силы по обыкновенной телеграфной проволоке из Мисбаха в Мюнхен на расстояние 57 километров, полностью удался.
Комитет специальных электрических исследований.
Секретарь О. Миллер».
В общем-то, конечно, несмотря на ликование устроителей, опыт не удался. Вернее, результаты его были очень уж ничтожными. Изоляция машины Грамма была действительно ненадежной, и Депре не решился поднять напряжение выше 1500 вольт. Паровая машина сломалась на следующий же день. Сопротивление проводов линии было велико, и оно съедало большую часть мощности, вырабатываемой генератором. Здесь главное заключалось в том, что Депре не смог поднять напряжение. Чем выше напряжение и меньше передаваемый по линии ток, тем меньше в ней потери. Это был важнейший вывод, к которому пришли Лачинов и Депре.
Несколько лет спустя соотечественник Депре Ипполит Фонтен повторил опыт Депре. Он взял те же условия — передать 100 лошадиных сил на 50 километров при коэффициенте полезного действия 50 %. Он не стал строить специальную машину на задуманное напряжение в 6000 вольт, а соединил последовательно четыре машины, каждая из которых развивала по 1500 вольт, и получил требуемое напряжение. Также и на приемном конце он соединил последовательно три двигателя. Фонтену удалось доказать требуемое.
И все-таки именно Депре дал толчок практикам-электрикам к их работам по передаче электроэнергии на большие расстояния. В 1883 году в письме редактору партийной газеты «Социал-демократ» Э. Бернштейну Фридрих Энгельс писал: «…это колоссальная революция. Паровая машина научила нас превращать тепло в механическое движение, но использование электричества откроет нам путь к тому, чтобы превращать все виды энергии — теплоту, механическое движение, электричество, магнетизм, свет — одну в другую и обратно и применять их в промышленности. Круг завершен. Новейшее открытие Депре, состоящее в том, что электрический ток очень высокого напряжения при сравнительно малой потере энергии можно передавать по простому телеграфному проводу на такие расстояния, о которых до сих пор и мечтать не смели, и использовать в конечном пункте — дело это еще только в зародыше, — это открытие окончательно освобождает промышленность почти от всяких границ, налагаемых местными условиями, делает возможным использование также и самой отдаленной водной энергии, и если вначале оно будет полезно только для городов, то в конце концов оно станет самым мощным рычагом для устранения противоположностей между городом и деревней. Совершенно ясно, что благодаря этому производительные силы настолько вырастут, что управление ими будет все более и более не под силу буржуазии…»[4]
Мы с вами свидетели того, как сбылись и сбываются эти предсказания.
Депре не прекратил своей деятельности. Он предпринял еще целый ряд опытов, постепенно повышая напряжение. Самой значительной из его работ была линия Крейль-Париж, осуществленная в 1885 году. По ней передавалась мощность около 50 лошадиных сил на расстояние 56 километров при напряжении 6000 вольт. Однако и на этот раз коэффициент полезного действия был не выше 50 %.
Надо сказать, что неудачи его опытов вызвали среди довольно значительной части электриков скептическое отношение вообще к возможностям передачи энергии на дальние расстояния. Появились даже теоретические попытки доказать, что КПД в 50 % является предельным… Однако все эти трудности заключались, как мы сегодня понимаем, лишь в технических возможностях того времени. Прежде всего хорошо изученный и удовлетворяющий всем потребностям промышленности постоянный ток не допускал трансформации. Его напряжение было то, которое снималось с клемм электрической машины. А они давали в конце прошлого столетия не более 6000 вольт. Высокое напряжение постоянного тока трудно было использовать и потребителям. Последовательное соединение их было по большей части неудобным.
Выход был: требовалось перейти к переменному току. Его применение началось по инициативе П. Н. Яблочкова. Я уже рассказывал, что переменный ток был удобнее для питания «свечей Яблочкова». Но самое замечательное свойство переменного тока — его способность к трансформации. И здесь, после работ Фарадея, после создания Якоби и Румкорфом первых индукционных катушек, Яблочков показал путь к практическому применению трансформаторов. Они могли служить целям разделения цепей генератора и потребителя для так называемого дробления света.
В течение нескольких лет в разных странах инженеры-электрики разрабатывали конструкции трансформаторов с замкнутыми магнитными системами. И это позволило приступить к строительству центральных электрических станций переменного тока.
Правда, применялся переменный электрический ток пока только для освещения. Двигателей, работающих на нем, практически не существовало. Дело заключалось в трудностях принципиального характера. Однофазный двигатель не имеет пускового вращательного момента, то есть не может самостоятельно запускаться. И это обстоятельство, естественно, затрудняло возможность его применения. Решить проблему мог только переход к новой комплексной области электротехники — к технике трехфазного тока.
«Воды Неккара» во Франкфурте-на-Майне
Конец XIX века характеризуется значительной централизацией капиталистического производства. Все крупнее становятся фабрики и заводы, все большее количество рабочих трудится на них. Крупные предприятия отныне требовали мощных сгустков энергии. И нужно было научиться их концентрированно производить и передавать к месту потребления. Таким образом, энергетическая задача перерастала в задачу экономическую. Как же ее решать?
Возможны были два пути: первый заключался в совершенствовании передачи постоянного тока, второй — в поисках и разработке конструкции двигателя переменного тока. Построить его можно было, используя известные свойства вращающегося магнитного поля, которое создается с помощью многофазных токов. Второй путь оказался проще, и это направление обогнало первое, затормозив развитие энергетической техники постоянных токов на долгое время.
С чего же начиналась техника трехфазных токов? Еще в 1824 году уже знакомый нам физик Араго демонстрировал своим коллегам по Парижской академии наук интересное явление, названное им «магнетизмом вращения». Он вращал постоянный магнит, установленный под подвешенным медным диском. И немагнитный медный диск тоже приходил во вращение. Академики немало дивились чудесному и загадочному феномену…
Полвека спустя (в 1879 году) английский физик В. Бейли заставил вращаться медный диск в меняющемся магнитном поле неподвижных электромагниту. Он доказал, что, будь таких электромагнитов бесконечное множество, магнитное поле стало бы равномерно вращающимся…
Однако больше всех для понимания причин вращения магнитного поля сделали итальянский профессор Г. Феррарис и югославский инженер Н. Тесла. Независимо друг от друга они пришли к сходным результатам и почти одновременно выступили в 1888 году с докладами о своих работах…
Представьте себе две одинаковые катушки, расположенные перпендикулярно друг другу и питаемые обычным переменным током. Условие одно: чтобы ток в одной катушке опережал ток в другой на четверть периода (на 90°). Другими словами, когда ток в одной из катушек равен нулю, ток в другой — максимален.
Если внутрь этих катушек поместить магнитную стрелку, то она тут же начнет быстро-быстро вращаться, следуя за вращающимся магнитным полем внутри катушек.
Феррарис поместил внутри катушек медный цилиндр, получив таким образом по существу двухфазный асинхронный двигатель. Цилиндр играл роль ротора двигателя.
Тесла описал различные многофазные системы. Однако и он считал наиболее целесообразной — двухфазную… Она и была принята на огромной для своего времени Ниагарской гидроэлектростанции, построенной в Америке, а также еще в нескольких установках в Европе. Однако по прошествии короткого времени трехфазные системы, распространившиеся в Европе, доказали свои преимущества и заставили американцев переоборудовать «системы Тесла» на трехфазный ток.
Самые большие достижения в области практического применения трехфазного тока выпали на долю русского инженера Михаила Осиповича Доливо-Добровольского, работавшего шеф-электриком, а потом и техническим директором на бурно развивавшейся в тот период берлинской фирме «АЭГ».
Михаил Осипович Доливо-Добровольский родился в 1862 году в пригороде Петербурга в семье чиновника. Увлеченный еще в реальном училище химией, он поступил на химический факультет Рижского политехнического института. Но окончить учебу здесь ему не удалось. За участие в студенческих беспорядках он был исключен из института без права поступления в другие высшие учебные заведения. Чтобы получить высшее образование, Михаил Осипович уезжает в Германию, где оканчивает Дармштадтское высшее техническое училище.
Именно в эти годы в науке и технике происходили бурные события. С одной стороны, электрические явления объединялись в отдельную отрасль физики, а с другой — возникла новая отрасль техники — электротехника. Новые научно-технические идеи не обошли и любознательного русского студента. Михаил Осипович сначала остается преподавателем в том же училище, которое и окончил, а потом переходит в фирму «АЭГ».
Все дальнейшие годы, занимаясь производственно-технической инженерной деятельностью, М. О. Доливо-Добровольский не оставляет научных изысканий и изобретательской работы. В марте 1889 года он сделал патентную заявку на асинхронный трехфазный двигатель с короткозамкнутым ротором, обмотка которого была выполнена в виде «беличьего колеса». Это изобретение выдвинуло русского ученого-изобретателя в первые ряды специалистов-электриков мира.
Трехфазный двигатель Доливо-Добровольского привлек к себе всеобщее внимание. Он был конструктивно наиболее прост и обладал вполне приемлемыми рабочими и пусковыми характеристиками.
В последующие годы М. О. Доливо-Добровольский получил еще несколько патентов на трехфазные трансформаторы, двигатели и генераторы. Причем интересно отметить: его конструкция трансформатора до последнего времени сохранилась практически без каких-либо принципиальных изменений.
Фактически Доливо-Добровольский разработал все основные элементы трехфазной системы переменного тока. И когда в 1891 году устроители Международной электротехнической выставки во Франкфурте-на-Майне решили произвести сравнение имеющихся систем передачи электроэнергии разных типов, система трехфазного тока вышла безусловной победительницей. А произошло это так…
Километрах в десяти от Гейльбронна, на реке Неккаре, расположено небольшое местечко Лауфен. Воды реки Неккара исправно доставляли энергию небольшому цементному заводу Лауфена. Причем заводовладельцы весьма огорчались, что не могут использовать «всю силу» водопада на месте. Заводик был весьма маломощным. А нельзя ли продать энергию реки? Вряд ли такая мысль пришла бы кому-либо в голову даже десять лет назад. Но теперь… Практичные заводовладельцы решили осчастливить близлежащий промышленный Гейльбронн и построить там линию передачи… постоянного тока. Однако Оскар фон Миллер, строитель всей сети, предложил воспользоваться новой системой трехфазного тока, разработанной Доливо-Добровольским. Дирекция выразила согласие.
А тут как раз подоспело время франкфуртской выставки, и возник грандиозный по тем временам план попытаться передать энергию из Лауфена во Франкфурт-на-Майне, на расстояние 175 километров! Таких опытов еще никто не производил.
К тому времени на неккарском водопаде были установлены три турбины мощностью по 300 лошадиных сил. Энергию одной из них и решили отправить в далекое путешествие на выставку. Проект принадлежал М. О. Доливо-Добровольскому, который брался осуществить его силами фирмы «АЭГ».
На гидроэлектростанции установили повышающие трансформаторы, которые подняли напряжение до 8 500 вольт. Во Франкфурте с помощью трансформаторов оно понижалось до 65 вольт. И от него питались лампы и двигатели, в том числе, конечно, и тот, что опять-таки приводил в действие насос, подающий воду в резервуар для создания очередного выставочного водопада. Но на этот раз высота подъема воды составляла десять метров. «О! Das ist ein wundervoller Wasserfall! — говорили очарованные посетители. — Die Neckarswasser murmeln in Frankfurt-am-Main»[5].
Потом были проведены еще две серии опытов, в которых напряжение передаваемого тока поднималось до 14 600 и 28 300 вольт. В среднем коэффициент полезного действия линии составил около 75 %, а при повышенном напряжении доходил до 79 %. Это была убедительная победа над конкурирующими фирмами, построившими установки для передачи постоянного и однофазного тока на территорию выставки.
На конгрессе, который проходил одновременно с выставкой, М. О. Доливо-Добровольский выступил с большим докладом, в котором изложил основы теории электрических цепей трехфазного тока. Его доклад послужил отправной точкой для многих последующих теоретических работ и разработок в этой новой отрасли.
Можно смело сказать, что в период с 1888 по 1891 год были разработаны все основные элементы трехфазной электрической системы, которые полностью сохранили свое значение и получили широкое применение и развитие в настоящее время.
Передача электрической энергии из Лауфена во Франкфурт-на-Майне убедительно показала возможность принципиального решения сложной проблемы централизованного производства электроэнергии и ее передачи на большие расстояния.
Доливо-Добровольский много работал, занимаясь всеми отраслями развивающейся электротехники. Очень интересным был его доклад «Современное развитие техники трехфазного тока» на Первом Всероссийском электротехническом съезде в январе 1900 года. Ученому предложили занять должность декана электромеханического отделения Петербургского политехнического института, который должен был вот-вот открыться. И Михаил Осипович решил покинуть фирму, чтобы вернуться на родину. К сожалению, человеку свойственно лишь предполагать… Обострившаяся болезнь сердца, которой он страдал с детства, не позволила ему вообще продолжать какую-либо работу. Шесть долгих лет прожил он в Швейцарии на излечении. А в 1909 году вернулся в «АЭГ» техническим директором завода электрических аппаратов и консультантом фирмы по электрическим машинам. С объявлением войны в 1914 году русский инженер уехал из Германии снова в Швейцарию. А в 1919 году переехал в Дармштадт, где вскоре и скончался.
Холод на службе энергетики
Сегодня электроэнергия переменного тока идет по проводам линий электропередачи с напряжением в 500, 750 и 1150 киловольт. Для постоянного тока проектируются линии на 1500 киловольт и ведутся работы по конструированию и испытанию линий электропередачи на постоянном токе из Восточной Сибири в европейский центр страны с напряжением 2200–2400 киловольт.
И все-таки есть все основания предполагать, что в самом недалеком будущем никакая современная линия не сможет обеспечить проблему переброски больших количеств электроэнергии на значительные расстояния. Вот один инженерный пример: как показывают расчеты, для передачи мощности всего в 100 тысяч мегаватт на расстояние 2–3 тысяч километров нам потребовалось бы построить более 10 параллельных линий электропередачи, каждая на предельно высокое рабочее напряжение. Потери мощности в магистральных линиях значительно больше, чем в электрических машинах и трансформаторах. Они сводят на нет весь экономический выигрыш, который мы получаем, объединяя крупные энергетические районы в единую систему. Какой же выход можно найти из подобного положения?
Здесь есть несколько направлений. Первое и наиболее простое заключается в создании передачи пульсирующего тока, то есть когда на три фазы линии переменного тока накладывается еще и постоянное напряжение. Пропускная способность такой линии растет, а режим работы улучшается. Но это не коренное решение проблемы. Значительно интереснее возможность существенного снижения электрического сопротивления линии. Это даст одновременно с уменьшением потерь в мощности и увеличением пропускной способности уменьшение габаритов и большую безопасность при эксплуатации. Работы по техническому использованию явления сверхпроводимости ведутся сейчас как у нас в стране, так и практически во всех развитых государствах мира. Разработаны программы исследований и созданы экспериментальные установки. Здесь также намечаются три основных направления: первое — разработка криогенных линий электропередач с использованием обычных материалов; второе — с использованием проводов из материалов высокой степени очистки и третье — с материалами, обладающими способностью полностью терять электрическое сопротивление при снижении температуры ниже критического значения. У криогенных электропередач — большая история.
В 1908 году профессор Лейденского университета, блестящий организатор науки Хейке Камерлинг-Оннес, основатель и директор одной из первых криогенных лабораторий в мире, получил жидкий гелий и измерил его температуру, которая ненамного превышала абсолютный нуль.
Тогда ученых интересовало, как металлы проводят электрический ток при понижении температуры. Большинство специалистов полагало, что при абсолютном нуле, когда все электроны окажутся связанными с атомами и их движение прекратится, сопротивление металлов электрическому току должно стать бесконечным.
Камерлинг-Оннес решил измерить электропроводность ртути. Почему именно ртути? Да потому что в 1911 году только ртуть после несложной дистилляционной перегонки могла считаться самым чистым металлом без примесей. Камерлинг-Оннес заполнил изогнутую стеклянную трубку жидким металлом и стал охлаждать. И вот ртуть замерзла, вот она уже охладилась до температуры жидкого воздуха, до температуры жидкого водорода, но никакого заметного роста сопротивления ученый так и не наблюдал. Может быть, он начнется, когда ртуть приобретет температуру жидкого гелия? Это была самая низкая температура, какую только могли достигнуть на Земле и пока только в его лаборатории… Но произошло чудо! Настоящее чудо! Сопротивление ртутной цепи вдруг исчезло, исчезло совсем! Это явление было настолько удивительно, что оно прославило профессора Камерлинг-Оннеса на весь мир. Его коллеги в других странах стали лихорадочно сооружать криогенные установки и занялись опытами, опытами и еще раз опытами. Впрочем, криогенных лабораторий в мире было мало, а техника, применявшаяся для эксперимента, оказывалась довольно сложной.
Камерлинг-Оннес в 1913 году получил за свое открытие Нобелевскую премию, но суть нового физического явления так и не была понята и объяснена его современниками. Почти 50 лет понадобилось на то, чтобы создать удовлетворительную теорию сверхпроводимости.
Однако отсутствие теории не всегда мешает практическому использованию. И первый проект криогенной электропередачи был разработан еще в 60-х годах нашего века. Американцы спроектировали однофазный кабель с медными жилами, охлаждаемыми жидким водородом. Во Франции был создан и испытан алюминиевый кабель, охлаждаемый газообразным гелием. Англичане сделали макет однофазного кабеля со сверхпроводящим трансформатором.
Пока все эти установки чрезвычайно громоздки, дороги и по сути дела не выходят за рамки экспериментальных макетов. Но тем не менее многие специалисты уверены, что время «водородной», или среднетемпературной, сверхпроводимости неумолимо приближается. Именно так ставился вопрос на Всемирном электротехническом конгрессе, который проходил в Москве в 1977 году.
Применение сверхпроводимости открывает большие перспективы и для хранения электроэнергии. Представьте себе катушку из сплава олова с ниобием (для нее критическая температура равна примерно 15°К), помещенную в жидкий гелий. По замкнутому контуру ток в ней может циркулировать бесконечное время без всяких потерь. И сегодня уже есть проект создания гигантской катушки диаметром около 100 метров, устанавливаемой в туннеле, пробитом специально для нее в горах и заполненном гелием при критической температуре. В этих условиях по проводнику катушки из алюминия, титана и ниобия будет циркулировать ток громадной силы. В обычных условиях он бы со взрывом испепелил несчастный проводник. А в соленоиде предполагают хранить до ста мегаватт-часов электроэнергии.
Глава пятнадцатая. Электротехника — любовь моя
Об электротехнике можно рассказывать до бесконечности. Возьмем хотя бы ее теоретические основы. Более четверти века сознательной жизни я отдал этой замечательной дисциплине, читая ее студентам разных курсов электротехнического института. И поверьте, стоит немалого труда, чтобы удержаться и не начать рассказывать увлекательнейшие истории о развитии основных положений и о выделении теоретических основ электротехники в самостоятельную дисциплину. Это было бы тем более интересно, что первый курс этой дисциплины был разработан и прочитан в Ленинграде, тогда Петербурге, в Политехническом институте замечательным русским ученым профессором Владимиром Федоровичем Миткевичем. «Аналогичного курса, — пишет известный электрик и историк науки профессор М. А. Шателен, — не было ни в русской, ни в иностранной литературе. Это было действительно изложение основ учения об электрических и магнитных явлениях, предназначенное специально для будущих инженеров-электриков и подготавливавшее студентов к сознательному восприятию тех сведений, которые они потом получали в специальных курсах электрических машин, высоких напряжений и тому подобное.
Я помню тот исключительный интерес, который проявляли к этому курсу не только студенты, но и преподаватели и молодые электрики и физики. Литографированные листы этого курса разбирались нарасхват».
Ленинский план электрификации России — ГОЭЛРО — потребовал от советских электротехников решения большого круга новых проблем. В ходе их решения в нашей стране возникали крупные научные школы, электротехнические, научно-технические и учебные институты, создавались журналы.
Мне было бы приятно рассказать вам о том, как технические задачи передачи и распространения энергии, анализ режимов и расчетов электрических линий связи породили теорию электрических цепей. У ее истоков стояли многие выдающиеся ученые прошлого века, в том числе Кельвин, разработавший основы теории длинных линий.
А сколько интересных работ связано с возникновением «мгновенных перенапряжений» и «экстратоков», как их называл Фарадей. Они появляются в электрических цепях при переходных процессах и длятся ничтожное время. Но по разрушительной силе своей состоят в близком родстве с молниями. Я бы мог рассказать немало интересного о работах М. Е. Ващенко-Захарченко и о затворнике и мизантропе О. Хевисайде.
Совсем особую область в теоретических основах электротехники образуют теория колебаний и теория регулирования. В этой области классические работы принадлежат таким выдающимся ученым, как математики А. М. Ляпунов и А. Пуанкаре.
Наконец, самое большое удовольствие я всегда получал при изложении теории электромагнитного поля — труднейшей, преобильно насыщенной высшей математикой дисциплины, которая давала возможность понимать и рассчитывать поля или хотя бы находить характер их распределения в различных электротехнических устройствах. Это трудный курс, и студенты побаивались экзамена «по полю», считая: «Поле сдашь — студентом будешь!» Но зато какое прекрасное ощущение высочайшей «интеллигентности» этого курса приходило к каждому… после экзамена.
Нет, нет, уверяю вас, что мне стоило большого труда удержаться и, «наступив на горло собственной песне», не пуститься в воспоминания по поводу теоретических основ электротехники…
Мне кажется, сегодня нет более интересной отрасли в практической деятельности, чем, скажем, строительство электрических станций, мощных линий электропередачи, проектирования и создания объединенных энергосистем. Не зря строители гидростанций с такой неохотой меняют профессию…
Впрочем, не менее интересно заниматься и вопросами разработки и производства электротехнических материалов и электроизоляционных конструкций. Существует, например, целая наука о диэлектриках. А возьмите такое производство, как изготовление конденсаторов — потомков лейденской банки. Я еще помню то сравнительно недавнее время, когда емкость в 10 микрофарад внушала нам — молодым инженерам — глубокое уважение. А сегодня я нисколько не удивляюсь, когда беру в руки серебристый стаканчик электролитического конденсатора, у которого на боку написано «1200 мкФ», емкость в 120 раз больше той — из молодых моих лет…
А вот еще, казалось бы, вполне прозаическая промышленность — кабельная: силовые, телеграфные, телефонные, радиочастотные, коаксиальные кабели, волноводы и световоды…
Совсем недавно коллеги по Союзу писателей попросили меня показать им «что-нибудь этакое… удивительное». И я принес кусок гибкого двужильного кабеля в светло-зеленой синтетической оболочке. Коллеги обиделись, подумали, что шучу. Тогда я протянул кабель в соседнюю комнату, направив его срезанным концом на электрическую лампочку, предложил свернуть, перепутать, завязать его узлами. Протянул свободный конец в зал, где мы заседали, и попросил потушить свет… Из кабеля, из двух тоненьких жил, били два острых лучика света… Вы представляете себе — лучи света, завязанные в узел? Не удивительно? Тогда вы не способны удивляться вообще!
Между тем кто-то неслышно вошел в соседнюю комнату, тенью проскользнул между лампочкой и концом кабеля, и у нас на «приемном конце» лучики света послушно мигнули, отмечая приход опоздавшего…
Я мог бы продолжить перечисление, рассказывая о многом, что было бы интересно и полезно узнать читателю. Ну хотя бы о последних изобретениях и оригинальных конструкциях в светотехнике, в промышленных электротермических установках, в области электропривода, в электрическом транспорте — наземном и водном, подземном и подводном, воздушном и безвоздушно-космическом. Ни один из них не тронется с места без электрооборудования. А ведь остались еще не упомянутыми электроизмерительные, электронные и полупроводниковые приборы, автоматика и телемеханика, вычислительная техника, радио, телевидение, электронная микроскопия, ускорители частиц…
Но современная энергетическая техника необъятна. А необъятное, как известно, объять невозможно. И потому в этой главе я ограничусь лишь некоторыми рассказами о развитии основного электротехнического оборудования — об электрических машинах наших дней и еще о тех новых способах, которыми мы собираемся добывать электрическую энергию завтра.
«…Советская власть плюс электрификация…»
«Применение электрической энергии в России за последние годы значительно развилось, электротехническая же промышленность в ней до последнего времени находится в младенческом возрасте». Это строчки из толстой книги «Промышленность и техника, том III. Электричество, его добывание и применение профессора Артура Вильке. С.-Петербург, 1904».
В начале века в Петербурге-Петрограде — работало около двухсот электрических станций! Не думайте, что я ошибся. Просто в то время еще не научились передавать электроэнергию на расстояние без больших потерь и потому машины, вырабатывающие электричество, старались ставить рядом с потребителем. Радиус линий передачи не превышал обычно одного километра. Часть таких «электростанций» давала постоянный ток, часть — переменный однофазный.
В 1839 году из-за границы в Россию вернулся молодой инженер Роберт Эдуардович Классон — уроженец Киева и выпускник Петербургского технологического института. В Германии он работал монтером на строительстве первой опытной линии передачи электроэнергии трехфазного тока, осуществлявшемся под руководством М. О. Доливо-Добровольского.
В Петербурге Классон поступил на Охтинский пороховой завод и составил проект переоборудования электрохозяйства предприятия на тррхфазный ток. А в 1897 году в Москве, на Раушской набережной, им была сдана в эксплуатацию первая крупная электростанция трехфазного тока. Год спустя такая же станция была пущена в Петербурге на Обводном канале.
Начиная с 1905 года в России наметился некоторый промышленный подъем, который в первую очередь требовал увеличить производство энергии.
Но продолжим цитирование труда господина профессора Вильке:
«Понятно, что при существовании стольких применений является громадный спрос на разного рода электромашины, электрические провода и вообще всякия электротехнические принадлежности. Этому спросу русские заводы удовлетворить не могут, и он удовлетворяется преимущественно иностранными заводами, имеющими в России своих представителей. Однако некоторые производства достигли и в России довольно высокой степени развития. Таково, например, производство изолированных кабелей и проводников. В Петербурге и Москве, главным образом, имеется целый ряд кабельных заводов, изготовляющих всевозможные сорта кабелей и проводников, ничуть не уступающих иностранным. Из этих заводов самыя крупныя — фирмы „Сименс“ и „Рибен“… Однако русския заводы не в силах удовлетворить спросу на кабели и проводники, и значительная доля их получается из-за границы…
Много более или менее крупных заводов и мелких мастерских приготовляют разного рода мелкия приборы, требуемые при электрических установках, как то: предохранители, выключатели, реостаты, патроны для ламп и т. д., а также арматуру для ламп. Однако они еще не удовлетворяют спросу на такие предметы, и огромное количество их ввозится из-за границы.
Точно так же не приготовляются в России электрические измерительные приборы и электрические счетчики…
Калильныя лампы в России совсем не фабрикуются. Устроивавшиеся для этой цели русския заводы не выдержали иностранной конкуренции и скоро закрывались…
Дуговыя лампы строятся некоторыми заводами, главным образом фирмой „Сименс и Гальске“, но все же большинство их получается из-за границы…
Что касается электромашин, то есть, динамо-машин, электродвигателей и трансформаторов, то в России производства их почти не существует. Единственный завод „Сименс и Гальске“ в Петербурге готовит их в сколько-нибудь значительном числе. Этот завод, являющийся самым большим электротехническим заводом в России (до 150 служащих), выпускает ежегодно динамо-машин и двигателей общей мощностью до 6000 киловатт…»
Пожалуй, достаточно. Картина впечатляющая, если учесть, что все это не придумано, а является свидетельством современника. Между тем сколько выдающихся изобретений обязано своим рождением русским инженерам и техникам…
Предприятие «Сименс и Гальске», о котором шла речь в книге профессора Артура Вильке, тот «самый большой электротехнический завод в России (до 150 служащих), выпускающий ежегодно динамо-машины и двигатели общей мощностью до 6000 киловатт», находился в ту пору на Васильевском острове. Но в 1911 году его перевели за Московскую заставу. Отныне предприятие стало принадлежать акционерному обществу «Сименс и Шуккерт». Невелико преобразование. Завод работал по-прежнему на немецких полуфабрикатах, по немецкой технической документации, и руководили производством аккуратные немецкие инженеры.
В 1914 году верноподданные немецкие специалисты уехали. Материалы и полуфабрикаты поступать на склады перестали, производство затормозилось, захирело, а вскоре и вовсе остановилось. Но Петроград жил. В нем свершались политические события, для которых было небезразлично, есть ли в городе свет и ходят ли трамваи, работают ли станки на заводах…
Сразу же после революции, в 1918 году, для налаживания производства на заводе динамо-машин Петроградский Совет направил первых специалистов, выразивших желание сотрудничать с Советской властью. А 7 ноября 1922 года Совет рабочих депутатов Петрограда постановил называть сей завод отныне Петроградским заводом «Электросила». И к старым спецам на нем добавились молодые инженеры, которым пришлось едва ли не на пустом месте начинать производство первых крупных машин для выполнения плана ГОЭЛРО. Ведь по нему предусматривалось за 10–15 лет соорудить 30 крупных районных электростанций общей мощностью 1750 тысяч киловатт. В их числе 20 тепловых, на угле, сланце, торфе, газе, и 1–0 гидростанций. Это в то время, когда по всей стране существовало всего 9 значительных электростанций, из которых половина не работала из-за отсутствия топлива. И фактически не было ни одного завода, производящего электрооборудование, не говоря уж об энергетическом хозяйстве. Все приходилось создавать впервые. Никаких примеров для постройки первых четырех гидрогенераторов мощностью по 7500 кВт для Волховской ГЭС у наших специалистов не было. Требовалось организовать на заводе расчетно-конструкторские службы и лаборатории, собрать приборы… На этой работе мужали и крепли молодые кадры электромашиностроителей, превращаясь в специалистов мирового класса.
Сегодня, когда пишутся эти строчки, НИИ «Электросила» ставит задачу создания турбогенераторов огромной мощности — в два миллиона киловатт и более. Для Саяно-Шушенской ГЭС созданы гидрогенераторы мощностью по 640 тысяч киловатт.
Уже в мае 1922 года была пущена первая подмосковная Каширская ГРЭС, в октябре того же года — электростанция «Уткина Заводь», ныне ГРЭС «Красный Октябрь» в Ленинграде.
В 1931 году, когда истек кратчайший срок, намеченный планом ГОЭЛРО, мощность районных электростанций страны составляла 2105 тысяч киловатт, против запланированных 1750…
Успехи в выполнении плана ГОЭЛРО, восстановление разрушенного хозяйства заложили прочный фундамент первых пятилеток. А это означало в первую очередь развитие тяжелой индустрии, в частности металлургической и сталепрокатной промышленности. Именно для них, для этих отраслей, в те годы на «Электросиле» было создано электрооборудование первых советских блюмингов Макеевского и Златоустовского заводов, для «Запорожстали».
В годы первой пятилетки общезаводское бюро исследований завода (ОБИС), которое возглавлял будущий академик М. П. Костенко, разработало новую серию трехфазных синхронных машин, заложив тем самым основы производства судового электрооборудования, обеспечивающего одну из ведущих отраслей ленинградской промышленности — судостроение. И прежде, чем со стапеля Ленинградского судостроительного завода сошел флагман ледокольного флота Советского Союза атомоход «Ленин», его двигатели, мощностью 19 600 лошадиных сил, родились на «Электросиле» имени С. М. Кирова. Тот же коллектив научно-исследовательского института разработал для производства и проекты мощных двигателей и генераторов для атомных ледоколов «Арктика», «Сибирь» и «Россия».
Многое изменилось с начала нашего — двадцатого — столетия в науке и технике. Научно-техническая революция, в период которой мы с вами живем, захватила в свою орбиту все аспекты, все стороны нашей жизни. Наука превратилась в непосредственную производительную силу, изменив не только свою классическую схему, но и всю систему отношений внутри себя самой. Ушли в прошлое гении-одиночки со своими индивидуальными качествами.
На смену им пришли мощные коллективы, без всяких чудачеств, неизмеримо более продуктивные. Наука становится большим заводом со своим заданием, точным планом, выверенными методами работы. Стоит ли говорить об искусстве экспериментатора, если сегодня, например, для постановки более или менее результативного эксперимента требуется громоздкое и сложное оборудование, изготовляемое, как правило, промышленным способом. Стоимость его такова, что ее может не выдержать даже государственный бюджет — и тогда малым странам приходится объединяться. Для постановки современного опыта требуются специалисты самых разных уровней и разных специальностей. Много специалистов. И при этом каждый будет знать крошечную частичку общей задачи и выполнять малую долю общей работы. И в конце концов даже результат осмысливается группой теоретиков. Таким образом, все или почти все современные достижения, особенно в технических науках, являются обобщенным результатом работы большого коллектива.
Технические науки являются средствами инженерной деятельности. В их число вошли и многие электротехнические дисциплины. Они обрели свои объекты исследования, свои задачи и свои методы. Технические науки стали узловым пунктом связи науки с производством. Кое-кто еще их по старинке отождествляет с отраслями техники, однако они уже стали областями приложения естественнонаучных знаний.
Перестроился характер даже инженерного мышления. Сегодня в проектировании все шире применяется системный подход, в отличие от «процессного» подхода, на который опирались технические отрасли прошлого века. Он остался в качестве основы, фундамента большинства современных технических дисциплин.
Для системного подхода в принципе не важно, что конкретно проектируется. Система представляется в виде набора типичных функциональных элементов, имеющих строгое практическое назначение, и тех функциональных — действующих — связей между ними, которые обеспечивают проектируемой системе требуемые свойства и функционирование.
Такое дробление проектируемого объекта, будь то отдельный агрегат или целый завод, технологический процесс или строящийся город, на множество самостоятельных функциональных единиц потребовало внедрения сложной системы управления и регулирования в схему, а следовательно, и развития новой науки об управлении.
Системный подход позволил, опираясь на изображение функциональных связей, рассматривать объект как целое, независимо от его «физического» содержания и технологического предназначения. Это еще большая обезличка проектирования, но она вызвана требованиями времени. В конкретных технических знаниях все больше нарастает абстрактно-теоретический уровень.
Системное проектирование дало возможность инженерам решать задачи не путем комбинирования «физически» подходящих по своему строению элементов из заданного и допустимого набора, а сразу, задавшись функциональной схемой всего объекта, выбирать процесс, на основании которого требуемые функции будут выполняться. И лишь потом от процесса уже двигаться к поиску подходящей структуры и строения.
Грубо говоря, это напоминает составление из кубиков определенной картинки. При этом в случае системного подхода мы заранее знаем, куда какой кубик нужно пристраивать. Хороший пример — манипулирование с кубиком Рубика. Системный подход соответствует манипулированию по известному алгоритму.
Как же развивалась электроэнергетика у нас в стране и как удалось отсталой России, которая практически не имела собственной электротехнической базы, заложить после Великой Октябрьской революции основы этой отрасли, занять в ней ведущее положение в мире?..
Ведущее положение в мире…
Ленинград. Дворцовая набережная. Сегодня здесь, между Марсовым полем и Эрмитажем, неподалеку от Дома ученых, в бывшем Ново-Михайловском дворце, сооруженном более 100 лет назад по проекту архитектора А. И. Штакеншнайдера, находится Всесоюзный научно-исследовательский институт электромашиностроения.
Сам ВНИИэлектромаш — организация сравнительно молодая, ветераны считают началом его создания 1950 год.
Тогда, через пять лет после окончания Великой Отечественной войны, президиум АН СССР принял решение об организации в Ленинграде первой лаборатории автоматики.
Несмотря на огромный ущерб, нанесенный народному хозяйству страны, Советский Союз примерно за два с половиной года восстановил уровень промышленного производства 1940 года. Но для дальнейшего движения вперед нужно было самое широкое внедрение во все отрасли народного хозяйства и в быт электрической энергии. Причем электроэнергии, вырабатываемой централизованно на мощных электростанциях, объединенных высоковольтными сетями в крупные энергетические системы.
Без автоматизации мощных энергосистем невозможно было строительство гигантских электростанций на Днепре и на Волге, тормозилось все развитие энергетики Советского Союза в целом. Вот почему таким важным шагом явилось создание скромной лаборатории автоматики в Ленинграде.
За первое десятилетие своего существования молодая лаборатория стала Институтом электромеханики АН СССР, прошла большой путь, вобрав в себя целый ряд других научных учреждений и расширив свою деятельность на всю отрасль мощного электромашиностроения.
Во втором десятилетии «лаборатория» стала Всесоюзным научно-исследовательским институтом, который занимается фундаментальными проблемами в области теории и методов расчета электрических машин. На этот институт техническая наука страны социализма возложила ответственность за передовой уровень крупных электрических машин, которыми славится отечественная промышленность. Как же справляется институт со столь ответственной задачей?
Предварительно можно сказать, что турбо- и гидрогенераторы, мощные машины постоянного тока и другие агрегаты крупного электромашиностроения, разработанные в стенах института, строятся в значительной своей части на Ленинградском производственном электромашиностроительном объединении (ЛПЭО) «Электросила» имени С. М. Кирова. Машины с маркой «Электросилы» эксплуатируются более чем в 75 странах мира — от Исландии и Канады на севере и до экваториальных и заэкваториальных Уругвая, Бразилии и Аргентины. В крупном электромашиностроении Советский Союз уверенно занимает ведущее положение в мире.
Конечно, разместить современный НИИ в помещении старого дворца — задача невыполнимая. Да ее никто и не думал так решать окончательно. Здесь находится, так сказать, лишь административная часть института. Производственная же база — лаборатории, конструкторские бюро, испытательные стенды — совсем в другой части города, по соседству с «Электросилой».
С самого начала своего существования в лаборатории автоматики были созданы непревзойденные по своему времени модели Свирской и Куйбышевской ГЭС, линий электропередачи, связывающих Ленинград и Москву с новыми электростанциями. На моделях гидротурбин и мощных генераторов сотрудники лаборатории решали самые актуальные задачи специального электромашиностроения. За работы по электродинамическому моделированию академик М. П. Костенко и доктор технических наук В. А. Веников были удостоены в 1958 году Ленинской премии.
От мощных турбо- и гидрогенераторов и высоковольтных линий передачи до двигателей на тепловозах и прецизионных систем управления телескопами — таким был с самого начала диапазон исследований.
В 1968 году институт был определен как научно-технический центр всего электромашиностроения страны и получил существующее ныне наименование — Всесоюзный научно-исследовательский институт электромашиностроения (ВНИИэлектромаш). В том же году группа специалистов института была удостоена Государственной премии СССР за работы по системам возбуждения для генераторов и синхронных компенсаторов.
Решением большой народнохозяйственной задачи явилось в эти годы внедрение на железных дорогах страны тяги на переменном токе. Научное обоснование перехода на переменный ток сделали академик М. П. Костенко и член-корреспондент АН СССР А. Е. Алексеев. И в середине 70-х годов в институте был создан экспериментальный тепловоз с асинхронными двигателями на осях, с генератором переменного тока с постоянной скоростью вращения и тиристорным преобразователем. Затем в институте начались работы по усовершенствованию крупных машин постоянного тока. Сегодня в станках типа «обрабатывающий центр» на заводах Японии, ФРГ, Франции и США работают наши двигатели мощностью до 200 кВт.
Новым в электромашиностроении явились и фундаментальные исследования в области применения сверхнизких температур. Обмотки электрических машин, охлаждаемые жидким гелием до температуры, близкой к абсолютному нулю, должны приобретать свойства сверхпроводников. Электрический ток, проходя по ним, практически не встретит никакого сопротивления. А это означает, что не будет и потерь в обмотках. Размеры такого криогенного генератора при сохранении той же мощности можно существенно уменьшить. Коэффициент полезного действия машины увеличится и станет предельно высоким. Стоимость электроэнергии заметно снизится.
Для генераторов обычного, существующего сегодня типа предел по мощности уже недалек. Электромашиностроители определяют его в районе двух с половиной — трех миллионов киловатт для единичной машины. И то это уже такие гиганты, которые будет не только трудно изготовить на заводе, но и транспортировать к месту установки и монтажа. Криогенераторы позволят реально поднять предел по мощности для единичной машины почти вдвое, что даст большие экономические выгоды.
Эксперименты в области применения сверхнизких температур в институте начались еще в 1962 году. Сначала был построен небольшой демонстрационный генератор на сверхпроводниках, потом модельный криотурбогенератор мощностью 18 кВт. Пять лет назад на испытательный стенд встал экспериментальный криотурбогенератор мощностью 1200 кВт, с самым большим в мире вращающимся криостатом. А в начале 1983 года специалисты института готовились поставить под промышленную нагрузку криогенный генератор мощностью 20 000 кВт! Тогда это была самая крупная машина подобного рода в мире. Создана она коллективом сотрудников под руководством академика И. А. Глебова.
Современный генератор — машина вообще сложная. Криогенный генератор сложен вдвойне. Вот он стоит — голубой цилиндр, соединенный трубопроводами и шлангами со вспомогательной аппаратурой. Стоит на испытательном стенде ВНИИэлектромаша. Что же в нем особенного? Прежде всего то, что ротор генератора по конструкции напоминает стальной сосуд — криостат, в который непрерывно на ходу подается жидкий гелий. Медные шины обмотки пронизывают тысячи тончайших нитей-проводников из сверхпроводящего сплава. Они-то и обеспечивают основные преимущества новой машины. Вакуумные камеры-изоляторы сохраняют холод в машине. Жидкий гелий — дорогой материал. Испаряясь, он поступает в компрессор. Там сжижается и снова поступает в замкнутый цикл. Обмотка статора охлаждается жидким фреоном — жидкостью, хорошо знакомой нам по бытовым холодильникам. Одновременно фреон выполняет и роль изолятора.
Вспомогательной аппаратуры вокруг много: тут и резервуары с гелием, и вакуумные насосы, компрессор и теплообменный агрегат… Неудивительно, что над созданием этой уникальной машины трудились коллективы не одного производственного объединения. Среди них прежде всего «Электросила» и Ижорский завод, завод «Красный выборжец» — ветераны и передовики ленинградской промышленности. Вместе с ними принимали участие в создании криогенератора и вспомогательной аппаратуры московские НПО Гелиймаш, ВНИИ холодмаш и другие организации.
Сложна современная техника. А не снизит ли она надежность наших машин? Специалисты уверяют: нет! Не снизит! Да и деваться-то все равно некуда. За выигрыш, получаемый в мощности, нужно платить. И чаще всего эта плата выражается в усложнении либо самого изделия, либо технологии.
Вы только попробуйте для примера разобраться в устройстве современного энергетического агрегата — тысячи деталей, сложнейшие запутанные связи… Конечно, пройдет некоторое время — и пришедшим нам на смену детям и внукам сегодняшние технические сложности покажутся пустяками. «Нам бы их заботы!» — станут говорить они покровительственно. И мы, негодуя внешне, будем радоваться и гордиться ими, потому что слова их означают: прогресс продолжается. Не нужно только забывать, что изготовить Джемсу Уатту свою примитивную паровую машину было намного сложнее, чем нам с вами — атомный реактор. Вспомните судьбу электродвигателя Якоби. Он родился раньше, чем поспела технология. Сейчас технология производства электрических машин и электрооборудования стоит очень высоко. И наша страна по праву занимает в электромашиностроении ведущее положение в мире.
Какие же перспективы сегодня у энергетики? По какому пути следует ожидать движения ее развития? И как изменятся некоторые акценты в этом развитии в связи с существующей в мире топливно-энергетической проблемой?
При ответах на эти вопросы давайте рассмотрим как классические методы получения электроэнергии, так и существующие сегодня новые перспективные направления.
ГЭС
Эта аббревиатура сегодня ни для кого не является секретом. Даже дошколята понимают, что, когда взрослые говорят «ГЭС», речь идет о гидроэлектростанции — о «фабрике электричества».
Наши успехи в развитии электроэнергетического хозяйства оказались возможны лишь благодаря последовательному осуществлению ленинских принципов электрификации. Сначала в отдельных, заранее намеченных промышленных районах были созданы энергетические комплексы, затем произошла централизация и концентрация производства электроэнергии, созданы крупные энергосистемы. На первый взгляд все кажется просто: запруди все речки страны, поставь на плотинах гидротурбины с гидрогенераторами — и получай себе даровую, ежегодно, ежечасно возобновляемую энергию. Ведь гидроресурсы мира огромны — около тысячи триллионов киловатт-часов. Это примерно в 30 раз больше, чем используется сегодня всех энергоресурсов вообще в мире…
Однако реальные гидроресурсы нашей планеты значительно скромнее. Да и не на каждой речке плотину возведешь. И хотя Советский Союз обладает самым большим запасом текущей воды, ее на поверку оказывается не слишком много. Ученые подсчитали, что если даже запрудить все реки и речки Советского Союза и заставить их вырабатывать электроэнергию, то количества ее не хватит, чтобы покрыть и шестую часть существующей потребности. Это не говоря о том, что вовсе не такая уж радость ставить всюду плотины. Сооружение их дорого, водоснабжение они нарушают, требуют затопления больших хозяйственных территорий, изменяют климат и осложняют жизнь обитателей речных и морских вод, а также судоходство. И тем не менее мы их строим и будем строить. Гидроэнергетика дает нам действительно возобновляемую энергию, а кроме того, гидроэлектростанции экологически чисты.
К нынешним годам мощная энергетическая база создана практически во всех крупных экономических районах страны и во всех союзных республиках. Кто не слышал об энергетических комплексах в восточных районах страны: в Сибири, на Дальнем Востоке, на Крайнем Севере, в Казахской ССР, в республиках Средней Азии?
К концу пятой пятилетки 85 % установленной мощности гидростанций было размещено в европейской части СССР и только 15 % находилось в азиатской части. В стране работало множество карликовых энергосистем, включавших в себя электростанции небольшой и средней мощности, которые раздельно обслуживали близлежащие промышленные районы. Когда подсчитали затраты на их сооружение, выяснилось, что на те же средства можно было бы построить в 2–3 раза больше по мощности районных электростанций с более крупными агрегатами. Укрупнение агрегатов дает значительную экономию. Например, применение турбогенераторов в 100 тысяч киловатт вместо 25 тысяч киловатт снижает удельную стоимость тепловых электростанций примерно в два с половиной раза. Это без учета ускорения темпов строительства станций и увеличения производительности заводов, изготавливающих для них оборудование.
Вторым резервом развития энергетики явилось создание магистральных сетей сверхвысоких напряжений для увеличения пропускной способности линий электропередачи и переход в будущем к Единой объединенной энергосистеме. Основой для объединения энергосистем Советского Союза стали в наше время линии напряжением в 500 и 750 киловольт. Но уже ведутся работы по повышению этого напряжения до 1150 кВ.
Введены в эксплуатацию линии передачи постоянного тока. Сначала, в 1962–1965 годах, это была линия на 800 кВ Волгоград-Донбасс, длиной 493 километра. Сейчас проектируются две линии на 1500 кВ (±750 кВ): одна — Экибастуз-Тамбов, длиной 2400 км, а вторая из района Итата (Красноярский край) в Объединенную энергетическую систему юга, протяженностью около 3500 км.
В будущем для соединения богатой энергетическими ресурсами Сибири с европейским центром страны понадобятся линии электропередачи на постоянном токе с напряжением 2200–2400 кВ.
После того как были пущены крупнейшие в мире гидроэлектростанции — Братская на Ангаре, мощностью 3,6 млн. кВт, Красноярская на Енисее, мощностью 4 млн. кВт — и после создания Единой энергосистемы Сибири, протянувшейся от Омска до Улан-Удэ, в этом районе стала быстро наращивать темпы промышленность, особенно ее энергоемкие производства: электрохимия, электрометаллургия.
В 1970 году самая большая Единая энергетическая система Европейской части СССР охватывала еще и Зауралье и Закавказье. Она объединяла около 400 электростанций самого разного типа. Тут были и тепловые конденсационные, и теплофикационные, и гидравлические. Более 50 миллионов киловатт была их общая мощность. Однако к середине 80-х годов новые объединенные системы Центральной Сибири, Северного Казахстана, Средней Азии, Забайкалья и Дальнего Востока все решительнее заявляют о своем соперничестве.
Крупнейшая из них — объединенная энергосистема Центральной Сибири — включает Иркутскую, Красноярскую, Кузбасскую. Новосибирскую, Томскую, Омскую, Бурятскую и Барнаульскую энергетические системы. В ней будут работать не только такие гиганты-гидростанции, как Саяно-Шушенская, но и целый куст тепловых электростанций, каждая мощностью более 1 млн. кВт, располагающихся непосредственно у мест добычи топлива. Уже прогремел на всю страну КАТЭК — Канско-Ачинский топливно-энергетический комплекс, а впереди новые стройки, новые рубежи.
Раньше считалось, что только плотина на реке может обеспечить достаточную мощность вырабатываемой энергии. А мы с вами помним, что чем эта мощность больше, тем энергия дешевле. Гидроэнергия неистощима. И по ее запасам наша страна значительно превосходит все другие страны мира. И хотя у нас освоена лишь незначительная часть гидроресурсов, мы занимаем второе место в мире по уровню развития гидроэнергетики.
Гидроэлектростанции выгодны экономически и тем, что на них очень высока производительность труда. Почти в десять раз меньше труда приходится затрачивать на киловатт выработанной энергии работникам ГЭС по сравнению с теми, кто обслуживает тепловые станции (естественно, если учитывать и добычу топлива, и транспортировку).
Современное гидростроительство ведется обычно каскадно. Это позволяет полнее использовать энергетические ресурсы рек.
Вот, например, строящийся единый и крупнейший Ангарский и Енисейский каскад: Иркутская, Братская, Красноярская, Саяно-Шушенская и Усть-Илимская ГЭС — суммарная мощность 10 700 МВт (мега-ватт). А полная мощность всего Ангаро-Енисейского каскада должна составить 43600 МВт в 12 ступенях.
Такими же едиными являются Волжский и Камский каскады гидроэлектростанций, Днепровский каскад — это в европейской части СССР. А в Средней Азии Чирчик-Бозсуйский каскад состоит из 19 гидроэлектростанций, суммарной мощностью 1170 МВт.
Советское гидрогенераторостроение заняло ведущее место в мире еще перед Великой Отечественной войной. А в наши дни мы уверенно лидируем, ставя на серийное изготовление уникальные конструкции.
Мощность и скорость вращения гидрогенераторов устанавливают заводы-изготовители гидравлических турбин: это зависит от напора и расхода воды. И хотя принципиально схема гидрогенератора за последние годы не изменилась, для создания современных машин инженерам приходится с каждым новым агрегатом решать сложнейший комплекс технических проблем. Тут и усовершенствование компоновки гидрогенератора, и создание наиболее рациональной системы вентиляции и охлаждения, применение новой изоляции и новых типов обмоток, снижение добавочных потерь в зонах перегрева и многие, многие другие вопросы.
Например, долгое время одной из самых больших трудностей в производстве гидрогенераторов являлась нагрузка на пяту опорного подшипника-подпятника. Нужно было так его сконструировать, чтобы он нес на себе до 3500 тонн. В мире подобных аналогов не имелось. И снова выручила «Электросила» — правда, теперь она была уже не одна. На помощь ленинградским инженерам пришли их коллеги из «Уралэлектротяжмаша». Оригинальную конструкцию опорного подпятника спроектировали инженеры завода «Уралэлектроаппарат».
В результате применения самой современной технологии коэффициент полезного действия гидрогенераторов большой мощности стал более 98 %. Успехи гидрогенераторостроителей привели к тому, что наши заводы не только выполняют машины на экспорт, но и производят разработку проектов для зарубежных заводов.
ТЭС
И все же, несмотря на прекрасные успехи гидростроителей, на достижения создателей гидрогенераторов, львиную долю — более 80 % электрической энергии — дают пока тепловые электростанции. И в предвидимом будущем, на ближайшие 20–25 лет, именно они останутся главными производителями электроэнергии.
Долгое время задача развития сети тепловых электростанций осложнялась тем, что главные промышленные центры нашей страны, основная масса населения сосредоточены в европейской части, а энергетические ресурсы — преимущественно в азиатской. Поэтому топливный баланс теплоэлектростанций европейской части СССР был очень напряженным. Экономисты перестраивали его, старались больше использовать на электростанциях в качестве топлива природный газ и мазут (их было легче доставлять).
Но в последнее время положение изменилось. Газ и нефть — слишком ценное химическое сырье, которое год от года все больше используется на технологические нужды. И потому у нас, как и в ряде других стран, ученые активно изучают возможности получения синтетического жидкого топлива из угля. Осваиваются топливные ресурсы Тюменской области, Канско-Ачинские разработки для энергетики Сибири. Повышается интерес строителей электростанций к углю.
Что такое современная тепловая электростанция? Вот ее упрощенная схема: топка котла, куда подаются топливо и окислитель, затем сам котел, в котором вода превращается в пар с температурой около 550 °C. Это наиболее выгодный со всех точек зрения температурный предел. Пар под высоким давлением поступает в неподвижно укрепленные металлические каналы (сопла турбины), в которых температура и давление пара уменьшаются, но зато увеличивается скорость движения его потока.
Струя пара с огромной скоростью, часто выше, чем скорость звука, вырывается из сопел и, меняя направление, по криволинейному каналу давит на лопатки турбины, приводя ротор во вращение. А поскольку ротор турбины на одном валу имеет и ротор электрического генератора, то и вся система приходит во вращение — обычно с постоянной скоростью, равной, как правило, 3000 об/мин. Это определяется выбранной частотой переменного тока — 50 герц, или 50 периодов в секунду.
Сейчас паровые турбины научились делать настолько совершенными, быстроходными, высокоэкономичными и обладающими таким большим ресурсом работы, что они вполне конкурентоспособны с гидрогенераторами. Достаточно сказать, что сегодня мощность паровых турбин в одновальном исполнении достигает 1200 тысяч киловатт, и это не является пределом.
После турбогенератора, совершив полезную работу, пар уже под низким давлением поступает в конденсатор, охлаждается, превращается в воду и снова подается насосом в котел.
Обычно тепловые электростанции строят поблизости от крупных водных источников, поскольку на каждый килограмм конденсируемого пара расходуется около 60 килограммов охлаждающей воды.
Конечно, любое невозобновляемое энергетическое сырье — топливо — нужно стремиться использовать, как говорится, на все 100 %. Ну, а можно ли еще повысить отдачу тепла? Оказывается, можно, если использовать его комплексно.
В нашей стране в этом отношении достигнуты большие успехи. В Советском Союзе большое распространение получили теплоэлектроцентрали — ТЭЦ. Они снабжают потребителя не только электроэнергией, но и теплом. ТЭЦ значительно экономичнее, чем ТЭС. Коэффициент полезного действия ТЭС не более 40 %, а коэффициент использования топлива на ТЭЦ приближается к 60–70 %.
«Наша страна — пионер теплофикации (одновременного производства тепла и электроэнергии), — пишет академик В. А. Кириллин в своей статье, посвященной перспективам развития энергетики. — Еще в 1924 году в Ленинграде была создана первая система централизованного теплоснабжения от электростанции. В 1983 году теплоэлектроцентрали (ТЭЦ) перекрывали 33 процента потребностей тепла в стране. Свыше 800 городов и промышленных центров снабжаются теплом более чем 100 ТЭЦ. Теплофикация, наряду с экономией топлива, обеспечивает значительный экологический эффект. На ТЭЦ достигается высокая очистка продуктов сгорания от вредных примесей, уменьшается тепловое загрязнение водоемов, наконец, централизованное снабжение влечет за собой уменьшение числа мелких котельных, где не может быть обеспечена высокая степень экологической очистки».
Пока тепловые ГРЭСы — государственные районные электростанции — самые рентабельные сооружения. Их энергия дешевле любой другой, и окупаются они раз в десять быстрее, чем гидростанции. И все-таки, конечно, тепловые электростанции — это не решение вопроса. Ведь они потребляют невозобновимые топливные ресурсы планеты. А они, как мы знаем сегодня, увы, весьма ограниченны. Далее, несмотря на очистные сооружения, на дорогостоящие фильтры, тепловые электростанции наносят все же значительный экологический ущерб природе. Добыча топлива требует нарушения целостности земной поверхности. Вскрышные породы карьеров засоряют безжизненными отвалами большие площади. Выбросы сернистых и азотистых газов, пыли и тепла становятся опасными. Все это говорит о том, что нужно искать новые пути получения энергии.
На пути от «малой энергетики»
Однажды довелось мне побывать на прекрасном новом заводе, оборудованном по последнему слову техники. В просторных цехах в стерильной чистоте профильтрованного воздуха мне показали удивительное, почти волшебное действо. В горячей трубке-реакторе, нагретой почти до тысячеградусной температуры, под строго отмеренными дозами ионных лучей встречались пары бесцветной летучей жидкости — тетрахлорида кремния с парами цинка. Шла реакция, и на стенках трубки вырастали тонкие игольчатые кристаллы чистого кремния.
Во второй половине прошлого века этот способ промышленного получения высокочистого кремния был предложен замечательным русским химиком Н. Н. Бекетовым. Сегодня сверхчистый кремний — важнейшее сырье. Полученные в реакторе бесцветные иголочки собирают, долго моют в соляной кислоте, измельчают. Потом их снова и снова переплавляют, добиваясь все большей и большей чистоты, и превращают в монокристаллы — замечательный полупроводниковый материал. Из него собирают «крылья» солнечных батарей, которые раскидываются над корпусами спутников, автоматических межпланетных станций и космических орбитальных станций. В кремниевом кристалле, поглотившем квант света, освобождаются электроны. И если таких кристаллов много и мы соединим проводником освещенную сторону батареи с неосвещенной, то по нему потечет ток.
Кремниевые преобразователи солнечной энергии питают электроэнергией не только сложное хозяйство космических летательных аппаратов. Они могут работать и на Земле. Правда, пока этот способ производства электроэнергии довольно дорог, хоть и заманчив.
Могу напомнить любителям цифр, что сегодня (в 1983–1984 гг.) стоимость одного киловатта установленной мощности, то есть величина всех капитальных вложений для тепловых электростанций, составляет примерно 200 рублей, для гидростанций — 350 рублей, для атомных — в среднем 370 рублей. А вот киловатт установленной мощности при использовании полупроводниковых фотоэлектропреобразователей все еще стоит около 10 000 рублей, а то и поболее. А то, что такой путь заманчив, — понятно, ведь солнечная энергия относится к возобновляемым источникам, то есть к тем, ресурсы которых не уменьшаются от потребления их человеком.
Полная мощность излучения нашего светила огромна — примерно 400 000 000 000 000 000 000 000 000 = = 4×1026 Вт. Земле достается значительно меньше: около 178 600 000 000000 000=1,786×1017 Вт. Значит, в течение года на нашу планету в виде лучистой энергии изливается примерно 1,56×1018 кВТ·ч. Не так мало. Конечно, нужно еще учесть, что часть этой энергии не доходит до самой поверхности, а отражается атмосферой. Но и тогда общая величина солнечной радиации, достигающей Земли, равна величине, близкой к 1014 кВт. Если бы нам удалось освоить хотя бы тысячную долю этой даровой энергии, человечество могло бы считать энергетическую проблему решенной.
Что ж, в рекламных целях за рубежом уже построен автомобиль, работающий от Солнца. Он способен с двумя пассажирами развивать скорость до 50 км/ч и ездить «от зари до зари». Правда, на всякий случай в нем предусмотрен и обычный аккумулятор.
Уже взлетел и пересек Ла-Манш первый «солнцелет», не затративший на это ни капли бензина. На его плоскостях конструкторы разместили до 15 тысяч полупроводниковых элементов. Этот экспериментальный летательный аппарат весил всего 56 килограммов. Постарались конструкторы подобрать и подходящего пилота. Вес летчицы, вместе с парашютом в ранце, добавил еще всего лишь 45 килограммов к весу машины. Самолет стартовал в ясный солнечный день, развил скорость до 80 км/ч и находился в воздухе около пяти с половиной часов.
У нас на различных водных акваториях солнечный свет исполняет роль бакенщиков. С наступлением сумерек зажигает маяки и огни на бакенах. Ну и, наконец, вы могли видеть микрокалькуляторы с солнечной батарейкой вместо обычной. Это все «малая энергетика». А как обстоят дела в «большой»?
Мне доводилось видеть крыши экспериментальных домов, выложенные солнечными батареями, в Японии и в США. В солнечном Узбекистане и других южных республиках видел я работающие гелиоустановки. Правда, пока мне встречались лишь системы, преобразующие энергию излучения Солнца в электрическую по классической схеме: солнечный паровой котел — турбина — электрогенератор. От турбины паропровод шел к конденсатору пара с охладителем, а затем водяной насос перегонял сконденсированную воду снова в котел. От электрогенератора три фазы шли к обычному трансформатору.
Сегодня гелиоэнергетика начала создавать промышленные гелиостанции. Кто не помнит легенду о том, как во время осады Сиракуз Архимед использовал зеркала, чтобы на расстоянии поджечь римский флот? Достоверность этого пока оспаривается учеными. Для нас же важно то, что с помощью зеркал можно добиться концентрации лучей, а следовательно, и повышения температуры в заданном небольшом объеме.
И вот в Пиренеях и в заокеанской Калифорнии заканчивается строительство первых солнечных электростанций промышленной мощности. «Темис» во Франции — 2,5 мегаватта и «Солар-1» в США — 10 мегаватт. Спроектированы обе гелиостанции по одному принципу: высокая солнечная башня с черной короной наверху, в которой скрыт водяной котел и целое поле гигантских зеркал — гелиостатов перед нею, отражающих солнечные лучи на черную корону.
Вычислительное устройство управляет движением зеркал, направляя их на Солнце в течение всего дня, а ночью ставя в положение покоя — отражательной поверхностью вниз. Всего таких зеркал около двадцати двух тысяч. Расчетная температура пара — 516 °C, расчетное давление — 91 атмосфера.
Большая часть производимого пара уходит на вращение турбины и электрического генератора. Избыток тепла отводится в накопитель — большой «чан», заполненный кусками гранита и песком. В теплообменнике циркулирует очищенное масло. Когда камни и песок нагреваются, накопитель становится хранилищем тепла.
Еще не пустив в ход «Солар-1», в США уже запроектировали станцию «Солар-2», в десять раз мощнее первой.
Ну а если Солнца долго нет? Или оно не такое яркое? Тогда солнечный паровой котел превращается просто в груду металла?.. Но тут мы с вами упускаем из виду то обстоятельство, что сама наша Земля является как бы огромным аккумулятором солнечного тепла. Земля — это огромная солнечная тепловая машина. Энергия, переданная планете Солнцем, определяет не только состояние погоды, но и характер климата, приводит в движение воды океана в виде течений, порождает в атмосфере ветры разной силы.
Более ста лет тому назад французский физик и физиолог, член Парижской академии наук Жак Арсен д’Арсонваль заинтересовался возможностью использовать тепловую энергию океана за счет разницы температур между теплыми поверхностными водами и холодными глубинными.
Последние исследования Мирового океана показали, что глубинные воды очень холодны, гораздо холоднее, чем предполагал д’Арсонваль. Они охлаждаются в приполярных районах Арктики и Антарктики, опускаются вниз и растекаются по всему Мировому океану. При этом их температура находится на границе замерзания. В то же время тонкий слой поверхностных вод в низких широтах щедро нагрет Солнцем. Вполне естественно, что такая диспропорция вполне способна, хотя бы в принципе, подарить человечеству еще один экологически чистый и постоянно возобновляемый источник энергии.
Уже в конце 20-х годов XX века один из учеников д’Арсонваля сконструировал и построил действующую установку, основанную на идеях учителя. Она прошла испытания у берегов Кубы, в районе самого теплого моря. Но штормы очень скоро разрушили это хрупкое творение человеческих рук.
Сегодня эти эксперименты продолжаются. Летом 1980 года к берегам Гавайских островов из Портленда вышла плавучая лаборатория с агрегатом ОТЕК-1 на борту. Цель агрегата — переработка тепловой энергии океана в электрическую. Принцип действия установки довольно прост: теплая вода с поверхности океана, имеющая температуру около 27 °C, пропускается через систему из тонких трубок в испарителе, в котором разбрызгивается легко испаряющаяся жидкость — аммиак. Образовавшийся пар вращает турбину электрогенератора, а затем направляется в конденсатор, охлаждаемый с помощью глубинных вод, поднятых на борт насосом по трубопроводу и имеющих температуру около 4 °C. Дальше цикл повторяется.
ОТЕК-1 — установка экспериментальная. Ее задача в том, чтобы изучить проблемы, которые могут встретиться на пути эксплуатации подобных агрегатов в дальнейшем. А их оказалось немало, начиная от задачи подъема холодной воды со дна океана и до борьбы с живыми организмами, которые почему-то весьма охотно поселяются внутри теплообменников. Существует и экологическая проблема: как повлияют многочисленные установки подобного типа на состояние морской среды?
Конечно, при перепаде температур порядка 20 °C коэффициент полезного действия таких установок будет достаточно низким, всего каких-нибудь 2–3 процента. Но уже демонстрационная модель — это устройство из четырех модулей, каждый из которых будет вырабатывать электрическую энергию мощностью 10 мегаватт. Конструкторы системы ОТЕК полны оптимизма. Они считают, что уже к концу текущего десятилетия в теплых водах океана будут работать десятки описанных установок. Такие плавучие, или «пастбищные», установки могут служить также и для добычи ценного минерального сырья со дна океана, для опреснения воды, для получения синтетического топлива. Правда, пока строителей несколько смущают размеры подобных предприятий. Достаточно сказать, что установка мощностью в 400 мегаватт потребует платформы весом в 200 тысяч тонн, размером в пять футбольных полей. В час она должна будет перекачивать 10 миллионов тонн воды…
В то же время и коэффициент полезного действия любых полупроводниковых преобразователей пока невелик. И потому противники гелиотехники утверждают, что при существующей довольно низкой плотности солнечной энергии у поверхности Земли для получения промышленных потоков энергии придется отводить под солнечные электростанции огромные площади. Приводят даже такую цифру: при КПД в 10 %, достигнутом в серийных промышленных полупроводниковых преобразователях солнечной энергии, потребовалось бы занять ими площади порядка десятков тысяч квадратных километров на юге нашей страны — если нужно обеспечить выработку всей потребляемой сегодня электроэнергии.
Представляете себе — десятки тысяч квадратных километров, покрытых солнечными батареями!.. Совершенно нереальная картина. Но наука и техника не стоят на месте. Развиваются методы получения кремния и новых типов фотоэлектрических преобразователей. Их коэффициент полезного действия неуклонно растет и, как убеждены специалисты, в принципе может приблизиться к своему пределу — к 90 %.
В районах с хорошей солнечной радиацией, а таковым считается пояс между 50° северной и 50° южной широты, гелиоустановки разных типов уже сегодня находят все более и более широкое применение. В Саудовской Аравии, например, на солнечной энергии работают телефонные аппараты, установленные вдоль автомобильных шоссе через пустыню.
Конечно, у солнечных батарей тоже есть свои минусы. Особенно для таких широт, где долгие осень и зима, да еще и темень зимой, как в Ленинграде, например, часов девятнадцать в сутки… Но тут есть иной выход. Я имею в виду вывод солнечной электростанции на орбиту…
Подождите, не отмахивайтесь. Это вовсе не такая уж «научная фантастика». Прежде всего — преимущества неоспоримы. Согласны? Ну а трудности? Что же, они, конечно, тоже есть, но вот вам мнение авторитета.
Профессор, доктор технических наук, летчик-космонавт СССР Константин Петрович Феоктистов уверен, что, несмотря на все трудности, «задача создания рентабельных солнечных орбитальных электростанций не представляется практически неразрешимой… Все проблемы технически понятны, и, как правило, это означает, что они в принципе решимы».
Что же может представлять собой космическая электростанция и какие трудности стоят на пути ее создания?
Прежде всего такая станция, естественно, должна находиться на геостационарной орбите. Это круговой путь, лежащий, как правило, в экваториальной плоскости Земли, по которому движется спутник. Высота такой орбиты — примерно 35 000 километров. Период обращения спутника совпадает с периодом вращения Земли вокруг своей оси, и он как бы «висит» над заданным районом.
Электростанция должна состоять прежде всего из устройства сбора солнечной энергии и ее преобразования в электрическую. Чтобы получить достаточно большую мощность, сравнимую с существующими наземными электростанциями, площадь солнечных батарей должна быть несколько десятков квадратных километров. Целые «поля» из кремниевых пластинок. Потом полученную энергию нужно будет преобразовать в радиоволны, чтобы передать на Землю. Значит, нам понадобятся преобразователь, передатчик и передающая антенна диаметром не меньше километра. Антенна не должна давать потоку энергии разойтись широким конусом — нужен узкий луч, чтобы передать ее на Землю. Не следует забывать и о том, что нам надо будет постоянно следить за тем, чтобы солнечные батареи были направлены строго на Солнце, а передающая антенна посылала мощный энергетический луч в одно и то же место на Земле. Для этого понадобится сложная система ориентации станции со множеством небольших ракетных двигателей.
Конечно, для осуществления такого строительства в космосе придется создать в невесомости не только автоматические заводы, например для сварки труб из доставленной с Земли стальной ленты или для изготовления панелей батарей, но и сборочные стапели, мастерские и заводы по производству и ремонту деталей, а также благоустроенное жилье и бытовые комплексы для людей. Первые подсчеты показывают, что общая масса орбитальной электростанции мощностью в несколько миллионов киловатт должна быть не меньше ста тысяч тонн! И сегодня такая задача уже не кажется фантастической. Профессор К. Феоктистов, побывавший в космосе в составе одного из экипажей, считает, что «промышленная деятельность, возможно, станет в будущем основной сферой деятельности человека на орбите вокруг Земли».
Глава шестнадцатая. АЭС
С каждым годом все большую роль в общем балансе энергетики играют атомные электростанции. В десятой пятилетке прирост их мощности увеличился почти в десять раз, тогда как мощность всех ГЭС выросла только на 30 %. Атомные реакторы, бывшие раньше единичными, уникальными сооружениями, поставлены на поток.
Чем объяснить, что такое большое внимание во всем мире уделяется этому способу получения энергии? Ведь по сути дела АЭС — это та же тепловая электростанция, только с другим топливом.
Прежде всего, ядерная энергетика будто создана специально, чтобы помочь человечеству преодолеть топливно-энергетический кризис. Знаете, сколько нужно топлива современной достаточно мощной ГРЭС?.. В день несколько железнодорожных составов! Они должны не только привезти уголь и выгрузить его, но и погрузить золу и увезти ее подальше от электростанции, куда-то на свалку. Чтобы добыть уголь, нужно вспороть земную поверхность, оставить на ней незаживающие раны. Чтобы убрать золу, нужно засыпать бесплодными отходами часть поверхности земли… Дорогой, драгоценной поверхности, которой и так не слишком много приходится на все увеличивающееся и увеличивающееся народонаселение нашей планеты.
А теперь об атомной электростанции. Одной заправки реактора ядерным топливом — плутонием и природным ураном — хватает ему больше чем на год работы. Причем за все это время из загруженного «топлива» «выгорит» не более одного-двух процентов материала, способного к делению. Это значит, что, кроме экономии природных ресурсов, атомные электростанции резко снижают загрузку железных дорог и транспортные расходы. Возле них нет бесконечных поездов, груженных топливом. В залах не слышен рев угольных топок. Нет гор золы, туч дыма…
А ведь выработка электроэнергии хоть и главная задача современности, но не единственная.
Наступило время подумать и о других сферах применения атомной энергии: о выработке промышленного и отопительного тепла, о включении атомной энергетики в металлургию и химическую промышленность. Это задачи значительно более крупного масштаба, чем электроэнергетика. В нашей стране на эти нужды расходуется около трех четвертей добываемых горючих ископаемых. А попробуем представить, что даст применение атомного тепла на современном металлургическом комбинате. Ведь редко когда так повезет, чтобы и топливо и руда находились совсем близко друг от друга. Чаще их приходится куда-то доставлять. А вы представляете себе, насколько огромная энергоемкость ядерного горючего снизила бы загрузку железных дорог? Кроме того, современной выплавке чугуна или стали неизбежно сопутствуют тысячетонные выбросы углекислого газа и сернистого ангидрида. Сколько приходится тратить средств на устройство фильтров и прочих очистных сооружений! И все равно газы никуда не денешь…
Применение же технологического тепла от ядерных реакторов сразу освободит металлургические комбинаты от золы, копоти, от завесы пыли и дыма. Количество вредных отходов, отравляющих землю, воду и воздух, уменьшится в тысячи раз.
А ведь, кроме чугуна и стали, существуют еще такие энергоемкие производства, как получение алюминия, производство цинка, крекинг и реформинг нефти и нефтепродуктов, синтез хлорвинила, этилена и аммиака в химической индустрии. Да нет, кажется, сегодня такой отрасли хозяйства, которой не нужны были бы электричество и тепло.
Еще Игорь Васильевич Курчатов, намечая пути развития ядерной энергетики, говорил с трибуны XX съезда КПСС: «В отличие от обычного топлива — угля и нефти — ядерное топливо, сжигаемое в атомных реакторах, позволяет получать новые вещества — плутоний и другие, которых нет в природе и которые также являются ядерным топливом. Это так называемый процесс воспроизводства ядерного горючего. Количество образующихся новых веществ зависит от условий проведения цепной ядерной реакции. Есть условия, в которых новое ядерное топливо образуется в больших количествах, чем количество сгоревшего в цепном процессе исходного ядерного топлива. Получается как бы так, что сожжешь в топке уголь, а выгребешь вместе с золой еще больше угля».
В этом, собственно, и заключается главная особенность и отличие реакторов на быстрых нейтронах от реакторов на тепловых, или медленных, нейтронах. В «быстрых» реакторах, пережигая ядерное горючее одного вида, накапливаются еще большие количества новых делящихся материалов. Поэтому «быстрые» реакторы часто называют реакторами-размножителями, или бридерами.
В нашей стране накоплен немалый опыт работы уже не просто экспериментальных «быстрых» реакторов, но и промышленных установок, призванных работать на нормальных АЭС. Например, в третьем блоке Белоярской АЭС имени И. В. Курчатова на каждый килограмм сгоревшего ядерного топлива воспроизводится полтора килограмма нового, готового к дальнейшей работе. А одна из первых в мире АЭС на «быстрых» реакторах, работающая уже много лет в нашей стране на берегу Каспийского моря, не только исправно дает электроэнергию, но и опресняет воду.
Конечно, в разных местах и в разных условиях нужно решать топливно-энергетические задачи в зависимости от условий. Поэтому в устьях некоторых рек, где велики силы прилива и отлива, целесообразно строить приливные электростанции, а в местах, где близко к поверхности располагаются центры подземных вулканических очагов, — геотермические электростанции. Примеры подобных сооружений тоже уже имеются в нашей стране.
Рост населения Земли, интенсификация сельского хозяйства, научно-техническая революция, наконец, развитие самой цивилизации требуют прежде всего основы основ — энергии. Когда-то мы говорили о водопадах ее, теперь нам не хватает океанов…
К концу XX столетия люди практически свели леса с поверхности Земли, близки к истощению и легкодоступные недра, бесконечно богатые, как еще недавно казалось, нефтью, каменным углем, газом. Люди подобрали все, что лежало под руками. Ведь человечество уже многие века борется за существование, понимая, что призрак энергетического голода стоит на пути прогресса. Нужно постоянно искать новые способы получения энергии. Атомная энергия, которую, как выяснилось, можно превратить сначала в тепловую, а потом в электрическую, — один из таких способов.
Но природа ничего не дает даром. За новые источники энергии нужно платить. Чем? Прежде всего — усложнением техники. Вместо нехитрой топки парового котла — реактор! Новое, очень сложное устройство. Впрочем, любая техника сама по себе не добрая и не злая. Только новая техника более требовательна, не прощает ошибки…
Если в автомобиле по недосмотру механика испортится мотор, машина остановится, не заведется. Придется пассажирам идти пешком. Но если по любой причине остановится двигатель современного самолета, он упадет на землю и разобьется… Но ведь никто не собирается на этом основании отказываться от воздушного транспорта. Конечно, требуется повысить надежность техники и… более тщательно работать с нею, быть более внимательными. Новая техника требует и нового
Авария на АЭС — большое несчастье. Оно затрагивает, в той или иной степени, всех нас. И всем надо сделать важный вывод: сейчас нельзя подходить к новой технике со старыми представлениями о культуре труда. Техника требует от специалиста не только глубоких знаний, но и предельной сосредоточенности, тщательности в работе и абсолютной дисциплины. Другого пути нет. Как нет у нас и пути назад…
Солнце на Земле
В наши дни много пишут о получении энергии «солнечным способом». Еще в 1939 году немецкий физик X. Бете предположил, что в недрах нашего светила при температуре более 10 миллионов градусов ядра легкого водорода (протоны, из которых на 90 % состоит Солнце) должны сливаться, превращаясь в ядра гелия и выделяя при этом массу энергии. Эта гипотеза пришлась весьма по вкусу физикам-теоретикам и получила широкое развитие. Были обнаружены и другие возможные реакции в зонах, расположенных ближе к солнечному ядру, где процессы протекают при более высокой температуре. Появилась стройная теория. А потом, как и полагается в таких случаях, возникли сомнения. Обнаружилась нехватка нейтрино, которые должны были излучаться вместе с протонами. Да и сама реакция протон-протонного цикла оказалась не такой уж всеобъемлющей. Но не в том суть. Решение «солнечных вопросов» — задача астрофизики и астрофизиков. А что же могли получить от такой далекой области знания технари-энергетики?
Вспомните знаменитое уравнение Эйнштейна, связывающее массу с энергией: E = m·C2. Здесь С — скорость света. Грамм солнечного вещества, обращенный в энергию, дает ее столько же, сколько мы получаем на Земле, сжигая тысячи тонн (!) первосортного бензина. И это при нынешнем-то энергетическом кризисе и существующих ценах на нефть! Естественно, что мысль о том, «нельзя ли зажечь Солнце на Земле», просто не могла не возникнуть в головах ученых. Дело оставалось за небольшим — получить солнечное вещество и научиться превращать его в энергию.
Если открыть последний энциклопедический словарь на слове «солнце», то в нем можно прочесть: «Солнце… раскаленный плазменный шар… Химический состав, определенный из анализа солнечного спектра: водород — около 90 %, гелий — 10 %, остальные элементы — менее 0,1 % (по числу атомов)». А что такое плазма?..
Впрочем, я чувствую, что здесь возможно много, очень много вопросов. Хорошо бы их количество ограничить, ну, скажем, десятью или пятнадцатью и вопросы эти задавать сериями, штук по пять сразу. На каждый — ответ, а потом пояснения.
— Почему Солнце светит?
— Потому что оно нагрето до раскаленного состояния.
— Что подогревает Солнце?
— Гравитационное сжатие и термоядерные реакции.
— Какие реакции на Солнце главные?
— Протон-протонный и углеродноазотный циклы.
— Сколько лет светит Солнце?
— Примерно от шести до десяти миллиардов лет.
— На сколько лет еще хватит Солнца?
— Не меньше чем на четыре с половиной миллиарда лет.
Рассказывают, что как-то раз, в середине двадцатых годов, два приятеля — веселые геттингенские студенты-физики — «мотали лекцию». То ли лекция предстояла скучной и длинной, как день без завтрака, то ли просто слишком грело весеннее солнце. Так или иначе, но, разомлев от жары, парни переходили от одного тенистого дерева к другому, громко и неискренне жалея профессоров.
— Клянусь рефератом, — глубокомысленно произнес один из приятелей, — сегодняшнее солнце — отнюдь не костер из буковых поленьев в камине шефа…
Фамилия говорившего была Хоутерманс, и его совесть оказалась настолько тугоплавкой, что он помнил о реферате даже за пять минут до купания.
— Тогда бы не пекло так жарко, — резюмировал второй бездельник, Аткинсон, который только что вернулся из Кембриджа и потому считал, что последнее слово должно оставаться за ним. — Кстати, а почему оно вообще светит?..
Последний вопрос мог бы показаться риторическим, не будь наши приятели физиками. А физики могут думать о механизме явления даже под угрозой солнечного удара… Аткинсон в Кембридже был свидетелем захватывающих опытов Резерфорда по атомным превращениям. Именно потому он и воскликнул:
— Послушай, Фрицци! А может быть, это ядра атомов легких элементов сливаются в недрах Солнца, образуя более тяжелые? При этом излишки массы, превратившись в энергию, покушаются на профессорские головы и не пускают нас на лекции…
Не исключено, что в ответ раздалось бульканье, ибо пораженный догадкой приятеля Фриц Хоутерманс вполне мог на время пойти на дно. Оба были достаточно физиками, чтобы представлять величие последствий шутливого предположения.
Но они еще не знали, что только что сформулировали тему главной работы всей своей жизни.
В истории не сохранилось сведений о том, чем кончилось в этот день купание двух будущих ученых. Но в том, что с этого шутливого разговора и началась серьезная работа над проблемами внутрисолнечных процессов, сомнений почти нет.
Позже к обоим исследователям подключились другие выдающиеся физики мира. И результатами их совместной работы явилось, с одной стороны, создание бесчеловечного сверхоружия, с другой — проект мирно работающей плазмы.
Когда-то считали, что в недрах нашего светила горят запасы серы, каменного угля и прочих горючих ископаемых. Однако проверили поточнее, прикинули, оказалось, что будь Солнце даже из лучшего донецкого антрацита, его хватило бы лишь на несколько тысячелетий. Этого было явно мало. Следовало поискать другой, более долговечный источник.
И он нашелся…
Если представить себе зарождающуюся звезду как облако холодного газа, сжимающегося под действием сил притяжения, то ясно, что постепенно температура в нем станет подниматься.
Сначала недра нагреваются немного, а там, глядишь, и покраснеют, и засветятся, и засверкают. Превратится сжимающийся газовый шар в пылающую звезду…
Впрочем, не надо, как говорится, эмоций. Посчитаем, прикинем… Если бы Солнце под действием собственной силы тяжести сжималось со скоростью 30 метров в год, оно бы «просветило» лет этак миллионов тридцать. Опять мало! По новым данным науки Солнечная система существует по крайней мере четыре с половиной миллиарда лет. Миллиарда! Представляете?..
Долго, очень долго источник солнечной энергии оставался для ученых загадкой. А потом в лабораториях физиков началось его постепенное разгадывание. В 1896 году французский физик А. Беккерель открыл радиоактивность. Помните, так мы называем самопроизвольное превращение неустойчивых атомных ядер в ядра других элементов. Потом А. Эйнштейн установил зависимость массы и энергии — самое знаменитое уравнение XX века: E=m·C2! И это позволило английскому астроному и иностранному члену-корреспонденту Академии наук СССР А. Эддингтону выдвинуть идею прямого перехода массы Солнца в энергию. Правда, как это могло происходить, никто не знал.
Примерно в ту же пору неистовый и громоподобный Э. Резерфорд наблюдал первые искусственные превращения ядер. На лабораторной установке ядра атомов азота при бомбардировке их ядрами гелия иногда вдруг глотали эти «микробомбы» и превращались в ядра атомов кислорода, излучая лишний протон. Это было чудесно и совершенно непонятно.
Картина стала проясняться, когда ученик Резерфорда Дж. Чедвик открыл нейтрон, а советский и немецкий физики Д. Иваненко и В. Гейзенберг, независимо друг от друга, построили модель атомного ядра из протонов и нейтронов. Были уже описаны предположения Аткинсона, Хоутерманса и других теоретиков. Наконец, в 1939 году немецкий физик X. Бете, бежавший от фашистов сначала в Англию, а затем в США, теоретически показал, что в солнечных недрах должны существовать две основные последовательности превращения водорода в гелий. Первая и основная — слияние двух протонов и образование тяжелого изотопа водорода — дейтерия, с излучением позитрона и нейтрино. И затем переход дейтерия в гелий, с образованием новых свободных протонов. При этом количество высвобождающейся энергии оказывалось примерно в миллион раз больше, чем при химической реакции горения. Вторым типом реакции был углеродно-азотный цикл, который шел при более высоких температурах, очевидно, в самом солнечном ядре.
Прекрасно! Отныне, казалось, тайна Солнца разгадана. Ядерные реакции обеспечивали нашему светилу десять миллиардов лет жизни, что вполне устраивало физиков. Так что можно было успокоиться. Кстати, а что будет через оставшиеся пять миллиардов лет? Ядро Солнца к тому времени сожмется до такой степени, что температура и плотность в нем позволят ядрам гелия объединяться и образовывать углеродные ядра. Оболочка звезды при этом распухнет до орбиты Венеры. И Солнце превратится в красного гиганта. На Земле к этому времени станет, увы, слишком жарко для жизни. Но до этого катастрофического периода время еще есть. Что-нибудь придумается…
Не помню сейчас, чьи это слова, утверждающие, что, когда ученые слишком уж успокаиваются, природа подкрадывается к ним сзади и дает хорошенького пинка. Чтобы проверить, правильно ли мы представляем себе работу солнечной топки, американский физик Дэвис решил «уловить» солнечные нейтрино и подсчитать их. Задача почтенная, хотя и бесконечно трудная, поскольку шустрые частицы способны пролететь свинцовую стенку толщиной в триста миллионов километров, не задев и не потревожив в ней ни одного атома. Но и человек хитер! Установка, содержащая чуть не полмиллиона литров перхлорэтилена (между прочим — жидкости, применяемой для химчистки), упрятана под землю на глубину почти в километр, но… вожделенные частицы не обнаружены. То есть они были, конечно, но в количестве явно недостаточном, чтобы объяснить солнечные реакции. В чем же дело?
Пока не ясно. Может быть, ошибка в вычислениях теоретиков. А может быть, недостаточная точность эксперимента. И это не исключено. А не «заснуло» ли солнечное ядро на время, уменьшив нейтринный поток? И от такой точки зрения нельзя отказываться. Ведь были же в истории Земли периоды великих оледенений, когда по неизвестным причинам солнышко на какой-то период «зажмуривалось».
А теперь сделаем небольшое деловое отступление.
Как работает Солнце?
Во-первых, «ядерный котел» нашего светила занимает не так уж много в нем места — примерно 2 % объема в центре. Но в нем сосредоточено 50 % всей массы. Каждую секунду его топка потребляет около 5 миллионов тонн ядерного горючего, обеспечивая выход 4,5·1033 эрг энергии. Много это или мало? Судите сами: Земля получает из этого потока едва ли стомиллионную долю. И этого оказывается достаточно, чтобы обеспечить нашу жизнь!
Я не стану в деталях расписывать реакции внутри Солнца. Заинтересовавшийся сам их легко отыщет в учебнике (например, Д. Я. Мартынов. Курс общей астрофизики. М., 1971. с. 221–222). Скажу только, что ядра гелия чуть-чуть легче, чем сумма слившихся в них протонов. Этот-то крошечный избыток массы и превращается в энергию. Сначала в виде жестких гамма-квантов и нейтрино. Нейтрино тут же удирают из Солнца, а гамма-кванты, сильно взаимодействуя с веществом, пробираются к поверхности и в конце концов превращаются в кванты оптического излучения. Они-то и греют, они-то и светят нам с вами.
Происходит все это в полном соответствии со знакомым нам уравнением Эйнштейна. И если вы не поленитесь и все-таки подставите в него цифры, а потом сравните с каким-нибудь земным эталоном, то картина получится очень впечатляющая. Вспомните сравнение с сожженным бензином…
Кстати, если это сравнение вас не вдохновит — дело безнадежно. Есть среди нас люди, принципиально шарахающиеся от цифр, формул, графиков, от всех современных способов экономной передачи информации. Я, конечно, не могу настаивать на абсолютной правоте суждения, но лично мне они кажутся фигурами несовременными. Отстав в своем развитии от требований времени и не будучи в состоянии его догнать, они превращают свою неспособность в «принципиальность». Об этой «принципиальной» позиции они громко вещают направо и налево, забывая, что этот трюк — «с бородой»…
А теперь — внимание! Идет вторая серия вопросов:
— Сколько состояний вещества мы знаем?
— Три обычных: твердое, жидкое, газообразное; и четвертое — плазма.
— Что такое плазма?
— Ионизованный газ, состоящий из «ободранных» атомных ядер и электронов.
— Какую плазму мы знаем?
— Низкотемпературную (Т=105 К)7 используемую в ионных приборах, газовых лазерах, плазмотронах, МГД-генераторах, плазменных двигателях, а также в плазменной металлургии, обработке и в бурении. Высокотемпературную (Т=106-108 К) из смеси дейтерия и трития, которая предполагается быть использованной для управляемого термоядерного синтеза — термояда.
— Чем отличается плазма от обычного газа?
— Частицы плазмы не самостоятельны, а представляют собой единый коллектив, систему. Разреженная лабораторная плазма всегда является системой неравновесной и стремится к саморазрушению.
— Почему устойчивы звезды, состоящие из плазмы?
— Потому что звездные условия не чета лабораторным. На Земле их так просто не достигнуть.
Если, услышав слово «плазма», вы подумаете, будто это нечто исключительное, то непременно ошибетесь. В состоянии плазмы находится подавляющая часть вещества Вселенной. Тут и звезды, и галактические туманности, межзвездная среда и даже внешняя оболочка нашей собственной земной атмосферы. Не говоря уж о том, что Земля просто купается в плазме в виде солнечного ветра. Правда, искать природную плазму на поверхности нашей планеты — занятие безнадежное. Ее не существует. Исследователи довольно давно научились ее получать искусственно в лабораториях, но вот свое название она получила совсем недавно.
Все в тех же 20-х годах нашего века два американских физика, Ленгмюр и Тонкс, изучая газовый разряд, назвали греческим словом «plasma», что означало в переводе — «вылепленное», «оформленное», ионизованный электрический нейтральный газ, содержащий равное количество положительных и отрицательных зарядов. Этот газ-плазма оказался настолько отличающимся от всех известных физикам состояний вещества, что был выделен и стал самостоятельным объектом исследования.
Вещество в мире высоких температур
Давайте попробуем каким-нибудь способом постепенно разогревать кусок обычного, вполне земного вещества, хоть железяку. Сначала она раскалится, засветится. Затем связи в ней ослабнут, и она расплавится. Потом жидкость испарится и перейдет в газ. При дальнейшем нагреве молекулы газа не выдержат и разорвутся на атомы. Еще дальше — газ станет атомарным. А там начнут Сдаваться и атомы. Электроны будут отрываться от ядер, и газ начнет переходить в плазму.
Примерно к десяти миллионам градусов плазма окажется полностью ионизованной. То есть вещество будет состоять из «голых», ободранных ядер и свободных электронов, которые мечутся в разные стороны, стремясь во что бы то ни стало сбросить возбуждение, отдать сообщенную энергию и обрести, образно говоря, покой.
При ста миллионах градусов частицы плазмы обретают такую скорость, что при встречах ядра могут начать разрушаться. Здесь мы подошли к границе ядерных превращений.
При миллиарде градусов вещество будет состоять уже только из протонов и электронов. Ядра распадутся. А при температурах более десяти триллионов (1013) градусов элементарные частицы получат возможность превращаться одна в другую. Правда, представить себе все эти градусы нормальному человеку довольно трудно. Нужно быть физиком-теоретиком…
…Надо сразу сказать, что чем ближе знакомились физики с плазмой, тем больше убеждались в ее вздорном характере. Посудите сами: мы говорим, что плазма нейтральна. Но шустрые электроны куда более подвижны, чем массивные ионы, и потому они первыми норовят удрать из дружного коллектива. Образуются нестабильные электрические поля. Под их влиянием частицы меняют свои направления, путают расчеты, делают поведение сгустка плазмы труднопредсказуемым. Плазма изо всех сил стремится расшириться, коснуться стенок камеры, отдать энергию и… погибнуть. Просто какая-то страсть к самоубийству. И чем выше температура плазмы, тем она норовистее. А при миллионах градусов, необходимых термоядерщикам, она становится просто бешеной.
Сейчас даже трудно утверждать, взялись бы физики в конце 1950 года с таким энтузиазмом за эту проблему, будь они хоть чуть-чуть более осведомлены о ее характере. Слава богу, они ничего о нем не знали. А когда познакомились, отступать было поздно.
В то время советские физики-теоретики высказали идею, согласно которой горячую плазму можно было попробовать изолировать от стенок камеры, сжав собственным магнитным полем. Мысль была настолько простой и очевидной и решение казалось таким красивым, что сомнениям просто не оказывалось места.
Как загнать джинна в бутылку
Предположим, что нам удалось в разреженном газе создать мощный электрический разряд. Естественно, что на всем его пути молекулы и атомы ионизуются и газ превратится в плазму. Но плазма — сама великолепный проводник для электричества, и потому ток в ней будет нарастать. А вместе с током станет расти и его магнитное поле, охватывающее плазму, как обручами, и сдавливающее, сжимающее ее в тонкий шнур, отрывая от стенок камеры.
Кажется, проще простого — частицы оторваны от стенок, ток нагревает плазму до звездных температур, ядра начинают сливаться, выделяя огромное количество тепла. Реакция становится самоподдерживающейся. Термоядерный «самовар» закипает…
В Институте атомной энергии имени И. В. Курчатова был создан новый отдел плазменных исследований, во главе которого стал удивительный человек и один из бесспорных лидеров советской науки Лев Андреевич Арцимович.
Еще не прогремело эхо первого взрыва водородной бомбы, значит, еще не было и бесспорного доказательства осуществимости даже неуправляемого термоядерного синтеза, а в лаборатории Арцимовича молодые энтузиасты готовились к синтезу управляемому.
Ах, как они тогда работали! Все, от руководителя до лаборанта, были первыми в мировой науке. Они знали то, что хотели знать все, но не знал никто. И это знание было самым большим богатством — дороже золотых слитков и самородков, дороже самых больших и чистых алмазов из голубых кимберлитовых трубок. Вот что такое наука. Вот чем она всегда привлекала и будет привлекать к себе людей. Лев Андреевич был необыкновенно обаятельной личностью. Острый ум, широчайшая эрудиция и необыкновенно развитое чувство юмора.
— Что такое наука? — спросили его как-то.
— Наилучший способ удовлетворить собственную любознательность за счет государства, — не моргнув глазом, ответил он.
Третья серия вопросов — последняя и едва ли не главная.
— Что такое термояд?
— Управляемый термоядерный синтез, основанный на реакциях перестройки атомных ядер с большим энергетическим выходом.
— Что нужно сделать, чтобы зажечь в плазме огонь термояда?
— Нагреть до звездных температур, сжать до необходимой плотности, обеспечив критерий Лоусона.
— Что такое критерий Лоусона?
— Произведение времени удержания высокотемпературной плазмы на плотность ее частиц. Если это произведение превышает 1014 с/см3, то выделяющаяся управляемым термоядерным синтезом энергия больше подводимой к системе.
— Что такое токамак?
— Тороидальная камера с магнитным полем — семейство советских тороидальных магнитных ловушек для получения контролируемой термоядерной реакции в высокотемпературной плазме. Слово «токамак», как и слово «спутник», принято во всех языках мира.
— Когда физики получат термоядерную энергию?
В 1956 году советская правительственная делегация, имея в своем составе ведущих ученых, выехала в Англию. Мир находился в тисках «холодной войны». Люди разучились доверять ДРУГ другу. И вот лондонцы с нескрываемым интересом разглядывали на улицах столицы высокого человека с длинной бородой, прятавшего в ней усмешку тонких губ. «Главный атомщик русских!» — летел вслед ему шепоток. Курчатов был фигурой легендарной, весьма таинственной и очень импозантной. «А уж засекречен-то, засекречен! Десять агентов КГБ, не смыкая глаз, сторожат его и днем и ночью…» И вдруг этот человек — олицетворение государственной тайны Советского Союза — спокойно согласился прочесть в английском атомном центре, Харуэлле, лекцию «О развитии атомной энергии в России». Именно так было написано в пригласительных билетах.
Со смешанным чувством собирались приглашенные. С одной стороны, ученым было, конечно, любопытно узнать, что делается «за железным занавесом». Ведь к этому времени ТАСС уже сообщило об успешных испытаниях термоядерного оружия на советском полигоне и прошло два года с тех пор, как в Обнинске, под Москвой, заработала первая в мире атомная электростанция. Но с другой стороны, английские физики понимали, что в существующих условиях ждать откровенного и интересного разговора смешно.
Курчатов спокойно поднялся на трибуну. Он широко и свободно нарисовал перед слушателями грандиозную картину энергетического строительства в СССР и… перешел к рассказу об исследованиях в области управляемого термоядерного синтеза. Это была сенсация! Английские физики, английские политики, английские и совсем не английские представители других служб, которых наверняка было немало в зале, ушам своим не верили. Бородатый русский академик спокойно повествовал о таких вещах, о которых на Западе даже думать рисковали лишь за закрытыми дверями секретных лабораторий. Это могло означать либо непостижимую «азиатскую хитрость», либо тот факт, что русские настолько далеко ушли вперед, что нынешние секреты западных коллег для них — вчерашний день… Что было хуже?..
Игорь Васильевич Курчатов читал в Харуэлле доклад, подготовленный академиком Арцимовичем. И этот доклад застал англичан врасплох. Когда представители прессы попросили своих специалистов прокомментировать сказанное, те дружно потребовали несколько дней на подготовку. Нужно было не только снестись с секретной службой, но и разобраться в ворохе технических подробностей, щедро открытых перед ними гостем. «Английские ученые ожидали, что доктор Курчатов будет выкачивать из них информацию, а вместо того он сказал, что им самим следует делать» — так определило тогда агентство «Рейтер» итог этой встречи.
Результаты столь выдающегося не только научного, но и дипломатического и политического шага Советского Союза не замедлили сказаться. Одна за другой стали собираться международные конференции, на которых все более и более смело ученые обменивались своими успехами и заботами. Оказалось, что во многом теоретические работы советских и западных специалистов совпадали. Дублировались и многие из засекреченных в прошлом экспериментов. И вместе с тем с каждой стороны налицо были какие-то полезные достижения.
На конференции в Зальцбурге в 1961 году были заслушаны доклады о двух новых установках — токамаке Т-3, работающем в курчатовском институте, и стеллараторе в Принстоне. Правда, исследования на тороидальных установках, как правило, вызывали у ученых все больший пессимизм. А советский токамак своих создателей радовал. И вот, начиная с 1969 года, в лабораториях всех заинтересованных стран началось бурное строительство токамаков. Сегодня их насчитывается в мире около пятидесяти.
Токамаки шагают по свету
Наша страна предполагала в середине 80-х годов запустить «Токамак-15». В нем плазма объемом в 23 кубометра будет нагрета уже до 70–80 миллионов градусов. И главный параметр удержания этого беспокойного детища современной физики совсем немного не дотянет до критерия Лоусона.
Еще ближе к заветному критерию предполагают подойти европейские ученые на строящемся токамаке «ДЖЕТ». Здесь объем высокотемпературной дейтериевой плазмы будет около двухсот кубических метров. По своим параметрам плазма должна выйти на рубеж реакторной. Таким образом, уже в ближайшее время физики мира собираются продемонстрировать реальную осуществимость получения реакторной плазмы, а затем передать дело в руки инженеров. Потому что дальше наступит очередь реактора термоядерной электростанции.
Сегодня главное внимание физиков-термоядерщиков сосредоточено на токамаках, как на наиболее перспективных установках. Но это вовсе не значит, что для осуществления управляемого термоядерного синтеза нет других путей. Токамак — установка, в которой реакции протекают спокойно, как на Солнце. А ведь можно себе представить и использование созидающего взрыва. Взрыва, контролируемого человеком. Взрыва, надежно запряженного в работу, как это сделано, например, в двигателях внутреннего сгорания…
И вот уже ученые обсуждают идею микровзрывов — серии коротких импульсов от крохотных водородных «бомбочек», подожженных лазерным лучом. Эта идея тоже родилась в нашей стране. Ее высказали академик Н. Г. Басов — один из создателей лазера — и доктор физико-математических наук О. Н. Крохин.
Есть, между прочим, и другие идеи. Их немало. Нужно только помнить, что даже простая проверка каждой из них — большая работа коллектива, стоящая огромных затрат. Достаточно сказать, что простой старый добрый токамак при работе потребляет в импульсе столько электричества, сколько нужно целому городу.
Наверное, прочитав эту главу, читатель непременно задаст вопрос: «Так когда же? Когда будут построены первые термоядерные реакторы для электростанций, ведь с начала работы над плазмой уже сменилось целое поколение?»
Предсказания в науке — самое неблагодарное дело. Но если есть вопрос, требуется и ответ. Давайте же за ним обратимся к высказыванию главы советской школы термоядерной физики Льва Андреевича Арцимовича.
В статье «Плазма и термоядерный синтез», написанной им совместно с В. Д. Новиковым для Детской энциклопедии, он говорил: «Термоядерная энергия будет получена тогда, когда она станет необходимой человечеству».
Ну а пришла ли эта необходимость — решать нам с вами. Ведь сегодня человечество — это мы!
МГД
Есть еще несколько способов получения электроэнергии, мимо которых просто невозможно пройти. Я имею в виду методы прямого преобразования энергии. То есть такие способы, при которых из классической цепи «тепло — механическая энергия — электричество» среднее звено исключается. Сюда можно отнести не только получение электроэнергии из тепловой и из химической энергии, например в топливных элементах, но также известные нам способы получения электроэнергии из солнечного света, из электромагнитного излучения нашего светила…
Но, как и обещает заголовок раздела, прежде — магнитогидродинамический метод. Суть его такова: топливо, сгорая при достаточно высокой температуре (не меньше 2500 °C), дает газы, как мы уже знаем, в состоянии частично ионизованной плазмы. Следовательно, газ становится электропроводящим. Если же к плазме добавить еще какое-нибудь легко ионизирующееся вещество, ну хотя бы какой-нибудь из щелочных металлов (калий, натрий или цезий), то электропроводность ее еще возрастет.
Теперь представьте себе, что мы стали продувать эту плазму через мощное магнитное поле. Естественно, что в ней немедленно появится электрический ток. Если при этом к стенкам канала, по которому сквозь магнитные силовые линии мчится наша плазма, приделать электроды, замкнутые на внешнюю цепь, то по цепи пойдет ток…
В принципе работа МГД-генератора не отличается от классической схемы генератора Фарадея. Только в электромеханическом генераторе проводником служит обмотка ротора, а в МГД-генераторе — поток подогретой плазмы. Электрический ток в плазме, взаимодействуя с магнитным полем, тормозит движение плазмы. И ее кинетическая энергия превращается в тепловую.
Ну а чем же МГД-генератор лучше? Пожалуй, главное его преимущество — более высокий КПД. В зависимости от технического решения он может превышать на десять, а то и на двадцать процентов коэффициент полезного действия самых лучших и экономичных тепловых электростанций.
Кроме того, вы ведь, наверное, заметили, что в схеме МГД-генератора нет движущихся частей, на которые воздействовала бы высокая температура. Это очень важно. Ведь чем выше начальная температура рабочего тела в тепловом двигателе, в турбине, тем выше опять же КПД. Но лопатки турбин больше чем 540 °C не выдерживают. А тут — 2600 °C!
Правда, не очень пока понятно, из чего делать канал МГД-генератора. Где взять материалы, которые выдержали бы такую температуру? Ну, во-первых, кое-что в запасе у инженеров все-таки есть. А во-вторых, стенки канала можно и должно охлаждать. Ведь поливать водой неподвижную трубу — совсем не то что охлаждать таким способом бешено вращающиеся части в турбине…
Пока на пути к созданию промышленного образца МГД-генератора взяты далеко не все барьеры, обойдены не все препятствия. Тут и надежность материалов, и проблема создания на всем протяжении плазменного канала (а это метров двадцать) магнитного поля большой интенсивности — около 5–6 тесла (или 50–60 тысяч гаусс).
МГД-генератор даст нам постоянный ток. Естественно, что для широкого использования его придется превращать в переменный, что тоже не так-то просто. И все же, несмотря на трудности, в Советском Союзе, в полном соответствии со специально разработанной программой, уже начато сооружение первого в мире промышленного МГД-энергоблока электрической мощностью на 500 тысяч киловатт, который будет работать на природном газе. Одновременно ученые ведут исследование МГД-установок, способных работать на угле. И есть предположение, что в дальнейшем МГД-генерато-ры можно будет устанавливать на атомных электростанциях. Атомный реактор будет служить вместо или в качестве камеры сгорания. А рабочим телом явится какой-нибудь легко ионизирующийся газ. Может быть, это будет гелий, который станет двигаться по замкнутому контуру. Вы скажете: «Это все пока проекты… А где синица в руки?» Ну что же — вот вам тогда и синица.
Два года назад довелось мне побывать на Кольской сверхглубокой скважине, неподалеку от города Заполярный. Это была очень интересная поездка, знакомство с первопроходчиками «подземного космоса», людьми, которые первыми во всем мире заглянули на глубины в двенадцать километров. Мировая практика пока не знает таких скважин.
Не зря участники международного геологического конгресса, проходившего в Москве в 1984 году, единодушно высказали единственную просьбу — побывать на уникальном сооружении и познакомиться с чудом XX века, созданным руками советских ученых, инженеров и рабочих.
Однако, если вы посмотрите в энциклопедию, то обнаружите, что средний радиус Земли 6371,032 километра. Глубина Кольской сверхглубокой — 12 километров. Ощущаете разницу?.. Изучение глубоких недр пока доступно только лишь косвенными геофизическими методами. И надо сказать, что в арсеналах науки о Земле такие методы имеются. Одни из них — сейсмический и гравиметрический — довольно хорошо известны широкому читателю. Другие — электромагнитные — знакомы меньше. Но именно о них-то и пойдет дальше речь. Заключается электромагнитный метод исследования недр в том, что, создавая на поверхности Земли электрическое поле, геофизики индуцируют электрические токи во внутренних проводящих слоях Земли. Эти токи создают собственное поле, которое и улавливается специальными датчиками на поверхности. Понятно, что токи в недрах, а следовательно, и их поля зависят от электропроводности слоев.
И такие измерения как бы просвечивают Землю, выдавая информацию о состоянии залегающих в глубине пород.
Разработанные методы электромагнитного зондирования, к сожалению, тоже позволяли исследовать глубины Земли лишь на несколько километров. Не хватало мощности передвижных генераторов — источников электроэнергии.
Но вот Институт атомной энергии имени И. В. Курчатова разработал мощные импульсные МГД-генераторы, развивающие в импульсах мощность до 80-100 тысяч киловатт. На перешейке полуострова Рыбачий в Баренцевом море собрали установку из двух спаренных пороховых ракетных двигателей, преобразующих энергию плазмы в электрический ток. Рядом стояли батареи начального возбуждения. Они посылали ток большой силы в катушки соленоидов, расположенных сверху и снизу плазменного канала. Возникающее при этом мощное поперечное магнитное поле тормозит поток плазмы и создает электродвижущую силу. При этом с токосъемников плазменного канала ток шел по толстому алюминиевому кабелю, стекал в море и… дальше по толще морской воды огибал полуостров, чтобы поймать второй конец алюминиевого кабеля.
Так в общем виде выглядит и так в принципе работает МГД-установка «Хибины», предназначенная для электромагнитного зондирования недр. Почему выбрали опять Кольский полуостров? Это легко объяснить: здесь на поверхность выходят древнейшие образования Земли и, как нигде в другом месте, открывается возможность изучения кристаллического фундамента. Кроме того, здесь данные МГД-зондирования можно сравнить с результатами, полученными на Кольской сверхглубокой. А ведь Кольский полуостров — это не просто «каменный заповедник», но и край исключительных подземных богатств, ключ ко многим, еще, может быть, неразведанным месторождениям Севера.
И надо сказать, что оба метода во многом помогли друг другу. На скважине геологи, рассказывая о результатах, не раз многозначительно умолкали, говорили, что столкнулись в процессе бурения и отбора керна с рядом загадок… Тот же мотив звучал и в рассказах участников эксперимента «Хибины».
Но когда свели данные одного и другого исследования, то оказалось, что ряд неясных вопросов одного метода можно интерпретировать с помощью измерений, сделанных вторым…
И последний вопрос: зачем понадобился МГД-генератор? Ответ прост: очень было бы трудно создать другими средствами мобильный генератор на такую мощность в импульсе. А с помощью этой неожиданной техники удалось «просветить» Землю на огромной территории и на десятки километров вглубь. Так новая, можно сказать, новейшая техника, находящаяся еще в стадии разработки, уже дает результаты, служит науке, служит людям.
Заключение
Вы, наверное, заметили, уважаемый читатель, что на протяжении всего повествования текст не раз прерывался рассказами автора о его поездках и впечатлениями об увиденном. Позвольте и заключение сделать в том же ключе. Тем более что у рабочего стола еще стоит не разобранный до конца чемодан, только что прилетевший вместе со мною из Якутии. За шесть тысяч километров летал я в край алмазов и золота, чтобы рассказать о тех, кто работает в суровых местах на вечной мерзлоте и чья работа столь интересна, что ее трудно сравнить с какой-нибудь другой.
Итак, я прилетел туда в октябре. Самолет приземлился на полосе около семи вечера. Было темно. В черном звездном небе длинной извилистой занавеской висело полярное сияние. Пощипывал мороз, скрипел под ногами снег. В Ленинграде я оставил дождь, плюс двенадцать. Встречающие меня сказали, что погода сегодня не холодная, минус двадцать пять…
В поселке, до которого от аэропорта было километров пятнадцать, горели ярко освещенные окна, и в домах от батарей центрального отопления шло живительное тепло. С экранов телевизоров громко и разноцветно передавали новости.
Утром следующего дня радушные хозяева показывали достопримечательности своего поселка: пятиэтажные дома «на ногах» — на сваях, вбитых в вечную мерзлоту, детский сад с зимним садом и большим бассейном, в котором купались и визжали ребятишки. И всюду в домах, в учреждениях масса зелени, от простых, хорошо знакомых домашних цветов и до каких-то экзотических деревьев в кадках и ящиках с землей. Сначала это было зрелищем непривычным. Но потом, поколесив по безлесым просторам заснеженной тундры, я понял смысл этого «злоупотребления» жилой площадью. Там, в тундре, за далекие снежные увалы уходили тонкие фермы с проводами, по которым шла сюда, в это царство вечной мерзлоты, снега и неисчислимых богатств, живительная электроэнергия от далекой электростанции.
Я глядел на тонкие нити, связывающие оазис жизни с питающим центром, и думал: какой наглядный пример великого диалектического закона единства и борьбы противоположностей демонстрируется здесь. С одной стороны, повышая свою энерговооруженность, человек становится сильнее. Все более смело проникает он в чуждые ему условия враждебного мира, не приспособленные для его жизни. Люди освоили заполярные области планеты, начинают обживать мир подводный, работают уже едва ли не по году в орбитальных космических лабораториях. И все это держится на такой тоненькой и такой непрочной на вид проволочке, по которой идет энергия, поступает электричество, обеспечивающее существование человека, человечества, цивилизации. Оборвите ее — и человек погибнет, человечество понесет урон, цивилизация пошатнется. Становясь сильнее, человек одновременно все больше и больше оказывается в зависимости от созданного им для себя искусственного мира взаимодействия природы и общества, в пределах которого решающим фактором стала разумная человеческая деятельность — ноосфера.
Не о том ли писали классики марксизма, говоря, что «сосуществование двух взаимно противоречащих сторон, их борьба и их слияние в новую категорию составляют сущность диалектического движения»?[6]
В 1977 году с группой советских писателей мне довелось побывать в Соединенных Штатах Америки. Мы прилетели в начале осени, когда еще свежи были в памяти нью-йоркцев события 13 июня 1977 года, получившие название «Великого затмения».
В тот день в энергосистеме города-гиганта случилась авария. Одна за другой «вырубились» распределительные сети районов. Улицы многомиллионного людского муравейника погрузились во мрак. «Повисли» лифты в многоэтажных домах и в небоскребах. Остановились поезда метро в подземных туннелях. Прекратилась подача воды в водопроводную сеть. Оборвалась связь. Стали заводы и фабрики на окраинах, застыл порт. По городу понеслась лавина слухов и сообщений о несчастных случаях. Во мраке ночи начались грабежи. Багровое пламя пожаров взметнулось в черное небо. Паника охватила население…
25 часов огромный город был лишен энергоснабжения. По последствиям такую катастрофу можно сравнить лишь со стихийным бедствием. Это пример силы и слабости человеческого общества, поставившего свою жизнь в зависимость от искусственно добываемой энергии. Поистине мы стали пленниками джинна, выпущенного из бутылки. Однако прогресс неостановим. И одним из важнейших средств, гарантирующих от подобных катаклизмов, является повышение надежности энергетических систем.
Вы помните, что на долю топливно-энергетического комплекса СССР приходится примерно пятая часть энергоресурсов всего мира. Мы занимаем второе место по производству электроэнергии. Гигантские генераторы и агрегаты мощностью в сотни тысяч и миллионы киловатт работают на фабриках электричества, которые мы привыкли называть электростанциями.
В нашей стране строятся ЛЭП переменного тока напряжением 750 и 1150 киловольт и постоянного тока на 1500 киловольт. В то же время на полигонах и в лабораториях ведутся испытания моделей, рассчитанные еще на более высокие напряжения.
Немного найдется в мире и таких научных коллективов, таких крупных, оснащенных по последнему слову науки и техники проектных и исследовательских институтов, как у нас. В этом отношении Советский Союз достойно продолжает традиции русской науки. Наши ученые на всех этапах развития науки об электричестве вносили в нее ощутимую лепту. В эпоху изучения статического электричества это были Ломоносов и Рихман, Эпинус, во времена «гальванизма» — Василий Петров. На пороге электротехники стояли Ленц и Якоби. Их эстафету подхватили Яблочков и Лодыгин, Чиколев и Доливо-Добровольский… А ведь, выбрав в качестве предмета описания только энергетику, мы ни словом не упомянули таких гигантов, как Столетов и Лебедев, как Попов…
Невозможно назвать имена всех выдающихся ученых и инженеров, создававших и создающих для нас тот удивительный электрический мир, в котором мы живем. Но мы твердо должны помнить одно — русские ученые, русская наука, равно как и наследующие ее традиции советские ученые и советская наука, сказали и говорят в науке об электричестве свое веское слово.
Электричество (от греческого слова «электрон», или «янтарь») — совокупность явлений, в которых проявляется существование, движение и взаимодействие заряженных частиц.
Электричество — электроэнергия, используемая в народном хозяйстве — основа современной цивилизации, фундамент материально-технической базы коммунизма.
Электричество — основа жизни амебы и комара, рыбы, цветка, любой птицы, любого животного, — и нас с вами.
Электричество — на редкость интересная, удивительная область, отрасль человеческого знания. Мы уже много знаем о ней, но о еще большем, я в этом уверен, пока даже не догадываемся…