Глазами Монжа-Бертолле

fb2

Когда вскрыли гробницу Тутанхамона, ученые не поверили своим глазам. Оказалось, что снедь, погребенная по древнему обычаю вместе с мумией, почти не тронута тленом. Вероятность такого события с точки зрения математики ничтожна. Тем не менее химия знает немало подобных ситуаций и пытается объяснить их с математической строгостью.

Но представьте, что фараон вдруг воскрес и сам принялся за трапезу. Математик бы бросил карандаш и иронически развел руками. Тем не менее биохимику сплошь да рядом приходится иметь дело с процессами, которые столь же невероятны, как и «воскресение фараона». И опять-таки дотошные химики стремятся всюду, где возможно, использовать математические приемы. Спрашивается: зачем?

Прочитайте эту книгу. Вы узнаете:

как с карандашом в руках делаются химические открытия;

в чем не правы ваши учебники химии;

что происходит в таинственных глубинах «Черной пасти»;

почему погиб капитан Скотт;

как в лабораториях появились призраки;

какие материалы нужны, чтобы изготовить мягкий полупроводниковый приемник, который складывался бы, словно носовой платок;

что вы сами тоже почти полупроводник;

из чего построить дом в триста этажей, и много-много ответов на другие наивные глубокомысленные и каверзные «как», «что» и «почему».

Художник А. Блох

На перекрестке старых дорог

2 + 1 = 2. Бывает ли так на самом деле?

Однажды немецкий математик Гаусс вступил в спор с итальянским химиком Авогадро: может ли химия считаться точной наукой?

— Нет, — уверенно настаивал первый.

— Да! — горячо возражал второй.

В подтверждение своих слов Авогадро, подойдя к прибору, сжег 2 литра водорода в 1 литре кислорода. У него получилось ровно 2 литра водяных паров.

— Вот видите! — воскликнул экспансивный итальянец, торжествующе глядя на изумленного немца. — Стоит только химику пожелать, и он сделает так, что 2 + 1 будет 2. Что на это скажет синьор математик?

История не донесла до нас ответ синьора Гаусса. Убедил ли виртуозного немецкого вычислителя эффектный эксперимент? Или же восторжествовал педантизм строго математического ума, для которого исключение никоим образом не опровергает самого правила?

Что ж, скептицизм Гаусса имел под собой твердую почву. Точные математические закономерности для химии в ту пору действительно были исключительной редкостью. Ну, а сегодня, спустя полтора столетия? Можем ли мы назвать химию точной наукой?

В своих воспоминаниях Поль Лафарг приводит мысль Маркса: наука лишь тогда достигает совершенства, когда ей удается пользоваться математикой.

Можно ли назвать химию достигшей совершенства?

Сэр Уильям Томсон, он же лорд Кельвин, не был математиком, хотя математическая строгость присуща почти всем 659 его работам, первую из которых он написал в возрасте десяти лет. Не был он и химиком, хотя найденные им закономерности легли потом в основу многих химических теорий. Но тем более ценно для нас своей беспристрастностью мнение этого человека — физика, равноудаленного от обеих смежных наук.

Что такое математика? Отвечая как-то на этот вопрос, Томсон, не задумываясь, выписал интеграл Эйлера-Пуассона и сказал:

— Математик — тот, для кого справедливость этого равенства столь же очевидна, как дважды два — четыре.

Подинтегральная функция изображается кривой, вздувающейся посредине, как удав, проглотивший слона. Столь невероятную зоологическую ситуацию можно найти лишь в книге Антуана де Сент-Экзюпери «Маленький принц». Правда, глядя на картинку, нарисованную мальчиком, взрослые видели всего-навсего шляпу. Интересно, что нашей кривой математики тоже присвоили имя головного убора — треуголки. Концы «треуголки», или, если хотите, голова и хвост удава, убегают далеко-далеко в равные стороны от нулевой вертикали — оси ординат. И хотя эта фигура не имеет конца и края, ее площадь равна конечной величине — корню квадратному из числа «пи». Ее-то и подсчитывает написанный Томсоном интеграл.

Эта кривая непросто «треуголка». Ее называют «треуголкой Гаусса». Ибо не кто иной, как великий немецкий математик, выявил закономерности, описываемые ею. Да, но при чем здесь томсоновский символ математики? Ведь мы говорим о точности в химии! Вот если бы закон Гаусса, начисто отрицавшего точность химии, описывал химические явления, тогда другое дело. Тогда, пожалуй, и Гауссу пришлось бы усомниться в своей категоричности. Так что же все-таки: имеет какое-нибудь отношение «гауссова треуголка» к химии или не имеет?

Ответ на этот вопрос читатель найдет, одолев предлагаемую книгу.

Математика неотделима от чисел. «Миром управляют числа» — так считал древнегреческий ученый Пифагор, который впервые назвал вселенную «космосом» — строем, складом. И предметом философского осмысления пифагорейцев был именно космос — нечто стройное, целостное, подчиненное законам гармонии и числа. Пифагорейцам принадлежат замечательные исследования и в области акустики. В опытах над натянутыми струнами были установлены законы музыкальных созвучий. Они выражались целочисленными арифметическими отношениями между колебаниями всей струны и ее долей (основной тон и обертоны).

Пифагорейскую «алгебру гармонии» оспаривал Зенон. Это о нем писал Пушкин:

«Движенья нет!» — сказал мудрец брадатый…

Действительно, рассуждал античный философ, траектория движущегося тела, скажем стрелы, состоит из отдельных точек. В каждый момент стрела покоится в одной из точек. Стало быть, движение — сумма состояний покоя? Но это же парадокс!

Именно от апорий Зенона ведет свою родословную идея непрерывности, лежащая в основе анализа бесконечно малых, интегрального и дифференциального исчислений.

Бесконечна последовательность бесконечно умаляющихся членов ряда, а имеет конечный предел. Конечна траектория стрелы, а ее можно разбить на бесконечное количество сколь угодно малых интервалов. Более того: даже суммирование бесконечно длинной фигуры («треуголки Гаусса») может дать конечную площадь!

А в химии?

Доктрина целочисленных соотношений издавна провозглашена древним пробирным искусством. Она гармонирует с представлениями о дискретности (прерывности) материи — вспомните арифметику в опыте Авогадро! И неспроста: ведь слово «атом» в буквальном переводе значит «неделимый».

Частицы и прерывность… Совместимы ли с этими понятиями методы высшей математики, пронизанные идеей непрерывности при самых малых изменениях в состоянии системы?

История этого вопроса тоже затронута в книге.

Математика без чисел вообще — мыслимо ли такое? Вполне. Примером служит необычная геометрия — топология. А приходилось ли вам слышать о топологической химии?

Кибернетика. Когда произносишь это слово, меньше всего думаешь о химических реакциях. Между тем пламя свечи — самая обыкновенная кибернетическая система. И она строго описывается в терминах науки об управлении и связи. К ней приложимы и математические формулы. Как говорится, дважды два — стеариновая свечка…

Мы начали с опыта Авогадро, который продемонстрировал своеобразие химической «арифметики». Да, в химии не всегда результат сложения оказывается равным сумме слагаемых. И не только в реакциях. В химических соединениях тоже. В последнем случае говорят о неаддитивности свойств. Не будь химическим системам присуща подобная особенность, не было бы того, что мы называем человеческим разумом.

— Ну хорошо, — произнесет читатель, терпеливо добравшийся до этого места. — Конечно, все сказанное не лишено определенного интереса. Но химия служит человечеству с незапамятных времен, вовсе и не претендуя на какую-то там математизацию. Имеет ли применение математики в химии практическое значение?

Действительно, имеет или нет?

Глава 1

Наследие призрака?

Они были ничуть не похожи, эти двое. Один — его звали Гаспар — был жгучим брюнетом и носил парик с длинной косой. Другой, Клод-Луи, предпочитал ходить без парика, подставив ветру свои белокурые развевающиеся волосы. Еще больше различались их профессии: первый был математиком, второй — химиком. Но их имена всегда звучали рядом: ученые хорошо знали друг друга и раньше, а сейчас, когда оба они волею судьбы оказались участниками знаменитой египетской кампании Наполеона, их окончательно связала крепкая дружба.

Третий явился нежданно-негаданно. «Монж-Бертолле» — так окрестила его людская молва. Он был жгучим брюнетом и носил парик с длинной косой, твердили одни. О нет, напротив, он предпочитал ходить без парика, подставив ветру свои белокурые развевающиеся волосы, возражали другие. Солдатским пари конца не было видно. Но вдруг выяснилось, что речь шла о… призраке! Монж-Бертолле не существовал вовсе — точнее, не был единым лицом. Да, речь шла о двух разных людях: ведь имена их были неотделимы друг от друга, хотя сами они, по-видимому, попадались на глаза солдатам порознь. Так по чистому недоразумению были слиты воедино геометр Гаспар Монж и химик Клод-Луи Бертолле, ведавшие научной стороной военной экспедиции Наполеона в страну фараонов.

Трудно сказать, чего больше в этом эпизоде: курьезной занимательности или глубокого символического смысла. Тесная дружба химика-блондина и математика-брюнета была отнюдь не только проявлением пылкого французского темперамента. Она стала знамением целой эпохи, когда началось первое робкое сближение и плодотворное взаимообогащение наук, являющих на первый взгляд не меньший контраст, чем брюнет и блондин, черное и белое.

Принято считать, что чернота и белизна вкупе всегда дают серость. Далеко не всегда! Надо только уметь присмотреться. Перелистайте еще раз доброго старого Перельмана, этого волшебника, заронившего не в одну ребячью душу искру интереса к сухой и чопорной с виду, но удивительно щедрой к своим избранникам старушке математике. Там черным по белому значится (и в этом убедит вас незатейливый оптический эксперимент), что именно наложение черного цвета на белый создает иллюзию блеска!.

Иллюзию? Так, может статься, дружба химии и математики тоже построена на иллюзиях и столь же бесплодна, как и военная авантюра генерала Бонапарта в стране фараонов? Давайте присмотримся повнимательней.

Хорошо известно, что Гаспар Монж был не только создателем начертательной геометрии — той самой «начерталки», которую, ой, как не любят студенты химических вузов. Ему принадлежат блестящие экспериментальные работы по химии. Он успешно занимался опытами по разложению воды, разрабатывал способы извлечения из африканских песков селитры для выделки пороха. Совместно с Бертолле он открыл «гремучее серебро» и опубликовал наставление рабочим-металлургам, как выплавлять сталь.

А Бертолле? Он тоже увековечил свое имя отнюдь не одной бертолетовой солью, к которой, кстати, не питают особых симпатий студенты-математики. Аптекарь, увлекшийся химией и посвятивший ей всю жизнь без остатка, он не получил специального математического образования. Но тем большего изумления достойна недюжинная математическая интуиция ученого-химика, глубоко постигшего сущность динамических равновесий механики, чтобы перенести эти физико-математические представления на химические системы.

«То было время, — писал Дюгем в своей биографии Монжа, — когда новая химия, выросшая из опытов Лавуазье, распространяла повсюду свои идеи и терминологию, а система молекулярных сил — притягательной и отталкивательной — имела своим законодателем Лапласа, применявшего в этой области точные математические приемы».

Энциклопедически образованный ученый, Бертолле был в курсе всего комплекса теоретических воззрений, господствовавших в науке того времени. И ум его захватила мысль, почерпнутая из геометрии и анализа бесконечно малых величин. Бертолле давно уже обсуждал ее со своими неразлучными друзьями — Монжем и Лапласом. Непрерывность преобразований! Но только ли в математике? Быть может…

Да, и в химии тоже!

Эта идея внезапно осенила ученого, когда он наблюдал кристаллизацию солей в натронных озерах Египта. Он видел, что состав содовых осадков непрерывно изменяется в зависимости от внешних условий. Чем выше поднималось к зениту немилосердно палящее африканское солнце, тем более жадно слизывал прибой соленую белесую кайму вдоль побережья. Когда над темными силуэтами древних пирамид недвижно нависали хрустальные блестки далеких созвездий, соли снова выбрасывались на берег. И химический состав их как в прибрежных водах, так и в донных отложениях становился уже иным! Еще заметнее был контраст между составом в летние и зимние месяцы.

Не без тайных сомнений внимала аудитория уже немолодому, имевшему заслуженный авторитет, но очень экспансивному и порывистому пришельцу из далекой Франции, когда тот на заседании Египетского института в Каире излагал свои соображения.

Шутка сказать: общепринятый взгляд на химическое взаимодействие неверен!

Еще во времена мрачного средневековья в лексиконе алхимии появился термин «химическое сродство». Под ним адепты полуколдовского искусства подразумевали причины, побуждающие вещества к химическому взаимодействию и прочно удерживающие разнородные элементы в соединении. В основе самого понятия «сродство» лежало предположение, что химический союз возможен лишь между родственными частицами, которые взаимно тяготеют друг к другу, подходя одна к другой, как ключ к замочной скважине. Лишь в конце XVIII века наивные представления алхимиков сменила стройная теория химического сродства. Ее создал шведский ученый Бергман. Преподаватель математики, ставший профессором химии и минералогии, он перенес в химию механистические идеи физики. Мельчайшие частицы вещества притягиваются неодинаково потому, считал Бергман, что их форма и расположение различны. И частица подбирает себе такого партнера, с которым она соединяется легче, прочнее, лучше. Бергман полагал, будто сродство между двумя реагирующими веществами всегда остается постоянным и не зависит от их количеств. А раз так, то реакция должна протекать только в одном определенном направлении. Вспять она не может пойти независимо от того, каковы внешние условия.

— Нет! — сказал Бертолле. — Это вовсе не процесс, неотвратимо направленный всегда в одну сторону, от начала к концу, от взаимодействия исходных веществ к выделению конечных продуктов. Это подвижное равновесие, которое устанавливается в результате двух параллельных реакции, идущих одновременно в противоположных направлениях! Но самым парадоксальным казалось другое заключение Бертолле. Исходя из непрерывности и обратимости химического процесса, ученый пришел к убеждению: состав образующихся соединений должен изменяться тоже непрерывно, а значит… быть переменным!

Шел 1799 год. В это самое время в далекой Испании, отрезанной от Африки враждебной английской эскадрой, заканчивал свое исследование другой замечательный химик — Жозеф-Луи Пруст. У него была великолепно оборудованная лаборатория в Мадриде. По распоряжению министра Прусту для изготовления посуды предоставили почти 65 килограммов платины. Такого количества благородного металла не видывали все испанские лаборатории, вместе взятые, даже столетие спустя. И не только испанские. Известный шведский химик Берцелиус имел один-единственный платиновый тигель. Да и то позаимствованный у коллеги — Гисингера. Сложнейшие аналитические процедуры с двумя тысячами веществ в этом драгоценном тигле принесли славу Берцелиусу. Легко себе представить, насколько богаче были возможности у Пруста. А его скрупулезности и тщательности мог позавидовать сам Берцелиус.

Здесь, в спокойной обстановке королевской лаборатории, испанский профессор провел тысячи экспериментов, прежде чем отважился на публичное выступление. В нем он со всей убежденностью формулировал закон постоянства состава.

Да, идеи путешествуют без виз.

Так на рубеже двух столетий появились два разных ответа на один и тот же вопрос. Вопрос огромного теоретического значения. Вначале авторы даже не подозревали о работах друг друга. Но столкновение двух диаметрально противоположных взглядов на природу химизма было неминуемо. Мало-помалу разгорается знаменитая полемика, «столь же замечательная как талантом, так учтивостью и хорошим вкусом. Как по форме, так и по содержанию это один из прекраснейших образцов научной дискуссии», — писал французский химик Дюма.

Восемь долгих лет длится публичный диспут, за которым напряженно следит весь ученый мир. Словом и делом отстаивает Бертолле свою правоту. Он проводит серию экспериментов, чтобы подтвердить результаты, полученные в беспокойной походной обстановке. Смотрите, говорит он, одни и те же металлы соединяются с разными количествами кислорода. К примеру, свинец. У его окисей пропорции между Pb и O образуют непрерывную последовательность.

Но Пруст бесстрастно и методично опровергает доводы своего оппонента. Он доказывает, что Бертолле оперирует плохо очищенными веществами. Что он упускает из виду проверить, не с грубой ли смесью имеет дело. Что его анализы не отличаются необходимой точностью.

Пруст демонстрирует высший класс ювелирного искусства в химии. Снова и снова придирчиво и беспристрастно экзаменует он сам себя, пока не убеждается в максимально возможной чистоте исследуемых соединений. И вот результат: да, соединения свинца действительно составляют ряд. Но этот ряд прерывен! Число членов в нем отнюдь не бесконечно, а равно четырем. И каждый из четырех окислов свинца всегда имеет один и тот же состав. Конечно, если в образце присутствуют не индивидуальные вещества, а их смеси, то может показаться, будто элементы и впрямь соединяются между собой в любых соотношениях.

«Соединение есть привилегированный продукт, которому природа дала постоянный состав, — резюмирует Пруст. — Природа, даже через посредство людей, никогда не производит соединения иначе, как с весами в руках, — по весу и по мере. От полюса до полюса соединения имеют тождественный состав. Их внешний вид может различаться в зависимости от способа их сложения, но их свойства никогда не бывают различными. Никакой разницы мы не видим между окисью железа южного полушария и северного; японская киноварь имеет тот же состав, что и у испанской киновари; хлористое серебро совершенно тождественно, независимо от того, происходит оно из Перу или из Сибири; во всем свете имеется только один хлористый натрий, одна селитра, одна сернокальциевая соль, одна сернобариевая соль. Анализ подтверждает эти факты на каждом шагу».

Почва уходит из-под ног Бертолле. Сколько фактов «против» и хоть бы один «за»! Тогда парижанин переводит экспериментальное состязание в терминологический спор. Что подразумевает мадридский ученый, когда он говорит о смесях и соединениях? В чем разница между ними?

Нельзя, конечно, утверждать, что такой поворот дела смущает Пруста. Просто его осмотрительной натуре куда больше импонирует сухой язык цифр лабораторного журнала, чем опасное витание в тумане поспешных теоретических обобщений. Поэтому испанский профессор ограничивается списком примеров. Вот-де смеси, а вот химически индивидуальные соединения. И действительно, границы намечены четко!

Но тут Бертолле вводит в бой резерв, таившийся до поры до времени в засаде. Растворы! Сумеет ли Пруст доказать, что у них постоянный состав?

Увы, и это не спасает французского ученого. В определении понятия «раствор» царил тогда сущий произвол. Смесь это или соединение? Четкого однозначного ответа химия не знает. Лишь много лет спустя появится менделеевская теория растворов.

Что есть истина? Так вроде бы, если верить библейской легенде, спрашивал Понтий Пилат у Христа. Бертолле не претендовал на святость, но если бы он знал, что его идеи будут распяты!..

К 1809 году для всех стала очевидной шаткость позиций, занимаемых Бертолле. Его выводам суждено крушение. Химики единодушно рукоплещут славной победе испанского ученого.

Идеи Бертолле, которые еще совсем недавно привлекали рой почитателей своей логической стройностью, глубокой внутренней связью с математическими теориями, дерзостью обобщений, теперь отвергнуты химиками. Выплеснуты за борт вместе со всеми драгоценными крупицами истины, которые могли бы дать всходы уже тогда, а не много лет спустя, как случилось в действительности. Надолго забыто учение Бертолле о подвижном равновесии, которое лишь через семьдесят лет обретет строгую математическую формулировку в виде закона действующих масс. Прочно забыто и то обстоятельство, что Бертолле, утверждая в химии непрерывность, вовсе не отрицал существования соединений с постоянным составом, а считал их просто-напросто частным проявлением своей более общей классификации. Но такова уж, видно, жестокая логика непримиримой идейной схватки: если победителей не судят, то побежденных судят вдвое строже, вменяя им в вину любое инакомыслие. Даже такое, которое при ближайшем рассмотрении могло бы стать ценным приобретением для самих победителей.

Казалось бы, только что наметившаяся помолвка химии и математики окончательно расторгнута. А химии уготовано идти своей дорогой, отгородившись китайской стеной от строгих критериев точных наук. Но нет, этого не происходит! Напротив, именно закону постоянства состава суждено начать эпоху математизации древнего пробирного искусства. Эпоху, пришествие которой предсказывал еще Михаил Васильевич Ломоносов в «Элементах математической химии».

Не успели еще зашуметь овации в честь Пруста, а закон постоянства состава уже пережил свой новый триумф. На этот раз открытие свершилось в далекой туманной Англии. «Далекой» потому, что страна Альбиона была практически отрезана Наполеоном от остальной Европы задолго до провозглашения в 1806 году континентальной блокады.

Рассеченная на куски военными конфликтами, Европа не переставала жить в едином ритме научных исследований.

Учитель математики Дальтон вовсе не был столь виртуозным экспериментатором, как Пруст. Человек, более близкий к абстрактным числовым соотношениям, он проводил химические анализы куда грубее, зачастую округляя полученные результаты. Пытаясь проникнуть во внутренние механизмы химических превращений, Дальтон стоял по духу гораздо ближе к Бертолле, для которого главным стремлением был теоретический поиск, подкрепленный математическими приемами. Именно это помогло Дальтону сделать следующий шаг — открыть закон кратных отношений.

Да, оказалось, что постоянство свойственно не только составу соединений. Постоянными являются и соотношения «паев», долей участия элементов в соединениях. Причем эти доли относятся друг к другу как простые целые числа. Скажем, «паи» кислорода в соединениях с азотом относятся друг к другу, как 1:2:3:4:5. Ибо азот может соединяться с кислородом в пропорциях 2:1, 2:2, 2:3, 2:4, 2:5. Так и просятся на бумагу формулы N2O (2:1), NO (1:1, или, что то же самое, 2:2), N2O3 (2:3), NO2 (1:2, то есть 2:4) и N2O5 (2:5).

Но в том-то и дело, что Дальтон не прибегал к подобным обозначениям! Нет, не потому, что он, учитель математики, был несведущ в вопросах химической символики или вопреки общепринятым правилам предпочитал оригинальничать, пользуясь своими кружочками и треугольничками. Просто такой язык еще не был создан. Он появился чуть ли не на десять лет позже в трудах Берцелиуса. И появился в значительной мере благодаря тому, что Дальтон установил закономерность, названную его именем.

Закономерность, которую чуть было не вывел Пруст. Диву даешься, как мадридский профессор не стал автором сразу двух великих открытий, столь тесно связанных своей внутренней логикой! Ведь он блуждал в двух шагах от находки Дальтона!

Но ирония истории неистощима.

И Бертолле и Пруст были вовлечены в водоворот политических событий. Только по-разному сложились судьбы оппонентов. Патриот и революционер, первый стал впоследствии ярым приверженцем Наполеона. Обласканный правительством, всемерно поощряемый за успешные работы на благо победоносной империи, Бертолле изведал всю горечь поражения в научной полемике. А Пруст? Увенчанный славой первооткрыватель знаменитого закона постоянства состава пал жертвой наполеоновской тирании. Не успел Пруст подписать к печати последнюю работу из серии своих блистательных исследований, как его постиг жестокий удар. Мадридская лаборатория со всей ее коллекцией платиновых приборов и химических соединений подверглась опустошительному разгрому французскими войсками, подавлявшими антинаполеоновское восстание испанского народа.

Воистину ирония истории неистощима!

Самого профессора, к счастью, не оказалось в лаборатории. Его не было и в Испании. Он отдыхал во Франции. Потрясенный случившимся, Пруст удалился в захолустный городок. Влача полунищенское существование, нелюдимый и гордый, он с презрением отклонил предложение принять сто тысяч франков, которые выделил ему Наполеон, чтобы Пруст смог внедрить свою технологию сахароварения.

Быть может, именно эти жизненные невзгоды помешали Прусту обнаружить кратность атомных отношений?

Если проследить его публикации во время восьмилетнего спора с Бертолле, можно убедиться, что ученый задолго до мадридской катастрофы был на волосок от выводов, которые стали достоянием Дальтона. И мог их сделать уже тогда… Мог. А вот поди ж ты: не сделал.

Увы, наши недостатки зачастую не что иное, как продолжение наших же достоинств. По свидетельству члена-корреспондента АН СССР Капустинского, Прусту помешало как раз то, что обеспечило блистательную победу над Бертолле: «его осторожный и даже эмпирический подход, его привычка уж очень обстоятельно экспериментировать; особая тщательность его анализов, отвергающая мысль об округлении результатов».

Правда, у Дальтона было еще одно преимущество. В своих расчетах он выражал состав не в весовых процентах, как Пруст, а в атомных пропорциях.

В самом деле, даже очень проницательному глазу не так-то легко подметить какое-либо правило на примере метана CH4 и этилена C2H4, если состав обоих соединений выразить в процентах: у метана 74,87 процента C и 25,13 процента H, у этилена 85,63 процента C и 14,37 процента H. Зато дело существенно упрощается, если подсчитать количества C, приходящиеся в каждом углеводороде на один «пай» H. Они равны 2,979 для CH4 и 5,958 для C2H4. Эти числа относятся, как 1:2. Имейте в виду, повторяю, что в те времена еще не существовало формул типа CH4 или C2H4, на которых сегодня основана вся стехиометрия (количественные операции с формулами и уравнениями).

Любопытная мораль: как много может дать химии дружба с карандашом, а не только с пробиркой!

Казалось бы, особой разницы нет, как вычислять состав соединений. Тем более что проценты так лестно зарекомендовали себя в экономических операциях! Ан нет, традиционные мерки не всегда впору новым явлениям.

В дальнейшем мы не раз встретимся с примерами замечательных теоретических и практических успехов в химии, которые стали результатами усовершенствования — нет, не аналитических или синтетических методов, не измерительной аппаратуры — математического подхода.

Идея дискретности (прерывности) состава химических соединений с железной логикой вытекала из атомистических представлений. И законы Пруста и Дальтона на целое столетие предопределили победный марш химии.

Атомно-молекулярное учение. Теория валентности. Бутлеровская теория химического строения. Периодическая система элементов Дмитрия Ивановича Менделеева. Основы основ современной химии! А краеугольные камни этих величественных зданий были заложены Прустом и Дальтоном на обломках идеи Бертолле.

Из законов Пруста и Дальтона вытекали глубокие философские следствия. Если химические тела соединяются лишь в определенных пропорциях, значит число таких химических комбинаций не может быть бесконечно велико. Азот с кислородом способен дать неисчислимое множество смесей. Но соединений только пять: N2O, NO, N2O3, NO2, N2O5. Смеси этих окислов могут опять-таки содержать самые разнообразные соотношения между количествами N2 и O2. Но если разделить смесь, то в любой из составных частей пропорции будут либо 2:1, либо 1:1, либо 2:3 и так далее. Получится всего пять индивидуальных веществ. От смеси ничего не останется. А раз так, то все многокрасочное царство бесчисленных минералов можно разложить на конечное число более простых тел. Неких неделимых первооснов материи. Так зародилось понятие о химическом индивиде.

В свое время Бертолле, затеяв разговор о содержании терминов «смесь» и «соединение», затронул один из самых важных вопросов, которые когда-либо волновали химиков.

Слово «индивид» заимствовано из латыни. Нечто единое, неделимое, целостное — вот его смысл. У каждой науки есть свой индивид, который служит главным предметом изучения. Скажем, в зоологии это кошка, собака, слон, человек — любое существо. Расчлени индивид — и объявится новый объект исследования, которым занимается уже иная наука. Например, органами живого тела интересуется анатомия. Клеткой — цитология. Внутриклеточными структурами — биохимия. И так далее.

А химия?

Еще Лавуазье подразделял химические тела на простые и сложные. Первые состоят из одного элемента. Вторые — из двух или более. Но лишь после торжества идей атомистики стало ясно, что речь идет о веществах, которые составлены из одного сорта атомов или молекул.

Конечно, молекулу можно расщепить на атомы. По тогда она прекратит свое существование как химический индивид. Правда, объявятся новые индивиды — атомы. Но разве не ясно, что это часть целого? Почему же одни химические индивиды (атомы), соединяясь, способны образовать новые химические индивиды (молекулы), а другие нет? А если попытаться объединить несколько сортов молекул, что будет? Химический индивид?

Нет, смесь! Если, конечно, молекулы химически не взаимодействуют друг с другом. Так отвечал Пруст своими опытами на каверзный вопрос Бертолле. Ведь у каждой составной части, входящей в смесь, свои, особые, неповторимые химические и физические свойства. И постоянный неизменный состав.

Например, горсть солевых отложений со дна африканского натронного озера — смесь химических индивидов. А сода и поваренная соль, входящие в эту смесь, — химические индивиды. Каждое из этих веществ представлено суммой одинаковых молекул. Атомы же, объединенные в их молекулах, разные. И пропорции у них неодинаковы.

Но почему так? Чем объяснить, что у природы две равные арифметики — одна для смесей, другая для соединений? Почему атомы в обычной смеси могут находиться в любых соотношениях, а вступают в химический союз лишь в заранее предписанных дискретных пропорциях? Какая разница между силами, слагающими атомы в молекулу, и силами, объединяющими молекулы в цельное тело — твердое, жидкое или газообразное?

Загадка химического индивида порождала десятки других загадок. И химики с нетерпением и энтузиазмом принялись за дело.

«Разделяй и властвуй!» — под таким девизом химия стала наводить порядок в мире атомов и молекул.

Овладеть секретами химических превращений, вникнуть в природу химических индивидов было невозможно без приготовления чистых препаратов. Однако получить их оказалось делом нелегким. Погоня за чистотой властно потребовала усовершенствовать способы разделения смесей. И приемы контроля за степенью загрязненности.

Исстари подметили люди: ложка дегтя портит бочку меда. Пусть ложка вмещает 10 граммов. А бочка — 1000 килограммов. Легко прикинуть загрязненность в этом случае: 0,001 процента. Не так уж она и велика. А все же недопустима. Совсем просто загрязнить вещество до такой степени. Зато насколько труднее добиться подобной чистоты: 99,999 процента — три девятки после запятой!

Чтобы очистить воду от минеральных солей, ее приходится дистиллировать — выпаривать и собирать в специальную лабораторную посуду со всеми предосторожностями. Даже многократная перегонка и то едва ли обеспечит чистоту выше 99,99 процента. А чтобы избавиться от заметных примесей углекислого газа, азота и кислорода, попадающих в воду из воздуха, немецкому химику Кольраушу понадобился не один год!

И тем не менее попытки химиков получить сверхчистые вещества становились все упорнее и упорнее. Многие годы, объявив войну примесям, терпеливо, настойчиво проводили ученые свои эксперименты.

И тут обнаружились удивительные вещи. После двадцати семи лет высушивания сероуглерод изменил температуру кипения. Причем весьма заметно — больше чем на треть! Раньше кипел при 49,5 градуса. Так и было записано в справочниках. А стал кипеть при 80! У бензола, который сушился восемь с половиной лет, точка кипения подпрыгнула на 26 градусов.

Мало того. С повышением чистоты веществ менялись и химические их свойства. Угарный газ не горел в кислороде. Водород не соединялся с хлором, гремучий газ не взрывался, нашатырь не распадался, как обычно при возгонке, на аммиак и хлористый водород. Вот что наделала простая операция — высушивание реагентов!

Это выглядело потрясающе. Впрочем, судите сами. Точные науки немыслимы без измерений. Но любые измерения — это сравнение с эталоном. Например, ртуть служит образцом при определении стандартной единицы электрического сопротивления. Удлинение столбика ртути в термометре отмечает повышение температуры. Ртуть работает и в манометрах. Во всех этих случаях мы опираемся на постоянство свойств чистого эталона. Только вот беда: они, оказывается, не остаются неизменными! Например, девятилетняя сушка приводит к тому, что у ртути температура кипения повышается на 62 градуса. 62 градуса! Наверняка и прочие свойства нашего жидкого металла зависят от степени очистки. В том числе электропроводность, удельный вес и способность расширяться при нагревании.

Фундаментальнейшие физические константы оказались в полной зависимости от чистоты веществ. Иными словами, от того, насколько близко удалось придвинуться к загадочному химическому индивиду.

И это еще не все!

Вот уравнение реакции: 2H2 + O2 = 2H2O. Все химические знаки написаны безошибочно. Тем не менее перед нами фикция! По крайней мере идеализация.

Единой химической формулой можно изобразить состав лишь идеально чистого вещества. Между тем высушенные до предела водород и кислород не взаимодействуют. Выходит, чтобы реакция пошла, нужны примеси. Но тогда их участие в процессе придется описывать дополнительно еще одним уравнением! Каким? Очевидно, тем, которое показывает участие загрязнений во взаимоотношениях между химическими индивидами.

Вот и получается, что первоначальное уравнение не отражает всей сложности описываемого им явления. И все же без языка формул и уравнений немыслим прогресс химии.

Композитор записывает новорожденную мелодию нотами: «до», «ре», «ми», «фа», «соль» и так далее. Однако реальные звуки, соответствующие этим нотам, никогда не бывают чистыми. Извлекаемые ли из инструментов, рожденные ли голосовым аппаратом, они всегда сопровождаются примесями обертонов. Звуки чистые, без обертонов, — явление столь же исключительное, как и химический индивид. Однако не будь нотной азбуки, что сталось бы с музыкальным творчеством?

Так, пожалуй, и в химии. Именно введению символов в лабораторный обиход во многом обязана своими успехами теоретическая химия. Да и не одна теоретическая (вспомните хотя бы органический синтез!). Только очень скоро выяснилось, что химические формулы дают идеализированное представление о составе соединений и о характере взаимодействий.

Так закон постоянных и кратных отношений породил проблему химического индивида.

Мысленно представить себе, что такое химический индивид, сравнительно легко. Вещество, составленное из одинаковых атомов или молекул. Результат простой арифметической операции: чистое вещество равно грязное вещество минус примеси. Мед, из которого удален деготь и который разделен на индивидуальные органические соединении. Но это теоретически. А вот экспериментально…

Химикам так хотелось взглянуть хотя бы одним глазком, что же это за штука — химический индивид. Ведь его до сих пор никто не видел. Он существовал лишь в воображении ученых. Даже Пруст в своих тщательнейших анализах имел дело с веществами, которые никак не назовешь абсолютно чистыми. Правда, степень их загрязненности была ничтожной. Но ведь химический индивид — это стопроцентная чистота! Ни одной чужеродной молекулы.

Бурно совершенствовались способы разделения смесей и очистки веществ. А химический индивид оставался по-прежнему недосягаемым идеалом. Этаким призраком в реторте. Но самое главное — трудно было установить: пойман, наконец, призрак или нет?

Очистить вещество — титанический труд. Однако это всего лишь полдела. Надо еще проконтролировать степень чистоты. Определить, какие примеси и в каких количествах затаились где-нибудь в потаенных уголках исследуемого препарата. Вот тут и начинаются утомительные и рискованные аналитические процедуры. Рискованные потому, что очищенное вещество очень легко загрязнить снова.

Известен случай, когда у одного ученого в анализируемых пробах обнаружилось золото. Его было очень немного, но у аналитиков совсем иное мнение на этот счет. Ничтожнейшие примеси порой сводят на нет усилия целого коллектива. Но откуда взялось золото? Вроде бы времена алхимии безвозвратно канули в прошлое. Долго выискивали причину. Оказалось, следы металла были занесены в колбу самим экспериментатором! А все потому, что ученый во время опыта машинально поправлял очки в золотом оправе.

Металлические зубы, кольца, маникюрный лак, губная помада, запах духов — все это далеко не безобидные гости в аналитической лаборатории. Недопустимо, например, определять малые количества цинка, если на руки нанесен парфюмерный крем. Он содержит окись цинка.

Вопреки общепринятому представлению о взаимоотношениях между человеком и химикалиями здесь приходится оберегать химические препараты от человека, а не наоборот.

Посуда, самая что ни на есть чистейшая, как, впрочем, и любая аппаратура, тоже способна служить источником загрязнений. И чем чище препарат, тем он привередливее. Там, где имеют дело с особо чистыми продуктами, на учете каждая пылинка. Считается совершенно недопустимым, когда на 10 квадратных сантиметров рабочей поверхности (площадь большой почтовой марки!) приходятся две пылинки за шесть часов. И пылинка не должна быть по размерам больше 0,005 миллиметра! Уместно напомнить, что в одном стакане лондонского воздуха больше пылинок, чем жителей во всей британской столице.

Короче говоря, чистилище препаративной химии оказалось бессильным обратить «нечистых» в «чистых». Химический индивид не поддавался ни на какие ухищрения охотников за сверхчистыми. Но тем больше распалял он воображение химиков. Его свойства не давали им покоя. Неужели невидимка неуловим? Но даже если это и так, то разве нельзя найти косвенные методы изучения его свойств?

Поиск продолжался.

Тем временем все более пристальное внимание охотников за чистотой стала привлекать… грязь. Да, грязь — те самые зловредные примеси, которые попортили так много крови искателям химического индивида.

Металлурги давно уже заметили, что примеси серы или фосфора, даже незначительные, что-нибудь около 0,1–0,05 процента, сильно меняли свойства стали, делали ее ломкой, хрупкой. Некоторые загрязнения, наоборот, действовали на металл благотворно. Известно, что проволока сечением 1 квадратный миллиметр, изготовленная из очень чистого железа, выдерживает груз в 20 килограммов. А вот стальная нить той же толщины — в 10, а то и в 20 раз прочнее!

Сталь не что иное, как загрязненное железо. В ней от 0,2 до 1,7 процента углерода. Если углерода больше — перед нами чугун, если меньше — ковкое железо. Не стоит, пожалуй, объяснять, что такое ковкость. Важно лишь отметить, что от этого свойства не остается и следа при переходе от железа к чугуну. Чугун вовсе не уличишь в мягкотелости железа. Между тем разница ничтожна — какие-нибудь полтора процента углерода!

А сталь? Упругая, твердая, прочная, она куда менее податлива под ударами молота или штампа. Однако, не обладая ковкостью железа, она не страдает и хрупкостью чугуна. Какое несходство в механических свойствах! И все на коротенькой дистанции — от десятых долей до нескольких процентов углерода. Откуда такие скачки? Какова роль углерода и прочих примесей?

Отнюдь не праздное любопытство двигало рукой ученых, настраивавших все новые приборы для исследования металлической структуры. Век стали поднимался над планетой в грохоте созидания и разрушения. Сверкающие колеи железных дорог перерезали континенты. Над свинцовой рябью рек нависали ажурные фермы мостов. Паутина проводов опутывала небо. Острые кили могучих кораблей рассекали океанские воды. Грузные стволы орудий зловеще поглядывали своими жерлами в лицо врагу. Всюду был нужен металл, металл. И не просто металл. Металлу требовалось придать особые качества, чтобы он, буде ему придется сокрушать или строить, работал безотказно. Упругость, твердость, тягучесть, жаропрочность, электропроводность, кислотоупорность — сколько разных потребностей выдвигала практика!

Ничего нет удивительного, что практика заинтересовалась смесями. А теория? Какие у нее были возможности?

Вот что писал в 1885 году русский ученый В. Ф. Алексеев: «Как давно известны, например, многие металлы и как ничтожны наши сведения о сплавах их между собою! Для большинства сплавов даже не известно, будут ли они физически однородны или нет… Между тем немало производилось самых тщательных исследований над сплавами, и потому, если сведения о них все-таки остаются очень неудовлетворительными, то это зависит единственно от того, что шли до сих пор чисто эмпирическим путем, без всякой руководящей идеи».

Тщательно отполированная стальная пластинка — разве что зеркало может соревноваться с ней своей гладкой и однородной поверхностью. Но так казалось лишь невооруженному исследовательскому оку. Стоило нацелить на поверхность металла зоркий зрачок микроскопа, как картина тотчас менялась. Сразу бросались в глаза неровности, шероховатости, следы непонятных вкраплений. Еще резче проявлялась неоднородность структуры у шлифа — пластинки, подвергнутой специальной химической обработке, например травлению кислотой. Металлография, зародившаяся в дымной атмосфере сталелитейных заводов, помогала решать многие насущные технологические вопросы. Но еще больше вопросов она ставила — и не только перед химией. Перед физикой тоже.

Что представляли собой мельчайшие ячейки в стальном шлифе? Их было много; одни посветлее, другие потемнее, они напоминали смесь разнородных кристалликов. Крупинки углерода вперемешку с зернами железа? Или нет? Если нет, тогда что?

В 1893 году мир облетела сенсация. Изобретатель электрической печи Муассан сообщал, что ему удалось получить искусственные алмазы. Он добавлял к расплавленному железу графит и быстро охлаждал полученную массу. Чугун, как известно, расширяется при охлаждении. Образовавшаяся на поверхности плотная корка стискивала раскаленное месиво. Растворяя в кислотах застывший сплав, Муассан обнаружил крохотные кристаллики, напоминавшие алмазы своим видом и твердостью.

Первым усомнился в справедливости выводов Муассана русский минералог П. Н. Чирвинский. Он направил в «Бюллетень французского химического общества» свое опровержение: Муассан получил вовсе не алмазы! То были карбиды — соединения металла с углеродом. Где там! Редакция отклонила работу Чирвинского. Мотив: нежелание огорчать председателя общества. Еще бы, ведь президентское кресло занимал сам Муассан…

Другой журнал, нью-йоркский, проявил не меньшую щепетильность в вопросах научной этики: «Американцам не к лицу критиковать Муассана». Деликатность или мракобесие? Как бы то ни было, Муассан вошел в историю как создатель искусственных алмазов. А наука еще долгие годы оставалась в неведении: какие явления сопутствуют плавлению и отвердеванию черных и цветных металлов? Что представляют собой сплавы — смеси элементов или химические соединения?

Что же придавало податливому тягучему железу то упругую несокрушимость булатного клинка, то хрупкую твердость чугунной статуэтки? Химические соединения углерода с железом — карбиды? Но почему тогда сплав имел мелкокристаллическую структуру? Или сетчатая структура шлифа — смесь элементов? Одно зернышко железное, а другое… алмазное? А может, из графита? Или сажи? Ведь свободный углерод встречается в природе в виде трех аллотропных видоизменений!

И не один углерод.

В 1912 году в снегах Антарктиды были найдены дневники капитана Скотта, погибшего вместе с товарищами на обратном пути от Южного полюса. Страницы, исписанные неверным почерком умирающего, поведали людям трагическую историю мужественных первопроходцев ледяного континента. Отлично снаряженная экспедиция потерпела неудачу потому, что ни с того ни с сего вдруг распаялись металлические резервуары с керосином, лишив людей тепла и горячей пищи.

Ни с того ни с сего? Ой ли! Нет, у всякого физического явления есть свои причины.

При температурах ниже 13 градусов с оловом может стрястись несчастье: металл заболевает. Обыкновенное белое олово с удельным весом 7,3 переходит в свою аллотропную модификацию — серый кристаллический порошок удельного веса 5,7. Из-за разницы в плотностях объем металла увеличивается на четверть. Понятно, что при таких метаморфозах оловянный спай разрушается. Этот недуг металла называется «оловянной чумой».

Странно: металл — и вдруг может заболеть! Интересно (это факт): «здоровое» олово способно по-настоящему заразиться от «чумного».

Первый диагноз «оловянной чумы» был поставлен задолго до того, как экспедиция Скотта отправилась в Антарктиду. Еще в конце XVIII века петербургский академик Петр-Симон Паллас установил, что олово, подобно мифическому Янусу, двулико. Многолики и другие элементы, например сера. Не удивительно ли: перед нами совершенно различные вещества, а изображаются они одним и тем же химическим символом? Добро бы речь шла о разных агрегатных состояниях: твердом, жидком или газообразном. А то ведь и серое олово и белое — оба твердые кристаллические тела!

И оба неразличимы по реакциям в пробирке. Короче, один и тот же химический индивид.

С каждым днем становилось все очевиднее: чисто химических методов недостаточно, чтобы досконально разобраться в природе таких сложных систем, как сплавы, и чтобы отграничить смеси от соединений, чистые вещества от примесей. Нужно было подытожить и обобщить богатейший опыт, накопленный порознь смежными областями знаний, наметить новые пути исследований. Нужен был могучий синтетический ум, чтобы слить в единый сплав разрозненные идеи, сделать смелые, качественно новые теоретические выводы.

Ученого с таким складом ума дала мировой науке Россия.

…2 января 1914 года. Только что отпразднован Новый год. Многим и невдомек, что над миром, как и больше ста лет назад, вновь сгущаются грозовые тучи. Пройдет несколько месяцев — и грудь многострадальной Европы перережут глубокие шрамы окопов. Заброшенные нивы ощетинятся всходами смерти: штыками и колючей проволокой. В воздухе засвистит смертоносный металл, ядовитыми клубами поплывут над землей боевые отравляющие вещества…

И труд многих поколений химиков и металлургов станет орудием кровавых преступлений империализма. Неужели это проклятье будет вечно висеть над наукой?

Тогда еще ни один человек в мире не догадывался, что над зловещим ночным заревом войны займется заря новой жизни, возвещенной залпом «Авроры».

А сегодня ничего не подозревающие ученые и педагоги съехались на свой обычный форум, чтобы обменяться мыслями и опытом, чтобы потолковать о путях развития науки на благо мира и созидания.

Впрочем, форум не совсем обычный. На пригласительных билетах значится: «I Всероссийский съезд преподавателей физики, химии и космографии». Однако знаменательно не то, что на нем впервые собрались вместе представители столь разных наук. Наук, которые в те годы предпочитали идти каждая своей дорогой, не нарушая границ, свято оберегавшихся столетними традициями. Именно здесь, в России, на этом съезде, впервые в мире будут сформулированы революционные идеи, которые сообщат мощный импульс научным исследованиям в совершенно новом направлении.

На кафедру поднимается человек средних лет. У него коротко остриженные волосы и пушистые гренадерские усы. Высокий лоб, проницательные, чуть насмешливые глаза.

— В развитии наук существуют периоды, когда накопление новых данных заставляет внимательно вглядываться в историю прошлого, — начинает он. — При неудержимом движении вперед назревает потребность в критическом рассмотрении главных понятий, составляющих фундамент научного знания.

Аудитория слушает с нарастающим вниманием. Еще не все знают этого скромно одетого человека, имя которого вскоре прогремит на весь мир. Некоторые слушатели еще раз украдкой заглядывают в список докладчиков: «Акад. Н. С. Курнаков. Соединение и химический индивид».

Само собой разумеется, этому докладу предшествовали долголетняя исследовательская работа и многочисленные публикации Курнакова, а также его сподвижников и учеников.

— …для химии беспримерный рост фактического материала, неожиданные открытия новых областей требуют пересмотра наших воззрений на логическую структуру таких понятий, как элемент, соединение, раствор, индивид, которые, казалось бы, установлены с незыблемой прочностью великими основателями нашей науки.

Докладчик вспоминает знаменитый спор между Бертолле и Прустом.

— Установление закона кратных отношений и тесно связанной с ним атомистической теории составляет эпоху в истории химии. До тех пор не делалось принципиального различия между понятиями соединения и однородной смеси. Если же «истинные» соединения обладают постоянным составом, то, конечно, главной задачей химии должно стать их всестороннее изучение. Этим были заранее указаны объекты исследования и определена область развития химии как точной науки на целое столетие вперед.

Пока что выступающий говорит общеизвестные вещи. Но вот педагоги начинают переглядываться и что-то быстро писать в толстых блокнотах.

— Закон постоянных и кратных отношений явился приложением учения о целых числах в химии. Атомистические формулы с целочисленными значениями для атомных долей сделали это приложение необыкновенно простым и наглядным. При таких условиях состав соединений получил совершенно определенное числовое выражение и само понятие о химическом соединении стало понятием математическим.

Между прочим, и математики (Куммер, Минковский) неоднократно подчеркивали тесную связь между учением о составе химических соединений и общей теорией чисел.

Математические операции с целыми числами, за которыми стояли «неделимые» атомы, позволяли проверять и даже предвидеть состав сложных тел. И усилия химиков, направленные на поиски и исследование подобных веществ, увенчались блистательным успехом. Достаточно напомнить, что теперь известно более 300 тысяч веществ, подчиняющихся законам Пруста и Дальтона. Это неминуемо вело ученых к убеждению, что постоянство состава — главный индивидуальный признак, характеризующий истинные объекты химического изучения. Таким телам присвоили звание «химических индивидов». Постепенно термины «соединение» и «индивид» стали равнозначными.

Но если стать на эту классическую точку зрения, то за бортом понятия «индивид» останется масса других веществ, которыми тоже занимается химия! Нет, объектом изучения в химии не могут быть одни лишь соединения постоянного состава. Тогда что же?

Напряжение в аудитории нарастает.

— В реальной действительности, — подчеркивает ученый, — непосредственный изначальный объект химического или, правильнее, физико-химического изучения — фаза. Понятие фазы является более общим, чем современный химический индивид, соответствующий, как мы видели, только веществам постоянного состава или определенным соединениям; оно обнимает также и громадный класс однородных тел переменного состава или растворов. Обширную категорию растворов обыкновенно относили к физически однородным смесям и ставили особняком. Между тем учение о фазах не делает принципиального различия между телами постоянного и переменного состава.

…Чеканные в своей научной тяжеловесности, эти фразы, чего доброго, могут и отпугнуть непосвященного. А сколько живых человеческих драм, сколько раздумий бессонными ночами, успехов и неудач, надежд и разочарований, титанического труда скрывается за любым выводом, выстраданным в жарких теоретических схватках, в многолетней черновой работе экспериментатора!

Казалось бы, нет и не может быть даже тени сомнения в безграничной справедливости закона, который триумфально прошел сквозь целое столетие и выдержал испытание временем. Как не возбуждавшая сомнений реальность и неделимость атомов, над химией императивно и безоговорочно довлело представление о химическом индивиде, подчиняющемся кодексу Пруста — Дальтона. Всякий, кто посмел бы поднять руку на монопольное господство закона постоянных и кратных отношений, был бы немедленно предан анафеме. И надо же было так случиться, что идеи Бертолле, похороненные Прустом, возродились вновь, словно сказочная птица Феникс из пепла!

Еретики сыскались. В 1887 году традиционный взгляд на химический индивид получил первый нокаут от Дмитрия Ивановича Менделеева. В монографии, посвященной растворам, ученый писал: «Грани нет между этими явлениями и чисто химическими».

Обратите внимание: это слова великого создателя периодической системы, которая сама зиждется на законе постоянных и кратных отношений!

И вот теперь, на съезде физиков, химиков и космографов, вновь раздвигаются тесные рамки классических истин.

Как химия проигрывает в изоляции от физики, так и сугубо химическое толкование термина «химический индивид» слишком бедно, чтобы исчерпывать собой объект исследования в химии. Понятие «химический индивид» неотделимо от понятия «фаза».

Фаза… Этот термин отлично знаком каждому химику. Мы говорим «фазы Луны», «фазы развития», подразумевая различные формы одного явления, между которыми пролегает некая грань. Несколько иначе в химии. Например, серое олово и белое. Это две разные фазы. Только грань между ними не временная, а пространственная. Кристаллики одного и второго вещества отграничены поверхностями раздела. Алмаз, графит, сажа. Три фазы. Каждая отличается от другой набором несхожих свойств. А вещество одно! Разумеется, с точки зрения химии. По прежним представлениям именно олово или углерод должны как химические индивиды служить объектами химического исследования. А по новым — каждая фаза. То же самое относится к воде и поваренной соли, взятым порознь. А если вместе?

Соленые морские волны, да и любой иной раствор однородны. Значит, это одна фаза, хотя в ней слились несхожие вещества. Стоит, однако, кристаллам соли выпасть из пересыщенного раствора, как система тотчас становится двухфазной. А если выделяются из раствора сразу две соли — то и трехфазной. Пример: натронные озера в Египте с солевыми отложениями, изучением которых занимался еще Бертолле. Неспроста, видать, ставил перед своим испанским коллегой великий французский химик вопрос о разнице между смесью и соединением!

Пруст не дал вразумительного ответа на вопрос Бертолле. Но не потому, что не хотел. Не мог. Этого не позволял сделать уровень тогдашних знаний. Лишь семьдесят лет спустя было впервые введено четкое представление о фазах и фазовых равновесиях.

Фазовые равновесия окружают нас повсюду.

На дворе зима. Стужа такая, что капли воды превращаются в лед, не долетев до земли. И все-таки хозяйка вывешивает свежевыстиранное белье сушиться. Прямо на мороз! Из повседневного опыта она твердо усвоила, что холод сушке не помеха. Сырые рубашки затвердеют, что рыцарские латы, простыни загремят, как жестяные противни. А все же рано или поздно количество влаги в них уменьшится. Лед испаряется. Точнее, сублимирует, возгоняется: не превращаясь в жидкость, сразу же переходит в пар. При определенных атмосферных условиях в двухфазной системе лед — пар наступит равновесие. Количества молекул воды — тех, что покидают поверхность ледяных кристалликов, и тех, что возвращаются на нее, — уравняются. Белье больше сохнуть не будет. Придется досушивать утюгом.

Утюг расплавит лед, нагреет воду, заставит ее испаряться. На какое-то мгновенье возникнет система лед — вода — пар (три фазы). И тут же утратит равновесие. Однако клубы пара, вырывающиеся из-под утюга, сделают комнатный воздух сырым. Оконные стекла запотеют. И если скорости испарения и конденсации станут одинаковыми, система вода — пар снова очутится в равновесном состоянии.

Но вот на улице похолодало. Окно заиндевело. Правда, рядом со снежными блестками на стекле сверкают капельки воды. Опять перед нами система лед — вода — пар.

Такие процессы сплошь да рядом протекают в гигантской лаборатории природы.

Грозовые облака в наших широтах — это бушующие водовороты, где зачастую сосуществуют градины, дождевые капли и водяные пары. Там можно найти все четыре вида равновесий: лед — пар, лед — вода, вода — пар и лед — вода — пар. Последнее самое капризное. Оно устойчиво лишь в одном случае: когда температура системы ноль градусов, а давление водяных паров над ней равно 4,58 миллиметра ртутного столба. Стоит измениться показаниям хотя бы одного из приборов — термометра или барометра, как система тотчас теряет равновесие и из трехфазной переходит в двухфазную. Например, либо лед целиком растает, либо вода замерзнет полностью.

Двухфазной системе проще сохранить равновесие. Здесь нет таких жестких ограничений.

В нашем примере фигурировала однокомпонентная система. Она состояла из одного вещества — воды, только в разных агрегатных состояниях. А ведь система может быть и многокомпонентной. Море, в котором плавает айсберг, — именно такая система. В воде растворены соли. И они способны выпадать из раствора! Правда, в море это случается редко. Разве что в Мертвом. Зато в соленых озерах Египта — регулярно. Значит, число составных частей системы будет уже не единица (вода), а два или три — в зависимости от количества веществ, осаждающихся на дно. Можно представить себе такую картину: соль под айсбергом. Перед нами система соль — лед — раствор — пар. Интересно, при каких условиях равновесие устойчиво?

В свое время Гиббс вывел правило фаз. По нему можно найти, сколько у системы степеней свободы: F = n + 2 – r. Здесь n число компонентов. Оно в нашем примере равно 2 (вода плюс соль). А r — число фаз. Их у нас 4 (кристаллы соли, раствор, лед, пар).

Посмотрим, чему равно число степеней свободы: F = 2 + 2 – 4. Нулю! И так всегда. Присутствие в системе всех возможных фаз требует уникального сочетания условий. Нарушение хотя бы одного из них выводит систему из равновесия. Одна из фаз обречена на гибель. Зато появляется новая степень свободы. Иными словами, можно варьировать один из параметров (давление, температуру, концентрацию), сохраняя равновесие между остальными фазами.

В двухкомпонентной системе соль — лед — раствор — пар концентрация раствора тесно взаимосвязана с давлением и температурой.

Известно, что точка замерзания раствора ниже, а температура его кипения выше, чем у чистого растворителя. Давление паров над раствором тоже иное. Стало быть, состояние системы зависит от ее состава (в нашем случае от концентрации растворенного вещества). С другой стороны, концентрация сама зависит от внешних условий. Столбик ртути в термометре пополз вверх — растворимость соли растет. Концентрация тоже. А солевой осадок начинает потихоньку исчезать. Равновесие нарушено. И только при одном-единственном значении состава, которое соответствует определенному сочетанию остальных параметров, в нашей системе будут сосуществовать бок о бок все четыре фазы.

Столь уникальный режим — явление редкое в природе. Обычно температура меняется в широких пределах. От дня к ночи, от сезона к сезону. И все равно система стремится к равновесию. Пусть исчезла одна из фаз. Скажем, лед растаял. Количество растворителя увеличилось. Это вызвало понижение концентрации раствора. Немедленно соль начинает переходить в раствор. Так продолжается до тех пор, пока не восстановится равновесие. Правда, уже в трехфазной системе: соль — раствор — пар. При дальнейшем нагревании система опять будет сама регулировать равновесие, изменяя состав.

Получается, что система проходит через непрерывный ряд равновесных состояний. И все условия здесь однозначно связаны между собой какой-то определенной функциональной зависимостью. Замечательна эта гармония физических и химических сил!

Но можно ли алгеброй поверить гармонию? Если да, как? И только ли в растворах? А в сплавах?

Решению этих вопросов посвятил всю свою жизнь творец физико-химического анализа Николай Семенович Курнаков. Пересмотрев бытовавший в науке взгляд на химический индивид, он раздвинул горизонты химических исследований. Десятилетиями препаративная химия занималась погоней за идеально чистыми соединениями постоянного состава. Изучение их свойств считалось главной целью химии. А смеси, сплавы, растворы, которые саботировали закон постоянных и кратных отношений, неизбежно оставались вне поля зрения химии. Между тем с практической точки зрения они представляли зачастую куда больший интерес. Однако их исследование требовало свежего подхода, где аналитическая сноровка классической химии сочеталась бы с новыми инструментальными методами физики.

Такой подход дал физико-химический анализ. Перенеся центр тяжести на исследование фазы, новые методы позволили изучать химические индивиды, даже не выделяя их из смесей в абсолютно чистом состоянии. Более того: оказалось, что некоторые химические индивиды вообще невозможно выделить из системы. Вот уж где действительно химия столкнулась с самыми настоящими призраками! То, что они реально присутствуют в системе, физико-химический анализ доказывает со всей непреложностью. А в индивидуальном состоянии они не существуют!

Свежий взгляд открыл богатейшие россыпи теоретических находок, что до поры до времени лежали незамеченными прямо под ногами у химиков.

А дал ли что-нибудь физико-химический анализ практике?

«…„Кара-Бугаз“ по-туркменски означает „черная пасть“. Наподобие пасти залив беспрестанно сосет воды моря…

…прямой долг обязывал нас войти в это устрашающее горнило Азии. Тихим ходом мы двинулись в пролив, увлекаемые течением, и отдали якорь не ранее, чем синяя морская вода сменилась мертвой и серой водой залива.

…Придурковатый наш кок отпросился искупаться, но залив его не принял. Он высоко вскидывал его ноги, и при всем тщании кок погрузиться в воду не смог. Это повеселило команду и улучшило несколько ее дурное расположение. Кок к вечеру покрылся язвами и утверждал, что вода залива являет собой разбавленную „царскую водку“…

Все берега пустынны и не имеют пресной воды. Мною не было обнаружено ни единого ручья, каковой впадал бы в это поистине мертвое море…

При подходе к заливу оный рисуется в виде купола из красноватой мглы, пугающей с давних времен мореплавателей. Полагаю, что явление это объясняется сильным испарением воды Кара-Бугаза.

Надлежит помнить, что залив окружен раскаленной пустыней и является, если будет уместно это сравнение, большим котлом, где выкипает каспийская вода.

Грунт залива весьма примечателен: соль, а под ней известковая глина.

Соль, полагаю, особенная, не того состава, что обыкновенная, употребляемая в пищу и для засола…» Так живописал залив Кара-Богаз-Гол в 1847 году путешественник лейтенант Жеребцов. В официальном донесении Гидрографическому управлению он делал категорический вывод:

«На основании всего сказанного, я позволю себе заключить, что побережья залива Кара-Бугазского, как и самый залив, лишены какого бы то ни было интереса государственного».

Мрачным пессимизмом, тоскливой безысходностью веет от каждой фразы лейтенанта Жеребцова. Нет, автора этих строк нельзя обвинить в малодушии. Бывалый моряк, человек недюжинного мужества и трудолюбия, он честно и с горечью поведал о результатах своего нелегкого путешествия.

Неужели «черной пасти» Кара-Богаза удалось навеки отпугнуть от себя человека?

Вот передо мной письмо другого исследователя, датированное 12 декабря 1921 года:

«Глубокоуважаемый и несказанно дорогой Николай Семенович…

Да, много надо сил и мужества, как Вы справедливо указали в своем письме, чтобы жить здесь и бороться за спасение научного исследования Кара-Бугаза и за возможность хотя бы отчасти выполнить намеченные работы. Мы еще в проливе и не можем выйти в залив из-за отсутствия плавучих и живых сил. Только любовь к Кара-Бугазу может заставить ехать и не доехать до него в течение 5 месяцев, надеясь все же быть там. Пока удается производить гидрологические и гидрометеорологические работы в проливе, отдельными выходами наблюдать начало выбросов соли и температуру воды в заливе, производя химические анализы проб воды и образцов соли, приносимых с берегов залива… Работ по обезвоживанию, к сожалению, не производится за отсутствием каких-либо материалов и устройств. Естественное обезвоживание в настоящее время, конечно, немыслимо: страшно сыро, и идут хотя и небольшие, но почти ежедневные дожди. Температура воздуха скачет от +12 до –2,5° при постоянных ветрах. Все же надеюсь по снятии катера с мели, на которую он сел 10.XI, отправиться в залив для производства работ».

Чувствуется, что человек пришел сюда не как турист, который с известной долей отваги решил посетить и описать экзотический уголок природы. Нет, за отрывистыми строчками письма вырисовывается бескорыстие самоотверженного труженика, убежденного в пользе начатого дела для своего народа, неутомимая жажда исследователя, сменившего удобную лабораторию на шаткую палубу старенького суденышка, несгибаемая воля патриота, идущего сквозь опасности в трудный поход ради освоения еще одного «белого пятна» на карте Родины. И это в годы, когда страна, пережившая мировую и гражданскую войны, задыхалась от неимоверной транспортной и промышленной разрухи, от ужасающей нищеты и бесхлебья, от недостатка самых элементарных вещей, не то что тонкой исследовательской аппаратуры…

Кто же он, этот человек, с такой искренней теплотой отвечавший на письмо академика Курнакова?

Горный инженер Николай Иванович Подкопаев. В широко известной читателям повести Константина Паустовского «Кара-Бугаз» ему посвящена целая страница текста… из ста тринадцати. Что же касается академика Курнакова, который был не просто вдохновителем, организатором, но и самоличным участником наступления на Кара-Богаз-Гол, то тщетно будет искать читатель его имя в прекрасной повести Паустовского.

Правда, смешно считать «Кара-Бугаз» историческим справочником. У писателя были совсем иные цели. О них поведал Константин Паустовский в своей книге «Золотая роза».

«…Когда я работал над „Кара-Бугазом“, я думал главным образом о том, что многое в нашей жизни можно наполнить лирическим и героическим звучанием и выразить живописно и точно. Будь то повесть о глауберовой соли или о постройке бумажной фабрики в северных лесах».

Из-под пера замечательного советского писателя вышла увлекательная поэма об одном из настоящих «чудес света», о делах и мечтах человеческих.

Право же, не ради торжества исторической правды затеян наш рассказ.

Разве не увлекательно путешествовать по сложным историческим лабиринтам, которыми шли научные идеи, прежде чем они вылились в сухие строки учебника? Ведь если копнуть поглубже, за любой формулой, за любым выводом откроется полная драматизма эпопея, которая достойна подлинно «Паустовской» кисти! И побольше бы таких книжек, как «Кара-Бугаз». Они отучают смотреть на многие «обыденные вещи» холодным, безразличным взглядом. А там — кто знает? — из искорки чисто читательского любопытства, глядишь, разгорится неугасимое пламя исследовательской жажды…

«Кара-Бугаз» — одна из тех редких книжек, где нечего ни убавить, ни прибавить. И все же, уж коли речь зашла об истории обуздания «черной пасти», наверное, стоило бы помянуть, что не кто иной, как Курнаков, еще в 1909 году предложил направить исследовательскую группу во главе с Подкопаевым на Кара-Богаз-Гол. «Исследования, проведенные под непосредственным руководством академика Курнакова, — писал впоследствии Подкопаев, — дали возможность коренным образом изменить взгляд на Кара-Бугаз, как неисчерпаемое месторождение глауберовой соли».

И не кто иной, как Курнаков, своими работами обратил внимание на огромное промышленное значение освоения Кара-Богаз-Гола для России.

«Действительно, — доказывал Николай Семенович, — необычайная и единственная в своем роде мощность месторождения, относительная легкость добычи и дешевизна сообщения ставят Кара-Бугаз на первое место среди других источников сернонатриевой соли не только в нашем отечестве, но и в целом мире. Ввиду громадных запасов сернонатриевой соли в Кара-Бугазе и горьких озерах Арало-Каспийского бассейна изучение методов использования названного вещества составляет одну из основных задач русской химической технологии. Сюда относятся: добывание соды и серной кислоты, получение сернистых, серноватистых солей, замена угленатриевой соли в стекольном, глиноземном и других производствах».

Добавим: серная кислота — важнейшее сырье в производстве полимеров и удобрений.

Неисчерпаемая кладовая богатств! И это тот самый Кара-Богаз, которому лейтенант Жеребцов твердой рукой подписал свой приговор… Но даже если бы бравый лейтенант оказался более проницательным, тогдашней химии все равно не по плечу оказалось бы овладение «котлом, где выкипает каспийская вода». Лишь физико-химический анализ вручил науке надежные методы изучения подобных систем.

Механизм осаждения соли в заливе — каков он?

Много разных солей содержат воды Кара-Богаза. Но главные составные части рассола: поваренная соль, сернокислый натрий и хлористый магний. Анализ во время экспедиций дал интересные результаты. Концентрация соли в Кара-Богазе в десятки раз выше по сравнению с Каспием. И соотношение между компонентами иное. В водах залива доля сернокислого натрия возрастает, а поваренной соли падает. В чем дело? Курнаков сделал вывод, что сульфат натрия выпадает из раствора в процессе обменной реакции: MgSO4 + 2NaCl↔MgCl2 + Na2SO4.

Разбираясь в фазовых равновесиях, читатель уже сталкивался с четырехфазной системой «айсберг в море»: соль — лед — раствор — пар. Система была двухкомпонентной: поваренная соль + вода. В присутствии всех четырех фаз число степеней свободы — помните? — равнялось нулю. Но нас не интересует столь редкостное стечение обстоятельств (во всяком случае, для Кара-Богаз-Гола). Разберем лучше тот случай, когда температура изменяется, оставаясь все время выше 0 градусов. У системы появляется лишняя степень свободы. Одна из фаз (лед) исчезает. Остаются солевой осадок, раствор и пары над ним. И до тех пор пока на дне лежат кристаллы соли, раствор при любых температурах останется насыщенным. А если солевой осадок не так уж велик? Тогда в какой-то момент он может раствориться целиком. При дальнейшем нагревании системы (теперь уже двухфазной) раствор окажется ненасыщенным. Иными словами, дальнейшему повышению температуры уже не будет однозначно отвечать рост концентрации. Равновесная система раствор — пар утратит зависимость еще от одного параметра — концентрации. И, следовательно, обретет дополнительную степень свободы.

Реальная картина равновесий в любом море, конечно, сложнее. Там, помимо поваренной соли, в воде растворены многие другие соединения. Правда, их количества незначительны сравнительно с ее концентрацией. Так что пренебречь ими — грех не велик. Иное дело рассол Кара-Богаз-Гола. Здесь нельзя не учитывать присутствие сульфата магния. Тем более что он не просто присутствует, а еще вступает с поваренной солью в обменное взаимодействие: MgSO4 + 2NaCl↔Na2SO4 + MgCl2.

Пара взаимно противоположных стрелок — обозначение химического равновесия. Процесс течет в обе стороны.

Нечто в этом же роде наблюдал и Бертолле во время египетской кампании Наполеона. Именно тогда ученый сделал вывод, что химическое взаимодействие — процесс обратимый. В это было трудно поверить. Ведь большинство реакций, с которыми химики имели дело, шло, как правило, в одном направлении.

Опустите в раствор медного купороса стальное перо. Через несколько минут оно покроется золотистым налетом меди. Зато вспять процесс Fe + CuSO4→FeSO4 + Cu сам собой не идет. Если в раствор ляписа добавить поваренной соли, реакция закончится в тот момент, когда практически все азотнокислое серебро превратится в хлористое: AgNO3 + NaCl→AgCl + NaNO3. Выпадет белый творожистый осадок. А если поджечь гремучую смесь, то взрыв приводит к образованию воды: 2H2 + O2→2H2O. Два газа порождают жидкость. И во многих других случаях продукт удаляется из сферы реакции. Волей-неволей казалось, будто процесс завершается лишь с окончательным превращением исходных реагентов в конечные продукты. На самом деле это не так.

Бертолле был все-таки прав, утверждая, что в любом случае устанавливается равновесие между прямой и обратной реакциями.

Правда, равновесие может быть сильно сдвинуто. Настолько сильно, что практически все исходные вещества превратятся в конечные продукты. Но все зависит от условий реакции.

Если хорошенько нагреть водяные пары (до 2000 градусов), начнется расщепление воды: 2H2O→2H2 + O2. Но одновременно будет протекать и реакция соединения: 2H2 + O2→2H2O. Процесс обратим. То же самое справедливо и для взаимодействия N2 + 3H2↔2NH3. Когда скорости прямой и обратной реакций одинаковы, устанавливается равновесие.

Математическое выражение для скорости реакции было найдено в 1864–1867 годах норвежскими учеными К. Гульдбергом и П. Вааге. Оказывается, скорость пропорциональна произведению степеней концентраций. Слово «степень» здесь имеет прямой алгебраический смысл. Возьмем, к примеру, реакцию 2H2 + O2→2H2O. Ее скорость V1 = k1[H2]2[O2]; k1 — некая постоянная величина. Она зависит лишь от способов выражения концентрации наших реагентов H2 и O2. Величина H2 взята в квадрате потому, что стехиометрический коэффициент в уравнении реакции 2H2 + O2→2H2O равен 2. Если он равен 3, то соответственно концентрацию следует брать в кубе. (Например, для взаимодействия N2 + 3H2→2NH3.) И так далее. Скорость обратной реакций 2H2O→2H2 + O2, очевидно, выразится следующим равенством: V2 = k2[H2O]2.

Теперь предположим, что у нас установилось равновесие: N2 + 3H2↔2NH3. Это значит V1 = V2. То есть k1[N2][H2]3 = k2[NH3]2. Проделаем с этим равенством несложную математическую процедуру: [N2][H3]3/[NH3]2 = k2/k1.

Отношение постоянных величин k2/k1 неизменно. Заменим его ради простоты одной буквой K. Это так называемая константа равновесия

K = k2/k1

Читателю предлагается набраться терпения и с карандашом в руках проштудировать этот кусок. Все понятия и формулы нам пригодятся при чтении последней главы.

Полученное соотношение выражает закон действующих масс. Так одна из идей Бертолле обрела четкую математическую форму.

Из закона действующих масс вытекают любопытные следствия.

Во-первых, состояние равновесия не зависит от того, какие реагенты мы берем в качестве исходных. Скажем, в реакции N2 + 3H2↔2NH3 мы по традиции считали исходными веществами азот и водород. Конечным продуктом — аммиак. Но можно взять смесь аммиака с водородом. Или с азотом. Наконец смесь всех трех участников взаимодействия. И в каких угодно пропорциях. Все равно, как только наступит равновесие, соотношение концентраций изменится так, что равенство K = k2/k1 будет неукоснительно соблюдено.

Второй вывод из закона: если в равновесную систему добавить какое-то количество одного из компонентов, равновесие немедленно сместится. Нельзя увеличить или уменьшить ни одной из концентраций, чтобы не вызвать изменения остальных.

Положим, мы добавили водорода. Это немедленно подстегивает скорость прямой реакции. Равновесие утрачено. Правда, ненадолго. Прямая реакция увеличивает выход аммиака. Но рано или поздно снова наступает равновесие. И опять соотношение «действующих масс» будет удовлетворять формуле K = k2/k1. Тому же значению K, что и в исходной стадии — до введения водорода.

Вся эта динамика химических равновесий ускользала от внимания ученых, загипнотизированных законом Пруста — Дальтона и гармонировавшей с ним идеей однобокой направленности химических процессов. Физико-химический анализ, напротив, во главу угла поставил учение о химических и фазовых равновесиях, впитав в себя физические и математические идеи.

Каким бы непокорным ни был Кара-Богаз-Гол, а правилу фаз Гиббса и закону Гульдберга — Вааге он, безусловно, подчиняется.

Так подчас укрощение строптивых «чудес природы» начинается с познания их математических закономерностей.

Мы оставили рассол, плещущийся в «черной пасти», в состоянии равновесия раствор — пар. Между тем внутри одной лишь жидкой фазы этой системы идут свои равновесные процессы, химические: 2NaCl + MgSO4↔MgCl2 + Na2SO4.

Почему бы не использовать для этой реакции формулу закона «действующих масс»? Пожалуйста, вот она:

K = [MgSO4][NaCl]2/[MgCl2][Na2SO4].

Увы, на деле все обстоит гораздо сложнее. Каждая из этих солей — прекрасный электролит. Значит, все они в воде диссоциируют. Например, Na2SO4↔2Na+ + SO42–. Разумеется, и для такой реакции можно написать соотношение: K = [Na2SO4]/[Na+]2[SO42–]. Но глауберова соль распадается на ионы полностью. Что же, ставить в числителе нуль? Очевидный абсурд!

Допустим теперь, что часть сернокислого натрия в недиссоциированном состоянии. Иными словами, K не равно нулю. Это вполне реально: выпадает же Na2SO4 на дно Кара-Богаз-Гола в виде осадка! Но в такой двухфазной системе раствор над солью должен быть насыщенным. Сернокислый же натрий хорошо растворим. Да и другие его спутники в пучинах Кара-Богаза не хуже. Стало быть, в рассоле всегда, даже если он не насыщен, присутствует уйма ионов в больших концентрациях. И они мешают выполнять друг другу закон действующих масс. По крайней мере в той простейшей формулировке, с которой мы познакомились. Приходится вводить поправки. Расчеты становятся более громоздкими.

Конечно, химики в большинстве случаев справляются с математическими трудностями. Но, к сожалению, рассказ о том, как они это делают, отнял бы слишком много места. Сейчас важно усвоить лишь одно: даже за самым бесхитростным уравнением реакции прячется сложное взаимоотношение многих сил. Скорость и направление всякого процесса зависит от разных факторов. Тут и температура, и давление, и присутствие катализатора, и число фаз в системе, и рождение новых фаз, и степень диссоциации, и влияние веществ-соседей — всего не перечесть. Ничего нет удивительного, что в приближенных вычислениях приходится опускать кое-какие третьестепенные детали. Удивительно то, как химия умудрилась проникнуть в этот сложный мир физико-химических равновесий и описать его лаконичным и емким языком математики! И если нынешний химик с законной гордостью может сказать: «Поверил я алгеброй гармонию», — то первое слово признательности за мощное математическое вооружение он обратит к основоположнику физико-химического анализа.

Тщательное изучение результатов экспедиции, дополнительные лабораторные исследования позволили Курнакову вскрыть механизм садки глауберовой соли в каспийском заливе. Летом рассол нагрет до 18–20 градусов. Он далек от насыщения. Зато осенью и зимой при температуре плюс 5,5 градуса раствор становится насыщенным. Но не по отношению ко всем компонентам сразу. Лишь к глауберовой соли. Иначе в осадок выпадала бы смесь солей. А этого не происходит.

«Принимая во внимание, — писал Курнаков, — что рассол Кара-Бугаза представляет равновесную систему, состав соляной массы которой сохраняется приблизительно постоянным в течение современного периода ее существования, мы приходим к весьма важному в практическом отношении заключению, что глауберова соль в Кара-Бугазе кристаллизовалась прежде и выделяется теперь чистой, без подмеси хлористого натрия… Зная величину поверхности и среднюю глубину Кара-Бугаза, мы вычисляем общее количество глауберовой соли, которая может выделяться в заливе, равным 6 миллиардам тонн. Таким образом, Кара-Бугаз представляет собой, несомненно, величайшее месторождение сернонатриевой соли в мире».

В 1920 году о сказочных богатствах Кара-Богаз-Гола узнал Ленин. Правительство поддержало предложения Кара-Бугазского комитета, созданного при Институте физико-химического анализа под председательством Курнакова. На исследовательские работы было отпущено 40 тысяч рублей золотом. 40 тысяч! Из скудной казны молодого Советского государства. Так в 1921 году была снаряжена экспедиция Подкопаева. За три года научной разведки скопилась колоссальная коллекция экспериментальных данных.

Работы Курнакова подтвердили предположение, что глауберова соль в Кара-Богаз-Голе относится к числу периодических минералов. Таких, которые то появляются, то исчезают. К зиме соль ложится могучим пластом на площади в 18 тысяч квадратных километров. Холодные штормовые волны выбрасывают ее далеко на берег. А пенистые языки теплого летнего прибоя слизывают обратно. Но если кристаллы соли залеживаются на солнце, происходят интересные фазовые превращения. Глауберова соль (она же мирабилит) представляет собой десятиводный кристаллогидрат. Высыхая, она переходит в обычный сернокислый натрий Na2SO4.

Гидратные формы существуют не только в кристаллическом состоянии. Они встречаются и в растворах. Это открыл Д. И. Менделеев.

Все знают, что разбавлять концентрированную серную кислоту можно, лишь добавляя ее в воду, а не наоборот. Иначе более легкая вода может закипеть на поверхности густой маслянистой жидкости и обдать незадачливого экспериментатора веером едких горячих капель. Этот эффект связан с химическими превращениями в системе серный ангидрид — вода. Система однофазная, не правда ли? Но однофазная не значит еще однообразная. В ней обретаются разные химические индивиды. Она послужила классическим объектом исследования для великого создателя периодического закона.

Моногидрат H2SO4 общеизвестен. А такой гидрат, как H2SO4·H2O? Или H2SO4·2H2O? H2SO4·6H2O? И даже H2SO4·150H2O?

Странно, но факт: перед нами индивидуальные химические соединения! Никто бы и не догадался, что они существуют в однородной с виду смеси серной кислоты с водой, не прибегни Менделеев к оригинальному физико-химическому способу исследования.

Менделеев измерял, как изменяется приращение удельного веса (s) системы SO3—H2O в зависимости от концентрации (p) серного ангидрида в воде.

Замечательна сама терминология этого труда. Она почерпнута из раздела высшей математики, который называется анализом бесконечно малых.

Удельный вес Менделеев относил к интегральным величинам. Они легко получаются из расчета. Сначала взвешивается кислота в склянке. Потом вес делится на объем. Вот и вычислен удельный вес. А можно прямо в раствор опустить специальный приборчик-поплавок и прочитать по шкале численное значение. Иное дело производная ds/dp. Это приращение удельного веса при уменьшении количества воды в системе. Оно принадлежит к разряду дифференциальных свойств. В них выражается не сама величина, а скорость ее изменения с изменением состава раствора. Обе величины Менделеев наносил на график: ds/dp на ось ординат (вертикаль), p — на ось абсцисс (горизонталь).

Из математических соображений заранее ясно, что если точки лягут на одну сплошную прямую линию, то это будет означать непрерывное изменение свойств системы. Именно такого поведения и ожидали от растворов, этих «однородных смесей».

Но странное дело — чертеж оказался как бы склеенным из обломков прямой. Причем ломаная линия была разорвана на куски: конец одного участка не совпадал с началом другого. Словно кто-то разобрал железнодорожный рельс и растащил в разные стороны его концы у стыков.

Ученый пришел к выводу: геометрические разрывы сплошности отвечают химической катастрофе, скачкообразному распаду особых гидратных форм. Например, для серной кислоты это H2SO4, H2SO4·2H2O, H2SO4·6H2O и так далее. Для этилового спирта C2H5OH·3H2O, C2H5OH·12H2O.

Не успело, однако, открытие Менделеева увидеть свет, как тут же появились опровержения. Утверждалось, что тщательная проверка и перепроверка опытных результатов никаких изломов и разрывов не обнаружила. Их появление, мол, следует отнести на счет неточности наблюдений.

С еще большим рвением оспаривалось теоретическое истолкование данных, полученных столь необычным для классической химии методом. «Если бы гидраты действительно существовали в растворе, то их распадение не имело бы характера скачков, но как везде, так и здесь происходило бы непрерывное изменение состояния равновесия с концентрацией».

Так возражал своему русскому коллеге Вильгельм Нернст, крупнейший немецкий физико-химик (цитата взята из его солидной монографии «Теоретическая химия», переведенному нас в 1904 году).

Думал ли, гадал Нернст, что ему придется в ближайшем переиздании вычеркнуть свое опровержение?

— Изменение равновесного состояния, непрерывно! — считал тогда Нернст.

— Напротив, для так называемой «однородной среды» характерны разрывы сплошности, соответствующие определенным соединениям! И такой вывод подкреплен математическим анализом экспериментальных результатов, — утверждал Менделеев.

Не правда ли, подобное сопоставление мнений, вернее противопоставление, чем-то напоминает спор между Бертолле и Прустом? Только почему вдруг Менделеев занимает позицию Пруста? Разве не было сказано несколькими страницами раньше, что именно гидратная теория Менделеева первой нанесла сокрушительный удар неограниченной монополии закона постоянных и кратных отношений?

Никакого противоречия здесь нет. Вспомните: ведь речь идет о растворах! Тех самых «однородных смесях», от которых открещивался Пруст. Он воздвиг нерушимую стену между химическим соединением и физической смесью.

Химические процессы подчиняются закону постоянства состава. Вот критерий, который утвердился в химии со времен Пруста. А явления в растворах и смесях… О, это совсем другое дело! Их отделяет от химических четкая грань.

«Грани нет между этими явлениями и чисто химическими», — заявил Дмитрий Иванович Менделеев. В своем капитальном труде «О соединении спирта с водой» он высказал мнение, что определенные химические соединения — лишь частный случай неопределенных соединений или растворов. Ибо к жидким однородным системам тоже приложимо мерило стехиометрии! Тому свидетельство гидраты спирта и серной кислоты.

Это было не отрицанием законов Пруста — Дальтона. Скорее их обобщением. Но как ни парадоксально, обобщение вело к ограничению! Теперь прежний критерий объекта химических исследований оказывался явно недостаточным. И Курнаков решительно пересмотрел его, завершив дело, начатое Менделеевым.

Нернст очень скоро убедился в правоте Менделеева. Знаменитый Аррениус, создавший теорию электролитической диссоциации, полностью подтвердил экспериментальные результаты и теоретические выводы автора гидратной теории. А геометрические приемы Менделеева получили блистательное развитие в трудах Курнакова.

Разрывы сплошности на своих диаграммах Менделеев называл «особыми точками». Подобных геометрических характеристик впоследствии оказалось немало. И все они стали тончайшим инструментом исследования в физико-химическом анализе.

Когда мы говорим «раствор», то подразумеваем нечто жидкое. Однако физико-химический анализ занимается и совершенно необычными растворами — твердыми.

Занавес опускается, легко шурша тяжелыми складками, и над просцениумом смыкаются бархатные крылья мхатовской чайки. Спектакль окончен. Улеглись страсти, еще минуту назад кипевшие в извечном конфликте между силами добра и зла. «Финита ля комедиа», — вздохнет завзятый театрал, за улыбкой скрывая зевок. «Система пришла в равновесие», — подумает иной химик, глядя на застывший двукрылый взмах знаменитого мхатовского символа…

Равновесная система… Да, это тоже результат своеобразного драматического конфликта. Только столкновение разыгрывается между силами химического сродства.

Бурны и скоротечны страсти, кипящие в раскаленном чреве доменной печи, сонны и неторопливы геохимические процессы, породившие водную оболочку нашей планеты. Но как бы ни были несхожи между собой огненно-жидкий металл, стынущий в изложницах, и густой рассол Кара-Богаз-Гола, выкипающий под знойным дыханием пустыни, — все это системы, пришедшие в состояние умиротворенного равновесия. Для строгого описания подобных драматических «апофеозов» непригоден общепонятный язык драматургии. Мало того, даже классический язык древней науки, оперирующий латинскими значками химических формул, оказывается в этих случаях невыразительным, слишком скудным, слишком невнятным.

Совершенно по-новому зазвучал язык курнаковских геометрических построений.

Если бы Квазимодо, растопив свинец на крыше Собора Парижской богоматери, опустил в чан термометр, то столбик ртути остановился бы напротив отметки «327 градусов». А стойкий оловянный солдатик из милой и немного сентиментальной сказки Андерсена разомлел от каминного жара и превратился в крохотное металлическое сердечко при 232 градусах. Но до точных цифр обычно нет дела ни героям, ни авторам художественных произведений. Хотя будь эти цифры раза в три больше, нам не довелось бы вспоминать названные эпизоды. Лишь оттого, что свинец и олово плавятся при относительно низкой температуре, их легко растопить над костром или в камине. Но любой порядочный паяльник подтвердит, что третник — сплав олова и свинца — плавится при более низкой температуре (примерно 180 градусов), чем каждый из металлов в отдельности.

Хотите проверить? Возьмите чистое олово и свинец и приготовьте сплавы: 90 процентов Pb плюс 10 процентов Sn, 80 процентов Pb плюс 20 процентов Sn и так далее. Только имейте в виду: проценты здесь не совсем обычные. Не весовые. Не объемные. Атомные.

Пусть надо составить пробу 50 процентов Pb и столько же Sn. Это означает, что на каждые 50 атомов свинца должно приходиться 50 атомов олова. Так и будет, если 1 грамм-атом свинца (82 грамма) сплавить с 1 грамм-атомом олова (50 граммов). Разумеется, вовсе не обязательно брать именно такие количества. Можно обойтись половинками или даже меньшими долями грамм-атома. Лишь бы соблюдалось соотношение 50 процентов Pb плюс 50 процентов Sn. (Правда, чем весомее проба, тем точнее измерения!)

Возьмем еще пример: 90 процентов Pb плюс 10 процентов Sn. 90 процентов от 82 граммов (1 грамм-атом Pb) составит 73,8 грамма, а 10 процентов от 50 граммов (1 грамм-атом Sn) соответственно 5 граммов.

Теперь осталось взять навески Pb и Sn попарно и сплавить в тигле или, на худой конец, в консервной банке.

Здесь читателю предлагается возможность нарисовать чайку на расческе.

Измерьте точки плавления (затвердевания) каждой пробы, а также чистого олова и свинца.

У вас получится 11 цифр. А теперь возьмите линейку и начертите на листке миллиметровки три прямые линии так, чтобы они образовывали букву «П», перевернутую кверху ногами. Длину перекладины (это ось абсцисс) лучше взять равной 10 сантиметрам. Тогда каждое сантиметровое деление будет соответствовать одной из ваших проб. Крайние деления — чистым свинцу и олову. На правой вертикали (это ось ординат) нанесите отметку на высоте, скажем, 65,4 миллиметра. Поставьте рядом цифру 327 градусов. Это температура плавления свинца. Важно запомнить, что избранный масштаб у нас таков: 1 миллиметр соответствует 5 градусам. Теперь легко будет нанести метку 232 градуса на левую вертикаль. Для каждой из остальных девяти отметок можно восстановить по перпендикуляру из сантиметровых делений на оси «состав». Они поднимутся словно зубья расчески. На каждый зубец, соответствующий какому-то определенному соотношению компонентов в сплаве, нанесите температуру плавления. Осталось соединить точки плавной линией — диаграмма готова. Посмотрите: разве не напоминает ваша кривая взмах крыльев мхатовской чайки?

Самая нижняя точка кривой (примерно 180 градусов) очутится на вертикали, исходящей из абсциссы с составом 30 процентов Pb плюс 70 процентов Sn.

Конечно, дома или в школьном химическом кружке трудно провести точные измерения. Для этого и металлы должны быть хорошо очищенными и точки надо «снимать» чаще. Но главное сделано — мы установили характер диаграммы для двухкомпонентной системы. Два плавных «крыла» нашей «чайки» сходятся в самой нижней точке кривой.

Эта точка называется эвтектической (от греческого «легкоплавкий»). Действительно, она отвечает составу самой легкоплавкой из всех возможных процентных комбинаций двух наших металлов.

Странно, не так ли? Берешь олово, добавляешь к нему более тугоплавкий свинец, а повышения жаростойкости не получаешь. Наоборот, температура плавления падает. В эвтектической точке она на целых 50–60 градусов ниже, чем у оловянного солдатика. (Бедный оловянный солдатик, ему нельзя иметь дела даже с охотничьей дробью без ущерба для стойкости!) Как же так?

Неприятная штука — гололедица! И хотя мостовая, вестимо, не место для пируэтов, толпа прохожих из-за капризов погоды вынуждена под носом у автомобилей выписывать вензеля почище комиков «Айс ревю». Как избавить пешеходов от напасти? Неужто ждать оттепели? Не обязательно. Дворники навострились расправляться с прозрачной броней асфальта не хуже солнца. Что же помогает им? Костры? Паяльные горелки? Ни то, ни другое. Поваренная соль.

Как насолить гололедице? Пожалуй, лучше дворников об этом никто не расскажет.

Известное дело: когда встречаются лед и пламень, после такого «рандеву» остается лишь мокрое место.

Однако подобного же эффекта удается достичь и без огня. Стоит покруче посолить снег, как он начинает таять. Даже при минусовых температурах. Ведь любой раствор замерзает при более низкой температуре, чем чистый растворитель. Так и система вода — соль. В своем письме Курнакову — не забыли? — Подкопаев сообщал, что работы в заливе Кара-Богаз-Гол не прекращались и при минус 2,5 градуса. Застывая от холода, однофазная система вода — соль не преминула бы раздвоиться на кристаллы льда и крупицы соли. Это явление используется в технике: так вымораживают соли из растворов.

Обратное превращение — переход смеси соли и льда в раствор — начинается задолго до того, как столбик ртути в термометре поднимется к нулевой отметке. А вот чистому льду не удастся расплавиться, не дождавшись этого момента. Однако вовсе не обязательно заставлять лед томиться в ожидании теплой погоды. Тем паче, если он вопреки правилам уличного движения превращает злополучных пешеходов в незадачливых фигуристов. Можно смешать его с солью, и тротуар перестанет выполнять несвойственную ему миссию катка.

Роль соли способна сыграть в сплаве свинцовая дробь, роль воды — оловянный солдатик. Представьте себе, что добавки свинца растворяются в олове. Температура плавления такого «раствора» все больше понижается — вплоть до эвтектической точки.

Точно так же можно объяснить снижение плавкости вдоль второго крыла кривой. Только там наоборот — олово растворяется в свинце.

Наша «чайка» рассекает диаграмму надвое. Верхняя часть — область жидкого расплава. Однородной, однофазной среды. Нижняя составлена уже из нескольких фаз. Рассмотрим рисунок на странице 75.

Когда расплав охлаждается, он, как и рассол, претерпевает фазовые превращения. Сперва выделяются кристаллы чистого растворителя, скажем свинца. Значит, в оставшейся жидкости соотношение компонентов изменилось в пользу олова. Новому составу жидкости будет соответствовать иная точка на диаграмме. Она расположена левее первоначальной. Температура застывания оставшегося раствора тоже изменилась — упала еще ниже.

По мере выделения кристаллов свинца равновесие твердая фаза — раствор начинает скользить вдоль крыла кривой по направлению к эвтектической точке. Правда, количество остаточного раствора постепенно убывает, зато концентрация олова в нем непрерывно растет. В определенный момент наряду с чистым свинцом начинает кристаллизоваться и раствор олова в свинце. Застывшие в последнюю очередь порции раствора — самые «грязные». В них больше всего олова.

Разумеется, это не означает, что слиток с краев, откуда обычно начинается затвердевание, будет состоять из чистого свинца, а в середине — из «грязного». Кристаллизация быстро захватывает всю массу расплава, и направленного перемещения фаз не происходит. Так что слиток обладает, как правило, довольно однородной микроструктурой: кристаллики чистого свинца вкраплены в кристаллическую массу растворов олова в свинце.

Между тем направленное разделение компонентов возможно! Именно так получают сверхчистые вещества.

Правда, такая картина отражена лишь той зоной диаграммы, которая находится правее эвтектической точки.

Но отличие для левой зоны невелико: там кристаллики олова рассеяны в массе затвердевших растворов олова в свинце.

В эвтектической точке кристаллизуются сразу и свинец и олово. Здесь и поблизости (светлые участки диаграммы) твердых растворов нет. Есть только перемешанные кристаллики обоих чистых компонентов.

Могло показаться, будто «раствор» здесь, применительно к сплавам, — не более, как удачно подобранная метафора. Отнюдь нет! Твердые растворы — вполне строгий термин, введенный еще Вант-Гоффом для обозначения однородных кристаллических тел переменного состава.

Да, у твердых растворов и впрямь совсем не твердый состав. Даже внутри одного и того же слитка. Это понятно, если вспомнить, что состав остаточного расплава, из которого выкристаллизовываются твердые растворы, непрерывно меняется по мере выделения чистых компонентов.

Вот почему здесь бессильны законы Пруста — Дальтона.

Но всегда ли? Вернее, для всех ли систем?

Памятуя об «особых точках» Менделеева в обычных растворах, мы не блеснем особой проницательностью, если сразу же ответим на вопрос отрицательно.

Ученые давно уже подозревали, что в сплавах могут образовываться и химические соединения. Иными словами, составные части системы способны взаимодействовать в стехиометрических пропорциях. Но как определить состав этой новой фазы? Одним химическим методам это едва ли под силу. Часто сплав анализируют, растворяя его поначалу в кислоте. Но так не выяснить состава каждой фазы в отдельности: твердых растворов, чистых компонентов и продуктов их взаимодействия. Все эти разношерстные кристаллики перейдут в водный раствор, образовав однофазную систему с первоначальным соотношением компонентов. Очевидно, надо бы предварительно каким-то неведомым способом рассортировать мельчайшие кристаллики, перемешавшиеся в массе слитка. Но каким? Выковыривать их под микроскопом из шлифа? Дикое, нелепое занятие! Нелепое даже в том случае, если бы нам успешно удалась подобная процедура. Ведь раскладывать кристаллики по кучкам мы должны, руководствуясь определенным отличительным признаком. По химическому составу. Но мы его не знаем! Сакраментальная ситуация, которая по-латыни называется «циркулюс вициозус», а в народе — просто «заколдованным кругом»: чтоб узнать состав, надо разделить фазы, а чтоб разделить фазы, надо знать состав. Причем зачастую состав бывает переменным, как, например, в случае твердых растворов.

Где же выход? А выход есть! Его подсказывают нам геометрические приемы физико-химического анализа.

Хотите полюбоваться горным ландшафтом? Пожалуйста.

Мы убедились уже, как чутко реагирует равновесная система на малейшие изменения условий. Изменяя и измеряя их (скажем, температуру), мы вызываем фазовые превращения. Но ведь эти метаморфозы внутри системы однозначно связаны строгой зависимостью! Гармония подчинена законам алгебры и геометрии: тому свидетельство наша диаграмма. Так неужели же возникновение новой фазы в системе не проявится в виде каких-то «особых точек»?

Проявится! Обязательно должно проявиться.

Не для всех двухкомпонентных систем кривые плавкости имеют вид «чаек». Иногда получается контур, напоминающий горный пейзаж. Посередке холм, а по бокам — слева и справа от него — сразу же от подножия начинаются склоны двух соседних возвышенностей. И центральный холм вздымается здесь неспроста. Налицо явная улика: в системе образовалось химическое соединение. Например, в двойной системе олово — магний горная вершина расположена как раз над абсциссой с таким составом, который тютелька в тютельку отвечает стехиометрически безукоризненному отношению: на каждые два атома Mg приходится один атом Sn. И действительно, в системе присутствует станнид магния Mg2Sn!

Новатор по натуре, Курнаков не постеснялся разрушить ходячее мнение, будто в химический союз вступают лишь вещества с полярно несхожими свойствами (щелочь и кислота, металл и металлоид). Нет, даже близкие по природе металлы могут давать типичные химические соединения. Например, золото и медь, расквартированные в одном и том же периоде менделеевской таблицы, образуют CuAu. Подобные интерметаллические соединения обладают подчас более высокой температурой плавления, нежели любой элемент, входящий в их состав. Скажем, у Mg2Sn она на 144 градуса выше, чем у Mg — самого тугоплавкого компонента двойной системы Mg—Sn. Потому-то и возвышается на кривой плавкости центральная горка.

Давайте-ка рассечем диаграмму двойной системы с интерметаллическим соединением вертикалью, проходящей через вершину холма. Вглядитесь: перед нами не что иное, как две чайки, сцепившиеся крыльями! Например, диаграмма Mg—Sn распадается на две более простые. Правая отображает состояние системы Mg—Mg2Sn, левая — системы Mg2Sn—Sn.

Выделенные точечной заливкой участки в каждой половине — области взаимных твердых растворов, образованных компонентами Mg, Mg2Sn и Sn.

Твердые растворы и химические соединения существуют не только в системах металл — металл. Существуют давным-давно, хотя и стали знакомы ученым лишь с конца прошлого века.

«Железный век», «век стали» — целые эпохи применяли люди твердые растворы углерода в железе, даже не подозревая об этом!

Познакомившись с внешним видом равновесной системы, мы можем теперь заглянуть и внутрь.

В системе Fe—C обнаружена не одна разновидность твердых растворов: феррит, аустенит и дельтафаза. Греческой буквой здесь обозначают одну из аллотропных модификаций железа. Внедряясь в кристаллы этой модификации, атомы углерода дают твердый раствор, который мы и обозначаем буквой «дельта». То же самое справедливо для феррита и аустенита. Первый представляет собой твердый раствор углерода в альфа-модификации железа, второй — в гамма-модификации.

Фазовые различия связаны здесь с кристаллографическими характеристиками модификаций. Все зависит от типа кристаллической решетки. Например, у гамма-железа элементарная ячейка решетки — гранецентрированный куб. Это значит, что атомы железа расположены не только в восьми углах куба, но и в центре каждой из четырех граней. У альфа- и дельта-железа куб объемноцентрированный. Атомы сидят в углах и в центре куба.

Твердые растворы возникают в том случае, когда в кристаллическую решетку вещества внедряются чужеродные атомы. Или замещают в ней прежних обитателей.

Наряду с твердыми растворами в железоуглеродистых сплавах, разумеется, присутствуют и чистые компоненты. Например, графит. Не алмаз, как считал Муассан! А что же представляли собой кристаллы Муассана? Карбид? Да, Fe3C. Его называют цементитом. У него ромбический тип кристаллической решетки.

От кристаллической структуры зависят многие свойства вещества. Достаточно вспомнить хотя бы алмаз и графит. У первого — тетраэдрическая решетка. Четыре атома углерода расположены в углах пирамиды. Только не такой, как, например, Хеопсова. У той основание — четырехугольник. У этой — треугольник. Но зато пятый атом углерода устроился и впрямь как фараон — в центре пирамиды. Строение графита напоминает этажерку. Каждая полка этажерки словно паркет, выложенный шестиугольными плитками. Атомы одни и те же, а насколько различны свойства обеих углеродных модификаций!

В сплавах атомы компонентов могут замещать друг друга, не нарушая решетки, как в некоторых твердых растворах. А могут создавать и новую архитектуру, как в случае Fe3C. В результате свойства вещества неузнаваемо изменяются (вспомните ковкое железо, сталь и чугун).

Так понятие фазы вовлекло в поле зрения химии структуру вещества. И насколько это обогатило древнюю науку! Ведь не только сорт атомов или молекул, но также их взаимное расположение и влияние определяют твердость алмаза и мягкость графита, хрупкость чугуна и пластичность железа, легкоплавкость третника, «болезненность» олова, прозрачность стекла, гигроскопичность поваренной соли. Да мало ли замечательных свойств помог объяснить физико-химический анализ!

И кто бы мог подумать, что именно геометрия сделает химию более проницательной! Незамысловатый вроде бы чертеж-диаграмма «состав — свойство», а сколько открытий принесли науке карандаш и линейка, подружившиеся с пробиркой!

Одной из таких находок физико-химического анализа стали вещества-призраки.

Если измерить электропроводность нескольких проб, где одна и та же пара элементов сплавлена в разных пропорциях, обнаружатся интересные особенности. Надо только предварительно нанести снятые точки на ту же диаграмму двойной системы — под кривой плавкости. Получится график, из которого видно, как электропроводность зависит от состава сплавов. Положим, наша температурная кривая имеет вид «чайки». Тогда линия электропроводности под эвтектической точкой на всем светлом участке будет прямой, как тетива. Правда, в выделенных точечной заливкой областях твердых растворов ее концы все-таки загнутся кверху. Это потому, что чем чище компонент, тем ниже у него сопротивление. И наоборот — образованию твердых растворов одного компонента с другим сопутствует повышение сопротивления.

А теперь пусть перед нами диаграмма не с «чайкой», а с «горным пейзажем». Кривая электропроводности здесь уже больше похожа на лук, чем на тетиву. Как раз под вершиной «холма» бросается в глаза резкий всплеск электропроводности. Да и другие кривые (например, вязкости расплава) на том же самом месте имеют излом, направленный острием вверх. Причем кончик острия указывает точно на вершину «холма». Особая точка? Совершенно верно, только ее Курнаков назвал дальтоновской, а еще сингулярной, позаимствовав термин из теории алгебраических кривых.

Mg2Sn, MgAg, Fe3C и любое другое химическое соединение между компонентами двойной системы характеризуется такой точкой. С другой стороны, присутствие сингулярной точки на диаграмме — верный признак того, что в системе образовалось соединение определенного состава, подчиняющееся закону Дальтона. Этот состав можно установить немедленно, опустив перпендикуляр из дальтоновской точки на ось абсцисс.

Между тем безошибочно определить химическим путем, какое соединение и какого состава присутствует в сплаве, неимоверно трудно. Но даже если бы это удалось, легко впасть в ошибку: ведь состав интересующей нас фазы зачастую колеблется в широких пределах. За примерами ходить недалеко: те же Mg—Sn, Pb—Sn. Они образуют твердые растворы переменного состава. И только сингулярная точка может однозначно и точно, а главное, легко и быстро указать состав соединения, содержащегося в той или иной фазе.

Так физико-химический анализ вручил ученым великолепный индикатор, который, по словам Курнакова, «позволяет открывать соединения и определять их состав, не прибегая к обычному препаративному методу выделения соответствующих твердых фаз в чистом состоянии».

Именно этот индикатор заставил науку еще раз вспомнить о Бертолле.

В начале нашего века внимание исследователей приковали к себе сплавы таллия с висмутом. Система Tl—Bi имела диаграмму с типичным «горным пейзажем». Это сразу наталкивало на мысль, что ее компоненты вступают в химическое соединение. Только вот какого состава?

Вершина «холма» находится над точкой, соответствующей составу 37,2 процента Tl плюс 62,8 процента Bi. Отсюда японский ученый Шикашиге сделал вывод: в системе образуется соединение вполне определенного состава Tl3Bi5.

Но когда изучением системы занялся академик Курнаков, обнаружились странные вещи. Если фаза переменного состава действительно содержит соединение, подчиняющееся закону постоянных и кратных отношений, то твердый раствор под контуром «холма» должен обладать дальтоновской точкой. Но ее не было! Вернее, была, да только не на месте. Не под самой высокой точкой на кривой плавкости, а гораздо дальше. Там, где кончалась область твердого раствора!

Курнаков сделал вывод: это вовсе не твердый раствор соединения Tl3Bi5. Это химический индивид переменного состава, не подчиняющийся закону постоянства и кратности. И если сингулярный всплеск все же есть, то он должен находиться за пределами реальных концентраций, в которых существует наша фаза.

Не странно ли: вроде бы есть твердый раствор какого-то соединения. Но самого соединения нет! Вещество — призрак, оно обретается по ту сторону наших возможностей физически «потрогать» его.

Вскоре обнаружилось, что диковинки неопределенного состава — не такая уж редкость. Древняя латунь — сплав меди с цинком — тоже содержит химический индивид, не имеющий дальтоновской точки. Его состав колеблется в громадном диапазоне — разница в целых 18,2 процента! В некоторых кристаллогидратах содержание воды изменяется тоже не скачками, как у серной кислоты или глауберовой соли, а непрерывно, причем однородность и прозрачность вещества сохраняются полностью. Некоторые фазы в сплавах железа с кремнием, меди и серебра с оловом, цинком, кадмием, знаменитые цеолиты, которые сегодня нашли широкое применение в качестве молекулярных сит, — их оказалось не так уж мало, этих отщепенцев, этих раскольников, не принявших вероучение Пруста — Дальтона!

Впрочем, метафоры из лексикона церковников здесь не совсем уместны. Наука тем и сильна в отличие от религии, что у нее нет окаменевших догм. Диалектическая логика не страшится низвергнуть культ отживших истин.

Через сто лет после того, как закончился спор между Прустом и Бертолле, Курнаков сказал: «В настоящее время совокупность данных физико-химического анализа позволяет утверждать с полной уверенностью, что обе стороны правы в своих утверждениях, но что точка зрения Бертолле является более общей».

Химические индивиды переменного состава Курнаков назвал бертоллидами в отличие от дальтонидов, свято соблюдающих закон постоянства состава.

Это был триумф принципа непрерывности, провозглашенного Бертолле. Великое содружество химии и математики торжествовало очередную победу. А если оглянуться, как мучительно, как трудно проникали новые идеи в химию! Впрочем, и в математику тоже.

Как это началось?

…Два с лишним столетия назад у жителей тихого Кенигсберга пропал покой. Простоватые бюргеры и высокомерные юнкеры, недоросли-школяры и ученые мужи, даже беззаботные Гретхен и доблестные прусские офицеры, не привыкшие утомлять свой мозг чрезмерными интеллектуальными упражнениями, — словом, все достопочтенные кенигсбергские граждане в поте лица корпели над задачей: как обойти семь мостов, перекинутых через реку Прегель, побывав на каждом всего один раз?

Этой беспокойной затеей заинтересовался Леонард Эйлер. Великий математик доказал неразрешимость знаменитой задачи: контур невозможно нарисовать единым росчерком, не отрывая пера от бумаги и не проходя по одной и той же линии дважды.

Так родилась топология.

С первых же шагов новая наука испугала верноподданных евклидовой геометрии своими странными замашками. Раньше все было как полагается. Шар был шаром, куб — кубом, и никому не взбредало в голову превращать округлость одного в угловатость другого. Или наоборот. Поверхность всегда имела две стороны, а пространство три измерения. Что же касается вычерчивания фигур единым росчерком пера, то лишь очередной блажью можно было объяснить намерение великого ученого взяться за несерьезное занятие, которое под стать разве что нерадивым бурсакам.

Но неисповедимы пути науки. Новые идеи витали в воздухе, и рано или поздно кто-то должен был их высказать. Даже несмотря на высокомерно-пренебрежительное отношение творцов и приверженцев классической математики.

В 1812 году во время бегства наполеоновской армии из России военный инженер Понселе попал в плен и был интернирован русскими властями. Очутившись в Саратове, он занялся научными изысканиями. Именно здесь Понселе, последователь школы Монжа, пришел к идеям, которые легли потом в основу «Трактата о проективных свойствах фигур». В своем труде саратовский пленник высказал принцип непрерывности геометрических преобразований. Тогда же он сформулировал понятие о проективных свойствах фигур в отличие от так называемых метрических.

Классическую геометрию интересовала не только форма фигур, но и их размеры. Само название этой древней науки включает в себя корень «метр» — мера. Измерение длин, площадей и объемов тысячелетиями занимало умы величайших геометров. Что же касается классификации математических индивидов, то здесь пролегали непереходимые грани. Считалось, что плавная кривизна окружности и резковатая прямота четырехугольника — вещи несовместимые, как гений и злодейство. Недаром никакие ухищрения не помогали разрешить знаменитую «квадратуру круга» — обратить с помощью циркуля и линейки круг в квадрат равной площади.

И вдруг появились люди, которые стали рассматривать круг и квадрат, кривую и прямую линии как нечто очень похожее. В самом деле, говорили они, представьте себе прямоугольник, состоящий не из жестких, негнущихся линий, а из гибких, растяжимых нитей. Тогда его легко будет без разрывов преобразовать в треугольник, круг, эллипс. Даже в восьмерку, если вырваться из плоскости. Однако эту восьмерку уже не переделать без ножниц и клея в два звена одной цепи.

Точно так же куб с мягкими стенками подобен шару — оба тела ограничены замкнутыми поверхностями, которые могут быть превращены одна в другую. Но при всем желании сфера не может быть превращена без раскроя в бублик. Мешает дырка.

Полоска бумаги. У нее две поверхности. Это очевидно, ибо каждую из сторон можно раскрасить в разные цвета. Но склейте ленту концами, перевернув один из них на 180 градусов, и вы получите «лист Мёбиуса». Попробуйте раскрасить сперва одну сторону до конца в какой-нибудь один цвет, потом вторую — в другой. У вас ничего не получится. Ибо это странное кольцо имеет только одну сторону!

Итак, для новой геометрии узлы и перегибы, замкнутость и разомкнутость, целостность и разрывы сплошности оказались не менее ценными характеристиками, чем жесткость и невзаимозаменяемость идеальных линий, поверхностей и фигур для классической. В отличие от своей предшественницы новая наука пренебрегла числом и мерой, сосредоточив все свое внимание на непрерывности геометрических преобразований.

Эту «каучуковую» геометрию нарекли топологией.

Не сразу она завоевала признание. Холодный прием со стороны математических авторитетов ожидал не одного Понселе. С иронией отнеслись к дерзким посягательствам Лобачевского на непогрешимость постулатов Евклида. Немецкий математик Гаусс, самостоятельно пришедший к идеям неевклидовой геометрии, так и не решился на публикацию своих исследований.

Еще медленнее проникали математические идеи в мир химических превращений. Бертолле умер, так и не дождавшись признания. Лишь в семидесятых годах XIX века появились классические мемуары Гиббса о химических равновесиях и формулы Гульдберга — Вааге.

Следующий шаг на пути к математизации химии сделал в своих геометрических построениях Менделеев. Но никогда еще химия не знала такого энтузиаста математических методов, как этот удивительный русский, один из тех одержимых, энергия и талант которых взламывают жесткие рамки любых традиций, сокрушают любые «китайские стены» самодовольной ограниченности. Да, таким был создатель физико-химического анализа Николай Семенович Курнаков. Именно благодаря его работам две древние науки снова протянули друг другу руки, чтобы уже никогда не расставаться.

Так родилась топологическая химия.

«Я был очень удивлен, — вспоминает доктор физико-математических наук, профессор Ленинградского горного института Николай Вячеславович Липин, — когда узнал, что Николай Семенович изучает работы по геометрии Мёбиуса, которые он надеялся применить к решению проблем химии. Точно так же он изучал первые работы по топологии, принадлежавшие Листингу. Когда я указал, что самые важные результаты в этом направлении впервые получены Пуанкаре, Николай Семенович стал заниматься формулой Пуанкаре. То обстоятельство, что эта формула относится к многомерным пространствам, не смущало его, он утверждал, что в его диаграммах она применима».

Но какое, собственно, отношение имеет к химии топология? Почему Курнаков назвал созданный им метод анализа топологической химией?

Вот как отвечал на этот вопрос сам Курнаков:

«Учение о подвижном равновесии, введенное в химию Бертолле, есть не что иное, как применение геометрической идеи непрерывности к химическим превращениям. В геометрии непрерывность изменений фигур характеризует самые общие преобразования пространства, которыми занимается топология… Учение о равновесной диаграмме состав — свойство представляет особую область приложения топологии, где понятию „многообразия“, или „комплекса“, составленного из геометрических элементов — точек, линий, поверхностей и т. д., — соответствует понятие „система“, образованная различным числом компонентов».

Мы познакомились с диаграммами двойных систем. Это были плоские чертежи.

Однако если физико-химическая система состоит не из двух, а из трех компонентов (составных частей), то плоского чертежа на листке бумаги уже недостаточно. В этом случае Курнакову приходилось делать объемные модели из гипса и ради наглядности раскрашивать поверхности в разные цвета. Вместо плоской «чайки» теперь перед нами рельефная поверхность. Но каждая из граней призмы — это тот же график двойной системы! Основание призмы — треугольник, на который спроектирована эвтектическая точка тройной системы. Гораздо труднее построить модель четверной системы. Она представляет собой тетраэдр, составленный из тех самых треугольников, которые являются основаниями призмы — модели тройной системы. Внутри тетраэдра заключена эвтектическая звезда, рассекающая его на 4 дольки. Аналогично изображается геометрическая модель системы из 5 компонентов. Эта фигура — пентатоп — имеет 4 угловые точки, расположенные в четырехмерном пространстве. Шестерная система изобразится пятимерным гексатопом. И вообще система из (n + 1) компонентов может быть представлена политопом n-мерного пространства.

Понятие об n-мерном пространстве ввел еще в 1856 году немецкий математик Бернгард Риман. Он показал, что наше представление о пространстве, где предметы имеют длину, ширину и высоту, — не более, как частный случай геометрического видения мира. Можно мысленно представить себе пространство не только трех, но четырех, пяти и более измерений.

Увы, то, что могло сделать воображение, было недоступно рукам. Построить наглядную геометрическую модель не удавалось даже в том случае, когда число компонентов превышало три. Оставалось иметь дело с чисто умозрительным толкованием так называемых многомерных структур. Но Курнаков не уставал повторять: «Нужно больше работать, рано или поздно мы найдем удобное геометрическое представление». И неспроста великий русский химик самозабвенно углублялся в дебри классических трактатов по геометрии и новейших работ по топологии, не ради забавы привлекал он к сотрудничеству видных советских математиков.

Мы начали с диаграмм металлических сплавов. Но сам физико-химический анализ — разве это не чудесный сплав химии и математики, сплав, из которого выкристаллизовался многогранный язык курнаковских диаграмм? «Химия получает международный геометрический язык, аналогичный языку химических формул, но гораздо более общий, так как он относится не только к определенным соединениям, но и ко всем химическим превращениям вообще», — писал академик Курнаков.

«Природа говорит языком математики», — гласит древнее латинское изречение. Бертолле не было суждено овладеть в совершенстве этим языком, способным лаконично и строго описывать многокрасочную гамму химических явлений: от жарких сполохов доменных плавок до холодных равновесий соленых морских пучин.

Лишь теперь химики обрели возможность вступить во взаимопонятный диалог с несловоохотливой природой. И не напрасно — они выпытали у нее новые тайны.

…Из двенадцати подвигов легендарного Геркулеса один имеет некоторое отношение к химии. Нужно было вычистить огромные конюшни царя Авгия, заросшие навозом по самые крыши. Нелегкий труд выпал на долю героя, но могучий Геркулес не ударил в грязь лицом. Через громадные, на три тысячи коней, царские стойла он направил воды реки Алфея. Мощные потоки за один день начисто смыли тридцатилетние наслоения. В лексиконе народов это предание оставило выражение «авгиевы конюшни» как символ чего-то неимоверно грязного и трудно поддающегося очистке.

Мария Кюри не обладала бицепсами Геркулеса. Напротив, она была хрупкой, болезненной женщиной, к тому же ее обременяли многочисленные семейные заботы. Но титанический труд по очистке открытого ею нового элемента, названного радием, способен затмить подвиг героя прекрасного античного мифа. В заброшенном сарае супруги Кюри переработали многие центнеры урановой руды, чтобы получить ничтожную крупинку соли радия. Ближайший аналог бария, новый элемент никак не хотел отделяться от своего сородича. Поэтому для окончательного разделения смеси пришлось несколько тысяч раз перекристаллизовывать раствор солей. За свои бессмертный научный подвиг Мария Кюри была удостоена Нобелевской премии.

Никакие «авгиевы конюшни» не устоят перед искусством сегодняшнего экспериментатора. Тяжелую работу человек препоручил машинам, которые мощью и ловкостью далеко превзошли Геркулеса. В распоряжении ученых есть не один десяток остроумных методов, о существовании которых и не подозревали наши античные предки. Но значит ли это, что поединок с примесями в борьбе за чистоту стал легче?

Методы препаративной химии совершенствуются день ото дня. Сегодняшние ученые умеют освобождать вещества от примесей куда лучше, проще и скорее, чем это удавалось Прусту или Кольраушу. Однако требования к чистоте материалов растут еще быстрее! И не известно, у какого предела они остановятся.

Если в урановом топливе окажется больше одной миллионной процента бора, цепочка ядерных распадов оборвется. А примеси мышьяка к германию, применяемому в полупроводниковой технике, порой не должны превышать одного атома на миллиард атомов чистого вещества.

99,9 999 999 процента. Такое количество девяток привело бы в трепет даже самого терпеливого, самого настойчивого химика прошлого века. А ведь наши деды умели годами и десятилетиями охотиться за сверхчистотой, когда они возгорались желанием поближе познакомиться с химическим индивидом. И лишь физико-химический анализ переключил их внимание на изучение смесей.

Но чудо: именно интерес к «грязи» помог добиться неслыханной чистоты.

Родились совершенно новые принципы очистки вещества. Их подсказали идеи физико-химического анализа.

Когда сплав затвердевает, кристаллики обоих компонентов и твердые растворы образуют довольно однородную смесь. Фазы не разделяются. Так происходит, если расплавленная масса охлаждается равномерно. А если ее охлаждать иначе? Не всю сразу, а зонами? Что тогда?

Улитка за час перемещается всего на несколько метров. Но в сотни раз медленнее двигается брусок материала, очищаемого зонной кристаллизацией. Метод назван так потому, что вещество в нем расплавлено не целиком, а лишь на одном участке. По левую и правую руку от огненно-жидкой массы — твердое вещество. Брусок незаметно для глаза проползает в кольцеобразный нагреватель, спокойно стоящий на месте. Вот и получается, что расплавленная зона путешествует от одного конца бруска к другому — ведь движение относительно! Если примеси (второй компонент) растворимы в расплавленном веществе лучше, чем в твердом, то они, естественно, стремятся там и остаться. Затвердевшая часть бруска будет чище его жидкой фазы. Медленно смещая брусок или нагреватель (все равно!), можно оттеснить всю «нечисть» от носа к хвосту бруска. Операцию обычно повторяют многократно. После этого «хвост» отрезают, оставаясь с чистым «носом».

Подвижное «адское пекло» позволяет получить полупроводниковый кремний с огромным процентом чистоты — семь девяток после запятой.

Если бы знал великий Данте, что химики способны даже ад превратить в чистилище!

Правда, структура тел, очищенных таким способом, получается мелкокристаллической. А для полупроводниковых приборов нужны правильные по форме крупные кристаллы. Пожалуйста: физико-химические методы и тут готовы прийти на выручку.

Вещество, подлежащее очистке, расплавлено в тигле. Температура раскаленной массы всего на несколько градусов выше точки плавления. В расплав вводят затравку — крохотную крупинку чистого вещества. На ее гранях тотчас начинают нарастать новые слои. Чтобы рост шел равномерно, кристаллик приходится вращать. И одновременно вытягивать из тигля, чтобы затравка не нагрелась и сама не расплавилась. Такая процедура идет не намного быстрее, чем растет гриб после хорошего дождя. Зато уж получается великолепный монокристалл — крупный, однородный, правильный. Примеси, которые хуже растворимы в твердой фазе, как и при зонной плавке, не переходят в кристалл.

Признаться, и этот метод небезгрешен. Вращение приводит к винтовым сдвигам в кристаллической решетке вещества. Образуются дислокации.

Представьте себе, что из стены дома вывалился кирпич. Или каменщик по небрежности уложил два соседних кирпича на большем, чем обычно, расстоянии. Ясно, что в этом месте появится нежелательная «слабина». Так и в кристалле. Любое нарушение геометрической правильности в атомной «кладке» ведет к изменению свойств твердого тела. Например, электрических. Полупроводник работает хуже. Кроме всего прочего, изъяны решетки (дислокации) уменьшают прочность материала. А нельзя ли обойтись без каких бы то ни было дефектов?

Очень трудно. Но ученые не устают искать методы получения бездислокационных материалов. И, конечно, находят.

На малюсенькой плиточке чистого кремния лежит золотая крупинка. Оба элемента нагреваются в печи. Образуется капелька сплава Si—Au. Над ней продуваются пары четыреххлористого кремния в смеси с водородом. Течет реакция: SiCl4 + 2H2→Si + 4HCl. Элементарный кремний из паров переходит в расплав, пересыщая его и заставляя самого себя выкристаллизовываться. На плиточке под каплей отлагаются все новые наслоения. Медленно, но верно начинает расти столбик чистого кремния, похожий на мачту с жидкой нашлепкой сплава на клотике. В подобных препаратах винтовые дислокации отсутствуют.

В последнее время ученые пристально присматриваются к соединениям, возникающим в сплавах выходцев из III и V групп менделеевской таблицы. Антимониды, арсениды и фосфиды бора, алюминия, индия и галлия могут оказаться серьезными конкурентами многих полупроводниковых материалов, уже ставших традиционными.

Новички подают большие надежды и… внушают немалые опасения.

Некоторые из них оказались прямо-таки с норовом. Например, арсенид бора — BAs. Первый компонент тугоплавок. А второй легколетуч. Как получить их соединения? Сплавить оба вещества? Но ведь первое не успеет расплавиться, как второе уже испарится!

Допустим, что мы синтезировали BAs. Предстоит его лишь очистить. Скажем, зонной плавкой или вытягиванием из расплава. Но как? Ведь если такое соединение нагреть, то при нормальном давлении оно разложится! Получится расплав бора и пары мышьяка. При охлаждении система не возвращается в исходное состояние — компоненты не объединяются вновь. Чтобы этого не произошло, необходимо очень сильное давление. Но очень трудно, а порой и просто невозможно подобрать подходящие материалы для тиглей и ампул, которые выдерживали бы большие давления, обладая одновременно хорошей термической и химической стойкостью.

Подобные фокусы хорошо знакомы и металлургам. Например, нельзя получить сплав вольфрама и меди нагреванием: медь испарится раньше, чем расплавится вольфрам. Приходится идти окольным путем. Смешивают порошки обоих компонентов. Удар штампа — «слиток» готов. К сожалению, методы порошковой металлургии не годятся в технологии полупроводников. Они дают материалы с зернистой структурой. А нам нужны однородные монокристаллы.

Правда, не все соединения оказались отпетыми, «неподдающимися». Например, для GaAs, GaSb, GaP, InAs, InSb, InP, а также AsSb зонная плавка и вытягивание монокристаллов все-таки удаются. Однако и здесь летучесть второго компонента чинит препятствия технологам. Чтобы разработать метод получения или очистки такого соединения, приходится до тонкостей учитывать все его капризы. А это просто немыслимо без детального изучения двойных систем методами физико-химического анализа.

В диаграммах состояния, помимо концентрации и температуры, появляется третья переменная величина — давление паров летучего компонента. Для каждого давления строится свой график. Вот бы удалось получить непрерывную последовательность диаграмм для всех возможных значений давления! Тогда мы бы увидели яркую иллюстрацию типичных топологических преобразований, когда горный пейзаж постепенно исчезает, уступая место одной из своих половин — «чайке». Точь-в-точь как у Льюиса Кэрролла в его книге «Алиса в стране чудес»: «Кот исчезал очень медленно, начиная с кончика хвоста и кончая улыбкой, которая оставалась еще некоторое время после того, как остальное скрылось»…

Для практических нужд обычно бывает достаточно серии из нескольких картинок отдельно для каждого случая. По ним, как по кинокадрам, можно представить себе и промежуточные состояния. Анализ состояний системы помогает выбрать наилучшие условия для синтеза и очистки этих соединений.

Вот одна из физико-химических уловок в приручении непокорных полупроводников.

В запаянной ампуле, из которой тщательно удален воздух, два мелкокристаллических вещества — фосфид галлия и йод. Ампула нагревается, только неравномерно. Тот конец, где йод, слабее. Но так, чтобы он все-таки мог возгоняться. В горячей зоне начинается реакция 4GaPтв + 2J2газ→4GaJгаз + P4газ.

Она идет с поглощением тепла. Пары легколетучих продуктов распространяются по всему объему сосудика. У более холодного конца ампулы процесс идет в обратную сторону, уже с выделением тепла: 4GaJгаз + P4газ→4GaPтв + 2J2газ.

А пары йода отправляются за новыми порциями фосфида. Кристаллы фосфида галлия, образованные из паров, гораздо крупнее исходных. Так с парами йода вещество переносится из одного конца ампулы в другой, улучшая свои полупроводниковые свойства. Недаром подобные реакции называются «транспортными».

Перед нами очередной прием, в котором блистательно реализованы идеи учения о фазовых и химических равновесиях, лежащие в основе физико-химического анализа. И где только эти идеи не получают своего блистательного воплощения! Пожалуй, нет такой области в науке и технике, где бы не звучал язык курнаковской топологической химии.

Прочность… Проблема номер один современной техники. Сколько еще надо сделать, чтобы окончательно освободить человека от власти слепых стихий!

Яростные судороги землетрясений еще способны низвергнуть любые постройки, возведенные человеком. Коварные тараны подводных рифов и плавучих ледяных глыб еще страшны для самого крепкого борта. Не всегда выстаивают мачты и провода под свистящим напором урагана. Не каждая плотина выносит настойчивые удары волн. Лопаются тросы, трескаются трубы, ломаются рельсы, рушатся колонны. Поневоле приходится придавать конструкциям массивность, фундаментальность. Неужели так будет вечно?

Если бы прочность материалов возросла вдруг в сто раз! Гигантские сооружения стали бы из массивных ажурными, воздушными, тонкостенными. В самое небо уперлись бы здания-иглы в сотни этажей. Над водой повисли бы изящные полупрозрачные фермы мостов. Автомобили, самолеты, экскаваторы можно было бы переносить хоть на руках. Вот только многие машины пришлось бы привязывать к колышкам, чтобы порыв ветра не погнал их по земле, как перекати-поле.

Сколь бы нереальным ни выглядел этот фантастический этюд, он принадлежит не писателю-фантасту. Ученому. Известному специалисту в области физико-химической механики академику Ребиндеру.

— Представьте себе цепь, — говорит Петр Александрович, — только не совсем обычную. В ней примерно на каждые сто стальных звеньев приходится одно бумажное. Прочность такой цепи определяется свойствами именно самых слабых звеньев. Нечто подобное наблюдается и в структуре твердых тел.

Примерно каждое сотое расстояние между соседями по кристаллической решетке больше остальных, одинаковых. Дислокации и есть те слабые звенья, из-за которых реальная прочность материалов в сотни раз ниже, чем у идеальных — воображаемых бездефектных твердых тел.

Железо. Ковкий тягучий металл. Проволочка из него выдерживает всего 20 килограммов на квадратный миллиметр. В десять раз меньше, чем стальная. А если приготовить кристаллы чистейшего железа без геометрических изъянов, они будут в десять раз прочнее стали! И такие кристаллы-иголки (их называют «усами») уже получены в лабораториях. Получены физико-химическими методами — осаждением железа из газовой фазы. К сожалению, пока они слишком крохотны, эти «усы». Их увидишь лишь под микроскопом. Но разве не с малого начинается великое?

Правда, академик Ребиндер считает самым обнадеживающим иной путь. К прочности — через разрушение! Парадокс? Ничуть. Сначала расколоть твердое тело по всем дефектам. Оно распадется на отдельные куски, словно стальная цепь с разорванными бумажными звеньями. А теперь сцементировать кусочки тончайшими прослойками высокопрочного клея.

Давно известно, что тонкие нити, пленки или просто мелкие зернышки, размеры которых примерно равны расстояниям между дефектами, всегда гораздо прочнее, чем массивные глыбы того же материала. В крупных кусках больше слабых звеньев. Вот почему будущее принадлежит материалам, составленным из множества тончайших волокон, пленок, зерен.

Можно обойтись и без специального клея. Надо только очень плотно упаковать крупинки, чтобы они притерлись, приноровились друг к другу. Для этого мелкозернистую массу прессуют. И спекают — нагревают до температуры чуть ниже точки плавления.

Мелкозернистые структуры возникают и при кристаллизации из жидкости.

Бетон. Самые высокие здания, самые большие плотины, самые лучшие шоссе построены из него. Между тем этот материал может стать намного прочнее, если умело управлять процессами отвердевания цемента. Этим нелегким искусством овладевают ученые с кафедры коллоидной химии МГУ, руководимой Петром Александровичем Ребиндером.

При замешивании с водой цемента и его ближайших сородичей: негашеной извести CaO и полуводного гипса 2CaSO4·H2O — образуется густая паста. Твердые частицы начинают растворяться в воде. Образуются новые химические индивиды — гидраты. Например, гидраты силикатов и алюминатов кальция из обычного портландцемента. Двуводный гипс CaSO4·2H2O из полуводного. Гашеная известь Ca(ОН)2 из негашеной. Эти предельно оводненные соединения менее растворимы в воде, чем те вещества, из которых они образовались. Раствор по отношению к ним оказывается пересыщенным. Поэтому гидраты выкристаллизовываются из него. Появляются мельчайшие крупинки-зародыши. Их мириады. И они растут, слипаясь в рыхлую поначалу массу, этакое пространственное кружево. А порошок вяжущего вещества (скажем, цемента) не перестает растворяться. Раствор все время остается пересыщенным. Кристаллизация продолжается. Рыхлая структура становится плотнее и плотнее. И так до тех пор, пока все первичные крупицы не «перегонятся» через раствор, превратившись в более устойчивую форму — кристаллогидратную.

Если вода в избытке, дело плохо. Испаряясь, она оставит поры открытыми. А чуть похолодает, капельки могут вернуться в свои «норы», чтобы зимой замерзнуть, расшириться и заставить бетон трещать по всем швам. Коли же воды мало — тоже плохо. Не все крупинки вяжущего перейдут в гидратную форму. Очевидно, растворителя должно брать столько же, сколько и растворяющегося вещества. Правда, тогда паста получается такой густой, что ее частицам трудно подгоняться друг к другу. А без этого материал не станет предельно плотным и однородным. Вот почему академик Ребиндер предлагает добавлять в массу поверхностно-активные вещества, играющие роль смазки для частичек. И уплотнять смесь высокочастотной вибрацией. Быстрые колебания как бы разжижают смесь, не увеличивая количество растворителя. Новая технология позволяет до минимума сократить добавки воды. А это резко повышает качество бетона — его прочность, стойкость, долговечность.

Перегонка химических веществ через раствор в цементной кашице. Транспортные реакции в ампуле с фосфидом галлия. Выделение бездислокациоиных кристаллов из паров. Фазовые равновесия в изложнице и пробирке, в недрах Земли и пучинах моря — сколько разных процессов, и все они доступны строгому описанию языком топологической химии! А без этого описания было бы невозможно понять тончайшие механизмы явлений. Понять, чтобы овладеть ими и направить их ход в нужное русло. Затем, чтобы обезоружить землетрясения и ураганы. Чтобы создать невиданные природой материалы. Чтобы добыть из земли и воды новые химические богатства. Чтобы приблизить окончательное торжество человеческого разума над слепыми силами стихии.

Глава 2

В мире странных архитектур

Все было изумительно просто. «Заглянуть внутрь атома? О мсье, это же ровным счетом ничего не стоит! Входите, пожалуйста, входите!» С этими словами бой нажимал кнопку скоростного лифта — и 20 секунд спустя вы оказывались в ста метрах над землей. Сейчас распахнется дверь и…

Каков он, этот странный мир, который никто и никогда не видел, даже в самый мощный электронный микроскоп? Неужто и впрямь такой, каким его изображают в учебнике физики: что-то вроде солнечной системы в миниатюре: в центре светило-ядро, а вокруг планетки-электроны? Судя по масштабам сооружения, каждая такая планетка уж никак не меньше той, на которой обитал Маленький принц из поэтичной сказки Антуана де Сент-Экзюпери…

Для начала читателю предлагается прокатиться на лифте и эскалаторе, чтобы хоть как-то освоиться с непривычной обстановкой, которая в дальнейшем окажется не слишком комфортабельной.

Но что это? В раскрытые двери остановившегося подъемника видны не планетки-электроны, кружащиеся в плавном танце около Солнца-ядра, а неподвижные тонконогие кресла, сгрудившиеся вокруг по-современному приземистых столов. Вместо захватывающей картины микромира — прозаическая сутолока шикарного ресторана…

«Если мсье здесь не нравится, он может опуститься по эскалаторам в остальные восемь атомов!»

Атомов… Ох, уж эта реклама! Без привычки ни за что не отличить, где правда, а где вымысел. Чего стоит весь этот комфорт, когда нет даже намека на сокровенные тайны микромира?

Зато вечером разочарованных посетителей «Атомиума», грандиозного инженерного сооружения на Всемирной брюссельской выставке, поджидал сюрприз. Не успевали выцвести последние бледные краски заката, как густую синеву летних сумерек пронзали серебристые лезвия лучей. Скользя по сверкающей поверхности гигантских стальных шаров, они создавали полную иллюзию движения электронов. То было поистине фантастическое зрелище: многократно отраженные световые пятна преображали массивную громаду «Атомиума», делали ее легкой, еще более ажурной, почти призрачной. Нет, пожалуй, даже ради одной этой ночной феерии стоило сооружать грандиозную модель кристаллической решетки железа!

Эффектно, не правда ли? А главное, просто: включил прожектор — и картина электронной структуры как на ладони.

Увы, с реальными атомными «архитектурами» куда сложнее. Электронные постройки микромира, несмотря на изумительное совершенство и гармонию, не отличаются той геометрической четкостью, которую архитектор придал «Атомиуму». А их инженерный расчет — и вовсе не такая простая штука.

Химики хорошо знают, что вокруг ядра атома железа вращаются 26 электронов. А математики помнят: положение каждого электрона в пространстве определяется тремя координатами. Значит, в простейшем уравнении, описывающем только одно энергетическое состояние атома железа, будут фигурировать 78 переменных. Точное решение уравнения потребовало бы вычисления 1078 значений различных физических величин. Чтобы напечатать подобную таблицу, не хватило бы не только всей бумаги Земли, но и вообще вещества в солнечной системе.

Впрочем, что говорить о железе! Полный точный расчет выполнен пока лишь для атома водорода. Между тем химиков чрезвычайно интересуют электронные состояния не только простейшего представителя менделеевской таблицы. Им подавай и углерод, и азот, и кислород, да к тому же не поодиночке, а в компании с другими элементами. Да чтобы эта «компания» оказалась молекулой, соединения, важного в практическом и теоретическом отношении. Вроде полупроводника, полимера или — страшно подумать! — живого белка.

Правда, здесь нас подстерегает другой — каверзный, хотя и вполне естественный, — вопрос: а зачем? Зачем, собственно, понадобилось втискивать все разнообразие химических явлений в прокрустово ложе математических формул и уравнений?

Человеку свойственно ошибаться.

Незадолго до второй мировой войны Альберту Эйнштейну был задан вопрос: удастся ли в ближайшие столетия овладеть энергией расщепленного атома?

— О, это совершенно исключено! — убежденно ответил величайший физик XX века.

Эйнштейн не был одинок в своем скептицизме. Эрнест Резерфорд, Нильс Бор и другие маститые ученые-атомники разделяли его сомнения. Заметьте: то были умы, заложившие математический фундамент новой физики. Теория относительности. Модель атома. Кванты. Теоретические представления, неузнаваемо изменившие классическую картину мира. Но даже сами творцы считали их долгое время бесплодными — разумеется, с точки зрения практического использования в технике. Однако не прошло и десяти лет, как Энрико Ферми запустил первый в мире атомный реактор. Человек оказался властелином гигантских запасов энергии, спрятанных в недрах крупинки вещества.

Все это рассказано не только ради того, чтобы сделать тривиальный вывод: дескать, даже сугубо теоретические изыскания находят неожиданный выход в практику. Любопытно здесь скорее другое. В те годы, когда физики авторитетно разбивали надежды на покорение расщепленного атома, математический аппарат современной физики окончательно сформировался. Во всяком случае, уже родилась квантовая механика. Между тем, когда Бор приступал к расчетам своей модели водородного атома, волновое уравнение Шредингера, лежащее в основе всех квантово-механических расчетов, еще не было выведено. Оно увидело свет лишь через десять лет.

А ведь Бор мог бы засомневаться. Во-первых, ученый и догадываться не мог, что его атомная конструкция может когда-то принести практическую пользу. Во-вторых, он не был убежден и в теоретическом успехе. Тем не менее датский физик не терзался сомнениями: стоит или не стоит? Стоит!

И пусть его теоретический расчет не совпал с экспериментальными данными. В конце концов отрицательный результат — тоже результат! Он недвусмысленно свидетельствует: либо математические приемы несовершенны, либо рассчитываемая модель не без изъяна. В обоих случаях неугомонный физик ни за что не спросит: «А стоит ли?» Он не отступится до тех пор, пока не достигнет желанной цели. И опять бесконечная череда раздумий и экспериментов, успехов и разочарований, сомнений и надежд…

Да, Нильсу Бору стоило идти неторной тропой! Стоило, хотя и не на его долю выпала честь стать создателем квантовой механики в ее современной форме — математической основы всей современной физики. К этому открытию пришли другие ученые. Их было двое: Вернер Гейзенберг и несколько позже Эрвин Шредингер. Первый исходил из экспериментальных данных, второй — из чисто математических соображений. И что самое поразительное — именно математическая неудача привела к новому и важному физическому открытию!

«Шредингер рассказывал мне, — вспоминает известный физик Поль Дирак, — что, впервые выведя свое уравнение, он немедленно применил его для описания поведения электрона в атоме водорода, но результаты вычислений не совпали с опытными данными. Автор, естественно, был глубоко разочарован и несколько месяцев не возвращался к теме исследования. Затем он обнаружил, что если не учитывать некоторых требований теории относительности, то в приближенном виде его теоретические выводы хорошо будут согласованы с экспериментальными результатами. Именно в таком грубом приближении волновое уравнение Шредингера и увидело свет».

Какое открытие было вызвано расхождением расчета и опыта, читатель узнает на странице 144.

Сейчас нам важно одно: математический подход к явлениям природы — идет ли речь об атоме или молекуле, кристалле или клетке — не только правомерен, но и плодотворен.

«Но позвольте, — поспешит возразить читатель, — все приведенные до сих пор аргументы в пользу математизации относились к физике! А как же быть с химией и биологией?»

Физика есть механика молекул, химия есть физика атома, биология есть химия белка… Трудно поверить, что эти слова были произнесены почти столетие назад. Но факт остается фактом: они принадлежат Фридриху Энгельсу. Минула эпоха. Науку и общество не раз потрясали революции. Однако ни одно открытие не поколебало справедливости энгельсовского высказывания. И никому еще не удалось более точно, более лаконично и, если угодно, более афористично определить внутреннюю взаимосвязь между ведущими областями естествознания.

Когда мы говорим: «атом делим», мы имеем в виду два обстоятельства. Во-первых, он состоит из элементарных частиц: протонов, нейтронов, электронов и так далее. Во-вторых, может распадаться в результате радиоактивного превращения.

Этот третий не лишний ли? Быть может, пора издать «закон исключенного третьего»?

Но, помимо всего прочего, атом оказался делимым еще и в третьем смысле! Он поделен на «сферы влияния». Атомное ядро сделали объектом изучения физики. Зато электроны облюбовали прежде всего химики. Оно и понятно: любое химическое превращение связано с перестройкой электронных «архитектур». На более высоких уровнях тоже отмечается тяготение к «местничеству». Физики узурпировали власть над кристаллами, химики — над молекулами. В фокусе внимания биологов по-прежнему находится клетка. Неспроста, видать, на той же Брюссельской выставке 1958 года, где высилась громада «Атомиума», каждой области знаний в одном из павильонов был отведен свой уголок. Разделы так и назывались: «Атомное ядро», «Атом», «Кристалл», «Клетка». Дескать, всяк сверчок знай свой шесток!

Но природа не признает никаких «демаркационных линий»: она едина.

Ядро и электрон — части атома. Атом — часть молекулы. Молекула — часть кристалла или клетки. Клетка — часть организма. Сколько разных архитектурных стилей! А кирпичики — одни и те же.

В одном из сочинений Вольтера мы встречаемся с мудрецом Задигом. Он умел видеть различия между вещами, которые простым смертным казались абсолютно одинаковыми. Гораздо труднее усмотреть то общее, что объединяет совершенно разнородные на первый взгляд предметы и явления.

Древо познания становится все ветвистее, а специализация ученых все уже и уже. Углубление в частные проблемы — вещь хорошая. Именно оно позволяет собрать богатейшую коллекцию экспериментальных наблюдений. А зачастую даже и разработать свой теоретический подход. При этом, случается, ученые, занятые близкими темами исследования, подобно строителям Вавилонской башни, вдруг теряют общий язык. Но такова уж диалектика научного прогресса: через накопление частных фактов человеческая мысль идет к широким обобщениям!

Современная физика, химия и биология подошли к такому рубежу, когда наметился общий подход к самым далеким явлениям, на самых разных уровнях — от элементарных частиц до думающего мозга. Такое взаимопонимание породили физика и ее сестра математика. Значит ли это, что химические или, скажем, биологические процессы не имеют своей «особинки», своей специфики?

Живое и неживое. Существо и вещество… Они составлены из одинаковых «кирпичиков». Но разве не отличить холодную статую от живого оригинала, пусть даже она схожа с ним, как две капли воды?

Рассказывают, в музее мадам Тюссо в Лондоне представлены восковые копии некоторых усопших знаменитостей. Сделанные в натуральный рост, с мерно вздымающейся и опускающейся (от моторчика) грудью, с мигающими ресницами, искусно подкрашенные, они так похожи на живых людей, что смущенные посетители невольно отшатываются: уж не мертвецы ли воскресли?

Нет, это куклы. Правда, воск — скопление органических веществ. Живая ткань — тоже. Тем не менее никому еще не удалось вдохнуть жизнь в мертвую статую подобно мифическому Пигмалиону. Впрочем, что там живой организм! Биохимики не знают еще, как синтезировать простейшие клеточные «детали».

Помните, у Чехова: дважды два — стеариновая свечка? Если бы органические молекулы и вправду подчинялись арифметике! Как это было бы хорошо! Для математики. И как это было бы плохо… для математиков.

Да, конечно, живое от неживого отделено незримым барьером. И, конечно, биологии свойственны свои закономерности. Взять, к примеру, мозг. Он состоит из 15 миллиардов клеток. Молекулы любой клетки из миллионов атомов. Это ни в коей мере не означает, что нам достаточно проинтегрировать (просуммировать) сведения об атомах, чтобы из кусочков составить мозаичное панно под названием «Мозг».

Шедевр инженерного искусства природы, заключенный в нашей черепной коробке, собран из сравнительно простых деталей. Но в том-то и беда, нет, вернее, в том-то и счастье, что свойства этих элементов неаддитивны! Таким термином математик обозначает нарушение обычного закона сложения. Действительно, мозг не просто арифметическая сумма клеток. Напротив, это сложнейший мир, изумительный своей гармоничной целостностью, намного превосходящий богатством функций любую индивидуальную клетку. Вот почему физика и химия, даже во всеоружии математических идей, не способны подменить науку о жизни — биологию.

Впрочем, они вовсе и не собираются этого делать!

Ясно, что изучение стройматериалов еще не есть архитектура. Тогда, выходит, оправдано существование межей на ниве знаний? Нет, тысячу раз нет! Математики, физики, химики и биологи — это не армии, выведенные на линию огня. Более того: они не просто представители держав, мирно сосуществующих по разные стороны от бдительно охраняемой границы. Это, если так можно выразиться, дружные бригады рабочих, врубающихся в гранит науки. С разных концов, но с единой целью — ради победы разума над незнанием.

На первый взгляд подобное умозаключение выглядит трюизмом — этакой банальной, избитой истиной, затертой, словно старый пятак. Между тем инерция традиций дает себя знать до сих пор, особенно среди биологов. Не умолкают дискуссии: принимать или не принимать физические и математические идеи в арсенал биологических методов? Дескать, «зачем»? Биология запросто обходилась и без них. А поветрие всеобщей математизации — не более как дань скоропреходящей моде. Так ли это?

Быть или не быть? Вот в чем вопрос квантовой биологии.

Предоставим слово видному советскому биофизику профессору Тумерману.

— Как и все новое, — говорит Лев Абрамович, — свежие идеи прокладывают себе путь не без борьбы и сопротивления. Что ж, это естественно. Мне хотелось бы все же разъяснить одно недоразумение. Достаточно произнести слова «квантово-механическая биология», как в воображении людей (особенно тех, кто далек от физики) всплывают страницы, испещренные двухэтажными курсивами дифференциальных уравнений, змееподобными зигзагами интегралов, многоярусными колонками цифр — другими словами, головоломными расчетами, сложнейшими формулами, абстрактной символикой. Как тут не отшатнуться приверженцу классической биологии! А напрасно. К величайшему сожалению для физиков-теоретиков, но, правду сказать, к тайной радости для нас, физиков-экспериментаторов, пока что рано говорить о тотальной квантово-механической математизации биохимии и биологии.

Действительно, точному квантово-механическому расчету поддается пока лишь весьма немноголюдная «компания» биологических систем — раз, два и обчелся. Не мозг. Не клетка. Даже не белковая молекула. Всего-навсего отдельные звенья биологически важных полимеров. Как говорится, не густо. Причем речь идет об упрощенных полуколичественных оценках.

Но разве можно по первым скромным удачам судить о перспективах новой науки? Тем более что точные математические подсчеты вовсе не исчерпывают содержания, вкладываемого в понятие «квантово-механическая биология»!

Важны не только и не столько квантово-механические расчеты, хотя их роль и не следует преуменьшать. Поиск интимнейших молекулярных механизмов, которые управляют всеми движениями «души» и тела, — вот на что нацелены усилия первопроходцев неизведанной научной целины. Ибо трижды прав Энгельс: биология есть химия белка…

Вглядитесь в то неописуемое выражение страдания, которое родосские скульпторы Агесандр, Афинодор и Полидор придали облику Лаокоона, изнемогающего в схватке с питоном. Вглядитесь и вдумайтесь: и безысходное отчаяние Лаокоона, и тупая жестокость питона, и, наконец, вдохновение скульпторов, создавших бессмертное изваяние, — все это работа сложной химической лаборатории, которую являет собой живой организм.

А нельзя ли любовь описать химическими уравнениями?

Перефразируя известное изречение Сеченова, можно сказать: смеется ли ребенок при виде игрушки, улыбается ли Гарибальди, когда его гонят за излишнюю любовь к родине, дрожит ли девушка при первой мысли о любви, создает ли Ньютон мировые законы и пишет их на бумаге, — за всем этим стоят удивительные химические метаморфозы.

Положим, вы любите сладкое. Однако сколько бы пирожных или конфет вы ни съедали зараз, концентрация сахара у вас в крови будет оставаться на неизменном уровне — около миллиграмма в миллилитре. И вот почему. Железы внутренней секреции выделяют специальное вещество — инсулин. Это гормон. Иными словами, катализатор. Он превращает избыток сахара, вернее, ускоряет его превращение в нерастворимый гликоген, оседающий в печени. Допустим теперь, что вы намеренно ограничиваете себя в сладостях и в продуктах, содержащих крахмал. Значит ли это, что содержание сахара в вашем организме упадет? Ничуть. Другие железы выбрасывают в кровь адреналин. Он катализирует обратный процесс — переход гликогена в растворимый сахар.

Такая химическая система обратной связи способна компенсировать, уравновешивать внешние воздействия, поддерживая то или иное качество нашего организма в пределах нормы. Даже при большой мышечной или нервной нагрузке.

Например, возбужденные болью нервные клетки усиленно потребляют сахар и соединения фосфора, выбрасывая в кровь соли кальция. Выделение химического вещества адреналина, вызванное болью, страхом, гневом, яростью, подталкивает работу печени, поставляющей организму биохимическое «топливо» — сахар. Количество сахара в крови увеличивается, кровь приливает к сердцу, легким, центральной нервной системе и конечностям, отхлынув от органов брюшной полости.

Если помните, пушкинского Онегина одолевал недуг, «подобный английскому сплину, короче, русская хандра». Иногда это состояние именуют так: тоска зеленая. А она, оказывается, вовсе не зеленая. Адреналиновая!

Действительный член Академии медицинских наук Петр Кузьмич Анохин обнаружил, что все отрицательные эмоции человека — тоска, страх, горе — связаны с выбросом в кровь большого количества адреналина. Разрушить избыток адреналина в некоторых мозговых клетках значило бы предотвратить тоску или страх.

Недавно было установлено, что группы подкорковых клеток, где зарождаются те или иные психические состояния, отличаются по химическому составу. Иными словами, существует химия радости и печали, трусости и отваги.

Химия наших мыслей и чувств… А если говорить строже? Это и есть тонкие механизмы межатомного взаимодействия, которые ждут, когда их опишут четким и емким математическим языком квантовой механики!

Несколько лет назад на прилавках появилась скромная книжка Альберта Сент-Дьердьи под малопривлекательным заглавием «Биоэнергетика». Увлекательно написанная, изобилующая оригинальными идеями, она завершалась утверждением автора: «Я не сомневаюсь в том, что наш век будет свидетелем глубокой революции в биологии, становления квантовомеханической биохимии, построенной над зданием биохимии лукрецианской».

Когда Тит Лукреций Кар в своей поэме «О природе вещей» пытался втиснуть в певучий гекзаметр античные представления об атоме, химикам, вернее алхимикам, было известно не более дюжины простых веществ, которые мы сейчас называем элементами. Минули два тысячелетия. Появился периодический закон. Число заполненных клеток менделеевской таблицы перевалило за восьмой десяток, а представления о неделимых кирпичиках материи оставались теми же, что и в эпоху Лукреция.

Гениальная ошибка античных философов: «атом» значит «неделимый».

Правда, уже давно сформировался химический язык букв и черточек. Введенная Александром Михайловичем Бутлеровым символика стала одним из величайших достижений человеческого гения. Она просто и наглядно демонстрировала пространственную структуру молекул, ее разрушение и созидание в ходе химических реакций. Без нее был просто немыслим тот гигантский прогресс органического синтеза, которым заслуженно гордились ученые XIX века.

Но за латинскими символами элементов химикам рисовались неделимые атомы Лукреция. «Лукрецианская» концепция довлела и над биохимией, начавшей расцветать еще в третьей четверти прошлого столетия. А сегодня, когда миф о неделимости атома развеян? Можно ли в наши дни изъясняться на «лукрецианском» лексиконе?

Можно. Более того: необходимо. Но недостаточно!

Когда математическая задача без особых усилий решается карандашом на клочке обычной писчей бумаги, незачем прибегать к дорогостоящим услугам быстродействующей электронно-счетной машины. Когда можно запросто обойтись лаконичной химической формулой, громоздкое физико-математическое «украшательство» ни к чему.

Темпы развития «лукрецианской» химии и биологии не снижаются. Напротив, чуть ли не каждый год мы слышим о новых блистательных достижениях этих маститых, но вечно молодых наук. А вот их юные отпрыски — квантовая химия и квантовая биология — не достигли еще зрелости и законченности своих классических предшественниц. Они еще не определили ясно своего содержания, своих подходов к проблемам. Из их достижений составился бы довольно куцый реестр. И тем не менее уже отчетливо наметились рубежи, за которыми старая химия и биология бессильны. Ясен круг вопросов, на которые невозможно ответить, не перешагнув в новое измерение — в мир явлений электронных. В странный мир, где утратил свою силу кодекс классической физики, где царят законы физики квантовой.

Что же такое квантовая химия и биология? Почему они появились на свет? Что нового внесли в классический язык букв и черточек? Какие горизонты распахнули перед человечеством?

…Немало диковинок встречается в мире молекул. С затейливыми названиями. С редкостными свойствами. С увлекательной биографией. Но эти…

Их называют так: соединения с сопряженными связями. Теми самыми, что придают молекулам полимеров необычные свойства. Сверхпроводников, например. Полупроводников. Магнитов. Связями, которые вот уже без малого сто лет интригуют ученых своей загадочностью. А началось все с простенького архитектурного сооружения, простенького, но куда более необычного, чем брюссельский «Атомиум».

Забегая вперед, можно сказать, что между «Атомиумом» и архитектурным сооружением Кекуле есть прямая аналогия: оба они «металличны».

Это сооружение воздвигли не из металла. Даже не из камня.

Из чернильных черточек на бумаге. И оно поначалу вовсе не поражало воображение ни вычурностью архитектуры, ни грандиозными масштабами. Напротив, то был крохотный незатейливый шестиугольник. Единственной достопримечательностью его было чередование двойных и единичных линий, обрисовывавших стороны плоской фигуры. Но именно эта деталь и смутила вскоре химиков.

Да, химиков, ибо автором шестиугольной конструкции был не зодчий. Правда, Фридрих Август Кекуле, профессор Гентского университета, смолоду и в самом деле собирался посвятить себя архитектуре. Но, к счастью, судьба распорядилась иначе. Он стал архитектором от химии, талантливым конструктором молекулярных формул. И шедевром зодческого искусства Кекуле по праву считается шестиугольная формула бензола, опубликованная им в 1865 году.

Шедевром? Искусства? Но к чему этот выспренний «штиль»? Любой старшеклассник изобразит вам пространственную схему дюжины куда более сложных соединений! И даже досконально объяснит, почему и куда должны быть направлены черточки в любой сложной структуре. Объяснит, жонглируя понятиями «валентность», «электронная конфигурация», «сопряженные связи».

Порой нам и невдомек, что многие азбучные истины, которые любой школьник затвердит в один присест по четким абзацам учебника, в свое время оказались величайшим научным откровением, принятым после длительных споров. Сто лет назад таким откровением стала теория химического строения. Она была изложена казанским профессором Бутлеровым всего лишь за четыре года до появления на свет формулы Кекуле. Формулы, которая вполне могла и не появиться на свет, если бы Кекуле не пришел к тем же взглядам, что и Бутлеров. Ибо в те времена оживленно дискутировался даже такой ясный для нас вопрос: а можно ли вообще изобразить строение вещества единой формулой?

Мы знаем: водород одновалентен. Иными словами, может вступать в химическую связь только с одним атомом. Эта единичная связь изображается черточкой. Валентность углерода равна четырем. Значит, каждый его атом располагает набором из четырех связей-черточек. Весь комплект штрихов в случае бензола расходуется на установление межатомных контактов между шестью атомами C и столькими же атомами H. Простенькая геометрическая комбинация! А в те годы, когда Кекуле принялся возводить свою знаменитую архитектуру, валентный штрих был непроверенным нововведением.

Поначалу строительство шло гладко. Как говорится, без сучка и задоринки. Кекуле отлично знал, что в бензольной цепочке все атомы углерода равноценны. Ага, рассуждал он, цепочка не может быть разомкнутой. Иначе краевые звенья отличались бы по химическим свойствам от тех, что в середине. И вот на свет появился замкнутый цикл. Шестичленное кольцо, в котором ординарные и двойные связи между атомами углерода чередуются. Ради краткости в формуле латинские символы углерода и водорода, а также штрихи, обозначающие связь между C и H, опускаются. Получается голый скелет, составленный из CC связей. И надо же было так случиться, что скелет оказался призраком!

Читатель! Чувствуя собственное превосходство, не забывай: своей эрудицией ты обязан и ошибкам на которых учились наши предки.

Формула бензола стала величайшим откровением своего времени и наряду с этим… величайшим заблуждением. «В бензоле нет обычных двойных связей», — напишет вскоре Кекуле, чтобы тем самым поставить перед наукой проблему, которая неразрешима в рамках классической теории химического строения.

Да, чередование одиночных и двойных штрихов в бензольном кольце оказалось фикцией. В физическом смысле слова. Правда, фикцией удобной — в химическом смысле слова. Настолько удобной, что органики до сей поры используют в своих длинных выкладках элегантную конструкцию Кекуле. Что ж, химикам вполне достаточно, что формула наглядно отражает картину целочисленных межатомных взаимоотношений при любых превращениях бензола, наблюдаемых в пробирке. И впрямь: к чему экспериментаторам вдаваться в физический смысл валентного штриха? Но дотошным химикам-теоретикам, а особенно физикам… Не счесть, сколько хлопот доставила им структура Кекуле!

С одной стороны, формула вроде бы правильна. Во-первых, потому, что в ней действительно присутствуют три двойные связи. Доказательство? Пожалуйста: бензол присоединяет ровно шесть атомов водорода — по паре на каждую двойную связь, разрывающуюся в процессе реакции. Во-вторых, двойные связи чередуются. Это подтверждается тем, что, бензол можно получить из трех молекул ацетилена HC = HC.

Каждая из них напоминает шейку трехструнной балалайки. Представьте, что у всех трех инструментов лопнуло по одной струне. Осталось три грифа с двумя струнами и с двумя обрывками каждый. Нетрудно соединить теперь обрывок струны одной балалайки с обрывком другой. Два обрывка, скрепленных воедино, — модель ординарной связи. Совершенно очевидно, что связанные струны оказались между двухструнными балалайками. Так что никуда не денешься: ординарные и двойные связи в бензоле должны чередоваться…

Должны… Но чередуются ли?

Есть такое вещество — ортодихлорбензол. Его получить несложно — стоит только на две соседние вершины бензольного шестиугольника «посадить» по атому хлора взамен атомов водорода. Если справедлива формула Кекуле, то возможны два варианта структуры ортодихлорбензола:

когда между атомами хлора заключена двойная связь и когда между ними связь ординарная.

Химический состав один. А физические свойства должны разниться! Хотя бы ненамного. Между тем известен лишь один-единственный тип ортодихлорбензола. Выходит, ординарная и двойная связь равнозначны? Но это же противоречит фундаментальнейшему положению бутлеровской теории химического строения! Да и разговоры о чередовании утрачивают всякий смысл…

Химики заметались, мучительно отыскивая выход из тупика. Дьюар предложил симметричную структуру бензола, в которой одна из связей соединяла не соседние, как у Кекуле, а противолежащие вершины. Посыпались формулы с перекрестными валентными штрихами:

Была даже предпринята попытка вырваться из плоскости и возвести объемную архитектуру в виде трехгранной призмы с атомами углерода в шести ее вершинах. Но, увы, все поползновения сохранить целочисленность межатомного взаимодействия, приписываемую валентному штриху, оставались тщетными. Новые постройки грешили еще более уродливыми несообразностями, чем классическая конструкция Кекуле…

Тогда Тиле, коллега и соотечественник Кекуле, отвергнув табу целочисленности, нарисовал внутри бензольного шестигранника пунктирную оторочку. Взяв от каждой двойной связи по одному валентному штриху, он расщепил их на шесть половинных!

В лицо теории строения был брошен прямой вызов. Но, увы, робкая догадка Тиле опиралась всего лишь на зыбкую почву интуиции.

А Кекуле? Родительская слепота не мешала ему видеть пороки своего детища. Сомнения привели ученого к осцилляционной гипотезе. Дескать, двойные и единичные штрихи непрерывно меняются местами. И реальное состояние бензола — дрожь, непрерывная вибрация сопряженных связей. Иными словами, мгновенные превращения прежней формулы Кекуле в ее зеркальное отображение:

Выходило, будто одному соединению присущи две разные формулы! Архитектор собственноручно взрывал фундамент, на котором стояло его сооружение, — бутлеровскую теорию строения. Осциллирующие бензольные кольца Кекуле оказались изящными шестиугольными обручами, которые скрепляли гнилые доски пустого теоретического бочонка…

Теоретическая химия переживала кризис.

Парадокс бензола взбудоражил умы. Химики поняли, что без помощи физиков им не разобраться в загадке сопряженных связей и вообще в природе валентности. Химия ждала, с надеждой взирая на физику…

И вот в 1897 году на арену вышел электрон. Мельчайший шарик электричества, он всколыхнул воображение ученых. Еще бы: когда его обмерили и взвесили, оказалось, что он меньше самого крохотного атома!

Как оказалось позднее, он вовсе не шарик! Но, не поиграв в эти шарики, химики не создали бы теорию химической связи.

Не из таких ли более мелких кирпичиков состоит сам «неделимый»? И уж коли он нейтрален, то отрицательный заряд, обусловленный присутствием электронов, автоматически заставляет предположить и существование в атоме электроположительных деталей. Если пользоваться терминологией Берцелиуса, уже не молекула, а атом имел двойственную электрическую природу.

Два года спустя Абегг и Бодлендер высказали гипотезу: молекула — система электрических зарядов! Теперь, когда ученые уверовали в дробимость атома Лукреция, одну и ту же частицу молекулы можно было представить себе либо электроотрицательной, либо электроположительной. Все зависело от соотношения статей «приход» и «расход» в атомной бухгалтерии. Равенство того и другого соответствовало статусу нейтрального атома: положительные заряды полностью уравновешены противоположно заряженными электронами. Стоило, однако, в графе «расход» вычеркнуть один или несколько электронов, как атом тотчас превращался в ион со знаком «плюс». Если же в «атомном гроссбухе» регистрировалась электронная «прибыль», ион оказывался заряженным отрицательно. А разноименные ионы, как известно, тяготеют друг к другу. Не здесь ли таилась загадка химической связи? Не к обмену ли электронов между атомами сводится химическое взаимодействие?

Загадок было больше, чем догадок. На стройный парусник лукрецианской химии обрушился девятый вал новых экспериментальных фактов, новых теоретических идей.

Трудно назвать точную дату, когда началась история новой химии. Революция назревала подспудно. Но несомненно, что одной из самых знаменательных вех в химии стало физическое обоснование менделеевского закона. Выяснилось, что порядковый номер каждого элемента равен положительному заряду ядра, а отсюда — и количеству вращающихся вокруг него электронов. Периодичность в химических свойствах была поставлена в зависимость от числа электронов на внешней орбите. Именно они обусловливали валентность атомов в химических соединениях. Но как? Каким образом возникали валентные связи? Что представляла собой физически электронная архитектура молекулы?

Казалось бы, куда проще: вот два нейтральных атома, скажем натрия и хлора, решили объединиться в коллектив. Вокруг ядра у натрия вращается 11 электронов. Из них на внешней орбите — один. Но атом натрия не отличается скупостью. Напротив, ему легко распроститься со своим единственным валентным электроном, чтобы превратиться в однозарядный положительный ион Na+. Атом хлора готов воспользоваться любезностью партнера и дополнить коллекцию своих валентных электронов до восьми. Приютив изгнанника, он станет отрицательным ионом Cl. Между разноименными ионами возникнет сила притяжения. Молекула готова: Na+Cl. Теряя электрон, атом натрия приобретает напарника.

Зато уж если бы примеру натрия захотел последовать кальций, ему для компании понадобились бы целых два атома хлора. И вовсе не потому, что он общительней (химик скажет: активнее), чем натрий. Напротив, кальций с большим трудом расстается с валентными электронами и, стало быть, с меньшей легкостью вступает в химические союзы. Но уж коли расстается, то именно с электронами, а не электроном: их у него пара. И оба он готов отдать своему напарнику. А тому такая щедрость вовсе ни к чему.

Атом хлора способен приютить на своей внешней орбите лишь одного-единственного «чужеземца». Ибо только в этом случае он обретет устойчивую электронную конфигурацию инертного газа с октетом (восьмеркой) электронов на внешней орбите. Вот почему другой электрон кальция вынужден искать себе пристанища у второго атома хлора. Впрочем, лишившись обоих валентных электронов, атом кальция тоже обзаведется устойчивым октетом на своей внешней орбите. И натрия тоже. И вообще любого элемента, способного связывать свою судьбу с другим элементом электровалентными узами.

Этот гипотетический набросок был предложен немецким ученым Косселем. Правда, при всей своей простоте и стройности теория электровалентной связи была бессильна объяснить, как возникают электронные постройки при сближении одинаковых или близких по свойствам атомов. Молекулы Cl2, H2, N2, а также почти всех органических соединений оставались за бортом новой теории. Бутлеровская черточка еще не заговорила математически строгим языком новой физики.

Смысл валентного штриха прояснила гипотеза ковалентной связи Льюиса: это пара взаимодействующих электронов. По одному от каждого из атомов-партнеров, объединившихся в молекулу. В структурные формулы вместо штриха Льюис стал вводить две точки — знак дублета (двух обобществленных электронов). Простейший пример ковалентной связи — молекула водорода H : H. И более сложный:

Льюисовское двоеточие означало, разумеется, не просто сумму двух электронов. Оно подразумевало, что каждый электрон, вращающийся около ядра, подобно спутнику вокруг Земли, вступив в союз со своим напарником, вынужден изменить прежнюю траекторию. Ибо его теперь притягивает еще и вторая планета — ядро атома-соседа.

Эти элементарные сведения нам пригодятся потом, как трамплин для прыжка в неизведанное.

У углерода шесть спутников-электронов. И две орбиты. На нижней — два спутника, на верхней — четыре. Но только наружные электроны участвуют в образовании химической связи. Ковалентный, как и электровалентный, союз устойчив, если сумма внешних электронов (своих и чужих) составляет октет. Вот почему углерод четырехвалентен: его верхней орбите до полного комплекта не хватает ровно четырех электронов. Их можно позаимствовать у водорода. Или углерода. Четыре валентных штриха, разбегающихся от каждой вершины в бензольном шестиугольнике, — это и есть четыре дублета, дающих вкупе необходимый октет.

Так физика ответила на самый глубокий вопрос, который перед ней когда-либо ставила химия. И тем не менее число и мера не торопились проникать в мир невидимых архитектур. Первая же попытка рассчитать молекулярную систему с ковалентной связью потерпела фиаско. А ведь речь шла о простейшей системе — молекуле водорода!

Представьте себе обыкновенный глобус. На полюсах размещены водородные ядра. На экваторе — пара электронов-антиподов, которые догоняют друг друга в бесконечном круговороте. Эта модель, построенная Бором, учитывала новейшие для того времени представления об атоме. Но ее количественный расчет не совпадал с опытными данными. Модель оказалась неверной.

Какой конфуз! Неужто льюисовская теория неверна? Неужто подвели новые, с иголочки, идеи, взятые напрокат у физики? Лишь значительно позже выяснилось, почему электроны упрямо саботировали законы ньютоновской механики.

Они просто не хотели быть примитивными упругими шариками, какими их воображал себе конструктор планетарной модели атома Резерфорд. Но тогда каковы же они в действительности, эти мельчайшие атомы электричества, изображавшиеся обыкновенными точками в льюисовских дублетах и октетах?

Ответ пришел из парижской лаборатории на улице Байрона, где работал Луи де Бройль. Откровение ученого оказалось ошеломляющим. Частица-волна! Математическое выражение этого беспрецедентного в истории науки двуличия выглядело довольно непритязательно: λ = h/mv («ламбда» равна «аш», деленному на «эм» «вэ»). Но какую бурю оно вызвало в среде ученых!

Движению любого тела, обладающего массой и скоростью, де Бройль приписывал волновой характер. Например, теннисный мяч, отброшенный ракеткой со скоростью 25 метров в секунду, — тоже волны. Можно даже подсчитать их длину (λ); она составит 10–32 сантиметра. Это в миллиарды миллиардов раз меньше размеров атомного ядра. Понятно, почему в макромире, в царстве массивных тел, двойственность «волны-частицы» совершенно незаметна и не играет практически никакой роли. Зато в микромире…

Для электрона, вращающегося по околоядерной орбите со скоростью тысяча километров в секунду, подсчет дает длину волны, равную одной стомиллионной доле сантиметра. Это означает, что пучок электронов, несущихся с такой скоростью, должен вести себя подобно рентгеновым лучам. И действительно, эксперименты подтвердили двуличие электрона.

С одной стороны, у него давно уже были вскрыты все признаки крохотной крупицы материи. Скажем, вполне определенный вес. C другой — обнаружилось такое поведение при прохождении электронного пучка через кристалл, которое свойственно невесомому электромагнитному излучению!

Традиционные мерки, оказавшиеся не впору странному кусочку вещества-излучения, отбросила квантовая механика.

Весной 1926 года в Париж на имя де Бройля пришел пакет из Цюриха. В нем содержалось изложение волновой механики Эрвина Шредингера.

В этом пакете было будущее химии.

А незадолго до этого молодой геттингенский ученый Вернер Гейзенберг разработал свою матричную механику. Глубокое раздумье над дуализмом волны-частицы привело ученых к созданию особого математического аппарата для описания микрособытий, к которым неприложимы формулы ньютоновской физики.

Авторы в своих построениях опирались на разные, если не сказать несовместимые, посылки. Один хотел утвердить в физике волны и непрерывность, другой — частицы и прерывность. Оба оперировали несхожими математическими средствами. Но противоположные по духу и по методам волновое уравнение Шредингера и матричное исчисление Гейзенберга давали одинаковое приближение к реальности. Трудно было отдать предпочтение какой-нибудь из идей, хотя каждый автор отстаивал правомерность лишь своей механики. Но очень скоро новые эксперименты, подтвердившие волнообразность электронов, доказали безуспешность одностороннего подхода к одной из самых удивительных загадок микромира — дуализму (двойственности) корпускул-волн. Так две механики слились в одну, которую позже стали именовать просто квантовой.

Уже нельзя было мыслить себе электрон, как крошечную Луну вполне определенных размеров и формы, обращающуюся по геометрически четкой трассе вокруг маленькой Земли — атомного ядра. Орбита стала напоминать расплывчатое шаровидное облако, по которому «размазан» электрон-волна.

В 1927 году немецкие физики Вальтер Гейтлер и Фриц Лондон, исходя из новых представлений, оценили энергию связи и межъядерное расстояние для молекулы водорода. Теоретический расчет полностью совпал с экспериментальными данными!

Это означало больше, чем триумф квантовой механики. Это было рождение квантовой химии. Ведь молекула водорода — простейшее химическое соединение. Не просто сумма двух атомов, а сложная система, где ядра и электроны спаяны валентной связью в целостный коллектив со всеми присущими ему особенностями.

Древнее пробирное искусство получило невиданный доселе инструмент для исследования тончайших механизмов межатомного взаимодействия. Валентный штрих заговорил языком математики, волнуя химиков неожиданными откровениями, а подчас и сюрпризами.

Квантово-механический расчет вскрыл важный признак ковалентной связи — антипараллельность электронных спинов.

«Спин» в переводе с английского означает «кручение». Речь идет о вращении, но уже не вокруг ядра, а вокруг собственной оси при движении по орбите. Спин придает электрону свойства крошечного магнитика. Именно это обстоятельство не было известно Шредингеру, когда он рассчитывал атом водорода. Потому-то и появилось расхождение между расчетными данными и результатами опытов. Так математика привела к открытию в физике — подобно тому как в свое время Леверье, исходя из чисто математических расчетов, предсказал существование планеты Нептун.

Если спины параллельны, электроны «отпихиваются» друг от друга. Оказалось, что внутри дублета оба «веретена» направлены и противоположные стороны. Стало быть, электроны-магниты притягиваются. Такую пару электронов, у которых магнитные силы взаимно скомпенсированы, обычно изображают в вице двух параллельных стрелок с остриями, направленными в противоположные стороны.

Правда, электроны могут группироваться попарно и не вступая в химическую связь. Конечно, электрону, который сиротливо витает вокруг водородного ядра, можно объединиться лишь с электроном другого атома. Зато у следующего по порядку члена менделеевского семейства электронов ровно два. Они спарены. Их спины антипараллельны. Этим и объясняется химическая «леность» солнечного элемента, ибо атом способен образовать ровно столько валентных связей, сколько у него неспаренных электронов. У лития, прописанного в клетке № 3, на один электрон больше. Два спарены, третий лишний. И он «ходит бобылем». Потому-то литий и одновалентен. А вот у бериллия (№ 4) уже две электронные пары. У бора — две пары плюс один холостяк. У углерода? 3 пары? Нет, тоже две! И два «бобыля». Выходит, углерод двухвалентен? Но разве еще со времен Бутлерова и Кекуле не установлено твердо, что валентность углерода равна четырем?

Установлено. И она именно такова. Весь фокус в том, что атом может переходить из основного, пассивного состояния в возбужденное, активное. Активация атома бесцеремонно разделяет пары. Спины бывших напарников становятся параллельными. Разлученным электронам ничего не остается делать, как искать себе партнеров в другом атоме.

Однако если все напарники расстанутся, то углерод должен быть шестивалентным! Ведь у него шесть электронов. Почему же он присоединяет лишь четыре атома водорода? Почему в природе нет соединения CH6?

Дело тут вот в чем. Непосредственное участие в образовании химических связей принимают не все, а лишь наружные электроны. А на внешней электронной оболочке у углерода именно четыре электрона, у бора три, у бериллия два. Запрятанная внутри пара остается безучастной. Вот почему углерод четырехвалентен.

Но даже в окиси углерода валентность не равна двум, как это принято считать! Однако об этом позднее.

Когда разговор шел о наружных и внутренних электронах, имелись в виду различные оболочки атома. Эти электронные «одежки» чем-то напоминают деревянных матрешек, вставленных одна в другую. У углерода и прочих элементов второго периода менделеевской таблицы их две. В центре самой маленькой — ядро. Номер «матрешки» — считая от маленькой к самой большой — это главное квантовое число. Удвоенный квадрат его 2n2 определяет максимальное количество электронов, которым дозволено разместиться на одной оболочке. На первой у всех без исключения атомов не может находиться больше двух электронов (2·12). На второй — не больше восьми (2·22). На третьей — восемнадцати (2·32). И так далее. А между «матрешками» — запретная зона. Там вообще не место электронам. Так распорядилась природа. Так записано и в кодексе квантовой механики.

Зато каждая оболочка многослойна. Электронам дано право выбрать себе местопребывание на любом из слоев. Но при определенном условии (его называют принципом Паули): они должны различаться хотя бы одним квантовым числом. А таких чисел четыре. Первое — наше n. Одинаковое для всех слоев оболочки. Оно характеризует удаленность электрона от ядра, а стало быть, и его энергию. Второе, не менее важное, — направленность спина. Два остальных не так существенны в нашем рассказе. Однако и они играют свою роль в распределении электронов по слоям. Не вдаваясь в подробности, можно сказать, что один слой не способен вместить больше двух электронов. Причем их спины должны быть обязательно антипараллельными. Именно так возникают электронные «парочки» у атомов. И зачастую остаются неразлучными. Даже в тех случаях, когда атом готовится вступить в химическую связь. Даже несмотря на то, что для любого из напарников сыскался бы уголок в одном из слоев. И нередко случается так: у одного атома в запасе вакантное место в одном из слоев, у другого — неподеленная пара электронов.

Обычно при образовании ковалентного союза оба атома выставляют по электрону. Однако допустим и такой вариант: первый атом размещает свою неподеленную пару на чужой «жилплощади» — в свободном слое второго. Примером служит ион аммония NH4+, с которым имел дело каждый, кому доводилось нюхать нашатырный спирт NH4OH. Здесь атом азота — донор (по-латыни «дарящий»). Он поставляет готовый дублет водородному ядру (протону). А тот спокойно забирает, оправдывая название «акцептора» («берущий»):

Голубоватые язычки пламени в преждевременно закрытой топке над раскаленными угольями — кто их не видел? Так при недостатке кислорода образуется угарный газ. У атома C в невозбужденном состоянии два неспаренных электрона и один незанятый слой. Атом O не располагает свободными помещениями. Зато, помимо двух электронов-«холостяков», у него готовая электронная пара, которую он может передать «соседу в чуждые пределы».

Электронный дублет кислорода становится «слугой двух господ».

Вот почему в молекуле CO скорее тройная связь, нежели двойная:

(знаки «плюс» и «минус» отмечают некоторое неравноправие в распределении зарядов между атомами; по-видимому, электроны предпочитают находиться поближе к углероду).

А молекула кислорода? Структурная формула описывает ее так, словно она содержит двойную связь: O = O. Будь это действительно так, в ней все электроны должны быть соединены попарно. Если же спины внутри каждой пары взаимно уравновешены, вещество диамагнитно.

А вот молекулы кислорода отзываются на магнитное поле иначе, чем диамагнетики. Выходит, не все магнитные силы в них скомпенсированы? Да, молекулы O2 явно парамагнитны. И неспроста: в молекуле кислорода два электрона не спарены. Так что формула O = O тоже неверна! И атомы кислорода соединены тройной связью: O = O. Три штриха — это три дублета: один образован электронами разных атомов О, два остальных предоставлены атомами друг другу в готовом виде.

Мораль: не всегда школьные учебники говорят всю правду.

Сказанное лишний раз иллюстрирует простую мысль: негоже химику игнорировать квантово-механические представления. Иначе он намеренно обрекает себя на слепоту. Ибо значок «буква — штрих — буква», несмотря на удобство в применении, остается всего лишь символом. И зачастую даже неточным.

Здесь говорилось главным образом об электронном спине. Казалось бы, пустяк — вращение крохотного сгусточка материи, даром что штопорообразное. Ан нет, именно эта характеристика электрона лежит в основе многих замечательных химических и физических явлений. А ведь все началось с математической ошибки, если, конечно, можно так назвать первую неудачу Шредингера точно описать атом водорода с помощью его волнового уравнения — знаменитой пси-функции.

Итак, квантовая механика вручила химии незатейливый, но полный глубокого смысла символ — две параллельные стрелки. Если острия направлены в одну сторону, электроны отталкиваются, в разные — притягиваются. Так вот оно что: наконец-то выяснилась причина межатомного взаимодействия!

Ничуть не бывало. Математический расчет показал, что для прочного межатомного союза требуется в миллионы раз большая энергия, чем та, которую может обеспечить взаимное влечение пары электронов-магнитиков.

В миллионы раз! Откуда берется она, эта чудовищная энергия? Как ее измерить? И какую роль тогда играет спин?

Целый фейерверк вопросов! А все они сводятся к одному: какова же, собственно, природа химической связи? В чем ее «особинка»?

Немало сил действует в мире атомов и молекул. Внутриядерные. Внутриатомные. Межатомные. Внутримолекулярные. Межмолекулярные. Четкая градация, не так ли? Увы, на деле все оказывается куда сложнее.

Начнем с классического примера межмолекулярного взаимодействия.

Почему так дребезжит крышка на чайнике с кипящей водой? Ясное дело: ее подбрасывают кверху пары воды. Тот же пар толкает поршень паровоза или лопасти турбин. Огромна механическая энергия, которую мы высвобождаем нагреванием! Очевидно, эти силы равны, хотя и противоположны по знаку, силам, соединяющим молекулы воды в жидкость.

Если при конденсации пара выделяется 0,539 килокалории на грамм, то столько же нужно затратить на испарение грамма воды. Ни больше, ни меньше. Так в единицах энергии оценивают силы межмолекулярного сцепления. И химическая связь тоже характеризуется определенной энергией. Ее тоже можно измерять в килокалориях на грамм или грамм-молекулу вещества. И тоже можно разрушить нагреванием. Чем же тогда отличаются межмолекулярные силы от внутримолекулярных?

На первый взгляд кажется, будто ответить на этот вопрос не составляет труда. Дескать, молекула в целом нейтральна. Валентные силы в ней насыщены. А раз так, то со своими соседями она будет взаимодействовать без образования химической связи. Но это только на первый взгляд. Многие электрически нейтральные вещества способны присоединять воду, аммиак, окись углерода и даже… самих себя!

Оказывается, и молекулы могут срастаться наподобие сиамских близнецов.

Если подвергнуть давлению двуокись азота, произойдет коллективизация. Газ NO2 превратится в жидкость N2O4, или (NO2)2. Это широко известный пример димеризации. А знаком ли вам такой димер: (AlCl3)2? Своим рождением он обязан донорно-акцепторной связи, которая перебрасывает валентный мостик между двумя нейтральными молекулами. Со стороны атома хлора в построении мостика участвует неподеленная электронная пара. Со стороны алюминия — свободное место в одном из слоев оболочки:

Образование мостиковых соединений не всегда ограничивается стадией димера. Возможны тримеры, скажем (BeCl2)3. И даже длинные цепочки неорганических полимеров (BeCl2)n, (PdCl2)n.

Приведенные примеры свидетельствуют о том, что обычные брутто-формулы, которыми химики пользуются со времен Берцелиуса, зачастую не отражают истинного положения вещей. И то, что ускользало внимания химии «лукрецианской», квантовая химия вывела на чистую воду. В том числе и хитрости самой воды. Той самой, с которой мы начали разбор «дела о правомочиях связей» — межмолекулярной и внутримолекулярной.

В свое время плачевная судьба трансатлантического лайнера «Титаник» потрясла людское воображение. Действительно, катастрофа могла миновать беспечный корабль, не будь этого проклятого тумана и прятавшегося за ним айсберга. Но в том-то и дело, что поносить туман и айсберг здесь не за что! Они возникли без всякого злого умысла. Наоборот, они педантично исполняли законы, предписанные природой.

И туман и айсберг — вода. Молекулы воды объединяются в капельки благодаря силам межмолекулярного сцепления. И лед плавает поверх воды неспроста — здесь тоже действуют непреложные физические законы. Какие же?

Опять-таки межмолекулярное взаимодействие!

Плотность у воды выше, чем у льда. Это долго оставалось загадкой. И лишь представления квантовой физики рассеяли сомнение ученых.

Между молекулами воды возникают водородные связи-мостики. Каждый атом водорода, входящий в состав H2O, — «слуга двух господ». Он связан не только с атомом кислорода своей собственной молекулы (внутримолекулярное взаимодействие). Его властно притягивает и «чужой» кислородный атом — тот, что в соседней молекуле (межмолекулярное взаимодействие). Так возникает сетчатая пространственная структура.

Замерзание воды — это изменение ажурной сетки из водородных мостиков. Рыхлая структура становится механически более прочной. Но молекулы в ней упакованы менее плотно. Потому-то айсберги и плавают по морям. Нагревание «встряхивает» жесткую структуру льда. В пустоты между узлами кристаллической решетки льда попадает все больше молекул воды. «Кружево» становится мягче, зато плотнее, а «дырки» в нем — меньше. Когда же вода испаряется, «кружево» расползается.

Образованию водородного мостика способствует опять-таки донорно-акцепторное взаимодействие. Обычно атом водорода предоставляет электронам второго «хозяина» свою свободную «жилплощадь».

Благодаря водородной связи многие молекулы соединяются в димеры и полимеры. Газообразный фтористый водород образует кольца, отдаленно напоминающие бензол (H6F6). Поперечные мостики между нейтральными молекулами могут появиться и в спиртах, и в органических кислотах, и в белках, жирах, углеводах. Стоит ли продолжать? И без того ясно: взаимоотношения между нейтральными молекулами зачастую сопряжены с чисто химическими связями.

Где-то тут, наверное, пройдет и тот заветный Рубикон, который отделяет живое от неживого.

Межмолекулярные взаимоотношения… Не здесь ли надо искать ключ к знаменитой загадке неаддитивности: почему свойства клетки — не просто сумма свойств составляющих ее молекул? Ведь клеточные структуры существуют не сами по себе. Их окружает водная среда. Они общаются и друг с другом.

Вы никогда не задумывались над вопросом: почему склеивание, паяние или сварка способны скрепить самые несхожие материалы? Почему капля, прежде чем сорваться с зонтика, некоторое время висит на краю вашей матерчатой крыши, а с перьев водоплавающей птицы стекает, как с гуся вода? Почему масляные краски не отваливаются от холста?

И здесь не обошлось без вмешательства межмолекулярных сил!

Прочность материалов обусловлена также сцеплением молекул. Треснула ли бетонная стена, разорвался ли капроновый чулок, лопнул ли мыльный пузырь — значит, не выдюжили силы межмолекулярного взаимодействия. Они огромны, эти силы. Нить из лавсана сечением в один квадратный миллиметр выдерживает человека. А стеклянное волокно позволяет доводить нагрузку до 300 килограммов на каждый квадратный миллиметр!

А внутримолекулярное взаимодействие? Сильнее оно или слабее? Ну, разумеется, сильнее: иначе мир был бы ввергнут в пучину хаоса. Представляете, что бы получилось, если бы мы поставили чайник на огонь, а у нас вместо струйки пара повалил кислород и водород? Отрывающиеся от поверхности молекулы воды раздирали бы на части друг друга, рвались бы химические связи. Нельзя было бы ни купаться, ни просто умываться без опасения, что вместе с капельками, приставшими к коже, мы стряхнем осколки органических молекул, из которых состоит наше тело.

Да, внутримолекулярные силы в десятки раз превышают межмолекулярные. Теплота, которая требуется для разделения всех молекул в наперстке воды, составляет около одной килокалории. А для разделения того же количества H2O на атомы O и H надо не менее семи. Причем здесь не учтены тепловые затраты на нагревание до температуры разложения!

Каким же образом тепло разрушает валентные связи? И тепло ли?

Во время Международного геофизического года у нас вышел в свет сборник переводов «Планета Земля». Один из авторов — американский геофизик Дж. П. Койпер строил в своей статье догадки: что-то будет с нашей планетой через миллиарды лет?

Сейчас три четверти земной поверхности покрыты водой. Для космического наблюдателя то, что мы называем «планетой Земля», выглядит скорее как «планета Вода». Но у «планеты Вода» есть реальные шансы превратиться в настоящую, без всяких оговорок, «планету Земля»!

Представьте себе гигантские океанические бассейны, утратившие миллиарды тонн воды; небо без единого облачка над бесплодными континентами; иссякшие родники и высохшие русла рек, словно шрамы, пересекающие скорбный лик Земли; огромные облака всепроникающей пыли, окутывающей планету удушливым покрывалом; наконец, знойное днем и леденящее ночью дыхание ветра. Печальная обитель смерти и опустошения, мало похожая на нашу зеленую и нарядную планету…

Может ли так быть на самом деле? Судите сами.

Оказывается, причиной катастрофы может стать расщепление молекул воды. Да, именно такой процесс протекает в верхних слоях земной атмосферы.

Ультрафиолетовые лучи Солнца. Невесомые, незримые, электромагнитные волны! А действуют на молекулы, как удар молотка. И, словно искры от удара, по сторонам сыплются осколки. Идет фотолиз воды: H2O = H + OH. Более тяжелый гидроксил остается в атмосфере. А водород ускользает в космос. Так печально кончают свое существование водяные пары, поднявшиеся в заоблачные выси из рек и морей. Земной океан мелеет.

Успокоим впечатлительного читателя: «усушка» планеты за всю ее геологическую историю была настолько мизерна в глобальных масштабах, что ее не стоит опасаться многие миллиарды лет.

Это рассказано вовсе не для того, чтобы лишний раз напомнить: вот-де как важно изучать химическую связь методами квантовой механики! Мол, пустячная с виду реакция — расщепление воды, — а имеет грандиозное, так сказать космическое, значение!

Нет, нас сейчас интересует другое. Каким образом световые лучи разрывают валентную связь?

Молекула водорода напоминает гантельку. Атомы-шары скреплены упругой «пружиной» — валентной связью. Шары то растягивают, то сжимают пружину. C повышением температуры амплитуда колебаний растет. В какой-то момент пружина лопается. Происходит диссоциация. Но почему все-таки лопается? Что ее понуждает к этому?

Кванты лучистой энергии. К ним особенно чувствительны электроны. Еще бы: ведь электрон — тоже волна! Атомные ядра весьма восприимчивы к бомбардировке квантами. Да и сама молекула в целом.

Поглощенная веществом энергия солнечных лучей распределяется далеко не поровну. На вращение молекулы расходуется немного. Не более одной килокалории на каждую грамм-молекулу вещества. На усиление колебательного движения атомов идет несколько больше — от 1,5 до 6 килокалорий. Но все это вместе взятое в десятки раз меньше энергии, поглощаемой электронами!

Конечно, разным электронам требуется и разная энергия. Если они движутся во внутренних частях атома, для их возбуждения нужны тысячи и даже миллионы килокалорий. Такой энергией обладают рентгеновы лучи.

А их почти нет в составе солнечного спектра. Менее мощны фотоны ультрафиолетовой радиации. Они могут дать сотню-другую килокалорий на грамм-молекулу вещества. Конечно, этого недостаточно, чтобы расшатать устойчивую электронную конфигурацию внутренних оболочек молекулы. Зато наружные электроны весьма чувствительны к облучению ультрафиолетом.

Ощутив толчок, электрон возбуждается и перепрыгивает на более высокую оболочку-орбиту. Он может через некоторое время возвратиться, высветив то же количество энергии, которое получил. Такие прыжки туда и обратно происходят все время, пока мы освещаем какое-нибудь вещество. Именно поглощение света является причиной окраски химического соединения. Если вещество бесцветно, значит оно испускает не воспринимаемый глазом ультрафиолетовый или инфракрасный свет.

Каждый электрон способен поглощать и испускать энергию лишь строго отмеренными дозами — квантами. Чем ближе к этому определенному значению энергия фотонов, тем сильнее возбуждается электрон. Если энергия фотона меньше, чем нужно для возбуждения электрона, активации не произойдет. Если же фотоны слишком энергичны, они тоже действуют слабо. Фотон не может расходоваться по частям. Это же квант — неделимая порция энергии! А электрон не способен принять больше энергии, чем требуется для активации. Ведь ему отведены вполне определенные уровни-слои в электронных оболочках. Значит, пальба из пушек по воробьям в микромире столь же неэффективна, как из рогатки по слонам. Наибольшее действие оказывают лишь те фотоны, калибр которых в точности соответствует масштабам мишени.

Другое сравнение, если угодно: электрон заряжается, как пистолет. И подходят для этой цели пули только одного калибра.

Электрон начинает колебаться, перескакивая вверх и вниз с орбиты на орбиту, в такт с ударами фотонов. В беспокойной обстановке такого «артобстрела» спаренным электронам трудно удержаться вместе, сохранив антипараллельность спинов. Но как только спины окажутся одинаковыми, электроны-магнитики тут же начнут отталкиваться друг от друга. И хотя энергия самого отталкивания не так уж велика, в электронном облаке, окружающем атомные ядра в молекуле, происходят глубокие изменения. Молекула разваливается на куски.

Этому помогают и колебания атомных ядер. Они то сжимают, то растягивают пружину химической связи. И тем сильнее, чем интенсивней инфракрасное излучение, чем выше температура. Электронное облако молекулы пульсирует в такт с колебаниями ядер. Наконец в многоатомной молекуле взаимодействуют между собой и «пружины» соседних валентных связей.

Ультрафиолетовое излучение Солнца наиболее опасно для связей O—H в молекуле H2O. До поверхности Земли оно почти не доходит, поглощаясь атмосферой. Здесь вода чувствует себя спокойно (если, конечно, ее молекулы не подвергаются сильному нагреванию). Зато на больших высотах она не выносит обстрела и разрушается.

Итак, началом конца валентной связи оказывается расторжение союза между двумя электронами-магнитиками. Обретая параллельные спины, электроны отчуждаются. Но за этой враждой стоят куда более могущественные силы. Прежде всего — электростатическое отталкивание ядер. И самих электронов (ведь они тоже одноименные заряды!). Наконец, увеличение кинетической энергии электронов при перескоке на более высокую орбиту. Когда все это вместе взятое превысит силы внутримолекулярного сцепления, разрыв валентной связи неминуем.

Что же противостоит в молекуле силам, подрывающим ее изнутри?

Не притяжение электронов-магнитиков — мы это давно уже установили. Быть может, кулоновское взаимодействие между электронами и ядрами разных атомов? Но почему тогда так необходима антипараллельность электронных спинов, чтобы связать атомы валентными узами? Ведь тяготение электронов-магнитиков прямо-таки мизерно! Во всяком случае, ни в какое сравнение не идет с их электростатическим отталкиванием.

Атом — равновесная система. Молекула тоже. Мы выяснили, что разрушение внутримолекулярной связи требует затраты энергии. Стало быть, ее образование должно сопровождаться высвобождением того же количества энергии. И действительно: энергетическое состояние молекулы выгоднее, чем у двух разрозненных атомов. Но чтобы сблизившиеся атомы могли прореагировать, перейти из одного равновесного состояния в другое, их надо слегка подтолкнуть.

Эту миссию и выполняют антипараллельные спины.

Можно ли щелчком проделать дырку в заборе? Разумеется, нет; это хорошо знали наши пращуры, когда долбили стены осажденной крепости массивным тараном. Но если нажать на курок пистолета, легко прострелить не только доски, а и стальную броню.

Еще пример. Можете ли вы, слегка подтолкнув своего товарища, заставить его прыгнуть на добрых три десятка метров? Разумеется, да, если он наденет лыжи и взберется на трамплин. Слабенькое усилие — а какой эффект!

Энергия спинового взаимодействия тоже мала. Она не способна скрепить межатомный союз печатью нерасторжимости. Антипараллельные «веретенца» — слишком слабые крючочки, чтобы удерживать атомы в молекуле. Однако сыграть роль спускового крючка они в состоянии.

К сожалению, это очень грубая аналогия, хотя и наглядная.

Капелькам ртути достаточно соприкоснуться, чтобы они слились. Вот именно: соприкоснуться. Пока их разделяет прослойка воздуха, пусть даже наитончайшая, они существуют сами по себе. Подтолкнуть их друг к другу ничего не стоит. Во всяком случае, для этого, когда они рядом, требуется гораздо меньше усилий, чем разделить их и раздвинуть на ту же дистанцию, когда они уже слились. Но как бы мизерна ни была энергия толчка в сравнении с энергией слияния, без нее не обойтись.

Нечто подобное, по-видимому, происходит и когда сближаются два атома. Именно взаимное влечение магнитиков-спинов высвобождает, словно джинна из бутылки, огромную энергию химической связи. Взаимное же отталкивание, наоборот, еще туже завинчивает пробку на «бутылке с джинном».

Когда сближаются два водородных атома, начинается схватка противоборствующих сил. Антипараллельность спинов примагничивает электроны обоих атомов. Но ведь электроны — не что иное, как одноименные электрические заряды! Естественно, между ними возникают силы кулоновского отталкивания. И не только между ними. Ядра обоих атомов (протоны) тоже заряжены одноименно. А раз так, то и они отнюдь не настроены к сближению. Однако у них заряд со знаком «плюс». Стало быть, протон первого атома будет притягивать электрон второго. И наоборот.

Чем-то закончится эта драматическая сцена?

Мирным финалом. Как бы ни бушевали страсти в борьбе микротитанов, чья-то неодолимая сила влечет навстречу друг другу ядра, которые упираются, словно поссорившиеся Иван Иванович и Иван Никифорович. Влечет до тех пор, пока ее не погасит взаимное отталкивание протонов. Достигнув этой дистанции, ядра больше не сближаются. Но и не удаляются одно от другого. Атомы обмениваются электронами. Наступает равновесие сил. Так возникает молекула.

А энергия связи? Что ее порождает?

Взаимодействие электронов сопровождается так называемым расщеплением уровней энергии. У независимых атомов было по одному самому низкому уровню. Но как только электроны вступили во взаимодействие, у сблизившихся атомов в соответствии с законами квантовой механики образуется по два энергетических уровня. Один лежит выше, другой ниже прежнего уровня свободного атома. Первый отведен электронам с параллельными спинами, второй с антипараллельными. На повышенном уровне энергия системы больше, чем у свободных атомов. Соединение в молекулу энергетически невыгодно. Потому оно и не происходит. Если же электроны очутятся на более низком уровне, система получит энергетический выигрыш, станет более устойчивой. Но в том-то и дело, что опуститься туда дано лишь электронам с антипараллельными спинами!

Так благодаря антипараллельности спинов высвобождается энергия химической связи. Она равна разности двух энергий, одна из которых соответствует уровню свободного атома, другая — уровню молекулы.

Математический расчет свидетельствует, что вклад кулоновского тяготения в энергию связи довольно скромен: что-то около десятой доли. Что же придает силы воображаемому «джинну» химической связи, который столь властно утихомирил разбушевавшиеся стихии микромира?

Обменное взаимодействие электронов.

Запомните этот термин. Потом мы с ним встретимся, когда пойдет речь о лечении психических расстройств с помощью интегралов.

Эпитет «воображаемый» применительно к сказочному джинну вполне уместен. Облик порой доброго, порой злого, но всегда могучего «духа» не раз вставал перед нами со страниц восточных сказок. К сожалению, обменное взаимодействие, скрывающееся за этой метафорой, вообразить значительно труднее. И постигнуть секрет его могущества невозможно, не разобравшись в квантово-механических премудростях того, как движутся электроны вокруг ядер в молекуле водорода.

Соединяясь в молекулу, атомы водорода обмениваются электронами. Конечно, это не совсем точно: электроны не марки и не мнения, чтобы можно было ими обменяться. Но от термина «обменное взаимодействие» нам не уйти, вот почему приходится предостерегать от житейского его толкования. Тем более что волновой характер движения делает электроны неразличимыми. Перемешавшиеся электронные облачка образуют нечто вроде целостной «волны», стягивающей соседние ядра в единую молекулу. Такое облако-волна хоть и расплывчато, однако все же и не бесформенно.

Обрисовать его контуры помогли опять же квантово-химические вычисления. Обнаружилось, что оно отдаленно напоминает скорлупу арахиса, узниками которой взамен двух орешков мы представляем себе атомные ядра.

Употреблять словосочетание «электронное облако» без оговорок рискованно, хотя оно прочно укоренилось в научном «жаргоне». Термин стал общеупотребительным только из-за краткости. В действительности же приходится иметь дело с облаком вероятности. Столь же эфемерным, столь же призрачным, как и размытый полупрозрачный диск включенного вентилятора. Или мелькающих спиц велосипедного колеса.

Присмотритесь к такому «облаку». Вы заметите участки большей и меньшей «плотности», «сгущения» и «разрежения». Между тем если стрелять в такой диск из пистолета, то часть пуль наверняка проскочит беспрепятственно. Угодить в спицу или лопасть не просто: все будет зависеть от слепого случая. Конечно, там, где облако гуще (оттого, что лопасти шире, а спицы соседствуют друг с другом), вероятность поразить цель выше. Но все равно вероятность остается вероятностью: то ли попадешь, то ли нет.

Нечто подобное встречается и в микромире. Чем темнее участок размытого электронного облака, изображенного художником на странице 172, тем больше тут плотность вероятности. Тем скорее мы обнаружим здесь разыскиваемый электрон. Что же касается самой плотности вероятности, то она вовсе не плод воображения художника. Ее точно вычисляют с помощью шредингеровской пси-функции.

Так квантовая механика похоронила шарик. От него остался лишь призрак.

Квантовая механика нарисовала электронные облака самых причудливых, самых фантастических форм, какие только могли пригрезиться художнику, нет, вернее, скульптору, ибо эти облака трехмерны, объемны. Правда, электронный ореол вокруг молекулы водорода имеет довольно простые очертания — он чем-то напоминает размытый «арахисовый орех», по крайней мере в области наибольшего сгущения. Но если у обычного ореха мы без труда можем обозначить границу, отделяющую скорлупу от окружающего воздуха, то «размывам» электронного облака такая геометрическая четкость отнюдь несвойственна.

Всмотритесь в рисунок «арахисового ореха». Вы заметите, что в зоне между ядрами краска положена гуще. Квантово-механический расчет обнаружил, что здесь электронная плотность повышена. Возможность такого сгущения появляется сразу, как только нейтральные атомы водорода подходят друг к другу достаточно близко. Это и есть главный итог обменного взаимодействия. Концентрируясь в межъядерном пространстве, электронное облако как бы гасит силы взаимного отталкивания между протонами, заставляя ядра сближаться до тех пор, пока не наступит равновесие сил. Зато, если электронные спины сблизившихся атомов параллельны, плотность облака между ядрами понижена, а посередине и вовсе равна нулю. В этом случае кулоновское отталкивание ядер преобладает над силами обменного взаимодействия и электростатического притяжения. Химическая связь образоваться не может.

Итак, антипараллельность спинов, как говорили древние римляне, — «кондицио сине ква нон» (условие, без которого нет) ковалентной связи. Бутлеровский валентный штрих — это и есть пара электронов с противоположно ориентированными спинами. Спаренные веретенца-магнитики безучастны к другим электронам. Химик скажет: валентная связь насыщена. Именно из-за насыщаемости химических сил молекулы имеют вполне определенный состав: например, H2, но не H3, H4 или H100; NH3, но не NH5 или NH8.

Электронное облако, окутывающее молекулу водорода, замечательно изумительной симметрией. Так всегда получается, если внутри «арахисового ореха» заключены одинаковые ядра: скажем, хлора в молекуле хлора Cl2 или брома в Br2. Сливаясь в это двуединое облако, электроны становятся неразличимыми. Возможности встретить их в поле любого ядра равновероятны. При таком валентном союзе, основанном на паритетных началах, молекула неполярна — у нее отсутствует дипольный момент. Иное дело, когда атомы разные. К примеру, в молекуле хлористого водорода HCl. Здесь уже вероятность встретить связующие электроны в поле водородного ядра меньше, чем в поле ядра атома Cl. Поэтому средняя электронная «плотность» поблизости от атома Cl выше. Облако, подобно флюсу, оттопыривается с одного бока. И тут как тут объявляется постоянный дипольный момент.

Асимметрия электронного облака описывается квантовой химией в терминах «эффективных зарядов». Имеются в виду суммарные заряды атомов в молекуле окрест их ядер.

Правда, если говорить строго, электронное облако — не политическая карта. Его невозможно четко расчленить пограничными столбами. Тем не менее понятие «эффективный заряд» зачастую удобно, хотя и условно. По крайней мере сразу бросается в глаза различие в полярности молекул. Нулевая полярность свойственна только молекулам H2, Cl2 и им подобным. У других она больше или меньше. Сравните, к примеру, хлористый водород и поваренную соль: H+0,17Cl–0,17 и Na+0,8Cl–0,8. Цифры наверху рядом с символами элементов — доли единичного электронного заряда. Нетрудно увидеть, что у молекулы нашей соли электронный «флюс» вздулся куда сильнее. В подобных предельных случаях полярная связь называется ионной.

Вывод: чисто ионной и чисто ковалентной связей нет. Есть гибриды.

Да, именно ионной — той самой, которую интуитивно предвосхитил еще Берцелиус. Той, для которой Коссель создал свою модель, описанную несколькими страницами раньше. Между ней и моделью Льюиса лежала прямо-таки пропасть. А на квантово-механическую поверку выходит, что обе они ничуть не противоречат друг другу! Перед нами просто два крайних случая одного явления — электронного содружества атомов. Такого содружества, где нет и в помине шариков-электронов, перекочевавших целиком и полностью от одного атома к другому. Деление на «своих» и «чужих» в соответствии с косселевской «бухгалтерией» бессмысленно. Ибо атомные ядра даже при ярко выраженной ионной связи объемлет единое и неделимое облако-волна.

Правда, полное разделение зарядов не исключено. Оно происходит, если ионы очутятся в свободном состоянии, например в растворе. Вздумай, однако, катион Na+1 и анион Cl–1 вступить в валентную связь, как эффективные заряды из целой единицы тотчас станут дробными: Na+0,8, Cl–0,8. Причина — волновые свойства электрона. Сколь бы малой ни была вероятность обнаружить электрон вблизи атома Na, она все же отлична от нуля.

Еще большие возмущения электронных орбит характерны для многозарядных ионов. Помните, как строго было расписано местопребывание электронов в косселевском «гроссбухе» для молекулы CaCl2? Увы, на деле все обстоит гораздо сложнее. Ca+2 в ионной молекуле обретается отнюдь не в виде «чистого» двухзарядного катиона с электронной конфигурацией инертного газа. Особенно, если его соседом по молекуле окажется тоже многозарядный анион, положим О–2. Электронная архитектура молекулы CaO выглядит вовсе не так, как рисовала ее бесхитростная геометрия Косселя. И если вам попадутся формулы:

Ca+2S–2, Ca+2O–2, Tl+4C–4, (Al+3)2(O–3)3, (N+2)2–2)5, B+3(F–1)3 и тому подобные — знайте: перед вами галерея призраков. Это наследники классических электростатических представлений, окончательно скомпрометировавших себя в глазах ученых. Понятно, почему количественные операции косселевской бухгалтерии с подобными фикциями напоминали куплю-продажу гоголевских мертвых душ.

Электрон-шарик навсегда изгнан из владений микромира электроном-волной. И лишь для пущей наглядности остались традиционные символы электронов: шарики, кружочки, точечки, которые со времен Резерфорда пошли гулять по страницам учебников и научно-популярных издании. Особой беды в этом нет: так проще понимать и объяснять. Беда в другом: учебники подчас и не желают идти дальше нечленораздельных намеков на сложную и противоречивую правду микромира. С идеями квантовой химии не знакомят не только в школе, но и во многих вузах. Так не прививается вкус к исследованиям на переднем крае одной из самых революционных наук нашего времени. Так воспитываются все новые и новые приверженцы «лукрецианской» химии и биологии. Но так продолжаться далее не может. Ибо химия не хочет жить вчерашним днем. Не может. Не имеет права. Нашествие странного мира непривычных закономерностей неотвратимо. Пусть же скорее грядет она, эпоха странного мира в химии!

Разобравшись в тонкостях валентного штриха, мы можем приступить к препарированию сопряженных связей.

Итак, физическая картина валентной черточки — «арахисовый орех»? В случае молекулы водорода — да. В случае ординарной C—C связи — да. А в случае двойной — нет. Вернее, наполовину нет.

Потому что одна из связей все же именно такая, как в молекуле H—H. Ее обозначают греческой буквой «сигма». Зато вторая — так называемая пи-связь — выглядит совершенно иначе. Как?

Изобразите на листке бумаги арахисовый орех. У вас получится плоский рисунок, похожий на восьмерку. Это сигма-электронное облако. Поставьте жирную точку в центре каждой из округлостей «восьмерки». Это ядра атомов углерода. Соединим их прямой. Перед нами чертеж сигма-связи. А теперь вообразите, что наша прямая линия — палка, на обоих концах которой прикреплено по двухлопастному пропеллеру. Нарисуем и их. Получили две восьмерки. Каждая восьмерка с виду плоская. Но так же, как и рисунок арахисового ореха, она изображает пространственную фигуру. Что-то вроде толстой балясины с тонкой перемычкой посередине. «Балясина» — это пи-электронное облако. «Перемычка» — место, где находится атом углерода. А где же пи-связь? Округлости обеих балясин так толсты, что входят друг в друга (вспомните, что перед нами не крепкие деревяшки, а эфемерные воображаемые облачка!). Подобное двойное зацепление и есть грубый набросок пи-связи. Теперь мы можем соединить точки, изображающие атомы C, еще и второй линией.

Картина двойной углерод-углеродной связи готова.

Когда ученые разобрались в премудростях ординарной и двойной ковалентной связи, настал черед и бензола. Хватит, решили ученые, поморочил голову, пора и честь знать. Бензол просветили рентгеновыми лучами. Расшифровали структуру «скелета». И что же? Оказалось, что молекула бензола — правильный плоский шестиугольник.

Трехмерная призматическая архитектура сразу же отпала. Все шесть связей в бензоле одинаковой длины. Отпали структуры с перекрестными штрихами и формула Дьюара. Каждая углерод-углеродная связь короче обычной ординарной, но длиннее двойной. И все они равноценны. Так что и конструкция Кекуле отпадает! Что же остается? Формула Тиле. Но ведь половинные валентности с точки зрения бутлеровской теории — абсурд! По какой же формуле прикажете рассчитывать бензол? Было над чем поломать голову.

В тридцатых годах нашего столетия появился метод валентных схем. Он восходил к классической работе Гейтлера и Лондона. Валентные схемы очень похожи на структурные формулы, которые появились в обиходе химиков около ста лет назад. В них символом «буква — черточка — буква» означены спаренные электроны. Вроде бы просто, лаконично и наглядно. Однако очень скоро эта кажущаяся простота ввергла математиков в омут головоломок.

Молекулы с сопряженными связями первые подняли черное знамя анархии. Самые интересные, пожалуй, с точки зрения химиков и биологов, они, видите ли, не желали подчиняться квантово-механическому кодексу. И уж, конечно, в первых рядах мятежников очутился наш бензол.

Непокорный эффект сопряжения снова заставил физиков призадуматься.

А может, догадка Кекуле не так уж и наивна? Вдруг бензол действительно не имеет единой структуры?

Еще в 1923 году английским химиком Ингольдом была выдвинута теория мезомерии. Допускалось, что формулы Кекуле отвечают предельным, или возбужденным, состояниям бензола. Реальный же статус молекулы — ни то ни се. Промежуточное бытие, которое возникает в результате взаимодействия предельных структур. Мезосостояние, как назвали его ученые. И хотя еще сам Кекуле подозревал, что любая из его формул — кривое зеркало призрака, было введено представление о мезомерии. Дескать, предельные структуры путем перераспределения химических связей перевоплощаются в реально существующую мезоструктуру.

Под зыбкую идею многоликих химических фантомов вскоре был подведен квантово-механический фундамент.

Американский физико-химик Полинг предложил рассматривать строение молекул, не укладывающихся в обычную валентную схему, как результат электронного резонанса.

Термину «резонанс» не сыскать, пожалуй, подходящей аналогии ни в музыке, ни в радиотехнике. Это скорее удобная метафора, не более, хотя и ведет свою родословную от конкретного физического явления.

К высокой перекладине на тоненьких ниточках подвешены два массивных шара. Оба связаны друг с другом слабой пружинкой. Подтолкните один шар. Он покачается, покачается и остановится. А тем временем отклонение второго шара от равновесия достигнет наибольшего размаха. Так начнется чередование: колебания одного шара затухают, другого, наоборот, нарастают. В таком случае можно говорить о колебании единой системы, состоящей из двух маятников. Это сложное движение можно представить как сумму двух колебаний: одного с меньшей частотой, другого — с большей, чем у шара, не связанного пружиной с другим.

Расщепление уровней у атомов водорода при объединении их в молекулу H2 рассматривается в квантовой механике как своего рода «резонанс» электронов. Роль пружины играет валентная связь. И, подобно тому как движение связанных маятников можно разложить на два других с большей и меньшей частотой, энергетические уровни взаимодействующих электронов расслаиваются.

Полинг приложил идею электронного резонанса к многоатомным молекулам. В частности, к бензолу.

Очевидно, что две структуры Кекуле соответствуют состояниям молекулы с одинаковой энергией. Мы имеем право условно считать такую систему «резонансной», подобно двум атомам водорода, объединяющимся в молекулу. А раз так, то уровень энергии бензола тоже «расщепляется». И реальная молекула С6Н6 должна, естественно, находиться на более низком, самом устойчивом уровне. Только так можно объяснить отклонение молекулы бензола от принципа аддитивности.

Этот принцип вытекает из теории химического строения. Валентная схема предполагает, что одни и те же связи в разных молекулах сохраняют свойство неизменными. Следовательно, свойства молекулы в целом можно представить как сумму свойств отдельных связей. Так оно и есть во многих случаях. Скажем, у этана С2Н6 или октана С8Н18. Даже у соединений, имеющих одновременно ординарные и двойные связи. Но лишь в том случае, если они не сопряжены, не чередуются через одну, как в бензоле.

Если сложить энергии образования трех C = C и трех C—C связей, то сумма окажется меньше, чем энергия образования бензола, на целых 35 килокалорий. Аддитивности нет. Далее: длина связи C—C равна 1,54 единицы, связи С = С 1,33 единицы, а у бензола все связи одинаковы и равны 1,394. Тоже отклонение от аддитивности. Вот почему Полинг предложил для описания бензола использовать всю совокупность валентных схем. Это, конечно, не значит, что бензол являет собой смесь изомеров — веществ одного состава, но разной структуры. Более того: Полинг отмежевался и от мезомерии, которую часто путали с резонансом. Теория мезомерии предполагает, что молекула бензола непрерывно превращается из одной формы в другую. Дескать, если бы удалось сфотографировать бензольную структуру на кинопленку со скоростью 1030 кадров в секунду, то на одном кадре мы увидели бы одну формулу Кекуле, на другом — вторую. Но это не так. В действительности, по Полингу, подобный эксперимент дал бы одно и то же смешанное состояние. Так что понятие резонанса здесь имеет своеобычное квантово-механическое толкование.

Из новых теоретических предпосылок родилась разновидность метода валентных связей — метод наложения валентных структур, он же метод резонанса. В нем квантово-химическое уравнение представлено суммой ряда функций. Каждому слагаемому Полинг сопоставил одну из возможных формул. А сумму в целом предложил толковать как «резонанс» валентных структур.

Казалось, наконец-то бедняге бензолу повезло! Пусть у бензола нет единого архитектурного образа. Все пойдут в дело. Стоит только «наложить» их друг на друга. То есть проделать расчет для одной структуры, потом для другой, а результаты сложить. Вот почему для описания одного и того же соединения Полинг предложил использовать весь набор разношерстных структурных формул.

Но в том-то и загвоздка, что язык букв и черточек предоставляет в распоряжение химиков всего лишь упрощенные (ради наглядности) схемы. Между тем трижды прав Малликен, сказавший как-то: «Химическая связь не такая простая вещь, как кажется некоторым людям».

А вот что говорит сам Полинг: «Разные варианты структур скорее возможны, нежели реальны. И я не отвергаю обвинений видеализации. Но ведь в классической теории Бутлерова штрихи двойной связи — тоже символ, некая идеализация!»

Валентные штрихи — слишком грубый образ, чтобы передать все тонкости того, как распределена электронная плотность. Известны соединения, которые вообще не могут быть описаны одними буквами и черточками. Приходится вводить архитектурные украшения в виде знаков «плюс» или «минус», чтобы хоть как-то отразить распределение зарядов.

Да и сам метод расчета, довольно искусственный, формальный, изобретенный лишь для удобства математиков, трудно назвать абсолютно безупречным. Главный его изъян — произвол в выборе валентных схем. У нафталина, например, их тридцать четыре, хотя молекула его ненамного сложнее бензольной (она получится, если «склеить» сторонами два шестиугольника Кекуле). У антрацена, «склеенного» из трех молекул бензола, — целых 429 схем! Из огромной галереи портретов надо выбрать (в целях упрощения расчетов) несколько штук. То-то и оно: выбрать! И произвольно приписать им «статистический вес» — вероятность данного состояния.

Ситуация получилась парадоксальной. С одной стороны, химическая графика существует ради наглядности. С другой — любая валентная схема, взятая отдельно, явно недостаточна, даром что наглядна. Чтобы передать все хитрости молекулярной структуры, приходится чертить десятки, если не сотни, штриховых изображений. Тут уж от наглядности не остается и следа.

У бензола коллекция электронных состояний поскромнее. Всего пять, если к двум формулам Кекуле присовокупить еще и три «резонирующие» структуры Дьюара:

Причем выбирать не нужно: в дело идут все. Пять «состояний» — пять слагаемых в квантово-химическом уравнении. Так что, казалось бы, ни о каком произволе и речи быть не может. Но вот сопоставили результаты расчета с данными другого метода. Метода молекулярных орбит. Там принимается, что электроны распылены по всей молекуле, а не закреплены в виде балясин в отдельных связях. При вычислении эффективных зарядов обнаружились чуть ли не десятикратные расхождения! Таким образом, ни формальный подход химиков-квантовиков к бутлеровским структурам, ни попытка их глубоко проникнуть в сущность валентного штриха, несмотря на отдельные успехи, не решали проблему в целом. Сопряженная связь оказалась крепким бастионом даже для тяжелой математической артиллерии. Но ученые не отступают перед трудностями.

Если математика спотыкается в расчетах, значит физическая модель не без изъяна. Значит, надо уточнять электронную архитектуру молекулы.

В 1951 году советский химик Георгий Владимирович Быков высказал оригинальную идею. Пи-электронные заряды атомов равны нулю! Ну хорошо, а что станет с нашими балясинами? Прежде чем разобраться в этом вопросе, придется вспомнить некоторые интересные физические особенности соединений с сопряженными связями.

Магнитное поле выталкивает пробирку с бензолом, нафталином, антраценом или другим ароматическим соединением. В чем дело? Объяснение одно. Под действием магнитного поля электроны начинают циркулировать по замкнутым цепям. Такими цепями в органических соединениях служат молекулярные циклы, подобные бензольному. А всякий замкнутый ток — по существу магнит. Потому-то пробирка и «выпрыгивает» из магнитного поля.

И впрямь бензол похож на железо, из которого построен «Атомиум»!

Но это еще не все. Известно, что графит проводит ток. А вот алмаз нет. Хотя оба — одно и то же вещество. Чистый углерод. Почему? В отличие от алмаза графит имеет слоистое строение. Кристаллографическое исследование показало, что слои представляют собой «паркет», выложенный шестиугольными плитками. И что плитка — углеродный остов бензола! Графит проводит ток вдоль слоев гораздо лучше, чем поперек. Именно потому, что электроны легко скользят по ребрам плиток.

Экспериментальные факты подвели ученых к любопытному заключению. Молекулы ароматических соединений, помещенных в магнитное поле, обладают свойствами проводников! Точнее, сверхпроводников. Ведь электроны обегают циклическую цепь без всякого сопротивления.

Но если так, то в молекулах с сопряженными связями должны присутствовать, как и в кристаллических решетках металлов, свободные электроны. Свободные — это значит не прикрепленные к отдельным связям! И такие электроны есть.

Помните наши балясины? Тогда мы пририсовали к сигма-штриху между C и C вторую валентную черточку. Сплошную линию, которая символизировала собой сцепление пары балясин. А зря. Надо было нарисовать не сплошную черточку, а прерывистый пунктир. И протянуть его не только над сигма-штрихом двойной связи, но и над соседними сигма-штрихами одиночных связей. Так ведь это же не что иное, как формула Тиле! Да, если угодно, это она. Старая знакомая, однако смысл новый. Пунктирный кант — никакие не половинные валентности. Это символ обобществления пи-электронов вдоль всей цепи. Каждая балясина взаимодействует с обоими соседями. Образуется непрерывная цепочка взаимосвязанных электронных облаков.

Так постепенно уточнялась модель пи-связей. Квантово-химические расчеты убедительно свидетельствовали, что она является гораздо большим приближением к действительности, чем прежняя. И тем не менее трудности давали о себе знать.

Теперь, когда обобществленное электронное облако протянулось сплошь по всей молекулярной цепочке, особенно много беспокойства доставлял ученым вопрос о границах. Как отделить одно углерод-углеродное звено от другого? Точно определить, какая часть облака находится окрест атома, какая — в межатомном пространстве, было практически невозможно. Приходилось выделять часть облака, находящегося около атома, в особую зону. Не мудрено, что установлению демаркационной линии сопутствовал произвол. Этот произвол и приводил к расхождению результатов при расчетах разными методами.

Вот тогда-то и была высказана Быковым новая идея — пи-электронные заряды атомов равны нулю. Иными словами, пи-электронное облако расквартировано целиком в межатомном пространстве. Новое понятие — электронные заряды связей — было предложено считать вполне реальной структурной характеристикой молекулы.

Необходимость делить электронное облако между атомом и связью отпала. Неопределенность в установлении границ при подобном разделе — тоже. Расчеты существенно упростились.

Вскоре американские теоретики Рюденберг и Шерр разработали новую модель пи-связей. Модель одномерного электронного газа. В поле положительно заряженного сигма-электронного остова движутся пи-электроны. Движутся свободно, независимо друг от друга — совершенно иначе, чем это позволяли представить балясины, накрепко привинченные к месту. Движутся так, словно текут, переливаются по узеньким трубочкам, соединяющим вершины сигма-электронного остова — шестиугольника в бензоле. Трубочки одномерны. Они имеют только длину, тогда как балясины — объемные фигуры. Именно эти трубочки и подразумевает сегодня химик-квантовик, рисующий по стопам Тиле пунктирную окантовку внутри сплошного бензольного цикла.

Первые же расчеты пи-электронных зарядов связей на основе новой модели увенчались успехом. А начиная с 1956 года Быков пользуется в своих работах новым понятием о сигма-электронных зарядах связей! Это еще в большей степени, чем понятие о пи-электронном заряде, противоречит традиционным взглядам.

Как нечто само собой разумеющееся, химики привыкли считать, что сигма-связь образуется локализованным (пришпиленным к определенному месту) дублетом. Что сплошная черточка между атомами символизирует собой целочисленную электронную связь. И нельзя рассчитывать эту связь, приняв, что электронное облако рассредоточено по всей молекуле.

Самый строгий и нелицеприятный судья в науке — опыт. Здесь пришлось ставить эксперимент теоретический. Были совершенно независимо рассчитаны сигма-электронные заряды связей в пропане (у него отсутствуют пи-связи) сразу двумя учеными, живущими по разные стороны Атлантики. Одному из них, Сандорфи, понадобилось несколько часов работы вычислительной машины. Другому, Быкову, — несколько минут с карандашом в руках. И вот результат — блестящее совпадение!

Здесь впервые мы сталкиваемся с вопросами: а всегда ли нужны электронные машины в квантово-механических расчетах?

Так контроль со стороны математики позволяет уточнять в деталях строение молекул. Химики теперь не просто рисуют бутлеровские черточки. Они строят их физические модели. И проверяют правильность своих допущений математическими средствами.

Проверяют для того, чтобы лучше постигнуть таинства химических явлений. И на этом пути они достигли многого. Но еще больше предстоит сделать впереди.

В наше время выявлены основные физические законы, которые необходимы для построения строгих количественных теорий чуть ли не во всех областях химии. К сожалению, точное применение этих законов ограничено: чересчур громоздки математические выкладки.

Однако нынешние ученые по-современному нетерпеливы. Дожидаться, когда будет разработан более совершенный математический аппарат? Нет! В конце концов наряду с количественными выводами квантовая химия способна дать и качественные.

Разумеется, стремление получить наиточнейшие количественные результаты вполне закономерно. Это, если угодно, дань традициям квантовой механики. И действительно: когда системы содержат не более 3–4 электронов, расчетные данные хорошо согласуются с экспериментально измеренными. В случае молекул с 5–20 электронами приходится звать на выручку вычислительную технику. Для систем с числом электронов более 20 точные расчеты уже неосуществимы. Но так ли уж они необходимы?

В последние годы на электронно-счетных машинах были с успехом проделаны очень громоздкие вычисления. При расчете молекулы H2 волновая функция содержала более полусотни членов, атома He — 1078 членов. Точность вычислений превысила точность эксперимента. Между тем еще в 1933 году ученые Джемс и Кулидж безо всяких быстродействующих электронных машин, с карандашом в руках, расчислили волновую функцию с 13 членами. Они получили энергию связи 4,7198 электроновольта. Это составило 99,5 процента от опытного значения (4,7451 эв). Точность тоже вполне достаточная. Зато достигнута она более простыми средствами! Этот пример заставит призадуматься даже самого пылкого энтузиаста машинной математики в химии. В одном из лучших современных расчетов молекулы N2 (14 электронов) было получено такое значение энергии связи: 27 больших калорий на моль. В действительности же 225. Вот какое расхождение! Чуть ли не десятикратное. Что попишешь: не всегда удается точный расчет. Уж слишком сложна физическая картина многоэлектронных молекул.

А зачем вязнуть в трясине бесконечных математических сложностей? Имеет ли смысл проверять лишний раз правильность законов квантовой механики на новых и новых примерах?

Конечно, диапазон от 1 до 20 электронов не так уж мал. Здесь уйма увлекательных загадок. И точное их решение весьма соблазнительно. Однако еще больше интересного остается за бортом этого интервала, где о точности не может быть покамест и речи. Но отказываться от точности — это не значит отрекаться от квантовой механики! Порой вполне разумно ограничиться приближенным решением проблемы. Правда, такой подход приводит лишь к качественным и полуколичественным оценкам. Зато он приложим к системам любой сложности — от бензола до белка.

Многие почему-то считают, что математика — это манипуляции с цифрами. Отнюдь не всегда! Математические критерии и логика не утрачивают силы при качественном анализе явлений. Иногда достаточно уловить общий характер закономерности, границы ее применимости, степень вероятности событий, их статистическое распределение.

Конечно, не каждому понятию дашь безупречное математическое истолкование. А блюстители математической строгости, увлекаясь формализмом, волей-неволей игнорируют чисто химические особенности явлений. Ответ на вопрос «почему» обычно не только проще, но подчас и важнее ответа на вопрос «сколько».

«Не такой требуется математик, — писал Михаил Васильевич Ломоносов, — который только в трудных выкладках искусен, но который, в изобретениях и доказательствах привыкнув к математической строгости, в натуре сокровенную правду точным и непоползновенным порядком вывесть умеет. Бесполезны тому очи, кто желает видеть внутренность вещи, лишаясь рук к отверстию оной. Бесполезны тому руки, кто к рассмотрению открытых вещей очей не имеет. Химия руками, математика очами физическими по справедливости назваться может».

Наше путешествие в микромир, начатое в лифте «Атомиума», подходит к концу. Как не похожа стальная брюссельская громада на описанные нами крохотные архитектуры! Там сталь — здесь органические вещества — неметаллы. Там кусок кристалла — здесь молекулы с валентной связью. Там четкая пространственная геометрия — здесь воображаемые расплывчатые очертания.

И в то же время между ними есть нечто общее. Хотя бы характер поведения электронов в металлическом кристалле и сопряженных связях. А главное сходство в другом. И там и здесь — символ победы над твоими тайнами, Природа! Победы, которая позволит человеку чувствовать себя внутри молекулярных построек столь же свободно, как и в комфортабельных помещениях «Атомиума».

Глава 3

Необыкновенная связь

С каждым днем стареют учебники. Всего четыре десятка лет назад сделало свой первый шаг строптивое дитя физики и математики — квантовая химия. А сколько классических представлений, выкристаллизовывавшихся веками, низвергло оно за короткий срок!

Уравнение Шредингера занимает ровно одну строчку. А отразило в себе, как капля воды Солнце, весь грандиозный опыт старой и новой физики.

Впрочем, оно явилось не только итогом научного прошлого. Оно стало мощным интуитивным рывком в будущее. Именно математическая интуиция предвосхитила явление электронного спина — фундаментальнейшую характеристику химической связи. Именно квантово-механические расчеты позволили химикам, как сквозь магический кристалл, заглянуть внутрь валентного штриха, проникнуть в быстрый и легкий мир призрачных электронных архитектур.

Спору нет, высоко вознеслось своими строгими и изящными формами современное здание квантовой химии над архаичными постройками химии лукрецианской. Но имеет ли это теоретическое здание «выходы» в практику? Или же химия производящая вынуждена в бесцельном ожидании томиться у его парадного подъезда?

«Знание — орудие, а не цель». Так говорил великий писатель и философ Лев Толстой. А если с этим мерилом подойти к квантовой химии?

Век девятнадцатый нередко называют веком пара и электричества. Но как назвать XX век? Атомным? Космическим? Веком полимеров? Или электронных машин? А может, веком сверхчистых веществ?

Любое из этих определений столь же правомерно, сколь и ошибочно. Правомерно потому, что именно в наш неугомонный век началось бурное развитие новейших технических областей, неузнаваемо преобразивших лицо планеты. И, ей-же-ей, нетрудно понять специалиста, когда он из самых чистых побуждений наделяет эпоху именем милого его сердцу направления. Быть может, даже чуточку переоценивая его значение и перспективы. И тем самым невольно умаляя роль чуждой сферы деятельности. В этом-то, пожалуй, и коренится ограниченность любого однозначного эпитета, которым награждают нынешний мир науки и техники. Он слишком многогранен, этот мир, чтобы любое лаконичное определение не грешило однобокостью.

И слишком беспокоен в своих дерзаниях, чтобы довольствоваться уже достигнутым и оставаться завтра таким же, как сегодня!

Но каким бы разносторонним ни был прогресс, которым гордятся ученые и инженеры XX века, на любом самом передовом участке размежеванной нивы знаний уже пожинаются или зреют гибридные плоды химии, физики и математики.

Лазеры. Полупроводники. Полимеры. Жароупорные покрытия. Медикаменты. Материалы для ядерной и ракетной техники. Надо ли перечислять дальше? Воистину необъятен диапазон, где приложимы идеи квантовой химии!

Энергетика. Вопрос вопросов технического прогресса. Перед глазами встают долговязые металлические мачты, шагающие с зажатыми под мышками проводами из конца в конец страны. Приземистые плотины ГЭС, в чреве которых клокочет вода, размолотая лопастями турбин. Нацеленные в небо жерла труб с зыбкими хоботами дыма, рвущегося из огнедышащих топок теплоэлектроцентралей. Массивная железобетонная броня атомных станций. Многометровые громады сооружений из камня и металла.

А если все иначе? Без труб и котлов, без плотин и турбин. Без угля, без воды, без урана. Просто открыл саквояж, распаковал палатку, поставил на солнцепек, и готово — включай ток. Вари уху на электроплитке, слушай радиопередачи, брейся электробритвой, заряжай аккумулятор впрок, чтобы и вечером было светло. И все от одного источника — полупроводниковых фотоэлементов, из которых сделана палатка. Фантазия? Мечта? Пожалуй. Но если и так, то не очень далекая от реальности.

Совсем недавно у полупроводниковых преобразователей солнечной энергии в электрическую коэффициент полезного действия не превышал жалких долей процента. А сегодня он подпрыгнул до 7–10 процентов. И это, понятно, не предел. Ученые упорно изыскивают фотохимические катализаторы, которые позволят эксплуатировать даровые солнечные лучи с кпд 30–40 процентов. Но развитие науки о фото- и термоэлектрических процессах немыслимо без квантово-механического понимания явлений электронных.

Человек идет за Солнцем. Почему? Зачем? Как?

На первый взгляд кажется, будто нет особой нужды ловить солнечные зайчики. В самом деле: чем хуже солнечных лошадиные силы того же пара? А разве человек не запряг к тому же и атом? То ли будет впереди! На очереди — термоядерные электростанции. Уж тогда-то энергии будет хоть отбавляй.

Верно. Хоть отбавляй. Но надолго ли?

По расчетам советского ученого Иосифа Самойловича Шкловского, если каждое столетие объем производства будет удваиваться, то через 2500 лет он должен возрасти в 10 миллиардов раз! Это означает, что в 45 веке потребности землян в энергии составят величину космического порядка — 0,0001 «тотальной» мощности солнечного излучения. А возможности?

Подсчитано, что работа, которую способны дать все запасы атомного топлива, всего в 20–30 раз превосходит энергию горючих ископаемых, что лежат еще не добытые у нас под ногами. Спору нет, человечество овладеет секретом управляемого термоядерного синтеза. Тем не менее общая мощность термоядерных электростанций не может превзойти некоторый роковой предел. Академик Семенов считает, что это ограничение связано с перегревом земной поверхности и атмосферы. Так что едва ли удастся получать термоядерную энергию в количестве, большем 5–10 процентов солнечной энергии, поглощаемой нашей планетой и ее воздушным покрывалом. Вывод один: энергетические ресурсы Земли явно недостаточны для нормального развития общества разумных существ на протяжении нескольких тысячелетий.

Между тем при утилизации солнечной энергии перегрева Земли опасаться нет оснований. Солнце ежесекундно посылает нам сорок триллионов больших калорий. Правда, большая часть этих щедрых золотых потоков рассеивается и лишь отчасти поглощается атмосферой. Поверхности достигает около трети лучистой энергии; в южных широтах больше, в северных — меньше. Если всю ее полностью превратить в электрическую, то в производственной упряжке оказалось бы куда больше лошадиных сил, чем могли бы дать термоядерные станции. Даже десятой доли солнечного тепла и света — тех, что падают на поверхность одной только суши, — хватило бы для получения гигантских количеств энергии. В тысячи раз больших, чем ее нынешнее мировое производство.

Чтобы добиться желанного результата, придется покрывать фотоэлементами огромные участки суши, а может быть, и водоемов. Однако тонкие кристаллические пленки, германиевые или кремниевые, — штука капризная. Сейчас их составляют из отдельных кусочков — точь-в-точь как мозаичное панно. Но одно дело мозаика размером с книгу или с газету, как на спутнике, а другое — гектары лучеуловителей. Одно дело безвоздушный штиль космоса, другое — беспокойное царство земных стихий. Порыв сильного ветра, удар разгулявшейся волны — и хрупкий материал вышел из строя. Несравненно лучше гибкие полупроводники. Только где их взять?

Проблема — мягкие электростанции. Киловатты, свернутые в рулон!

Полимеры… Сколько осуществленных желаний, а еще больше надежд связано у людей с этим словом! Юная гвардия синтетической химии уверенно вытесняет ветеранов, служивших технике верой и правдой сотни и тысячи лет.

Прочен и красив гранит. Но как трудно его обрабатывать! Просто обрабатывать дерево, но постройки из него боятся малейшей искорки, быстро гниют. Стоек к сырости и огню железобетон, но уж слишком он «тяжел на подъем». Легок и долговечен алюминий, однако сквозь него ничего не увидишь. К тому же он легко растворяется в кислотах и щелочах. Бесстрашно отражает химические атаки стекло. Прозрачное, оно ничего не скрывает от любопытного глаза. Но недаром же его хрупкость пошла в пословицу!

Не сделаешь шестерню из камня, электрический изолятор из березы, корпус ракеты из железобетона, химическую колбу из алюминия, рессору из стекла.

Иное дело — полимеры. Сочетая в себе достоинство материалов-ветеранов, они обладают невиданными преимуществами. Из них уже делают прочные, легкие, прозрачные, химически стойкие, неприхотливые и недорогие пленки, под которыми прячутся целые гектары плантаций от мороза и других капризов погоды. По своим механическим свойствам полимеры были бы идеальным конструкционным материалом для солнечных ГЭС — гелиоэлектрических станций. Эх, если бы они обладали еще и полупроводниковыми свойствами! Тогда можно было бы…

Дух захватывает, если подумать, что принесут с собой полимеры-полупроводники! Электростанции в рулонах. Рубашка, которая одновременно является батарейкой. Мягкие приемники, телевизоры, даже электронно-счетные машины, складывающиеся, как зонтик, или, чего доброго, как носовой платок. С такой «амуницией» хоть на Луну. Однако насколько реальны эти мечты?

Помните сопряженные связи? Пожалуй, это и есть тот Рим, куда ведут сегодня дороги надежд квантовой химии.

Опять этот коварный эффект сопряжения! Коварный? Да, но и многообещающий!

Полимеры с сопряженными связями находятся в фокусе внимания ученых. Оно и понятно почему.

Если сигма-электроны, прикрепленные к атомам, вдруг срываются с насиженного места, химическая связь лопается. Соединение прекращает свое существование, распадаясь на два других. Совсем иначе ведут себя пи-электроны в сопряженных связях. Их никак не назовешь домоседами. Они могут свободно разгуливать вдоль всей цепочки атомов, придавая молекуле свойства сверхпроводника. Или полупроводника. Все зависит от различий в длине ординарных и двойных связей.

Вот гексатриен CH2 = CH—CH = CH—CH = CH2. Как и в бензоле, в нем шесть углеродных атомов и три двойные связи. Похоже, будто перед нами бензольное кольцо, разрезанное одним взмахом ножниц и распрямленное в линейную цепочку. Разве что по бокам еще присоединилось по атому водорода. Но присмотритесь попристальней: в нем всего два одиночных штриха. А парных — три! И хотя эффект сопряжения налицо, чередующиеся связи неравноценны. Во всяком случае, межатомные расстояния С = С и C—C неодинаковы. Энергия связи тоже. Это доказывает расчет. И подтверждает опыт.

А что, если все-таки попробовать поменять местами двойные и одиночные штрихи? Что тогда? Пожалуйста: CH3—CH = CH—CH = CH—CH3. Гексадиен. Совсем другое соединение. В нем три ординарные и две двойные связи. Так что, как видно, структуру гексатриена не описать больше чем одной-единственной формулой. Между тем, если бы удалось гексатриен свернуть в кольцо и «сшить» концы иголкой химического взаимодействия, перед вами тут как тут объявился бы наш двуликий выходец из мира молекул. Бензольный цикл, в котором углерод-углеродные связи неразличимы. И он обладает сверхпроводимостью — в отличие от линейной цепочки гексатриена.

Можно подумать, что равноценность чередующихся связей присуща лишь циклическим молекулам. Отнюдь нет. Свидетельство тому — существование радикалов типа ĊH2—CH = CH2 (точкой обозначен неспаренный электрон). Можно написать вторую, совершенно эквивалентную схему CH2 = CH—ĊH2, хотя химическая формула в обоих случаях одна (C3H5).

Речь идет о свободных радикалах. Что это такое, можно узнать подробней, заглянув в последнюю главу.

Интересная деталь: далеко не у всех циклических молекул типа бензола (C6H6) чередующиеся связи одинаковы. Есть такое соединение — циклооктатетраен C8H8. У него простые и двойные связи чередуются. Тем не менее они не взаимозаменяемы. Ибо восьмиугольная молекула циклооктатетраена вовсе не плоская, не в пример бензольному шестиугольнику. Мало того. В 1964 году было получено циклическое соединение, имеющее состав бензола C6H6. Считают, что его пространственное строение описывается формулой Дьюара:

Правда, не плоской, а слегка согнутой вдоль самой длинной связи, соединяющей противолежащие вершины. И надо же: химики наотрез отказались признать его бензолом!

Полное равноправие всех углерод-углеродных связей квантовая химия предсказывает лишь тем циклам и цепочкам, для которых можно написать минимум две эквивалентные схемы. Именно эти соединения металличны. И сопряженные связи в них изображаются не только штрихом, но и пунктиром:

Зато свойства полупроводников проявляют молекулы с сопряженными, однако, заметно не похожими связями: —С = С—С = С—. Скажем, полимеры CH2 = CH—(—CH = CH—)n–2—CH = CH2.

Чем же объясняет разницу в электрофизических свойствах молекул квантовая химия?

Вспомним сперва, чем отличается полупроводник от проводника. Разумеется, нас интересует сейчас не то, что первый хорошо проводит ток, а второй скверно. Из самого названия видно. В конце концов полупроводник — это все равно что полуизолятор. Хотелось бы разобрать по винтикам и пружинкам сокровенный механизм такой половинчатости в свойствах.

Вот железо. Проводник. Почему? Да потому, что в кристаллической решетке металлов всегда есть свободные электроны. А почему есть? И почему свободные? Лучше начать все по порядку.

Помните «Атомиум»? Девятка громадных шаров — кусочек кристаллической решетки железа. Яркие световые блики на сверкающих стальных округлостях — лишь отдаленное напоминание о расплывчатых электронных облаках. Отдаленное хотя бы потому, что у любого атома электронная архитектура многоярусна. У железа в первой оболочке два электрона. Во второй — восемь, в третьей — четырнадцать, (обратите внимание: четырнадцать! До полного комплекта не хватает четырех электронов: ведь этот ярус способен принять 2·32 = 18 электронов). В четвертой, наружной, — два (оболочка тоже не заполнена). Всего двадцать шесть. У яруса-оболочки есть ступеньки-слои. Это энергетические уровни. Чем выше расположена ступенька, тем больше энергия сидящего на ней электрона. На одной ступеньке по правилу Паули (несовместимость квантовых состояний) не может находиться больше двух электронов. Но уж если они там очутились, их спины должны быть антипараллельными. Между ярусами электронам быть не дозволено.

Таким образом, электрон в индивидуальном атоме может обладать не любыми, а лишь некоторыми значениями энергии. В таких случаях говорят: энергетический спектр у него дискретный (прерывистый). Напротив, свободный электрон, оторвавшийся от атома, может двигаться с любой энергией. Его энергетический спектр сплошной, без разрывов. Ну, а в кристалле?

При застройке атомов ярус к ярусу энергетические уровни-ступеньки расщепляются на подуровни — точь-в-точь как при образовании молекулы H2 из двух атомов водорода. Разве что там появилось два подуровня, а здесь, в кристалле, в этом огромном семействе атомов, их мириады.

Ведь на одном подуровне не может ужиться больше двух электронов. (Да и то оба соседа мирно сосуществуют лишь при условии, что спины у них антипараллельны.) Вот почему электроны соседних узлов кристаллической решетки вынуждены расселяться по разным ступенькам. Что ж, благодаря расщеплению уровней места хватит всем — и отдельным электронам и парочкам. Даже останется лишняя «жилплощадь».

Но вот что интересно: когда происходит расщепление, подуровни так близко располагаются друг к другу, что практически сливаются в одну сплошную широкую полосу — зону. Прежней дискретности энергетического спектра, свойственной индивидуальному атому, как не бывало. И электроны в кристалле обретают куда большую свободу передвижения, чем внутри атома, хотя и не в такой степени, как вольноотпущенники, полностью покинувшие атом.

Правда, речь идет главным образом о наружных валентных электронах. Ибо только они обобществлены между всеми атомами кристалла. Коллективизация не затрагивает электроны, запрятанные во внутренних ярусах. Там расщепления почти не происходит. Зато самая удаленная от ядра зона размыта сильнее всех.

А теперь давайте поставим мысленный эксперимент. Перед нами кристалл. Мы не знаем пока, проводник это или полупроводник. Пусть он охлажден до абсолютного нуля. В таком состоянии валентные электроны займут самые нижние подуровни. Начнем подогревать кристалл. Тут-то он себя и выдаст!

Если это проводник, достаточно самой малой порции энергии, чтобы электрон перешел в иное квантовое состояние. Например, перепрыгнул на одну из верхних незанятых ступенек. Вернее — даже перешагнул: незанятые ступеньки-то рядом! Ибо у проводника зона, как правило, не заполнена (вспомните железо!).

Иное дело полупроводник. У него валентная зона полностью укомплектована. А ближайший незанятый подуровень отделен от нее широкой полосой запрещенной зоны. Чтобы преодолеть ее, электронам требуется весьма энергичный шлепок. И до тех пор пока ни один из них не будет выдворен из валентной зоны, ни о какой проводимости не может быть и речи. Ведь электрический ток — это перемещение электронов. А оно связано с переменой квантовых состояний. Между тем у полупроводника в забитой до отказа валентной зоне электронам не дано изменять ни одно из своих квантовых чисел: все ступеньки заняты. И, только перескочив через запрещенную зону в зону проводимости, беглецы обретают свободу передвижения. Зато в частично заполненной зоне, которой обладают металлы, созданы все условия для хорошей проводимости.

Следите внимательней: то же самое происходит и в молекулах с сопряженными связями. В конце концов кристалл — это одна огромная молекула!

Для многоатомных коллективов — кристаллов и молекул — принцип Паули также сохраняет силу.

Понятно теперь, почему у полупроводников количество электронов в зоне проводимости намного меньше, чем у проводников. Но этот «недостаток» оборачивается стократным преимуществом. В проводнике почти все электроны свободны. Их очень много. Поэтому внешнее воздействие мало сказывается на электронном состоянии того же железа. Между тем полупроводники болезненно чувствительны к свету и теплу. Вышло солнце из-за облаков, поднялся столбик ртути в термометре — малейшее усиление квантовой бомбардировки резко увеличивает число прыгунов через «запретную зону». Конечно, и проводники не безразличны к изменениям в окружающей среде. Известно, что сопротивление металлов зависит от температуры. Однако с ее повышением металл проводит ток все хуже и хуже. Электронам-конькобежцам все больше мешают тепловые колебания атомов в узлах кристаллической решетки. Они превращают скольжение между узлами решетки в бег с препятствиями. Правда, нагревание полупроводника тоже увеличивает противодействие току. И все же куда быстрее растет число «конькобежцев». В результате электропроводность возрастает. Нередко в тысячи и даже миллионы раз. А сопротивление при нагревании на один градус увеличивается лишь на доли процента.

Итак, у любых кристаллических материалов электропроводность зависит от высоты «запретной зоны». А у длинных и гибких полимерных нитей?

Молекула полимера с сопряженными связями напоминает ряд атомов в кристалле. Роль узлов кристаллической решетки выполняют атомы углерода. И так же, как в кристалле, здесь соблюдается принцип Паули — несовместимость одинаковых квантовых состояний у электронов соседних связей. Тут-то и начинается различие в проводимости.

Пусть в молекуле n сопряженных связей. Тогда, очевидно, у нее будет 2n пи-электронов. Сигма-электроны не в счет: они не влияют на электропроводность полимера. Если длины ординарной и двойной связей одинаковы, то пи-электрон любого атома C пользуется неограниченными правами вольноотпущенника. С равной вероятностью он может пребывать справа и слева от своего «хозяина». Стало быть, мы можем разбить мысленно молекулярную цепочку на такие звенья:

Если ординарные и двойные связи неравноценны, пи-электроны менее свободны. Они стараются держаться друг возле друга, парами. И местонахождение обоих спаренных пи-электронов наиболее вероятно в районе, который мы отмечаем двумя штрихами. Здесь уже нам придется выделить иное звено цепочки: —С = С—.

Количество звеньев первого рода 2n, второго — n. В каждом звене квантовые состояния должны отличаться от соседних. Но расщепление уровней происходит неодинаково. В молекуле с равноценными сопряженными связями электронам отводится 2n ступенек, с неодинаковыми — n. Электронов же в обоих случаях поровну — 2n, то есть n пар. Каждой паре — по ступеньке. Значит, в молекулах обоих типов электроны могут запросто уместиться на п ступеньках.

Однако в молекуле типа

у них в запасе еще п «вакантных» ступенек! Вспрыгивая на них, электроны придают молекуле свойства проводника. А в молекуле типа —С = С—С = С— все «разрешенные» ступеньки заполнены до отказа. Выше — «запретная зона». Чтобы подсобить электронам ее преодолеть, попасть в зону проводимости, требуется обстрелять молекулу квантами энергии. Перед нами — явный полупроводник.

Разумеется, вовсе не обязательно, чтобы молекула была линейной. Еще в начале столетия обнаружилось, что у молекул антрацена под действием света увеличивается проводимость. Открытию не придали особого значения. И лишь в течение последних десяти — пятнадцати лет развернулись систематические исследования циклических углеводородов с сопряженными связями. Причем самых различных. И не только таких, у которых скелеты составлены из одних углеродных атомов, как, например, у коронена. Его название созвучно со словом «корона». Действительно, структура его своей угловатой симметрией напоминает царский венец. Или кусочек паркета, составленный из семи шестиугольных плиток.

В 1959–1960 годах ряд виртуозно проведенных синтезов дал в руки охотников за полупроводниками еще более необычные молекулы: C18H18, C24H24, C30H30. Они напоминают корону, разве что без внутреннего обода. Это как бы свернутая в кольцо полимерная цепочка с сопряженными связями. Причем остовы этих удивительных конструкций смонтированы сплошь из углеродных атомов.

А вот фталоцианин содержит наряду с углеродными также и атомы азота. Да еще не в шестичленных, а в пятичленных циклах. Атомы азота не просто занимают место в каркасе этих архитектурных сооружений микромира. Их присутствие благоприятно сказывается на проводимости. Доноры, готовые пожертвовать своей неподеленной парой электронов, они вносят дополнительный вклад в электропроводность молекулы.

Немало интересных результатов при изучении фталоцианина получено недавно советским ученым Вартаняном. Выявление особенностей, присущих молекулярным постройкам с сопряженными связями, дает возможность предвидеть, даже заранее программировать, свойства соединений, которые рождаются в лабораторных колбах.

И архитекторы микромира неутомимы. Они возводят все новые и новые полимерные сооружения по чертежам квантовой химии.

В последние годы академики Александр Васильевич Топчиев и Валентин Алексеевич Каргин с сотрудниками разработали метод получения еще одной диковинки микромира. Представьте себе длинную полимерную цепочку, «склеенную» из шестиугольных плиток. Только на верхние зубцы такого молекулярного «забора» вместо атомов углерода насажены атомы азота. Изучение необычного полимера показало, что он обладает неслыханными до сих пор значениями проводимости. Причем нижний предел его электропроводности отличается от верхнего при комнатных температурах в 10 миллионов раз!

Летом 1960 года в Москве состоялся Международный симпозиум по макромолекулярной химии. После его окончания известный французский химик профессор Сорбоннского университета Мишель Мага заявил: «Одним из наиболее выдающихся исследований последнего времени явилась работа академиков А. В. Топчиева, В. А. Каргина и их сотрудников по приданию полимерам полупроводниковых свойств!»

Работы советских ученых ознаменовали собой новый этап в истории органических полупроводников. Этап, когда начался переход от наблюдения электронных архитектур к активному синтезу полупроводниковых молекул с заранее заданными свойствами.

Как вы считаете: были бы достигнуты все эти успехи без содействия квантовой механики? Думается, нет.

Одно из самых желанных свойств, которые химики стремятся придать полимерам-полупроводникам, — термостойкость. Что толку, если пленочные электростанции окажутся неженками! Ведь им придется раскинуть свои легкие покрывала не где-нибудь, а в первую очередь над знойными просторами Казахстана, Средней Азии, над раскаленными песками Сахары. А установленные на ракетах и реактивных самолетах, они должны безбоязненно выдерживать нагревание от трения о воздух.

Что ж, и этих достоинств не занимать органическим полупроводникам. Квантовая химия подсказывает, а опыт подтверждает, что свобода, предоставленная пи-электронам в системах с сопряжением, приводит к уменьшению внутренней энергии связей. А это предопределяет повышенную термостойкость таких систем.

Не так давно разработан способ синтеза полифенилена. Молекула продукта представляет собой длинную цепочку из бензольных колец. Правда, они сцеплены не так, как шестиугольники в соединении, полученном Топчиевым и Каргиным. Не так тесно, не бок о бок: каждый цикл связан с другим валентной ниточкой. Вещество труднорастворимо и неплавко. А главное, выдерживает нагревание до 400–700 градусов! И это не предел термостойкости у органических полупроводников.

Трудно поверить, что органический полимер может выстоять в пламени, от которого плавится железо. И тем не менее факт налицо. Химики научились получать полиацетилен. В нем чередуются одиночные и тройные связи: НС = C—(—С = С—)n—C = CH. В тройных связях свободных пи-электронов вдвое больше, чем в двойных. Эффект сопряжения, понятно, и здесь обусловливает электропроводность. Но в отличие от большинства своих собратьев полиацетилен выдерживает жару в 2000 градусов! Лишь при 2300 градусах он переходит в графит.

С каждым днем пополняется семья молекул с замечательными электрофизическими свойствами. Успехи квантовой химии непрерывно раздвигают границы поиска в органической химии. То ли еще будет впереди!

Однако здесь настала пора оговориться и трезво посмотреть в лицо действительности глазами инженера-конструктора.

Вот молекула-полупроводник. Многообещающий. Гибкий. Термостойкий. Но… увы, слишком коротенький. Самая длинная молекула невидима и в наимощнейший электронный микроскоп. Оперировать такими объектами, даже в наш век микроминиатюризации, и самому искусному Левше покамест не под силу. Неужели же столь соблазнительная идея окажется техническим пустоцветом?

— Нет! — уверенно говорят ученые.

Будут электростанции в рулонах, мягкие счетные машины, рубашки-батарейки. На смену эпохе микроминиатюризации придет эпоха макроминиатюризации. Полупроводниковые слои будут становиться все тоньше. Но вместо крохотных, с почтовую марку или папиросную коробку, электронных приборов появятся гектары полимерных пленок, которые не позволят Солнцу впустую транжирить золотые потоки лучей.

На чем основана столь категорическая уверенность? Здесь бы в самую пору поговорить о всемогуществе человеческого разума. О неизбежности победы света знания над мраком незнания. О том, что наука «вся — езда в незнаемое». Что сегодня нельзя предвосхитить завтрашние революции в науке и так далее. Выпустить на читателя полную обойму всего, на что так падка чернильная душа журналиста.

Но нынешнего читателя на мякине не проведешь. Ему подавай конкретные факты. Конкретные пути развития, претворения, внедрения. А если их нет? Вернее, пока нет? Тут-то и можно удариться в фантастику. Бодро строить прожекты, один другого проницательнее. Словом, почти как у Герберта Уэллса.

Сказать правду, такой спасательный круг здесь тоже мало поможет. Уж лучше выложить начистоту то, что прячется за сухими строчками научных отчетов. При всей скромности выводов они вызывают уважение своей строгостью и аргументированностью.

Вот что сказано в монографии «Органические полупроводники», выпущенной издательством Академии наук в 1964 году: «Когда мы имеем дело с ансамблем молекул, то механизм проводимости складывается из двух процессов — движения носителей тока по молекуле и процесса перехода их от молекулы к молекуле… Благодаря особенностям линейных высокомолекулярных соединений в них сравнительно простыми методами можно варьировать надмолекулярную структуру и тем самым оказывать влияние на межмолекулярные расстояния, на условия контакта между молекулами, а следовательно, и „управлять“ электропроводностью. Картина, безусловно, усложнится при переходе к реальным материалам, молекулы которых полидисперсны, где всегда имеются примеси, могущие быть донорами или акцепторами».

«Полидисперсны» — значит разнокалиберны, имеют разные размеры. Такая неоднородность может помешать архитекторам микромира создавать полупроводниковые молекулярные ансамбли.

И еще: «Для решения вопросов, определяющих переход носителей тока от молекулы к молекуле, необходимы прежде всего глубокие структурные исследования».

Межмолекулярные расстояния… Надмолекулярная структура… Постойте-ка, ведь мы уже немного знакомы с содержанием этих терминов. Помните водородную связь и донорно-акцепторное взаимодействие? В металлическом кристалле, в органическом полупроводнике, в клетке ли — всюду огромна роль среды, окружающей молекулу.

Именно здесь пролегают тропы во многие заповедные уголки науки. Тропы неторные, нехоженые и потому так призывно манящие к себе неугомонную нашу молодежь.

Неужели так-таки и нет никаких пунктиров на картах первопроходчиков в область органических полупроводников? Неужели научная интуиция капитулировала перед неизведанным? Неужели осталось уповать на голую эмпирику — пробовать так, потом этак, авось что-нибудь выйдет? Не может быть, чтобы уверенность ученого не стояла на твердой почве рабочих гипотез!

Лет семь тому назад Издательство иностранной литературы перевело великолепную книжку лауреата Нобелевской премии сэра Джорджа Томсона «Предвидимое будущее». С чисто английским юмором автор писал в предисловии: «В некоторых разделах книги я вышел за рамки теорий, в которых я могу претендовать на какие-либо профессиональные знания. Прошу тех, в чьи заповедные угодья я вторгся, простить мне мою опрометчивость. И если отдельные трофеи, о которых я пишу, существуют только в моем воображении, то по крайней мере такое браконьерство не причиняет никакого ущерба законным владельцам, тогда как случайный пришелец может порой увидеть то, что является одновременно и неожиданным и реальным».

Один из «трофеев» Томсона, сэра Джорджа, имеет прямое отношение к нашему рассказу.

В разделе «Упрочнение материалов» автор затронул интересный вопрос. Удастся ли придать полимерным волокнам еще большую крепость? И если да, то каким способом?

В одном из романов Герберта Уэллса фигурирует сверхтонкая веревочная лестница. Ее разглядеть-то как следует нельзя было, а между тем канаты-паутинки выдерживали вес целой грозди людей. Из чего были сделаны нити? Писатель не дал ответа на наш вопрос. Взглядом художника видел он грядущее. Томсон всматривается в будущее глазами ученого.

И натуральные и искусственные волокна, говорит он, состоят из длинных молекул. Цепочки атомов располагаются обычно вдоль нити. Что же происходит, когда волокно лопается? Быть может, рвутся валентные связи? Мы уже видели, что нетрудно рассчитать силу, необходимую для расторжения уз межатомного сцепления. Оказывается, если бы разрыв нити означал одновременный поперечный разрыв всех полимерных молекул, то такое волокно должно бы быть в двадцать раз крепче любого из самых прочных теперешних!

«Организовать» подобный единодушный разрыв мешает, вообще говоря, та же причина, что и созданию «макроминиатюрных» органических полупроводников — крохотные размеры молекул. Если бы нить имела нормальную толщину, а длиной была с полимерную молекулу — тогда другое дело. Можно единым махом разорвать все валентные связи. Но как в таком случае уцепиться за ее концы?

Реальная нить — длинный клубок тесно перепутавшихся многоатомных цепочек. Далеко не все молекулы полимера расположены голова к голове, хвост к хвосту. Иногда они цепляются своими извивами друг за друга, причем беспорядочно, как попало. Иногда просто касаются друг друга. Что же придает волокну прочность?

Томсон высказывает два предположения.

Возможно, когда на волокно действует нагрузка, молекулярные цепочки подвергаются неодинаковому напряжению. Где тонко, там и рвется: как только большая часть растягивающего усилия сосредоточивается на какой-нибудь одной тонюсенькой молекуле, валентная связь лопается и нагрузка перемещается на следующую молекулу. Та, понятно, не выдерживает. И так далее. Атомные постройки трещат по всем валентным «швам».

Однако, сам себе возражает Томсон, при такой схеме следовало бы ожидать значительного удлинения волокна. Не меньше чем на десятую долю. А этого в действительности не наблюдается.

Остается другое объяснение: волокна не выдерживают нагрузки из-за сдвига одних молекул по отношению к другим. Большинство их при разрыве волокна остаются целыми. Расчеты, исходящие из таких предпосылок, подтверждаются измерениями.

Вывод: своей прочностью волокно обязано не внутримолекулярным, а куда более слабым межмолекулярным силам. Но это все предисловие. Самое интересное ожидает читателя впереди.

Пути увеличения прочности. Каковы они?

Вот они, три трофея Джорджа Томсона!

Во-первых, удлинение молекул. Чем протяженнее полимерные цепочки, тем больше площадь контакта между ними. Стало быть, тем значительнее действие межмолекулярных сил. Опыты свидетельствуют, что подобное наращивание новых звеньев на полимерную цепочку действительно приводит к росту прочности материала. Однако здесь существует потолок: по достижении определенной длины дальнейшее упрочнение прекращается. Возможно, оттого, что отдельные неправильности в структуре материала или самой молекулы вынуждают одну часть молекулы растягиваться и сдвигаться по отношению к соседней молекуле раньше, чем все силы, цементирующие волокно, равномерно распределят между собой нагрузку.

Путь следующий — «сшивание» молекул. Под действием излучений связи между атомами расшатываются, разрываются (вспомните молекулу H2O в верхней атмосфере). Именно с этой целью направляют ученые на полимер потоки всепроникающего радиоактивного излучения. Но в компактной массе вещества, где молекулы сгрудились очень тесно, взамен порванных валентных связей нет-нет да и образуются другие — между соседними полимерными молекулами. Причем сигма- и пи-связи углеродного каркаса могут остаться неповрежденными. Валентные мостики между молекулами удается построить на обломках разрушенных связей C—H, а не C—C или C = C. Ловко орудуя гамма-лучами, словно тончайшими искуснейшими спицами, химики рано или поздно научатся превращать волокна в одну гигантскую разветвленную молекулу.

Наконец, Томсон уповает еще на один шанс.

Сцепление молекул! Цирковые фокусники запросто умеют это делать с металлическими кольцами. А химики с молекулами? В 1963 году в журнале «Сайентифик америкен» появилась статья под названием «Химическая топология». В ней сообщалось о сенсационном эксперименте. Две кольцевидные молекулы, полученные из линейных, удалось зацепить так, что они стали звеньями одной цепочки! Звеньями химически индивидуальными — они не сцеплены валентной связью. Но разорвать цепочку можно было, лишь разрушив какую-нибудь валентную связь одного из звеньев.

Томсон размышлял о путях увеличения прочности. А ведь если присмотреться, в его прогнозах содержится намек и на методы создания полупроводниковых материалов из молекул с сопряженными связями. Какими они будут, эти материалы? Составленными из сверхдлинных макромолекул, как стальной трос из отдельных проволочек? Или сшитыми из разных полимерных цепочек в одну гигантскую разветвленную молекулу, напоминающую углеродный паркет в графитовом слое? А может, найдет применение цепочечное зацепление молекулярных циклов, каждый из которых, как известно, являет собой круговой ток, а значит, и магнит?

Гадать не будем. Тем более что возможны иные пути. Они уже привели к рождению самых настоящих органических полупроводников. Настолько совершенных, что перед действительностью бледнеют даже мечты инженера. Что же это за полупроводники? Где они? И почему ученым не перенять как можно скорее замечательный технологический опыт?

К органическим полупроводникам мы еще вернемся, а покамест посмотрим, как солнечный зайчик превращается в сочный бифштекс.

…В неоглядных просторах мироздания по строго вычисленной орбите несется космический корабль. На борту его — миллиарды пассажиров. Этот корабль — наша Земля. Он обеспечен всем необходимым. Единственное, что ему приходится заимствовать из космоса, — солнечная энергия. Все остальное… А вот откуда оно, это «все остальное»?

Подсчитано, что суммарный объем существ, когда-либо населявших нашу планету, намного больше земного шара. Вступают в жизнь новые поколения, но Земля не «худеет»: по-прежнему безбрежен воздушный океан, не иссякают водоемы, не скудеют ресурсы плодородия. Вместе с тем Земля и не прибавляет в весе, если не считать ничтожного пополнения запасов земного вещества за счет метеоритов и космической пыли (около 10 тысяч тонн в год). Откуда же берутся в таких колоссальных количествах материалы для построения организмов?

Еще Лукреций вопрошал:

«Коль всему, что от старости в ветхость                              приходит, Время приносит конец, вещество истребляя, Как и откуда тогда возрождает Венера                              животных Из роду в род?»

Щедрыми потоками изливает на Землю тепло и свет наше дневное светило. «Пойманный» растениями луч становится причиной удивительных метаморфоз. Из углекислого газа и воды, из минеральных веществ атмосферы и литосферы в хлорофилле зеленого листа синтезируются сложные органические соединения — углеводы, белки, жиры. Становясь пищей для животных, они рано или поздно возвращаются в лоно матери Земли. Возвращаются как продукты двух процессов. Во-первых, в виде отходов от переработки в живом организме. Во-вторых, в результате гниения умерших животных и растений. Таким образом, все сущее на нашей планете участвует в непрерывном круговороте химических веществ, входящих в состав воды, воздуха и верхнего слоя Земли. Этот грандиозный круговорот протекает внутри биосферы. (Так называется сферическая прослойка между земными недрами и космической бездной, заселенная живыми существами.)

Биосфера Земли — замкнутая саморегулирующаяся система, где непрерывно поддерживается биологическое равновесие. Вещества становятся частью существ. Существа выделяют вещества. А после смерти и сами превращаются в вещества.

Нормальный взрослый организм обычно не худеет и не прибавляет в весе. А ведь в сутки он поглощает килограммы вещества в виде еды и напитков! Значит, столько же веществ выводится из организма.

Из пищи мы заимствуем не вещество, а энергию. И если количество вещества в биосфере остается постоянным, то откуда же берется огромное количество энергии для бесчисленных химических превращений?

Солнечный луч — вот что вращает гигантский маховик круговорота химических веществ в биосфере.

Валерий Брумель упруго подбрасывает свое тело и легко переносит его через планку, установленную на двухметровой отметке.

Василий Смыслов в полной неподвижности сосредоточенно продумывает очередную шахматную комбинацию.

Иннокентий Смоктуновский произносит монолог Гамлета, создавая полную иллюзию собственного душевного надлома.

Любое напряжение мышц или мозга, любые физические, умственные или эмоциональные усилия требуют затраты энергии.

И вы, дорогой читатель, пробегая глазами мелкий бисер типографских литер на этой странице, тоже расходуете энергию.

Откуда же она берется? Странный вопрос: ну, разумеется, от сгорания пищи в организме! Не с неба же в конце концов. А в пище откуда?

Если вы вегетарианец, то с неба, и только с неба. Нет, серьезно. Ведь энергетический цикл жизни начинается именно с того момента, когда солнечный зайчик упадет на зеленый лист!

Лишь представители зеленого царства флоры способны «консервировать» энергию фотонов, превращая ее затем в биохимическое топливо для всевозможных энергетических процессов в теле животных. И даже самый плотоядный хищник, который презирает вегетарианскую диету, пожирая очередную жертву, в конечном счете пользуется именно энергией Солнца, запасенной в растительных тканях и перекочевавшей в организм травоядных животных.

Вот фотон, посланный далеким светилом, угодил в органическую молекулу зеленого листа. Это молекула зеленого красителя — хлорофилла. Один из электронов валентной пары тотчас возбуждается, подпрыгивая на более высокую ступеньку — точь-в-точь как в полупроводнике. Рано или поздно он, конечно, вернется в свое прежнее состояние, но долгим и сложным будет его обратный путь. И кто бы мог подумать, что все богатейшее разнообразие жизненных проявлений укладывается в эту простенькую схему: стрелка вверх — переход из основного состояния в возбужденное; стрелка вниз — возвращение восвояси. Конечно, за второй стрелкой таится целая эпопея электрона и кванта, перед красочностью и драматизмом которой тускнеют странствия самого Одиссея.

Самое удивительное: хлорофилл работает как полупроводник.

Когда электрон перескакивает в зону проводимости, на ступеньке, где он сидел, остается пустое место. Но это не просто «дырка от бублика». Отсутствие электрона эквивалентно появлению единичного положительного заряда. Поэтому «дырка» притягивает к себе электрон, как бы зовет его обратно. Но, вознесенный квантом света в зону проводимости, он и не думает возвращаться обратно.

Такое состояние очень неустойчиво. Обычно оно продолжается лишь миллионные доли секунды. Затем энергия электронного возбуждения переходит в другие формы. Например, в тепловую: начинают вибрировать валентные связи-пружинки, атомы одной молекулы соударяются с атомами соседней. Вещество разогревается.

Конечно, это не единственный вариант. Электрон может упасть на прежний энергетический уровень, заполнив своей персоной «дырку» и высветив квант энергии. Такое падение проявит себя в виде флуоресцентного свечения. И тогда хлорофилл просто-напросто возвратит «ссуду», выданную ему Солнцем, так и не пустив ее в оборот. Нас же интересует другой случай: каким путем кипучая энергия электрона преобразуется в энергию биохимического «топлива»?

Известно, что при фотосинтезе зеленый лист вырабатывает углеводы, усваивая углекислый газ и выделяя кислород. Реакция протекает с поглощением энергии: СО2 + H2O + 112 ккал = (CH2О) + O2. Энергия солнечного луча переходит в энергию валентных связей. И легко высвобождается при обратном процессе: (CH2O) + O2 = СО2 + H2O + 112 ккал. Например, при сгорании глюкозы в нашем организме (глюкоза может гореть и в пробирке). И это естественно: полная энергия системы понижается. Зато обратить вспять ход процесса, заставить углекислоту и воду превратиться в углевод несравненно труднее. Здесь химику не обойтись без катализаторов, повышенных давлений и температур. А зеленый лист проделывает эту операцию легко и просто.

Молекула хлорофилла состоит из двух частей. Первая — остаток спирта фитола — представляет собой линейную углеводородную цепочку. Вторая и самая главная — так называемое большое порфириновое кольцо. Оно, в свою очередь, составлено из малых циклов — пятичленных, с атомами азота, обращенными внутрь и охватывающими центральный атом магния. Перед нами замкнутая система сопряженных связей. По этой кольцевой трассе и начинает свой вояж возбужденный электрон. Такой циркулирующий ток не связан с энергетическими потерями. Молекула переходит в метастабильное состояние. Оно более устойчиво, чем обычное возбужденное, и может сохраняться в течение отрезка времени, который в миллионы раз длиннее.

А что же будет потом — по истечении этих нескольких десятитысячных долей секунды?

Энергия фотохимической активации перекочевывает вместе с электроном на соседнюю молекулу. Да, на соседнюю, как это ни удивительно. Налицо межмолекулярный перенос заряда — тот самый, механизм которого так интересует инженеров — творцов органических полупроводников.

Сколько патентов хранится в сейфах живой природы! Действительно: природа — богатейший политехнический музей.

Чтобы углекислота CO2 превратилась в глюкозу, ей нужен водород. И энергия! Поставщиком того и другого служит трифосфопиридиннуклеотид ТПН. Чтобы стать настоящим межмолекулярным «коммивояжером», он должен сначала перейти в восстановленную форму: ТПН—H. Здесь — H является символом того самого водородного атома, который предназначен для углекислоты. Агент по поставке водорода собирает свой товар по частям. Одну часть — электрон — он получает от хлорофилла. Другую — протон — от воды.

Воды в зеленом листе много. И ее молекулы частично диссоциированы на протон и гидроксил: H2O = H+ + ОН. Протон воды вместе с возбужденным электроном хлорофилла идет на построение высокоэнергетических валентных связей глюкозы. А оставшийся неприкаянным гидроксил?

Он тоже не пропадает втуне. Если отнять у него электрон, произойдет расщепление: OH = O + H+ + 2e. Кислород выделится в атмосферу. Водород тоже не останется без дела — на него всегда при фотосинтезе спрос большой.

Электрон же поступает в распоряжение веществ-переносчиков. Новые агенты по поставке обдирают электрон как липку, заставляя его раскошелиться и истратить всю свою избыточную энергию на создание высокоэнергетических связей в молекуле аденозинтрифосфата (АТФ). Молекула образуется из аденозиндифосфата (АДФ), присоединяя к себе остаток фосфорной кислоты. Обратный процесс — разложение АТ на АДФ и фосфатный остаток — протекает с выделением энергии. Высвобожденная энергия идет в фонд помощи углекислоте — на образование из нее глюкозы. А окончательно растратившийся электрон водворяется на место «дырки» в молекуле хлорофилла. Цикл фотосинтеза завершен.

Так из воды и углекислого газа зелеными фабриками вырабатывается глюкоза. В ее межатомных связях законсервирована энергия солнечного зайчика. Переходя в организм животных, глюкоза становится биохимическим топливом. Сгорая по схеме (CH2O) + O2 = СО2 + H2O + 112 ккал, она отдает свою энергию на образование АТФ из АДФ и фосфорной кислоты. Энергия запасается валентными связями. А уж отщепление фосфата поставляет животным и человеку энергию для всех процессов жизнедеятельности.

Молекулы хлорофилла расположены в цехах миниатюрных зеленых фабрик отнюдь не как попало. Они не просто плавают в соках растительной клетки. Положите лист любого вашего комнатного растения на твердую гладкую подставку, не отрывая его от ветки. И легонько прокатайте карандашом. Фотосинтез немедленно прекратится! Достаточно малейшего нарушения клеточной структуры, чтобы живой полупроводник перестал работать.

Архитектура живых фабрик сложна и тонка. Плоские молекулы хлорофилла лежат стопками внутри особой структурной ячейки — граны. Каждая молекула напоминает полупроводниковую пластинку фотоэлектрического элемента, каждая грана — сам элемент, а совокупность гран — батарею элементов.

Ежегодно зеленые «электрические батареи» аккумулируют такое количество солнечной энергии, сколько могли бы дать двести тысяч электростанций, равных по мощности Волжской ГЭС имени В. И. Ленина. Научиться изготовлять такие же высокоэффективные полупроводниковые батареи, подобные тем, что действуют внутри растений, — заветная мечта ученых и инженеров. Известный французский физик Фредерик Жолио-Кюри как-то сказал: «Хотя я верю в будущее атомной энергетики, однако настоящий переворот в энергетике наступит лишь в тот день, когда мы сможем осуществить массовый синтез молекул, подобных хлорофиллу, или даже лучше него». Ученый подсчитал: если б удалось использовать всего одну десятую часть солнечной радиации, падающей на Египет, то этого с лихвой хватило бы для удовлетворения нынешних энергетических потребностей человечества.

А для утоления энергетической жажды в далеком будущем? Нельзя ли использовать фотохимические процессы?

Но вернемся к энергетическому циклу в биосфере. Не зря изображают его начало стрелкой, направленной вверх. Вторую стрелку придется нарисовать изогнутой: опускаясь на прежний энергетический уровень, электрон участвует в различных приключениях, где и отдает постепенно свою энергию. Жизнь управляется именно электронами! А электрон, движущийся по замкнутому контуру, — не что иное, как слабый электрический ток. Стало быть, жизнью движут слабые электрические токи, питаемые солнечным светом. И в этих тончайших биологических тонкостях не разобраться без квантовой химии.

Без химии — да, это очевидно. Но почему обязательно квантовой? В конце концов переход электронов от молекулы к молекуле — разве это не обычная химическая реакция? Разве к ней неприложим привычный язык букв и черточек?

Обычный окислительно-восстановительный процесс — это классическая химическая реакция, которая сопровождается перестройкой молекулярной структуры. Такая перестройка осуществляется по двухвалентному механизму. Иными словами, в окислительно-восстановительном процессе электроны удаляются или присоединяются парами. Это связано с тем, что все стабильные органические соединения содержат четное число электронов.

Взять, к примеру, горение углеводов. Реакцию (CH2O) + O2 = СО2 + H2O можно изобразить иначе, привлекая на помощь двоеточия Льюиса:

Какие бы перестройки молекулярных архитектур ни происходили, всегда валентные штрихи — как прежние, так и новорожденные — подразумевают пару взаимодействующих электронов. Формально подобные процессы можно рассматривать как обмен электронными парами. И хотя мы приписываем к уравнению реакции «плюс 112 килокалорий», совершенно не ясно, каким образом этот энергетический «довесок» может трансформироваться в энергию мышц или мозга.

Иное дело одновалентный перенос. В нем участвует только один электрон. Это слабый электрический ток. И он не обязательно связан с разрушением атомных построек. Вспомните хотя бы хлорофилл! Отдавая или присоединяя электроны поодиночке, его молекула сохраняет свою индивидуальность и стабильность. Конечно, на промежуточных стадиях одновалентного переноса электрона мы встречаемся с классическими химическими реакциями. Например, когда ТПН переходит в восстановленную форму ТПН—H. Или АТФ образуется из АДФ и фосфорной кислоты. Но как бы то ни было, процессы, которые изображаются символически в виде полукруглой стрелки, направленной книзу, сводятся к странствиям одного электрона. К падению его со ступеньки на ступеньку, когда он отдельными порциями отдает свою энергию, к слабому электрическому току.

Однако, сколь бы слабым ни был этот ток, он возникает не только внутри молекулы. Между молекулами тоже! Значит, можно все-таки решить главную проблему, которая стоит перед конструкторами органических полупроводников: найти способ, как переправлять электрон от молекулы к молекуле. Выходит, не обязательно надставлять полимерные молекулы новыми звеньями, пока они не достигнут гигантских размеров? Не обязательно сшивать полимерные цепочки? Но тогда совершенно необходимо разобраться в механизме межмолекулярного переноса энергии и электронов. Каков же он, этот механизм?

Между двумя молекулами может установиться резонансная связь. Электронное возбуждение отдаленно напоминает колебания маятника. Роль пружины играет электромагнитное поле. И существует определенная вероятность, что энергия возбуждения может перекочевать от молекулы к молекуле. Для этого необходимо лишь, чтобы соседи более или менее тесно соприкасались. Но именно такой контакт и обеспечит взаимное зацепление молекулярных колец, предложенное Томсоном!

Правда, пока что речь шла о передаче энергии. Скажем, энергии фотона. И только. Перебросить электрон — совсем иное дело. Даже если он унесет с собой возбудивший его кусочек света — фотон.

Переход электрона от одного вещества к другому обычно считают реакцией окисления — восстановления. Однако квантовая химия отграничивает от них одноэлектронный перенос заряда.

В органических соединениях электроны расквартированы на ступеньках-орбитах попарно. И парами же перебираются с квартиры на квартиру — с молекулы на молекулу. Происходит химическая реакция. А перенос заряда означает, что один из электронов молекулы способен при удобном случае очутиться на орбите соседней молекулы. Такой переход не влечет за собой перестройку молекул.

Так, выходит, межмолекулярный электрический ток все-таки существует? Не таким ли путем надо идти творцам полупроводниковых материалов?

Безусловно, нужно, чтобы молекулы близко пришвартовались друг к другу. И чтоб их электронные облака перекрывались. Только в таком случае может возникнуть межмолекулярный «блок», когда одноэлектронный донор связан с акцептором одного электрона. «Комплексом с переносом заряда» назвали его.

Причем опять-таки следует подчеркнуть, что здесь донорно-акцепторное взаимодействие понимается совершенно иначе, чем в классической теории комплексообразования. Там имеется в виду передача неподеленной пары электронов. У Сент-Дьердьи — одного электрона.

Комплекс с переносом заряда — нечто среднее между обычной молекулой и свободным радикалом. И распадается он на два самых настоящих свободных радикала, то есть на два «обломка», у каждого из которых по одному неспаренному электрону.

Представление о переносе заряда широко распахивает двери в биологию перед идеями полупроводимости.

С другой стороны, исследуя внутриклеточные полупроводники, ученые отыскивают пути к созданию синтетических органических полупроводников. Уже установлено, что пленки донорных молекул, нанесенные на слои молекул-акцепторов, проявляют сильный фотоэлектрический эффект!

Нет, не пропасть отделяет молекулы друг от друга — ров. Но еще много придется поработать, прежде чем удастся перекинуть мостик через этот ров, чтобы создать единую энергоцентраль, которую инженеры назовут органическим полупроводником. Потечет, обязательно потечет электричество по гектарам полимерных пленок, по волокнам нашей одежды, по защитным покрытиям самолетов и ракет. Удивительный ток, который уже сейчас питает своей энергией наши чувства и мысли, любые движения нашего тела, нашей «души». Ток, порожденный улыбкой доброго старого Солнца. И этот ток, выполняющий в биосфере любые работы, не способен лишь к одному — быть выраженным в понятиях классической химии.

«Странствующий электрон относится к миру изменяющихся форм и распределений в электронных облаках, которые принадлежат субмолекулярной биологии, управляемой законами квантовой механики».

Так пишет в своем «Введении в субмолекулярную биологию» Сент-Дьердьи. Глубокий старик, он с юношеской увлеченностью доказывает, что применение тяжелой математической артиллерии помогает биологам победоносно брать Бастилию за Бастилией. Биолог, воспитанный в традициях старой школы, он сумел на склоне лет отрешиться от классических представлений и принять на вооружение новые идеи. Пионер квантовой биологии, он отлично видит трудности, которые подстерегают каждого, кто решит последовать за ним в многотрудный, но увлекательный поход.

«…у входа в науку, как и у входа в ад, должно быть выставлено требование:

Здесь нужно, чтоб душа была тверда;

Здесь страх не должен подавать совета“».

К. Маркс

Сент-Дьердьи говорит:

«Переходя к новой области, я всегда надеялся овладеть интересующим меня предметом. В случае квантовой механики я даже не надеюсь на это. Отсюда и мои опасения… Должны ли биологи допускать, чтобы их вытесняли из этого мира электронных явлений только из-за того, что они не знакомы с тонкостями квантовой механики? Сейчас число исследователей, овладевших обеими науками — биологией и квантовой механикой, очень мало. Учитывая ограниченные возможности ума человека и ограниченную продолжительность его жизни, можно думать, что это число никогда и не будет очень большим. Каждая из этих наук требует всего ума человека и всей его жизни. Таким образом, по крайней мере в настоящее время для развития науки необходима некая гибридизация разных специальностей.

По моему мнению, во всяком случае сейчас, наилучшее решение заключается не в превращении биологов в физиков и наоборот, а в их сотрудничестве. Для этого не обязательно, чтобы биологи сами проникали во все тонкости квантовой механики. Им достаточно найти общий язык с физиками и интуитивно овладеть основными идеями и ограничениями квантовой механики, чтобы быть в состоянии наметить для физика проблемы и понять смысл его ответов. Точно так же физику лучше оставаться на своей стороне пропасти, чем превратиться в, быть может, второразрядного биолога. Если, например, я как биолог интересуюсь энергетическими уровнями какого-нибудь вещества и если мне говорят, что его наивысший уровень характеризуется определенным значением коэффициента k, равным, скажем, 0,5, то я могу исходить из этих данных. Мне достаточно знать, что означает k, равное 0,5, и мне нет нужды точно знать, как было получено это значение. В обмен я могу указать физику, для каких веществ вычисление коэффициента может представлять особый интерес».

Коэффициент k

Ледяным бесстрастием веет от нескончаемой вязи математических формул, которыми химики-квантовики заполняют страницу за страницей, расчисляя молекулу с помощью абстрактнейшей из абстракций — пси-функции Шредингера. Но странное дело: холодные, мертвые коэффициенты, порожденные усилиями человеческого мозга, пришли на помощь этому живому, пульсирующему сгустку материи!

Мозг, средоточие мыслей и чувств, породивших все, что так дорого, и все, что так ненавистно человечеству. Святая святых физиологии. Сложнейшая и таинственнейшая «машина», к которой каждая наука пытается подобрать свой ключ. Кто бы мог подумать, что и квантовая химия окажется в числе тех, кто успешно штурмует эту крепость науки!

Царство изумительной гармонии и целесообразности, мозг иногда оказывается в плену хаоса и дезорганизации. Нет, речь идет не о механических повреждениях этой чудесной «машины», заключенной в нашей черепной коробке. Все клетки-реле на месте, все коммуникации — кровеносные сосуды и нервные нити — в порядке, а логический аппарат отказывает в работе. Врач подписывает приговор: «психическое заболевание».

Не так давно этот приговор был равносилен смертному. Душевный недуг означал интеллектуальную гибель. И лишь в самые последние годы химия вручила психиатрии надежные средства, которые излечили не одного душевнобольного, возвратив его к активной общественной жизни. Бурно развивается юная область древней медицины — психофармакология, наука о веществах, влияющих на высшую нервную деятельность. К сожалению, до сих пор поиск новых лекарств зачастую идет вслепую, «методом проб и ошибок». Вот почему центральным вопросом психофармакологии остается механизм действия медикаментов на те или иные участки коры и подкорки.

Так-то оно так, но при чем тут квантовая химия? Неужто прыжки электронов со ступеньки на ступеньку имеют какое-то значение для функции гигантской машины, составленной из 15 миллиардов деталей-клеток?

Как интеграл принял участие в консилиуме психиатров.

В свое время мы узнали, что длительное состояние тоски или страха, беспричинное с точки зрения психиатра, вызвано прямой химической причиной: в крови повышается концентрация адреналина. Или его ближайшего сородича серотонина. Антагонистом этих веществ, нагоняющих страх, является аминазин (хлорпромазин). Он помогает и психически нормальным людям.

Трудно не волноваться перед хирургической операцией. Даже те, кто не из пугливого десятка, боятся металлического звона инструментов. А те, кому был введен аминазин, спокойны и не испытывают страха.

И вот выяснилось, что химизм действия препаратов находится в прямой зависимости от величины, высчитываемой математически и сухо именуемой «коэффициентом k». Этот показатель характеризует энергию связи электрона с молекулой.

Для вычисления энергетических уровней молекул обычно прибегают к двум квантово-механическим приемам. Один из них уже упоминался — это метод валентных схем. Именно его применили впервые Гейтлер и Лондон для расчета молекулы водорода. Метод предполагает, что любую молекулу можно мысленно разбить на ряд двухцентровых двухэлектронных связей. Несколько иная посылка лежит в основе метода молекулярных орбит. Там отвергается утверждение, что электрон находится у определенного атома. Напротив, химическая связь считается результатом движения электронов в суммарном поле, созданном всеми электронами и всеми ядрами. Электрон как бы размазан по всей «молекулярной орбите». Понятно, почему метод молекулярных орбит оказался особенно эффективным для расчета систем сопряженных связей, которые играют первостепенную роль в органической химии и биологии.

Энергия какой-либо орбиты E равна α + kβ. Здесь α — кулоновский интеграл, β — обменный интеграл. Первый выражает энергию электростатического взаимодействия электронов между собой и с ядрами. Второй — энергию обменного взаимодействия. Для веществ, близких по химической природе, значения α и β почти одинаковы. Следовательно, энергия зависит главным образом от величины k. Коэффициент k рассчитывается для двух видов молекулярных орбит — связывающей и разрыхляющей.

Когда образуется молекула, энергия электронов в основном состоянии оказывается меньше, чем сумма прежних энергий электронов в индивидуальных атомах (расщепление уровней!). Потому-то и выделяется тепло при объединении двух атомов H в молекулу H2. Но если электроны переходят в возбужденное состояние, они подпрыгивают с основной («связывающей») орбиты на более высокую «разрыхляющую». Так она называется оттого, что заполнение ее электронами в результате активации молекулы приводит к «разрыхлению» валентной связи и распаду молекулы на атомы. Энергия разрыхляющей молекулярной орбиты больше, чем у исходных атомных орбит.

Главное — запомнить: удалить электрон со связывающей орбиты тем легче, чем меньше коэффициент k. Стало быть, тем лучшим донором электронов является молекула. Например, для одного из электронных посредников дифосфопиридиннуклеотида ДПН—H k = 0,298. Это очень хороший донор. А у ДПН+ +, k = 1,032. Значит, донор из него никудышный.

Равным образом, чем меньше коэффициент k для разрыхляющей орбиты, тем легче молекула присоединяет чужие электроны. Тем лучше из нее акцептор электронов. У ДПН+ в этом случае k = 0,356. Очень хороший акцептор! А для ДПН—H k = 1,032. Акцептор из рук вон плохой. А наши антагонисты — аминазин и серотонин? У первого для связывающей орбиты k меньше нуля. Значит, это успокаивающее средство оказывается исключительно щедрым донором. Зато акцептор из него скверный (k = 1). У серотонина же наоборот — способность принимать чужие электроны выражена ярче (k = 0,87). А отдавать свои — э, нет, здесь серотонин «жаднее».

Если целебное действие успокаивающих средств связано с их способностью отдавать электроны, то квантово-механический расчет позволит выявить и более могущественные лекарства! Если введение доноров смягчает симптомы шизофрении, то, быть может, именно недостаток электронов вызывает этот тяжелый психический недуг? Тогда возникает новый вопрос: чем объяснить недостаток электронов? Не присутствием ли в крови акцепторов? А раз так, то на любой акцептор можно найти управу в виде соответствующего донора!

Автор приносит глубочайшие извинения за длинные-предлинные цитаты. Но, право, лучше не скажешь!

«Я не предлагаю здесь новую теорию шизофрении, — скромно заключает Сент-Дьердьи. — Я пытаюсь лишь показать, что квантовая механика может подсказать новые подходы к важным проблемам, которые уж так давно зашли в тупик». Да, действительно: дистанция между абстрактными математическими расчетами и постелью больного не столь уж велика!

Свою книгу «Введение в субмолекулярную биологию» автор считает последней. И, словно передавая эстафету новым поколениям, престарелый мэтр квантово-механической биологии обращается к читателю с завещанием:

«Я хотел бы сделать только одно предостережение биологам, которые отваживаются вступать в область физических проблем. Между физикой и биологией есть существенное различие. Физика — это наука о вероятностях. Если какой-либо процесс 999 происходит одним путем и только 1 раз другим, то физик, не колеблясь, скажет, что первый путь и есть истинный. Биология — это наука о невероятном, и я думаю, что в принципе для организма существенны только статистически невероятные реакции. Таким образом, в живом организме становятся возможными реакции, которые кажутся физику невозможными или, во всяком случае, невероятными. Когда была вскрыта гробница Тутанхамона, оказалось, что за 3000 лет его завтрак не окислился. Такова физическая вероятность. Но если бы фараон воскрес и сам съел свой завтрак, то последний сгорел бы очень быстро. Такова биологическая вероятность. Сам фараон должен был бы представлять собой очень сложную и высокоорганизованную структуру ядер и электронов, статистическая вероятность которой близка к нулю. Я не хочу этим сказать, что биологические реакции не подчиняются законам физики. В конечном счете объяснить их должна именно физика, но только окольным путем, который на первый взгляд может показаться совершенно неправдоподобным.

Все это делает взаимоотношения физиков и биологов очень сложными. Биолог зависит от суждения физиков, но вместе с тем он должен быть очень осторожен, когда ему говорят, что то или иное событие или явление невероятно. Если бы я всегда соглашался с вердиктом физиков, то мне пришлось бы бросить это направление моих исследований. Я счастлив, что не сделал этого».

Через все научное творчество Сент-Дьердьи красной нитью проходит мысль: не стоит смущаться ошибками и неудачами при решении больших задач. Автор сам так выразил ее в шутливой форме: «Когда я переехал в Вудс-Холл и начал ходить на рыбалку, я всегда носил с собой огромный крючок. Я знал, что все равно ничего не поймаю, но ведь приятнее не поймать большую рыбу, чем маленькую».

Неизведанное — малонадежная почва. И тому, кто на нее вступает, дано утешаться лишь надеждой, что его ошибки окажутся почетными.

Бесстрашие в научных дерзаниях, свежесть взгляда вопреки культу традиционных представлений — вот к чему зовет Сент-Дьердьи. Этого не занимать нашей молодежи.

В декабре 1961 года — за три года до выхода в свет книжки Сент-Дьердьи — в Тбилиси проходил союзный симпозиум по кибернетике. Всеобщее внимание привлекла работа молодых ученых из Института кибернетики Академии наук Грузии. Вот что было доложено младшим научным сотрудником института Квинихидзе и кандидатом физико-математических наук Чавчанидзе.

Математическая модель клетки… Ее еще нет у биологов. Даже такой, которая напоминала хотя бы планетарную модель атома, предложенную Резерфордом. Не говоря уже о квантово-механической модели. А она нужна. Без нее очень трудно ответить на тысячи вопросов, встающих перед биологами. Как работают клетка и ее отдельные цехи? Каков тот заводной механизм, что автоматически регулирует смену циклов ее жизнедеятельности? Что делает этот крошечный организм устойчивым в его непрерывном изменении? Откуда в нем та строгая, поистине воинская дисциплина, которой подчиняются сложнейшие процессы синтеза молекул, деления и передачи наследственной информации?

Живая клетка — самоуправляющаяся система. В этом смысле она подобна человеческому организму. Однако механизм управления в ней иной. Здесь нет нервных путей, по которым бегут импульсы-сигналы. На уровне клетки роль сигнальных «агентов» играют подвижные группы атомов и молекул.

Регулирование процессов обусловлено динамическим равновесием разных сил, действующих на внутриклеточные структуры. Именно уравновешивание противоборствующих сил, почти как в молекуле водорода, сохраняет систему устойчивой.

Эта общая идея и легла в основу первой клеточной модели, разработанной сотрудниками Института кибернетики.

Описываемая модель не имеет прямого отношения к квантовой биологии. Тем не менее перед нами еще один пример плодотворного сотрудничества биологов и математиков.

Модель напоминала куриное яйцо. Внутри — ядро. Это «желток». И, как желток, ядро охвачено оболочкой. Сверху «белок», тоже обтянутый пленкой. Среда, окружающая клетку, пока не учитывалась. Принималось, что внутри ядра вещество имеет одну вязкость, снаружи — иную. И что внутри клетки находятся положительные и отрицательные ионы, свободно проникающие через оболочку ядра в обе стороны — внутрь и наружу.

«По правде говоря, — признавались тогда авторы, — сейчас еще нельзя определенно указать, какие структуры реальной клетки имеют электрический заряд. По некоторым новейшим данным, заряженные частицы внутри клетки существуют. Более подробно об этом говорить пока невозможно. В дальнейшем совместные усилия физиков, биологов и кибернетиков, несомненно, позволят выяснить, какова роль зарядов внутри клетки».

Роль зарядов внутри клетки… Уже в те дни интуиция вела грузинских ученых к выводам, которые с таким блеском и с такой глубиной формулирует ветеран квантовой биологии Сент-Дьердьи! В самом деле: донорно-акцепторная связь в комплексах с переносом заряда — разве это не взаимодействие «заряженных частиц»?

Чтобы не усложнять чересчур математические расчеты, авторы ввели в модель всего десять пар разноименных ионов. Ввели по методу Монте-Карло. (Рулетка знаменитого казино увековечила себя в названии математического приема, когда приходится прибегать к розыгрышу, чтобы отыскать случайное распределение отдельных элементов в системе.) И, как бы случайно ни располагались ионы, в любом случае «центры тяжести» положительной и отрицательной групп зарядов не совпадали. Иными словами, система являла собой своего рода диполь. Естественно, что «полюса» стремились сблизиться. Но им мешало противодействие беспорядочного теплового движения ионов. Кроме того, в игру вступала тормозящая сила вязкой внутриклеточной среды.

Вся эта предельно упрощенная и тем не менее сложная картина взаимодействий описывалась математическими уравнениями. Решение их должно было показать, будет ли существовать такая система сама по себе, без всякой программы, без внешнего регулятора, а лишь за счет внутренних сил?

И вот модель запущена. Что-то она покажет?

Тепло разгоняет частицы в стороны, в беспорядке перемешивает их. Случайные встречи одноименных ионов заканчиваются довольно грубым взаимным отталкиванием, разноименных — дружескими объятиями. Казалось бы, восторжествовала полная анархия. Ан нет, в определенный момент направленные силы кулоновского тяготения между полюсами увеличиваются, движение вновь течет по некоему жизненному руслу. И не было случая, чтобы систему настигла «смерть» — чтобы клеточный «диполь» исчез, обратился в нуль, динамическое равновесие сменилось статическим.

Драматический конфликт между силами порядка и хаоса, дезорганизации и дисциплины — таково «жизненное содержание» первой клеточной модели.

Разумеется, модель грузинских математиков отдает классицизмом биологии XIX века. Шарики-заряды, кулоновские силы, броуновское движение — как далеко ушли от этого представления квантовой биологии! Активирующие кванты, уровни энергии, зоны проводимости, перенос заряда, слабые токи — до этого еще не дошел черед. Но, как говорится, лиха беда — начало. Пусть модель проста, быть может, даже примитивна — какие математические расчеты сложных систем не грешат упрощенчеством? Пусть она далека от реальности, быть может, даже наивна — разве модель Резерфорда, величайшее откровение своего времени, не оказалась впоследствии лишь грубо сработанным и вдобавок кривым зеркалом микромира?

Самое примечательное или, лучше сказать, симптоматичное — в другом. Проснулся обоюдный интерес у математиков и биологов. Биологи начинают убеждаться, что без помощи физиков и химиков, без числа и меры им ни шагу ступить в неизведанное. А представители точных наук, со своей стороны, готовы призвать на подмогу всю мощь современного математического аппарата, чтобы проникнуть в самые сокровенные тайны молекулы, кристалла, клетки.

Гнеденко: «Я убежден, что некоторое недопонимание между биологами и математиками проистекает в значительной степени оттого, что мы работаем разобщенно».

Вот что пишет — известный советский математик член-корреспондент АН СССР Борис Владимирович Гнеденко: «Я не считаю, что уже имеется необходимость создавать особую дисциплину „математическая биология“ наподобие „математической физики“. Но для меня нет сомнений в том, что назрела пора, когда коллективы математиков и биологов должны начать совместную работу над разрешением коренных биологических проблем — работу, в которой математик станет вникать в суть биологических явлений, а биолог — в идейные, а не чисто вычислительные возможности математических методов».

Проникнуть в тайны микромира, чтобы еще лучше сделать жизнь человека. И это не просто красивые слова. Вспомните энергетику и медицину!

Впрочем, только ли медицине сулит богатые плоды великий триумвират наук — математики, физики и химии? Только ли перед энергетикой распахивает он неохватные горизонты?

Ну, конечно же, нет! Теория цветности и химия красителей. Лазеры, в том числе полупроводниковые. Тайны мельчайших кирпичиков мироздания — элементарных частиц. Не сыскать такой области, где бы квантовая механика пришлась не ко двору. Но нельзя объять необъятного: обо всем не расскажешь.

Увы, в органической химии, и особенно в биохимии, все еще царит культ лукрецианских представлений, хотя в наше время стало просто невозможно игнорировать квантово-механическую природу явлений. Ибо с ней мы имеем дело на каждом шагу, подчас и не подозревая об этом. Зачем же уподобляться мольеровскому господину Журдэну, который был несказанно изумлен, узнав, что всю свою жизнь изъяснялся прозой? Нашей ли научной молодежи чураться новых прогрессивных веяний только из-за того, что они, как кажется некоторым близоруким практицистам, «чересчур далеки от жизни»?

Как тут не вспомнить замечательные слова академика Семенова!

«В сущности, — говорил ученый, — в современном естествознании выделяются две главные фундаментальные проблемы. Первая — в физике — теория элементарных частиц, иначе говоря, проблема первичных частиц материи. Вторая касается строения и поведения высокоорганизованной материи в биологии и химии.

10–15 лет назад до биологии дошла с запозданием на полвека революция, зародившаяся в начале XX века в физике и частично в химии. Биологи вкупе с физиками и химиками начали проникать во внутренние физико-химические основы удивительных явлений жизни. За 15 лет уже получены интереснейшие научные результаты, причем темпы работ непрерывно нарастают. Как в свое время при изучении строения атома, эти крупнейшие научные достижения не имеют сейчас и, быть может, не будут иметь еще некоторое время серьезных практических результатов. Но нет сомнения, что рано или поздно они приведут к революционным сдвигам в медицине и отчасти в сельском хозяйстве. Так, например, я уверен, что проблема лечения рака может быть решена лишь на основе развития этого направления биологии. Я уверен, что работы по выяснению механизма физико-химических процессов в жизнедеятельности приведут также к подлинной революции в химии».

Это ли не отповедь тем, кто любую попытку углубиться в теорию аттестует как «отрыв от жизни, от практики»?

«Теория наиболее практична. Она — квинтэссенция опыта». Эти слова Людвига Больцмана как нельзя лучше характеризуют квантовую химию.

Тысячи вопросов. Сотни загадок. Они не дают спокойно спать биологу и химику. Но если бы не было все новых проблем, значит наука остановилась бы в своем развитии!

…Почему из кедровой шишки не вырастает баобаб? Отчего у кошки всегда рождаются котята, а не тигрята, у собаки — щенята, а не волчата? Где те сокровенные пружины, которые управляют наследственностью?

Вопросы могут показаться сугубо теоретическими. Но так ли уж они оторваны от практики? Выведение высокоурожайных сортов растений, высокопродуктивных пород домашнего скота, даже, быть может, лечение раковых опухолей — все упирается в природу наследственности. Недавние исследования в этой области привели к расшифровке «генетического кода», в соответствии с которым строятся белковые молекулы. Но еще не все детали процесса, называемого переносом генетической информации, выяснены учеными. И чем глубже теоретический поиск, тем богаче практические плоды его.

Каким образом действуют лекарства на больной организм? Какова роль ничтожных добавок элементов к пищевому рациону человека, домашних животных и культурных растений? Какова химическая технология процессов жизнедеятельности?

Исследование химизма явлений внутри живой клетки — верный путь к здоровью, долголетию, изобилию.

И не будь квантовой химии, насколько затормозился бы прогресс биологии, медицины и сельского хозяйства!

С другой стороны, проникновение в физико-химические принципы живой природы — это путь к совершенствованию химической технологии.

Получение азотных удобрений — сложный производственный процесс, где не обойтись без высоких давлений и температур. А клубеньковые бактерии легко усваивают азот из воздуха даже в холодную погоду и при любых показаниях барометра. Вот что значит ферменты! Поразительна их активность и избирательность. Микроскопичны дозы этих живых катализаторов, но колоссально количество «сырья», которое они способны переработать.

Разобравшись в механизме действия ферментов, ученые создадут эффективные катализаторы, которые избавят производство от трудоемких, дорогостоящих и далеко не безопасных химических процедур.

Управлять составом и пространственной структурой синтезируемых полимеров — это по собственному усмотрению придавать пластикам электропроводность, прочность, жаростойкость. Самое тонкое регулирование вполне осуществимо с помощью так называемых стереоспецифических катализаторов. Именно такие процессы и вещества создают сложнейшие внутриклеточные постройки. Изучение их принесет переворот в технологию полимеров.

Теоретические и практические успехи каталитической химии не оставляют сомнения в том, что создание подобных веществ вполне реально. Конечно, вовсе не обязательно копировать до тонкостей ферменты. Уже сегодня удается моделировать их устройство и принципы действия с хорошей степенью близости к реальным явлениям. Так, недавно открыты комплексные катализаторы процессов полимеризации. Они чем-то напоминают ферменты. Во всяком случае, с их помощью можно проводить синтез этилена, пропилена и других мономеров при атмосферном давлении и комнатной температуре. А ведь раньше это казалось несбыточной мечтой!

Созданы катализаторы, содержащие ванадий, которые похожи своей изумительной производительностью на микроэлементы. Каждый грамм ванадия позволяет получить до тонны полимера.

Мышца. Замечательный аппарат, способный превращать химическую энергию непосредственно в механическую работу с кпд втрое большим, чем у паровых машин. Маршрут обходится без пересадок: без паровых котлов, турбин и электромоторов. Подобные движители внесут революционные изменения в технику. Полимерные мускулы неузнаваемо изменят облик теперешних машин: экскаваторов, лебедок, блоков. Вместо колес появятся ноги-рычаги, шагающие через ухабы и ползающие по дну моря. Самолеты еще больше будут походить на птиц, обзаведясь машущими крыльями вместо неподвижно распластанных в воздухе. И все это без электромоторов и двигателей внутреннего сгорания!

Мышечный белок миозин — высокомолекулярное соединение, сотворение которого покамест является монопольной прерогативой живого организма. Но уже созданы первые полимерные ленточки — аналоги этой чудесной могучей ниточки. Они сокращаются при изменении кислотности среды. Этот эксперимент, поставленный в лаборатории советского академика Владимира Александровича Энгельгардта, открывает перед конструкторами совершенно новые перспективы.

Мозг. Это не просто грандиозное скопление клеток, хитросплетение нервных волокон и кровеносных сосудов. Это уникальное счетно-решающее и логическое устройство, состоящее из 15 миллиардов ячеек. Но оно весит всего около полутора килограммов. Потребляемая им мощность такая же, как и у небольшой электрической лампочки. Ему нужно всего 5 граммов глюкозы и около 3 литров кислорода ежечасно. Таких машин еще не создали человеческие руки. Мозг до сих пор остается клубком неразгаданных тайн. Но этот клубок уже начали распутывать ученые — ниточку за ниточкой, методично, скрупулезно. И здесь на помощь физиологам пришла квантовая биология и кибернетика.

Так в тесном взаимодействии, бок о бок, с обоюдной заинтересованностью ведут ученые нелегкий поиск на стыках наук. Лучше понять друг друга им помогает математика. И прежде всего могучий аппарат квантовой механики.

Еще не скоро появятся белково-электронные роботы, повторяющие (а может, и превосходящие?) функции мозга со всей их эффективностью. Но уже сегодня вторжение счетной техники в сферу умственной деятельности изменяет облик химических лабораторий. Оказалось, что в принципе можно в некоторых случаях обойтись без традиционного инструмента химических исследований — колбы. Даже без самих реагирующих веществ. Как это делается, вы прочитаете в следующей главе.

Квантовая химия продолжает наступление на твердыни природы. Трудности — где их нет? — не смущают ученых. Настанет день, и лабораторный сложнейший эксперимент будет сначала проводиться не в колбе, а на бумаге. На смену интуиции и эмпирике всюду придет точный расчет. Квантовая химия будет не просто проверять и поправлять экспериментаторов, она сама станет мощным орудием химического синтеза. Материалы с невиданными свойствами будут конструироваться с помощью чертежей и математических уравнений.

Этот день не за горами. Ибо все шире фронт работ на стыках наук. Все дальнобойней дерзкие рывки научной мысли. Все теснее смычка теории с практикой.

Наука у нас становится непосредственной производительной силой общества, сказано в Программе КПСС. Именно такой наукой становится квантовая химия и биология.

Глава 4

«…Где дышит интеграл»

Случилось непредвиденное.

Поначалу все шло гладко. Серебристый лайнер «ТУ-104» «Москва — Новосибирск» в полном согласии с расписанием вырулил на длинное полотно стартовой дорожки. Изредка похлопывая себя по карману, где лежало командировочное удостоверение в Сибирское отделение академии, я мысленно составлял план визитов на весь остаток дня.

Сразу же по прибытии — в Институт математики.

Мое паломничество в Академгородок, давно уже ставший Меккой для журналистов, было связано с вполне определенными намерениями. Еще задолго до своего вояжа я прочитал прекрасную статью в «Литературной газете», написанную пером увлеченного человека. Она называлась «Поэзия математики». Ее автор — академик Сергей Львович Соболев, директор Института математики Сибирского отделения АН СССР. Того, что на весь мир прославился расшифровкой рукописей древних майя.

Любопытный штрих: Валентин Алексеевич Устинов, один из главных «отгадчиков» знаменитых «стенограмм», — по образованию вовсе не математик. Историк. Но его сноровке в обращении с электронно-вычислительными машинами позавидует любой заправский математик. Когда новосибирский Шамполион защищал диссертацию, разгорелись споры, какую кандидатскую степень присудить Валентину Алексеевичу: исторических наук или физико-математических?

Как стушевываются в наше время пограничные линии между разными областями знаний!

Но в статье Соболева меня заинтересовало другое. «Известно, — писал Сергей Львович, — какое значение имеет при современном состоянии химии так называемый рентгеноструктурный анализ. Еще недавно для расшифровки какой-либо структуры мог требоваться целый год. Сначала в Москве, а затем и в Новосибирске были сделаны попытки применить для этой цели электронно-вычислительную технику. Машина, способная „перепробовать“ за короткое время все возможные комбинации атомов, неизмеримо ускоряет процесс исследования. В нашем институте группой сотрудников под руководством кандидата физико-математических наук В. И. Бурдиной разработана совместно с химиками система программ для анализа так называемых двухмерных структур, разрабатывается аналогичная система для структур, более сложных — трехмерных».

Совместно с химиками… С тех пор призрак Монжа-Бертолле неотступно стоял у меня перед глазами.

Помнится, правда, что обостренный интерес к соболевской статье был отнюдь не случаен. Его подогрело предварительное знакомство с работами преемников курнаковского наследия.

На бойком месте, под боком у широкой московской магистрали — Ленинского проспекта, — примостилось неказистое с виду, серое двухэтажное здание. Это ИОНХ — Институт общей и неорганической химии Академии наук. Удивительный мир, где говорят на языке топологической химии. Недаром он носит имя своего прежнего руководителя, ныне покойного академика Курнакова. Именно здесь, посреди небольшого дворика, ненадежно забаррикадировавшегося от уличной сутолоки чугунной оградой да редкими кустиками зелени, произошла встреча, побудившая меня заинтересоваться судьбой Николая Семеновича Курнакова и его идеи — создания математического языка химии.

Тогда я работал в Институте физической химии Академии наук. ИФХАН (так сокращенно именовался наш институт) образовывал одно целое с ИОНХом, разве что в месте сочленения зданий зияла квадратная подворотня, сквозь которую каждое утро устремлялся торопливый поток людей: они спешили наперерез нам в ИНЭОС (Институт элементоорганических соединений) и другие институты, расположенные на задворках нераздельно слившихся ИФХАНа и ИОНХа. Тут-то я и натолкнулся на своего приятеля, который закончил механико-математический факультет МГУ еще в ту пору, когда я сам был студентом-химиком.

— Я теперь в аспирантуре ИНЭОСа, — сообщил он, к немалому моему изумлению. — И не я один. Там у нас целая группа математиков, все химией занимаются. Впрочем, не только у нас и не только в Москве. В Новосибирске, например, много интересного. Ну, пока…

И мой Монж нырнул в подворотню.

Шутки шутками, а встреча заставила меня призадуматься. Математика в химии… Что ж, пожалуй, здесь действительно нет ничего удивительного. Не только в ИОНХе, но и в Институте физической химии работают математики. А в пяти минутах езды — Институт химической физики, — сколько там студентов мехмата МГУ делает свои дипломы! Того и гляди появится где-нибудь Институт математической химии!

Математическая химия… А почему бы и нет? Разве не настала пора для становления и самостоятельного развития новой науки?

Ведь недаром же говорят, что на ниве знаний подчас наиболее плодородны именно межи: вспомнить хотя бы математическую лингвистику, математическую геологию, математическую экономику.

Мелодичный, но властный голос стюардессы прервал полудремотные грезы пассажиров: «Самолет идет на посадку. Наденьте привязные ремни!» Все, как один, разом посмотрели на циферблаты часов. В чем дело? Если верить расписанию, еще не время для посадки! Уж не случилось ли чего-нибудь?

Так оно и есть. Одной из пассажирок плохо. Сердечный приступ. Ни аварийная химия бортовой аптечки, ни участливые советы воздушных эскулапов помочь не в силах. Расписание расписанием, а здоровье человека превыше всего. С сердцем шутки плохи. И пилот ведет машину в ближайший аэропорт, где пострадавшую уже ждет карета «Скорой помощи», вызванная по радио.

Этот грустный эпизод невольно вспомнился мне потом, уже в Академгородке. Вовсе не потому, что опоздание самолета перепутало все мои карты: день был субботний и учреждения пустели раньше, чем обычно. Нет, повод оказался совсем иным.

Хотя стрелки давно уже перевалили за урочный час, когда кончаются всякие приемы, вахтер безропотно пропустил меня в Институт математики. Наверное, так уж повелось, что здесь даже по субботам сотрудников не выдворишь из лабораторий. Почему, я понял в тот же день.

Сказать правду, никакой это был не институт в традиционном смысле слова, а самый что ни на есть заурядный жилой дом. Напротив отнюдь не парадного подъезда (вход был со двора) прямо под сенью таблички с внушительной надписью «Институт…» годовалые «старожилы» существующего без году неделю Академгородка (стоило детской коляске чуточку притормозить) оглашали воздух пронзительным ревом. А все потому, что молодой папа-физик, заглядевшись, должно быть, в книгу с формулами космических скоростей и запамятовав лирическую гоголевскую строку: «И какой же русский не любит быстрой езды», — перестал вовремя подталкивать и без того тихоходный кабриолет…

Стройка институтского здания вот-вот должна была завершиться, а пока лаборатории временно размещались в гостиных, спальнях, даже, помнится, на кухне. Однако не успел я подумать про себя: «Не красна изба углами…», — как меня не то в кухне, не то в гостиной вместо пирогов встретили… углы. Острые, тупые, прямые, они смотрели с многочисленных диаграмм и графиков, которые разложили передо мной молодые ребята, сотрудники Лаборатории задач химии и физики.

В путешествии по институтским закоулкам, по лабиринтам графиков, по маршрутам своих планов меня сопровождал молодой математик Виктор Кудрин.

Математический анализ применительно к структурам химических веществ. Квантово-механические расчеты электронных состояний на поверхности кристаллов. Оптимизация технологических процессов в химическом производстве. Проектирование контактных аппаратов с помощью электронных машин. Абстрактные на первый взгляд, но на деле очень важные для науки и техники проблемы на стыке химии и математики.

Лаборатория химических проблем в математическом институте… Если бы все это видел Николай Семенович Курнаков! Он бы не нарадовался, глядя на племя современных Монжей, у которых свежесть взгляда и непредвзятость мышления, этот бесценный дар невозвратной юности, соперничает с деловитой уверенностью профессионалов, имеющих за плечами опыт и мудрость великих предшественников. А рядом, в четверти часа ходьбы по асфальтированной дорожке, вьющейся между стволами сибирских сосен, уже вздымались современные корпуса химических институтов, где — хотите верьте, хотите нет — я собственными глазами увидел молодых Бертолле, несущих курнаковскую эстафету. И вот что примечательно: даже привычному уху трудно отличить по манере разговаривать математиков, работающих в области химии, от химиков, работающих в области математики, — настолько общий у них язык, настолько крепко поднаторели они в методах и терминологии обеих наук.

До поры до времени «дела пробирные» обходились карандашом и клочком бумаги. Так было в эпоху Бертолле, так случалось и во времена Курнакова. А нынче химики запанибрата с мощной электронно-счетной техникой: не тот век, чтобы кичиться убожеством стародедовских способов, прикрываясь флагом традиционной скромности химиков в выборе технических средств.

Когда мы произносим слова «большая химия», перед глазами встают многозначные цифры планов, многошумные новостройки в «огнях и звонах», многоэтажные и многотрубные гиганты индустрии. Между тем история любого химического завода с его грохочущими машинами и клокочущими котлами начинается в тиши исследовательской лаборатории. Да, большая химия начинается с маленькой пробирки. Пробирка, над которой колдует экспериментатор, — это заводской аппарат в миниатюре. Именно здесь, в едва слышном бульканье реакционной смеси, чуткому уху слышится могучий ритм шумного и жаркого дыхания воздуходувок, печей, колонн, скрубберов, газгольдеров, труб, где непрерывно перемещаются многотонные массы жидкостей, многокубовые объемы газов.

Не только в химии крупномасштабному воплощению инженерного замысла предшествуют опыты с крошечными моделями. Сколько наблюдений над игрушечной копией «ТУ-104» было проделано в аэродинамических трубах, прежде чем дюзы могучего исполина огласили аэродромы зычным уверенным гулом!

Как же конструкторы переходят от одних масштабов к другим?

Чтобы превратить лилипута в Гулливера, обычно используется теория подобия. Результаты экспериментов с карликовой моделью пересчитывают по определенным уравнениям для всамделишного гиганта. Это очень эффективный метод, давно и хорошо зарекомендовавший себя в авиации, гидравлике, теплотехнике.

Увы, не в химии! Здесь при переходе к другим масштабам характер процессов, как правило, изменяется. Но отчего? Разве синтез того же аммиака в заводском аппарате описывается другим уравнением, нежели в лабораторной установке? Нет, и стехиометрия и характер равновесия остаются теми же самыми. Тогда, может статься, дают о себе знать какие-нибудь неучтенные тонкости процесса?

Что ж, давайте разберемся во всем по порядку.

Огонь, порождающий своего заклятого недруга — воду. Такому мог удивиться разве что Генри Кавендиш, который впервые наблюдал горение водорода в кислороде. А сегодня любой школьник запросто напишет незамысловатую реакцию: 2H2 + O2 = 2H2O. Простенькое уравнение, не так ли? Два объема водорода, один кислорода, и в итоге — два объема водяных паров. Берешь два исходных вещества, получаешь один конечный продукт.

Уравнение одно, но почему такие странные различия? В опытах Кавендиша над трубкой, из которой выходил водород, теплился едва заметный язычок пламени. Зато, если взять те же количества водорода и кислорода, но тщательно перемешать, получится гремучий газ. Если его поджечь, он взорвется.

Масштаб один — эффекты разные.

В годы первой мировой войны немецкое командование для бомбардировки Лондона и Парижа построило 123 дирижабля. Из них 40 было уничтожено противником. Стоило зажигательному снаряду угодить в оболочку воздушного пирата, как цеппелин, мгновенно вспыхнув, исчезал в огне и дыме. Оно и понятно: дирижабли заполнялись водородом. Небесное «аутодафе» не всегда сопровождалось взрывом: оболочка препятствовала перемешиванию водорода с воздухом. И, как в опыте Кавендиша, водород воспламенялся, но не взрывался.

Масштабы разные — эффект один.

При комнатной температуре гремучая смесь — в маленьком ли баллончике, в громадном ли резервуаре — сохраняет спокойствие. Даже при нагревании до 300 градусов скорость реакции неизмеримо мала. Однако при переходе за черту в 600 градусов (температура тлеющего уголька) взаимодействие протекает мгновенно. Смесь взрывается.

Описанные примеры помогут нам сделать кое-какие выводы. Если условия одинаковы, то скорость процесса почти не зависит от его масштабов. И еще: на скорость химического процесса сильно влияет тепло. Опытным путем установлено приближенное правило: нагревание на 10 градусов ускоряет ход реакции в два-четыре раза. Так что если у вас повышенная температура, лекарства будут помогать вам скорее.

Однако непонятно другое. Стоит внести в огромный объем горючей смеси даже тлеющий окурок, как из искры возгорится пламя. Почему? Каким образом маленькая спичка вызывает большой пожар? У крохотного факела температура 600–800 градусов. Но все равно этого далеко не достаточно, чтобы прогреть насквозь внутренности цеппелина или обыкновенного полена до температуры реакции. А языки пламени ненасытны, их не уймешь, пока они не слижут дотла остатки своей добычи. И это еще не все вопросы.

Возьмите кусочек рафинада и попробуйте поджечь его. Сахар оплавится, обуглится, но не воспламенится. А теперь посыпьте его золой из пепельницы. И вторично поднесите зажженную спичку. Сахар вспыхнет ровным голубоватым пламенем. Что случилось?

Зола сама по себе негорюча. Ведь это же минеральные соли! Если провести химический анализ, то в остатке от преданного огню кусочка рафинада вы обнаружите то же количество золы, взятой из пепельницы, что и до опыта. Очевидно, зола сыграла роль катализатора. Выходит, не только от тепла зависит скорость реакции!

И все же сахар можно поджечь спичкой без катализатора.

Те, кому довелось бывать на сахарных заводах, помнят, должно быть, таблички «Не курить!» даже там, где нет и в помине чего-нибудь легковоспламеняющегося. Оказывается, остерегаться следует… сахара. Правда, не кускового. Опасным врагом он становится лишь в виде пылинок, витающих в воздухе.

Обмерьте кусочек пиленого сахара. Общая площадь его граней невелика — в лучшем случае, с большую почтовую марку. Но разотрите кусочек в тонкую пудру — и суммарная поверхность частиц может достигнуть размеров футбольного поля. Между тем количество вещества осталось прежним! Если распылить порошок в воздухе, крупинки хорошо перемешаются с окислителем (кислородом). И сахар, который в компактной массе загорается с таким трудом, внезапно обретает силу динамита.

А посмотрите-ка на формулу горения сахара: С6Н12O6 + 6O2 = 6CO2 + 6H2O. Она скромно умалчивает о химических перипетиях, в которых могут участвовать молекулы сахара. Ибо уравнение реакции отражает лишь перераспределение химических связей между атомами. А нас интересует сейчас, как протекает химический процесс от начала до конца.

Для этого нам придется заглянуть в самые потайные механизмы, прячущиеся за кулисами химических уравнений.

Химическая реакция — ее тонкости не так-то просто постигнуть!

Мы уже знаем, как молекула рождается и как она умирает. Но образование или разрушение валентной связи — лишь итог химической реакции. Причем в реальных системах приходится иметь дело с огромными скоплениями молекул, где беспокойные члены коллектива оказывают друг на друга заметное влияние. Например, когда мы пишем: 2H2 + O2 = 2H2O, то вовсе не имеем в виду, что две молекулы водорода прореагировали с одной молекулой кислорода и дали две молекулы воды. За каждым символом подразумевается колоссальное скопище частиц одного сорта. Уравнение же отражает лишь соотношение между частицами разных сортов, участвующих в реакции. А коли так, то естественно допустить, что изменение количества молекул придаст системе в целом какие-то новые качества.

Так оно и есть на самом деле.

Без следов воды не идет реакция 2H2 + O2 = 2H2O. Вода, которая гасит огонь, оказывает здесь каталитическое действие. Но та же реакция протекает по-разному в зависимости от того, насколько хорошо перемешаны водород и кислород.

Отдельный элементарный акт химического превращения, описываемый стехиометрическим равенством, зависит только от трех условий. От взаимной близости реагирующих частиц. От температуры (вернее, от их энергии). От присутствия и вида катализатора. Но химическое превращение — в пробирке ли, в заводском ли аппарате — сумма огромного количества одновременных элементарных актов. И трудно поверить, чтобы во всех случаях свидание реагирующих молекул или атомов протекало в совершенно одинаковых условиях.

В каком-то месте смесь может оказаться неоднородной. Где-то не будет близкого контакта с катализатором. Да и кинетическая энергия у одной молекулы иная, чем у другой. Более того: она изменяется от взаимных тумаков, которыми мимоходом награждают друг друга молекулы. Ведь они непрерывно снуют туда-сюда в полном беспорядке. При этом либо теряют часть своей энергии, либо приобретают дополнительную. И чем крупнее масштабы процесса, тем, очевидно, больше всяких случайностей в кишащей толпе частиц.

Загляните в холодильник. Температура в нем около нуля. Давление нормальное. Пусть емкость холодильника 224 литра. Это значит, что он рассчитан примерно на 10 грамм-молекул газа. Удесятерите число Авогадро (6·1023), и вы узнаете, сколько газовых частиц вмещает при нуле градусов ваш холодильник, когда он пуст. Чтобы точно описать такую систему, вам пришлось бы составить 60·1023 уравнений. В каждом — миллиарды миллиардов членов. И чтобы рассчитать, как двигается каждая отдельная молекула в течение секунды, потребовались бы миллиарды тысячелетий! Между тем заводской реактор в десятки раз вместительней вашего холодильника. Быть может, именно это обстоятельство делает неприменимыми к большому химическому реактору выводы, справедливые для маленькой пробирки?

Как ни странно, нет. Вот наперсток. Он вмещает в 100 тысяч раз меньше молекул, чем ваш холодильник. И число уравнений окажется во столько же раз меньше. Масштаб такого соотношения 300 лет и одни сутки. Огромная разница! Между тем решать систему из 60 миллиардов миллиардов уравнений (величина 60·1023, уменьшенная в 100 тысяч раз) вам пришлось бы тоже не менее миллиарда тысячелетий. Так что переход от пробирки к аппарату ненамного усложнил бы эту и без того непосильную задачу.

Однако математики ухитрились сделать так, что чем больше частиц, тем точнее описание системы! И это не парадокс. Ученых выручает статистика. Именно она избавила их от непомерной платы за точность, которую требовали законы классической механики.

Да, операции с большими числами подчиняются некоторым своеобразным закономерностям, теряющим силу для чисел малых.

Пожалуй, можно ограничиться одним, но достаточно поучительным примером.

Заболевание пассажира во время рейса — случай из ряда вон выходящий. Любой из нас изумится, если беда стряслась именно в его присутствии. Но для стороннего наблюдателя, скажем диспетчера аэропорта, имеющего дело с сотнями самолетов, а в каждом по сотне пассажиров, это событие не будет столь неожиданным. Он уже готов к тому, чтобы, скажем, примерно на каждую тысячу рейсов (сто тысяч пассажиров) ожидать какого-нибудь ЧП. Недаром любой аэровокзал имеет медпункт — «на всякий случай». Но даже бывалый врач большого аэродрома будет удивлен, если вдруг в один день сразу три таких случая, а потом ни одного много лет подряд.

И хотя так вполне может быть, вероятность подобного совпадения очень и очень мала. Обычно случайные события распределяются более или менее закономерно. Чем больше отклонение от статистической нормы, тем менее оно вероятно. Кривая таких отклонений напоминает наполеоновскую «треуголку». Но называется она «треуголкой Гаусса» — по имени математика, занимавшегося исследованием вероятностных процессов. Самая верхняя часть «треуголки» — какое-то среднее значение определенного параметра, которым характеризуется наше множество. Скажем, число несчастных случаев, приходящееся на определенное множество пассажиров. Оно наиболее вероятно. Меньшие или большие значения находятся на левом или правом склоне «треуголки». И чем больше отклонение от среднего статистического значения, тем ниже точка на кривой, тем меньше вероятность. Кривая строго описывается математическим уравнением. Это помогает предвидеть случайности и приготовиться к ним.

Так, пожертвовав слишком дорогостоящей, а потому и никчемной, точностью ньютоновской механики, статистика приобрела вероятностную строгость описания — куда более ценную в практических расчетах. Таков, видать, парадокс жертвы: мы всегда жертвуем чем-то дорогим ради чего-то еще более ценного.

Процессов, зависящих от воли случая, немало. Например, количество пассажиров колеблется от рейса к рейсу. Их распределение внутри салона воздушного корабля тоже (если, конечно, кассир продает билеты не по порядку). Скорость и высота полета, время старта, точность приземления — словом, все, на чем основана точность расписания, зависит и от капризов погоды. Тем не менее нарушение графика воздушных сообщений — исключение. Как правило, все идет нормально. Ибо мы умеем предвосхитить отклонения от среднего статистического значения и предпринять контрмеры.

Режим работы химического аппарата тоже подвержен случайностям. Начать хотя бы с того, что в смеси реагентов царит несусветный хаос, тогда как в обществе пассажиров на борту самолета порядок. Здесь и речи не может быть о каком-то разумном регулировании режима самими частицами. Если в салоне пассажиры охотно выполняют пожелание экипажа более рационально распределиться по свободным местам, чтобы увеличить устойчивость быстрокрылой махины, то атомы и молекулы не пойдут ни на какие уговоры. Они слепо подчиняются лишь законам физики. Но эта-то слепота и помогает математикам!

Да, частицы не сидят на месте, а мечутся в беспорядке, сталкиваясь друг с другом. Да, ни одна из них в таких условиях не может сохранять свою скорость постоянной. Да, при каждом соударении кинетическая энергия перераспределяется между двумя столкнувшимися молекулами. И все же в этом хаосе царят свои законы.

Число молекул огромно. Не сто, не тысяча, не миллион. Даже в колбе их миллиарды миллиардов. Именно это позволяет применять к системам из такого большого числа частиц теорию случайных процессов. Заметные отклонения от статистического среднего значения здесь настолько несущественны, что выводы теории вероятностей обретают силу закона. Например, можно точно рассчитать, какая доля молекул обладает наиболее вероятной скоростью и насколько другие отклоняются от этого значения. Куда точнее, чем случайное распределение величин в условиях того же самолета.

А это очень важно для математических расчетов скорости реакций.

Скорость реакции… Минули столетия, прежде чем позеленела и рассыпалась в прах бронза старинных мечей. А геохимические процессы тянутся миллионы лет. Зато взрывы настолько кратковременны, что глазом не успеешь моргнуть, как они уже закончились. От того, сколько дней будет затвердевать цемент, зависит срок пуска сооружений. Когда жизнь человека висит на волоске, вся надежда порой на скорость действия медицинского препарата.

Быстрота химического превращения веществ — едва ли не самая главная характеристика любого технологического процесса.

Кому нужен огромный реактор, выдающий продукцию в час по чайной ложке? С другой стороны, если процесс начинает спешить, превышая дозволенный предел, нависает угроза аварии. Вот почему так важно знать, с какой скоростью протекает реакция и как добиться желанного технологического режима.

Скорость химического превращения, мы уже знаем, зависит от концентрации реагентов.

Чтобы частицы прореагировали, они должны сблизиться. Для газовой смеси это не проблема. Там за секунду происходят десятки миллиардов столкновений. Продолжительность каждого соприкосновения ничтожно мала. Но период обращения электрона вокруг атомного ядра еще меньше. Он относится к промежутку между соударениями, как день к столетию. Так что есть время дождаться, пока юркий электрон соблаговолит перескочить с атома на атом, чтобы образовать валентную связь. Поляризуемость молекул еще больше удлиняет время контакта, пребывания одной частицы в электрическом поле соседней.

Разумеется, не всякое сближение приводит к заключению химического союза. Однако чем чаще столкновения, тем выше вероятность взаимодействий. Ведь в более густой толпе толкучка сильнее.

По мере того как образуется новое соединение, толпа молекул зачастую редеет. Например, после каждого элементарного акта взаимодействия 2H2 + O2 = 2H2O вместо трех молекул образуются две. А в реакции N2 + 3H2 = 2NH3 две из четырех. Чтобы повысить концентрации реагирующих веществ и увеличить выход продукта, приходится прибегать к повышенному давлению. Равновесие тотчас же смещается так, чтобы ослабить внешнее воздействие: концентрация исходных веществ падает, зато конечного продукта прибавляется.

Однако если бы скорость химического превращения зависела лишь от концентрации реагентов, на Земле начались бы довольно странные вещи. Представьте себе, что вдруг ни с того ни с сего вспыхнула книга, которую вы читаете. Или стул, на котором вы сидите. Расческа, которая лежит у вас в кармане. Этого не происходит. Даже бензин преспокойно стоит в бачке, не угрожая пожаром. Между тем, казалось бы, созданы все условия для реакции: кислорода предостаточно, а бумаге, дереву, целлулоиду, бензину горючести не занимать. Но нет, недаром книжка Рея Брэдбери называется «451° по Фаренгейту» (примерно 230 градусов по Цельсию). Лишь при такой температуре воспламеняется бумага.

Разумеется, и при нормальных условиях молекулы кислорода сталкиваются с молекулами топлива, скажем бензина. И отскакивают друг от друга, как бильярдные шары. Взаимодействия не происходит. Картина изменится, если поднести спичку (подобный опыт, конечно, следует проводить чисто умозрительно). Тепло ускорит движение молекул, увеличит их энергию. И только перешагнув через определенный энергетический барьер, молекулы смогут вступить в химическое взаимодействие.

Энергия активации не обязательно должна подводиться в виде тепла (инфракрасного излучения). Смесь водорода с хлором взрывается, если на нее направить солнечный свет.

Действие катализатора именно в том и заключается, что он понижает энергию активации, облегчая молекулам путь к химическому союзу. Понижает раза в два-три. А ферменты — органические катализаторы — даже в четыре-пять раз! Понятно, почему в клетках нашего тела сахар сгорает при температуре менее 40 градусов. Катализатор способен ускорить процесс в миллионы раз!

Важная и интересная деталь: катализатор сам по себе не увеличивает выход продукта. Ибо он не смещает равновесия, как давление или нагревание. Он просто ускоряет его наступление. Это немного странно на первый взгляд. Но факт неоспорим.

Вот наша реакция N2 + 3H2 = 2NH3. Аммиак образуется и при комнатной температуре. Ведь какая-то, правда небольшая, часть молекул азота и водорода всегда имеет энергию иную, чем наиболее вероятная. Статистический «разброс» приводит к тому, что некоторые молекулы реакционноспособны. Взаимодействие начинается. Но пока наступит равновесие, придется ждать несколько тысячелетий. Если же внести катализатор, равновесное состояние установится во много раз быстрее. Однако количество аммиака будет тем же, что и через тысячи лет.

Казалось бы, выход аммиака можно повысить нагреванием. Ничуть не бывало! Как раз наоборот: чем выше температура, тем сильнее сдвинуто равновесие в сторону разложения аммиака. Это объясняется просто: при реакции выделяется тепло. А равновесные системы как бы стараются погасить, ослабить внешнее воздействие по мере собственных сил и возможностей. Уже говорилось, что увеличение давления сдвигает равновесие N2 + 3H2↔2NH3 вправо. Ибо тогда суммарное количество молекул убывает, и давление в системе падает. Нагревание же, напротив, привносит тепловую энергию в дополнение к той, которая выделяется в процессе реакции. Чтобы как-то скомпенсировать внешнее «возмущение», система перестраивается. Реакция начинает течь вспять, поглощая тепло. Тогда, быть может, стоит посильней охладить смесь? Опять нет! Понижение температуры сильно уменьшит скорость превращения азота и водорода в аммиак. Придется ждать богатого выхода тысячелетиями. Нет уж, лучше подобрать такие условия, когда скорость превращения окажется достаточно высокой, а выход продукта не слишком низким. Такой режим в математике называется оптимальным.

Не все системы в химии характеризуются подобным приспособленчеством.

Бывает, что они возмущенно реагируют на внешнее «раздражение» бурным противодействием. Например, горючая смесь в цилиндрах двигателей внутреннего сгорания. Иногда она во время такта сжатия взрывается. Приходится усмирять бензин антидетонационными добавками.

Горение и взрыв — пожалуй, самые непокорные среди реакций. Но их неповторимое своеобразие, а главное, их огромное научное и техническое значение притягивают к себе ученых, словно магнитом.

Огонь… Ослепительное и жаркое чудо природы с незапамятных времен будоражило человеческое воображение. «Молодое электричество мы знаем лучше, чем древний огонь». Эти слова принадлежат создателю современной теории горения академику Николаю Николаевичу Семенову.

Лишь в самые последние десятилетия ученым удалось приподнять завесу над тайнами Прометеева дара. И ученые-огнепоклонники обогатили химическую науку удивительными откровениями.

Цепные реакции. Свободные радикалы. Учение о химической кинетике, о скоростях химических превращений. Сколько замечательных достижений связано с этими разделами химии!

А началось все с традиционных «что» и «почему», в которых детская наивность соперничает с философским глубокомыслием.

Почему из искры возгорается пламя? Что такое горение? Что такое огонь? Что такое взрыв?

Не на все вопросы есть исчерпывающие ответы. Но кое-что о загадочной огненной стихии знает хорошо нынешняя наука.

Что происходило, когда Кавендиш поджигал водородную струйку? Поначалу шла диссоциация. Молекула H2 от жары распадалась на атомы. Осколки получались очень активными. Молекулам O2, поступавшим из окружающего воздуха, суждено было тотчас же пасть жертвами агрессии. На какое-то мгновение возникал неустойчивый комплекс HO2. Впрочем, он тут же разваливался на куски HO2 = О + ОН. Оба только что объявившихся обломка — атомарный кислород и гидроксил — продолжали атаку с той же стремительностью. Однако на этот раз нападению подвергались молекулы того, кто начал агрессию, — водорода: ОН + H2 = H2O + H. Молекула воды выбывала из игры. Новый же атом H шел по стопам своего воинственного предшественника. Бросаясь на молекулу O2, он разбивал ее на ОН и О. Атом кислорода не оставался в долгу и громил молекулу водорода: О + H2 = ОН + H. И так далее. Достаточно было появиться одному-единственному «запальному» атому, как он обрушивал на мирно дремавшую смесь непрерывно нараставшую лавину детонаторов. Начиналась разветвленная цепная реакция. Не будь ее, гремучая смесь не взрывалась бы.

За создание теории цепных процессов академик Семенов удостоен Нобелевской премии.

Но, позвольте, цепные реакции? Так это же взрыв! Совершенно верно. Правда, не ядерный. Химический.

Мало кто знает, что цепные реакции были открыты сначала в химии. Это случилось в 1913 году — за тридцать лет до того, как был запущен первый атомный «котел».

В большой прозрачной бутыли — смесь хлора и водорода. Не спеша течет реакция H2 + Cl2 = 2HCl. В темноте. Но стоит на сосуд упасть солнечному лучу, как происходит взрыв. Даже один-единственный световой квант может сыграть роль запала.

Это долгое время смущало ученых. Закон фотохимической эквивалентности, открытый Эйнштейном, гласил: каждый квант способен вызвать лишь один элементарный акт химического превращения. Не больше. Почему же газы реагировали мгновенно и целиком? Неужто Эйнштейн ошибся?

Поставьте на торец костяшку домино. Рядом другую. За ней третью. И так далее. Теперь толкните крайнюю в этой очереди. Вслед за первой полягут все. Импульс один, а падает целиком вся очередь. То же самое и в смеси H2 с Cl2.

Поглощение светового кванта действительно вызывает один элементарный химический акт. Молекулы хлора диссоциируют на атомы: Cl2 + квант = Cl + Ĉl. (Точкой обозначен возбужденный неспаренный электрон.) Но вслед за тем начинается вереница микрокатастроф: Ĉl + H2 = HCl + Ĥ; Ĥ + Cl2 = HCl + Ĉl; Ĉl + H2 = HCl + Ĥ…

Цепочка стремительно нарастает, перебегая от молекулы к молекуле, захватывая в конце концов весь объем смеси.

Цепная реакция! Разве что неразветвленная. Перед нами именно вереница, а не веер взаимодействий, как при горении водорода в кислороде. Там один атом порождает трех не менее активных отпрысков. А здесь число частиц в каждом колене не возрастает. Коэффициент размножения равен единице. И тем не менее хлор взрывается в смеси с водородом. Но позвольте, разве имеет какое-нибудь, пусть даже самомалейшее, сходство грозная сила всесокрушающего взрыва с робким трепетом крохотного язычка пламени?

Да. Колпачок огня, выросший над газовой горелкой или над фитилем свечи, имеет четкие очертания. Но ведь воронка речного водоворота тоже обладает скульптурной рельефностью формы! И тем не менее в обоих случаях налицо непрерывный поток. Вечно обновляющаяся, хотя и стабильная в своем беспокойном равновесии, динамическая система. Здесь тонкая оболочка пламени почти неподвижна. Зато через нее течет топливо навстречу окислителю.

А бывает и наоборот: топливо и окислитель стоят на месте, движется лишь граница пламени. Если в комнату просочилось изрядное количество водорода, не приведи бог чиркнуть спичкой. Взрыв неминуем. Фронт пламени, распространяясь концентрически, мгновенно обежит весь объем смеси. Его скорость при этом превысит звуковую. Это точно измерили ученые, сумевшие заглянуть в недра огненной стихии.

Разумеется, изучать детонацию в газах, когда кругом дребезжат стекла и рушатся потолки, не так уж здорово. Поэтому взрыв укрощают. Прозрачная трубка заполняется газообразной смесью горючего с окислителем. Если поджечь смесь с одного конца, фронт пламени быстро побежит внутри трубки вдоль ее оси. Но тут начинают продувать газовую смесь в противоположном направлении. Скорость подбирают так, чтобы колышущаяся пленка огня остановилась среди трубки. Перед нами самый обыкновенный огненный язычок! А по сути дела — взрыв, упрятанный в трубку.

Обнаружилось, что химические превращения протекают главным образом в тот миг, когда частицы газа пересекают тонкую наружную оболочку пламени. Он длится ничтожные доли секунды — стотысячные, а то и миллионные. Например, газы, подаваемые в горелку Бунзена со скоростью от 30 до 60 метров в секунду, переходя через границу пламени, достигают скоростей до 900 метров в секунду. Это в два с половиной раза резвее звука! А при взрывах фронт пламени может распространяться со скоростью от 1800 до 2500 метров в секунду.

Как же человек проник в этот быстротекущий огненный круговорот, чтобы раскрыть вековечные тайны Прометеева дара?

Заморозить пламя — на первый взгляд это выглядит парадоксальным. И все же, если внезапно охладить до минус 100 градусов зону, где только что началось горение, удается остановить реакцию в самом ее разгаре. И выходцы из призрачного мира огня потрясли ученых своей необычностью. Чего тут только не нашли! Например, в углеводородном пламени одних перекисей углерода целую компанию: CO3, CO4, даже CO5.

Можно, конечно, обойтись и без вмешательства Деда Мороза. Теоретически удается рассчитать длины волн, которые должны испускаться обломками молекул. Например, CH дает фиолетовое свечение, CC — зеленое.

По характерным линиям в спектре были обнаружены также HCO, OH и другие осколки.

Как видно, мир углеводородного пламени еще более экзотичен, чем просто водородного.

Уж коли формулы-простушки: H2 + Cl2 = 2HCl и 2H2 + O2 = 2H2O на поверку выходят далеко не бесхитростными, можно себе представить, насколько сложнее внутренний механизм такой, к примеру, реакции: 2CnH2n+2 + (3n + 1)O2 = 2nCO2 + (2n + 2)H2O. Это уравнение описывает горение насыщенных углеводородов, скажем, вещества свечи. Вернее, не сам процесс, а его пролог и эпилог.

Как и у любого другого уравнения реакции, здесь в левой части — сумма исходных реагентов. В правой — конечных продуктов. Старт и финиш, как на аэродроме. И как на командировочном удостоверении штампы убытия и прибытия ничего не говорят о ваших путевых приключениях, так и здесь из уравнений видны лишь состояния в начальной и конечной стадиях. А между ними — дистанция огромного размера! Огромного, хотя вещества и проходят ее порой за ничтожные доли секунды. Сколько промежуточных соединений, сколько побочных процессов заключает в себе этот коротенький временной интервал!

Задача — пробраться за кулисы химического уравнения. На очереди — химия горячая и химия стремительная.

Именно учение о кинетике сосредоточило внимание исследователей на тонкостях химического взаимодействия, которые так долго ускользали из поля зрения ученых.

Без познания сокровенного механизма реакций было бы немыслимо создание ракетных и реактивных топлив и двигателей. Тот же «ТУ-104» не поднялся бы в воздух, не будь теории горения, созданной академиком Семеновым и его школой. В современной химической технологии тоже все большее значение приобретают процессы, идущие с большими скоростями и при высоких температурах.

Реактивный двигатель, во всяком случае прямоточный, — это, по существу, горелка Бунзена, разве что увеличенная до громадных размеров. Воздух нагнетается в смеситель с ураганными скоростями — 60 метров в секунду и выше. Но еще стремительнее (900 метров в секунду) выстреливаются из хвостового сопла выхлопные газы, возникающие при сгорании распыленного топлива. Неравенство давлений на выходе и входе, развивающееся в процессе реакции, толкает самолет, а горелку прижимает к столу. Изучение пламени горелки привело к интересным и важным практическим выводам.

Посмотрите на пламя свечи или лабораторной горелки. У него четкая внутренняя структура. Всегда можно различить темный внутренний конус, бледную поверхностную оболочку и более яркую промежуточную зону. В каждой области образуются свои вещества. Порой такие, которые в обычных условиях получить невозможно. А главное — с огромными скоростями! Если удлинить реакционные зоны пламени, то можно извлекать из них промежуточные продукты.

Допустим, в трубе сжигают смесь газообразных углеводородов. Тогда на одном участке будет возникать этилен, на другом — ацетилен, на третьем — сажа. Все три — ценнейшее химическое сырье. Их можно отсасывать из пламени — достаточно пристроить к камере сгорания трубы с водяным охлаждением.

Трудно переоценить выгоды, которые сулит подобная «огневая» технология. До сих пор ацетилен C2H2 вырабатывают, применяя трудоемкий двухстадийный процесс. Сначала — получение карбида кальции 2CaO + 5C = 2CaC2 + CO2. Затем обработка его водой: CaC2 + 2H2O = Ca(ОН)2 + C2H2. Новый высокоскоростной способ значительно снижает себестоимость важного продукта.

«Сегодня химические процессы отнимают дни и часы, завтра они будут совершаться со скоростью взрыва». Эти слова произнесены академиком Трапезниковым. Вадим Александрович не химик. Он занимается автоматикой и телемеханикой. Но как бы то ни было, его пророчество, несомненно, сбудется. Залогом тому — стремительное развитие науки о высокотемпературных реакциях. Не менее стремительное, чем сами сверхскоростные процессы.

Огромен диапазон скоростей, давлений и температур, с которыми приходится иметь дело нынешнему химику. И зачастую проверенные расчетные методы, приложимые к одним технологическим режимам, отказывают при переходе к другим. Вот, например, кинетика горения и взрыва — сколько здесь своеобразия! Разве легко учесть все неповторимые особенности, присущие, скажем, цепным реакциям?

Не следует думать, будто цепные реакции идут лишь при адской жаре.

«Осторожно! Окрашено». Сколько раз это короткое предупреждение заставляло нас, как от огня, отпрянуть от долгожданной скамейки или боком, с оглядкой, пробираться через двери, словно боясь обжечься о раскаленные головни! Хотя любая масляная краска, даже самого что ни на есть огненного цвета, сама боится пламени и предпочитает прохладу. И тем не менее высыхание льняного масла — самая настоящая цепная реакция.

При взрыве гремучей смеси инициатором лавинного процесса был обломок молекулы H2. Органические соединения тоже способны отщеплять активные осколки — свободные радикалы…

Как они вырвались на свободу…

«И вижу: сидят людей половины. До пояса здесь, а остальное там». Ну, конечно же, поэт шутил. Зло, остроумно, но, выражаясь языком литераторов, чересчур гротескно. Даже в мифах фантазия людей не переходила столь смело роковой рубикон: попадаются кентавры, но нигде не упоминается полчеловека или пол-лошади в отдельности; можно встретить ундину, но не дамский торс и рыбий хвост, существующие порознь.

Шутки шутками, а явление, с которым столкнулись химики на рубеже XIX и XX веков, заставило ученых пересмотреть взгляд на взаимоотношения между целым и его частями.

Сотрудник Мичиганского университета Мозес Гомберг проводил самый заурядный синтез. Он хотел получить гексафенилэтан действием цинка на бромистый трифенилметил:

Но ученый обманулся в своих ожиданиях. В колбе обнаружилось вещество, которое содержало два атома кислорода. Откуда они? Из воздуха? Тогда опыт был повторен без доступа воздуха. Желанное соединение было-таки получено, но… ни с того ни с сего вдруг развалилось пополам! Самое странное в том, что осколки оказались довольно стойкими. И долго сохраняли полную самостоятельность. В синтезе Гомберга реакция словно бы остановилась на полпути. «Прозаседавшиеся» радикалы не торопились соединиться друг с другом, как смешные человеческие половинки в стихотворении Маяковского. Или хотя бы с другими атомными группами, чтобы дать целостное сочетание — какого-нибудь химического кентавра, что ли. У обеих половинок — радикалов трифенилметила — одна валентная связь оставалась свободной, ненасыщенной.

Так наука впервые познакомилась со свободными радикалами.

Легко видеть, что число электронов, образующих химические связи, у радикала нечетное.

Самый характерный признак радикала — наличие у него неспаренного электрона. Он-то и выдает присутствие свободных радикалов. Чем больше в веществе этих маленьких магнитиков, тем сильнее препарат втягивается магнитным полем. Целостные же органические соединения, подобные бензолу, выталкиваются из него. Ведь у них все спины попарно антипараллельны. И почти все органические соединения именно таковы — диамагнитны. А свободные радикалы парамагнитны. Это различие оказалось на руку исследователям химических реакций. Оно используется в методе ЭПР — электронного парамагнитного резонанса. Предложенный советским ученым, академиком Владиславом Владиславовичем Воеводским, метод ЭПР стал эффективным средством исследования в руках химиков. С его помощью выслеживают осколки молекул, которые участвуют в цепных реакциях.

Да, именно они, эти скоропостижно умирающие частицы, определяют ход цепной реакции.

Разбирая горение водорода, мы столкнулись с необычным промежуточным соединением — HO2. Свободные радикалы столь же жадно, как и атом водорода, присоединяются к кислороду: R + O2 = RO2. И неспроста: молекула кислорода парамагнитна. Правда, в ней четное число электронов. Но ведь два из них не спарены!

Органические молекулы разваливаются на куски при меньшей температуре, чем H2. Некоторые из них, особенно сложные, претерпевают подобную катастрофу уже при 93 градусах — раньше, чем закипит вода. Распад происходит в тот момент, когда мы подносим спичку к полену, свече или газовой конфорке. Тотчас же возникают неустойчивые соединения RO2. Если тепла достаточно, они диссоциируют на RO и О, которые поведут себя затем столь же агрессивно, как НО и О при горении водорода. Поначалу тепло дает спичка. Потом оно в нарастающем количестве выделяется самой реакцией. Число звеньев увеличивается в геометрической прогрессии. Спичка давно погасла, а огонь захватывает все новые и новые массы вещества: горение уже перешло в самоподдерживающийся процесс.

…И как их заковали в цепи.

Иногда цепи разветвляются сверкающим веером настолько стремительно, что процесс заканчивается взрывом. Но цепи могут и обрываться. Например, в тех случаях, когда происходит рекомбинация. Соединяясь между собой или с атомами водорода, свободные радикалы снова дают устойчивые соединения. Так, в пламени конечным звеном цепи служат обычно молекулы H2O или СО2.

Столкновение со стенкой или даже с пылинкой отбирает у активной частицы избыточную энергию и тоже, как правило, рвет цепь. Очевидно, каждый такой обрыв препятствует дальнейшему развитию реакции. А при неблагоприятных условиях может и вовсе прекратить ее. Вот почему для цепных процессов существенно, какое им отведено помещение. В длинных и узких трубках вероятность столкновений со стенками, очевидно, больше, чем в шарообразном сосуде. И цепи будут обрываться, конечно, чаще.

При низких температурах цепочки почти не разветвляются. Вместо веера здесь вереница взаимодействий. Каждый свободный радикал занимает место предыдущего, уступая его следующему себе подобному. Устанавливается подвижное равновесие между возникновением и обрывом цепей. Реакция достаточно медлительна, чтобы выделившееся тепло рассеялось в окружающую среду и не взвинтило скорость процесса. Именно так высыхают краски. Сначала кислород взаимодействует с маслом. Получается гидроперекись. Она неторопливо разлагается, порождая свободные радикалы. А те, в свою очередь, образуют поперечные связи между молекулами льняного масла. Пленочное покрытие твердеет.

А если бы тепло не успевало рассеяться? Температура дошла бы до точки, где цепи начинают разветвляться. Произошло бы, как говорят пожарники, самовозгорание. И это действительно случается временами с кучами промасленного тряпья.

Не приходила ли вам в голову мысль: а почему, собственно, мы, люди, не воспламеняемся? Ведь каждый наш вздох — окисление. Достаточно появиться одному запальному радикалу, как… Конечно, можно возразить: сгорание глюкозы протекает в водной среде внутри клеток. Разумеется, в таких условиях о пламени и речи быть не может. А все-таки интересно: идут в нашем организме разветвленные цепные реакции или нет?

Нет. Не идут. Хотя, быть может, вдыхаемый нами кислород поглощается и не без участия свободных радикалов. Если, конечно, так можно назвать промежуточные вещества, переносящие один электрон в сложном процессе окисления глюкозы. Любопытно, что зеленый лист, облученный светом, дает характерный спектр ЭПР. Но ведь фотосинтез — это процесс, обратный сгоранию глюкозы в наших клетках! И все же одноэлектронный перенос заряда не имеет ничего общего с типичной цепной реакцией. В этом немалая заслуга витаминов E и C. Первый защищает жировую ткань, второй — водную среду организма от разрушительного действия возможных окислительных цепных реакций.

Между тем образование настоящих свободных радикалов в человеческом организме вполне реально. Так происходит, например, при радиоактивном облучении. Это не значит, разумеется, что человек вспыхивает как спичка. Но цепные процессы могут привести к серьезным расстройствам в нормальной деятельности клеток. Недаром ученые заняты поисками ингибиторов (так называются отрицательные катализаторы, тормозящие ход нежелательных химических процессов). В технике уже получили широкое применение антиокислители и консерванты: их добавляют к смазкам, пластмассам, топливам, медикаментам и пищевым продуктам.

Математический анализ раковой опухоли. Кощунство? Нет, гуманность!

Как это ни странно, цепные реакции имеют непосредственное отношение к проблеме рака. Конечно, пока это лишь гипотеза. Но весьма правдоподобная. Она высказана одним из создателей теории горения — членом-корреспондентом АН СССР Эмануэлем. Вот что рассказал автору этих строк Николай Маркович:

— Механизм превращения нормальных клеток в опухолевые? Вот уже много лет подряд мы исследуем его с позиций учения о химической кинетике. Среди разных причин, вызывающих страшный недуг, наше внимание привлекают свободные радикалы. Они образуются в клетке под действием радиации. Канцерогенность, то есть способность возбуждать рак, свойственна и химическим соединениям. Например, бензпиренам, содержащимся в выхлопных газах автомобилей, в табачном дыме. Попав через легкие в организм, канцерогены приводят к образованию свободных радикалов. А те повреждают белки, ферменты, нуклеиновые кислоты. Они покушаются и на ингибиторы-антиокислители (в частности, некоторые витамины), содержащиеся в клетке. Такое варварство не проходит бесследно. Клетки начинают безудержно размножаться. Если это так, то естественно ожидать, что картину прогрессирующей злокачественной опухоли можно описать уравнениями химической кинетики. И вот оказалось, что развитие экспериментального лейкоза у мышей действительно подвластно строгим математическим закономерностям!

Онкологам давно известно, что привить опухоль от больного зверька здоровому не удается, если взято слишком мало клеток. Нужно вполне определенное их количество, чтобы началась болезнь. Подобные явления получили название «пороговых». Мы рассмотрели их в кинетическом аспекте. Обнаружилось, что переход от невосприимчивости к заболеванию при постепенном увеличении числа клеток имеет скачкообразный характер. Это напоминает критические явления в цепных реакциях, когда незначительное изменение условий вызывает внезапный скачок: только что процесс протекал с едва заметной скоростью, и вдруг — взрыв!

Николай Маркович показывает график. На нем плавные кривые. Они поначалу идут полого, почти горизонтально, а затем круто взбегают кверху. Да, именно так, лавинообразно, развивается во времени цепной процесс. Вот уж никто бы не подумал, что даже сугубо биологические явления в руках химика приобретут математическую четкость!

А в самой химии? А какой мере поддается математическому анализу огромное разнообразие явлений — от спокойной, размеренной вереницы взаимодействий в сохнущей краске до стремительного фейерверка цепных процессов при взрыве?

В 1907 году известный русский математик Андрей Андреевич Марков заложил основы теории, которая впоследствии стала незаменимым инструментом исследований в химии. Впрочем, не только в химии. В радиотехнике, метеорологии, биологии — в любых отраслях науки и техники успешно используются вероятностные построения, известные под названием «цепей Маркова».

Наиболее рациональное обслуживание больных на медпункте аэродрома… Автоматическое распределение нагрузок в большой энергосети… Размножение и гибель раковых клеток… Диффузионное разделение урановых изотопов… Трудно поверить, что столь несхожие явления можно привести к одному знаменателю. Но это так. Перед нами знаменитые марковские процессы. Их теория славится хорошо разработанным математическим аппаратом. Он сводится к дифференциальным и интегральным уравнениям. Тяжелая математическая артиллерия бьет без промаха, допуская строгий теоретико-вероятностный анализ случайных процессов.

Любой процесс из целого калейдоскопа окружающих нас ситуаций может быть сведен к одному из двух типов: либо к марковскому, либо к стационарному. Процессы первого типа развиваются во времени так, что состояние в следующий момент у них иное, чем в предыдущий. Пример: взрыв. И он строго описывается разделом математики, который так и называется: теория ветвящихся случайных процессов. Процессы второго типа не зависят от бега времени. Это установившиеся системы, подобные заводскому реактору, работающему в стабильном технологическом режиме.

Заводской реакторТак это же и есть конечная цель химического моделирования! Как ее достигнуть?

Мы узнали, что химики умеют проникнуть в любые тайны пробирки. Что они могут описать кинетику любого процесса подходящими математическими уравнениями. Но они не в силах перейти сразу же от лабораторной колбы к заводскому аппарату. Не работает теория подобия, по которой авиаконструкторы рассчитывают самолеты. Почему же так?

Химический реактор и впрямь чем-то напоминает самолет. Внутри обоих поддерживаются неизменными температура и давление. Оба рассчитаны на определенную пропускную способность. Только у одного — молекулы, у другого — пассажиры. Чем больше размеры того и другого, тем выше производительность. Полезный «выход» зависит от скорости. Правда, реактор в отличие от самолета стоит на месте. Но существенной разницы здесь нет. Через оба аппарата — летательный и химический — идет поток индивидов. В одном случае биологических, в другом — химических.

Оба потока подвержены случайностям. Но и тот и другой поддаются теоретико-вероятностному анализу. А вот поди ж ты…

Различие начинается в тот момент, когда мы вспомним, что конструкция самолета зависит от свойств внешней среды, а не содержимого, как у реактора. Летательный аппарат — герметичный обтекаемый ящик, рассчитанный на внешние нагрузки, на взаимодействие с течениями воздушного океана. Содержимое этого ящика заботит конструкторов в меньшей степени. В конце концов какая разница, кого или что будет транспортировать воздушный лайнер? Люди, письма, газеты, продовольственные или промышленные товары — все одно какой груз. От его вида не зависят главные требования к конструкции самолета. Сила тяги, скорость, прочность, долговечность, грузоподъемность — все упирается прежде всего в аэродинамические качества машины. Иными словами, в то, насколько хорошо подогнаны формы самолета к непрерывному напору стремительного встречного ветра. А это соотношение между потоком воздуха и формой самолета почти не зависит от масштабов эксперимента.

Иное дело химический аппарат. В нем вид оболочки зависит прежде всего от характера содержимого. Клокочущего, бурлящего, пышущего жаром, распирающего что есть силы внутренности труб и котлов. Снаружи здесь такая же спокойная и комфортабельная обстановка, как и в салоне «ТУ-104». Зато внутри… Именно там непрерывный поток, а не снаружи, как у самолета. Правда, поток установившийся, как и за бортом воздушного корабля. Стационарный режим, который поддается математическому анализу. Но тут-то и кончается последняя капелька сходства.

Мы убедились: влияние тепла на ход химического взаимодействия огромно. Кинетика процесса в маленькой пробирке и большом реакторе будет одинаковой лишь в том случае, когда температуры распределены равномерно по всему объему. А ведь тепло выделяется непрерывно при каждом элементарном акте химического взаимодействия. Между тем равномерный отвод тепла из зоны реакции зависит от размеров и конструкции аппарата. И это не все. На перенос тепла и вещества влияют также свойства катализатора, размеры и взаимное расположение его зерен. Потому-то результаты химического процесса и зависят от масштабов эксперимента.

Странное дело: лилипуты не хотят превращаться в Гулливеров!

Проектирование промышленной установки обычно проходит долгий путь постепенного увеличения габаритов. Сначала, конечно, просто колба. Лабораторная установка. За ней укрупненная, опытная, дальше полупромышленная, наконец заводская.

Ну и что? Чем больше этапов, тем лучше будет отработана технология. Да, но сколько это займет времени?

Десять, а то и все пятнадцать лет! Столько обычно отнимает путь от лабораторного стенда до заводского цеха.

Выходит, новое химическое предприятие, пущенное сегодня, освоило технологию 1950–1955 годов? Значит, перерезая традиционную ленточку, мы входим во вчерашний день? И это при теперешних-то темпах научного прогресса! Трудно поверить, чтобы за два семилетия, которые необходимы для внедрения нового способа, не состарилась технология, слывшая когда-то прогрессивной. Да и потребность в «новом» химическом продукте может отпасть!

Однако допустим невероятное — что такого не произойдет. Все равно десяти лет мало, слишком мало, чтобы выбрать наилучший вариант из всех возможных конструкций аппарата. Для этого пришлось бы на каждом этапе изготовлять сотни образцов одной и той же модели, которые отличаются, скажем, диаметром труб, формой реакционной камеры, толщиной ее стенок, структурой каталитической массы, условиями контакта между катализатором и реагентами и так далее и тому подобное. Между тем построить даже одну-единственную установку — дело нелегкое. Это многие недели, а то и месяцы работы литейщиков, слесарей, токарей, сварщиков. Это многие килограмм, а то и центнеры дефицитных материалов. А экономика несговорчива. А время нетерпеливо.

И только богатый опыт да недюжинная интуиция способны выручить конструкторов.

Но вот реактор спроектирован и «выполнен в металле». Казалось бы, цель достигнута и заботы химиков на этом кончаются. Нет! Предстоит еще найти наиболее выгодный технологический режим для созданной конструкции.

Самолет может летать туда-сюда и базироваться на любом аэродроме. Если «ТУ-104» стал в ремонт, его легко подменить. «ИЛ-18» или другой его собрат — на графике рейсов такая перестановка почти не скажется. Химический же аппарат накрепко привинчен болтами к опоре, жестко соединен трубами с остальными элементами производственной схемы. За этим чисто поверхностным различием кроется глубокий смысл. Реактор — неотъемлемое звено длинной технологической цепочки. Если он вышел из строя — замирает вся линия. И, в свою очередь, его «самочувствие» зависит от поведения всех других аппаратов и коммуникаций. Малейшее отклонение от стационарного режима на предыдущем участке непрерывного потока вносит искажения в динамическое равновесие внутри нашей системы. Как это возмущение скажется на выходе продукта? В каких пределах допустимы пульсации ритма? Каков оптимальный режим?

Мы знаем, что нагревание увеличивает скорость реакции N2 + 3H2↔2NH3. И в то же время уменьшает выход нужного продукта — аммиака. Какая температура наиболее выгодна?

Правда, можно сместить равновесие вправо, повысив давление. Однако это зависит от мощности насосов и крепости стенок аппарата. Какое давление наиболее разумно?

Конечно, катализатор пришпоривает процесс, ускоряя наступление равновесия. Но чем быстрее ход реакции, тем сильнее «устает», «отравляется» ее ускоритель. Добавить побольше «бодрящего вещества» — значит изменить условия теплопередачи в контактном аппарате (реактор так называется потому, что именно в нем реагенты и катализатор приходят в соприкосновение).

Какое количество катализатора наиболее рационально?

А как подобрать самое подходящее сочетание всех условий процесса? Да так, чтобы и экономика и техника безопасности не были в претензии? Иными словами, как нащупать оптимальный режим с определенным допуском отклонений в ту или иную сторону?

Целый клубок вопросов, где тесно переплелись разноречивые желания и возможности, требования и ограничения!

Нет ничего удивительного, что по завершении строительства крупных промышленных объектов иногда вдруг новая установка начинает капризничать, а то и вовсе объявляет забастовку. На укрощение строптивой приходится терять время, ставить бесчисленные опыты в нервозной атмосфере, когда завод стоит, ожидая устранения недоделок. Недоделок? Если бы это было так! Ведь предварительные эксперименты были проведены со всей тщательностью. Установка на всех предшествующих этапах проверена и перепроверена. И вот — надо же! — такая незадача…

Как же так? Неужели теория спасовала перед практикой? Разве не говорилось о том, сколь огромны достижения науки в изучении химической кинетики и теплофизики? Неужели нет такого катализатора, который ускорил бы процесс перехода от лабораторной модели к безотказно действующему заводскому аппарату?

Есть! Математическое моделирование.

Цифры вместо интуиции. Эта эпоха уже настала.

Еще в тридцатые годы, когда академик Курнаков в окружении многочисленных исследователей совершенствовал свою топологическую химию, появились научные работы совершенно нового направления в математической химии. Их автором был молодой ученый Георгий Боресков, ныне член-корреспондент АН СССР. Он сформулировал и решил первые задачи по математическому моделированию химических процессов. Теоретически рассчитывать промышленные реакторы, не строя полупромышленных установок, исходя лишь из экспериментов в пробирках… Это противоречило всему конструкторскому опыту в химической технологии. О таком не слыхивали даже крупнейшие зарубежные специалисты, помогавшие Стране Советов создавать химические комбинаты в Березниках, Дзержинске, в Кузбассе и Донбассе. Да и наши ученые скептически отнеслись тогда к новым идеям. Слишком уж громоздким оказывался математический аппарат при анализе самых простеньких процессов. И хотя работы Борескова имели теоретический интерес, с точки зрения практической они считались бесперспективными.

А теперь…

«В 1963 году, — заявил президент нашей академии Мстислав Всеволодович Келдыш, — получены первые результаты методов физического и математического моделирования к расчету некоторых химико-технологических процессов, что сокращает сроки перехода от лабораторных опытов к промышленной реализации процессов. Эта проблема настолько важна, что в предстоящем году на ней должны быть сосредоточены усилия и химиков, и физиков, и математиков».

Мыслимое ли дело — проводить технологический процесс без контактного аппарата? Даже без самих веществ — непосредственных участников химического процесса?

Мыслимое. Просто необходимое. Ибо иного, более эффективного пути масштабного перехода пока что попросту не дано.

Помните язык курнаковских чертежей и гипсовых изваяний? Подобная «графика» и «скульптура» — тоже математическое моделирование. Там по диаграмме можно было проследить, как меняются свойства системы в зависимости от ее состава. Здесь моделью служит набор математических уравнений, описывающих химические и физические процессы в аппарате. Разумеется, без экспериментов с колбами и пробирками не обойтись и здесь.

Но вот что самое интересное: лабораторная установка вовсе не обязана быть моделью заводского аппарата! Таковой служит именно система математических уравнений. Странно, не правда ли?

Когда авиаконструкторы строят модель будущего самолета, у них получается лилипут, как две капли воды схожий с Гулливером. Чертежи одни. Только масштабы разные. Так поступали раньше и химики. Они старались в миниатюре воссоздать промышленный реактор. И максимально приблизиться к реальным условиям его работы. Дескать, чем точнее маленькая копия, тем совершенней большой оригинал. А оказалось наоборот.

Вместо копирования реальной обстановки необходимо создать идеальные условия чистого химического эксперимента. Ибо только так можно устранить помехи при изучении химизма реакции. Иначе теплофизические и гидродинамические факторы, накладываясь на кинетические закономерности, могут настолько усложнить картину процесса, что выяснение его тонкой механики станет неосуществимым.

Эта фундаментальная идея, высказанная в 1958 году Георгием Константиновичем Боресковым и Михаилом Гавриловичем Слинько, — один из краеугольных камней математического моделирования.

Но вот изучена кинетика химических реакций со всеми «драматическими коллизиями»: промежуточными стадиями, побочными продуктами и, что особенно важно, скоростями взаимных превращений веществ. Как же теперь учесть чисто физические стороны явления?

А учесть надо многое: как переносится тепло вместе с веществами, как оно передается стенкам сосуда и катализатору, как его отводить или подводить. Как и для модели самолета, очень важно знать гидродинамические характеристики потока.

Все это уже выяснено физиками для подавляющего большинства практически важных процессов. Зачастую можно воспользоваться готовыми уравнениями.

Осталось совместить физические и химические закономерности, чтобы перенести их в условия крупного масштаба. Как показал Слинько, такая «проекция» не по плечу теории подобия, хотя она верой и правдой служит авиаконструкторам. И единственный выход из положения — математическое моделирование.

Модель аппарата нельзя потрогать. Она незрима и невесома. Если можно так выразиться, это математический сценарий, где вместо действующих лиц — переменные величины, связанные определенными закономерностями. В нем воедино сливаются химические и физические закономерности. Как же теперь поставить спектакль?

Если посадить за стол многолюдную группу самых смекалистых математиков и поручить им с карандашом в руках проанализировать и решить выведенные уравнения, на такую работу уйдет не один год. Вот почему этот путь был практически закрыт перед химией до появления вычислительных машин.

Электронный мозг поднял шлагбаумы перед математическим моделированием.

С октября 1962 в Институте катализа Сибирского отделения АН СССР, где директором Боресков (его заместитель Слинько), установлена аналоговая вычислительная машина «МН-14». Заметьте: не в математическом, а в химическом институте!

Аналоговой ее нарекли потому, что в своей работе она опирается на аналогию (сходство) между физико-химическими явлениями в контактном аппарате и процессами в ее радиоэлектронных схемах.

При решении кинетических, теплофизических и гидродинамических уравнений приходится складывать, вычитать, умножать, делить разные величины. Эти арифметические операции аналоговая машина проделывает не с цифрами, а с электрическим напряжением. Она горазда и в высшей математике. Например, умеет интегрировать.

Интегратор. Звучит загадочно и громко. А это всего-навсего конденсатор, соединенный с сопротивлением. Интегрирование дифференциальных уравнений. Тоже звучит! Но химика уже не испугаешь такой терминологией. Он научился манипулировать сложной вычислительной техникой, способной в минуту расправиться с уравнением, которое раньше вселяло ужас даже в бывалого математика.

В радиометрических лабораториях есть такие приборы — счетчики Гейгера — Мюллера. Они измеряют скорость распада радиоактивных изотопов. Гамма-кванты, или элементарные частицы, испускаемые ядром, вызывают разряд конденсатора. Каждый такой разряд регистрируется электронной схемой. Схема может быть дифференциальной. Или интегральной.

В первом случае дрожащая стрелка указывает на шкале прибора количество электрических импульсов в секунду. Это скорость распада в каждый данный момент. Примерно так же по шкале спидометра вы можете каждую секунду следить за изменением скорости автомобиля. А в конце поездки из показаний спидометра узнать, сколько километров проехал автомобиль за какой-то отрезок времени. Это уже интегральная схема. Только в радиометрическом приборе вместо километража — сумма импульсов за определенный период.

Число импульсов в секунду — дифференциальная величина. Она колеблется от момента к моменту около какого-то статистического среднего значения. А это среднее значение изменяется по определенному закону. Кинетическое уравнение подобного процесса напоминает выражение для скорости такой, например, реакции: J2→2J. Оно выглядит несложно: V = k1[J2], или в общем случае V = kc.

А в дифференциальной форме так: dc/dt = –kc.

Здесь c — концентрация радиоактивного препарата или молекул йода.

Очевидно, скорость распада уменьшается, по мере того как убывает концентрация исходного вещества. Поэтому коэффициент k взят со знаком «минус». Чтобы найти, сколько распавшихся атомов образовалось к какому-то моменту времени, нам надо проинтегрировать это дифференциальное уравнение. Грубо говоря, просуммировать все значения переменной величины c за все моменты времени. Такие операции и выполняет интегратор.

Интегрируемая функция поступает на выход блока в виде напряжения, которое изменяется во времени так же, как и концентрации реагентов. Интегрирующим элементом служит конденсатор, на котором постепенно накапливается заряд. На выходе схемы мы получим ток с другими характеристиками. Он и будет нашим электронным «километражем» — интегралом.

Математика химической кинетики сводится, как правило, к решению дифференциальных уравнений. Машина способна решать их, варьируя значения концентраций, температур, давлений и прочих параметров процесса. Именно «значения». Ибо самих веществ, самого тепла, самого сжатия нет. Есть только напряжение тока.

Так электронная машина «превращается» в аппарат. И не просто в аппарат. Ведь у подлинного реактора жесткие стенки да еще из дефицитных материалов. Менять его форму — значит заказывать новые металлические детали, потом сваривать их и свинчивать вместе. Между тем реактор для получения, скажем, серной кислоты — это махина ростом в два с половиной метра да столько же в обхвате. А машина моделирует аппарат с непрерывно изменяемыми размерами и формой.

На аналоговых машинах типа «МН-14» легко варьировать не только форму «сцены», где развертывается действие химических и физических сил, но также «декорации» и характеристики «действующих лиц» — все параметры технологического процесса, причем одновременно.

Собственно, никакого всамделишного химического процесса нет и в помине — точь-в-точь как в театре, где вместо реальных людей перед зрителем живут и умирают актеры, да и сам аппарат не менее призрачен, чем мнимая фигура Монжа-Бертолле. Только перемигиваются лампочки на панели «МН-14», спешат-торопятся электронные импульсы по всем 45 километрам ее проводов, срабатывают 8 тысяч ее полупроводниковых диодов и триодов да 3100 радиоламп… Но когда вы поворачиваете ручку настройки, знайте: вы меняете какой-то параметр, ну, к примеру, условия теплопередачи. И тотчас зеленоватые зигзаги на экране осциллографа оповещают нас, что «горячее пятно» в невидимом чреве аппарата стало еще горячее, значит продукты реакции вот-вот разнесут вдребезги всю линию технологического цикла; или наоборот: пятно остывает, процесс того и гляди замрет.

Именно так на «МН-14» Институтом катализа был опробован новый метод получения из метилового спирта формальдегида — важного полупродукта в производстве полимеров. Три-четыре дня работы машины — и перед химиками-математиками лежали готовые результаты. Вместе с лабораторными исследованиями все это заняло меньше четырех месяцев. Расчеты сразу же были переданы в конструкторское бюро для проектирования заводского контактного аппарата.

Тем временем новосибирский химзавод параллельно разрабатывал конструкцию обычным путем. Монтаж, налаживание и пуск одной лишь опытной установки отняли почти год. Предстояла следующая стадия — создание и освоение полупромышленной установки. Только после этого можно было приступать к проектированию заводского аппарата. Сколько времени длилась бы эта томительная процедура, если бы не химики-математики?

Вместо пятнадцати лет за три года. Вот что значит математическое моделирование, этот чудесный катализатор большой химии.

Математическое моделирование химических процессов на электронных машинах уже сегодня позволяет сократить 10–15-летний путь от пробирки к заводу в пять раз. Это значит, в пять раз скорее промышленность может получить пластмассовые детали, сельское хозяйство — удобрения и ядохимикаты. Это значит, во много раз ускорить выполнение грандиозных планов по развертыванию строек большой химии и ее ударного фронта — химии плодородия.

Летом 1963 года в Новосибирске проходила 1-я Всесоюзная конференция, посвященная моделированию химических процессов. Это был настоящий форум молодости. И не только потому, что средний возраст большинства ученых в Академгородке — 25–30 лет. Сами идеи были под стать участникам — юны, свежи, озорны. Сколько раз с трибуны в зал смотрели проницательные и вдохновенные глаза Монжа-Бертолле!

Одним из самых активных участников конференции был младший научный сотрудник Института катализа Владимир Бесков. Химик, одержимый математическими идеями, он регулярно выступает и в местной печати как талантливый популяризатор.

«Современный технолог должен хорошо владеть математикой, — пишет и доказывает собственным примером Владимир Бесков, — должен знать математический анализ и современную вычислительную математику, вариационное исчисление и динамическое программирование, аппарат математической физики и методы теории автоматического регулирования».

Побольше бы нашей химии таких энтузиастов! Подумать только: уж если в неторопливую эпоху от Бертолле до Курнакова союз химии и математики принес богатые плоды, то что будет сейчас, когда на дворе XX век — стремительный в своем электронном быстродействии! Какие сдвиги сулит математика народному хозяйству!

Институтом катализа совместно с Научно-исследовательским институтом мономеров синтетического каучука был рассчитан на электронных машинах новый оптимальный режим для получения дивинила из бутилена. Он позволяет повысить выход чуть ли не в два раза и снизить стоимость продукции. Результаты расчетов убедительно доказали, что необходимо в корне переделать спроектированный обычным способом реактор для дегидрирования бутана.

Да, переделать! Ибо эти рекомендации исходят от умной машины, которая, как это ни грустно для человеческого сознания, оказалась более предусмотрительной, более проницательной и смекалистой.

В настоящее время Институт катализа и Институт математики Сибирского отделения АН СССР располагают рядом типовых программ для расчета химических аппаратов. Но этого мало! Нужна целая библиотека стандартных математических моделей и совершенных программ.

— У нас, — говорит Боресков, — уже рассчитаны или рассчитываются оптимальные конструкции контактных аппаратов и оптимальные режимы работы для многих процессов: производства серной кислоты, аммиака, окисления этилена, синтеза высших спиртов из окиси углерода и водорода, дегидрирование бутилена, получение нитрила акриловой кислоты.

Малопонятные словосочетания, что поделаешь.

Но это новые цехи по производству удобрений, ядохимикатов, каучука, пластмасс, красителей, медикаментов. И не просто новые, а работающие с более высокой производительностью и низкой себестоимостью, чем прежние, созданные без участия электронных консультантов. Нужно ли говорить, что значит каждый процент экономии в условиях гигантского размаха, который приняло у нас строительство предприятий большой химии?

Серная кислота. Хлеб современной химии. Трудно назвать химический процесс, где бы не участвовал этот важный продукт. Современная технология сернокислотного производства отрабатывалась более полувека. Казалось бы, здесь нет места усовершенствованиям. Но вот за дело принялась группа химиков нашего института и математиков вычислительного центра. Решалась сложная задача: сколько слоев и какое количество катализатора наиболее выгодны? Какова должна быть температура между слоями? Предстояло определить также степень превращения веществ на всех стадиях.

Систему уравнений вручили электронной машине. Она расправилась с ними за десять минут. И что же? Три процента. Настолько возрастет выпуск продукции, если перейти на рассчитанный нами оптимальный режим. Три процента — много или мало? Это равносильно сооружению нескольких новых заводов, и довольно крупных. А достигается такая экономия без всяких дополнительных затрат!

И это далеко не единственная иллюстрация огромных возможностей, которые несет в себе машинная математизация самой революционной науки нашего времени.

Полиэтилен. Король пластиков. И одновременно чернорабочий — мастер на все руки. Ему отведена львиная доля в производстве полимеров в самые ближайшие годы. А получается он пока что не самым совершенным способом. Процесс состоит из многочисленных стадий. И очень трудоемок. Между тем именно математическое моделирование показало, что его можно существенно упростить. Разработан оригинальный метод суспензионной полимеризации, который позволяет безболезненно отказаться от двух стадий производства: предварительной очистки растворителя и последующего отделения растворителя от полимера. Новый способ успешно испытывается в Баку.

Сбережение человеческих сил и материальных средств, энергии и времени. Какой рачительный производственник этого не желает! Однако математические расчеты так и останутся стопкой бумаги с набором символических цифр, пока за дело не возьмутся проектировщики, чтобы облечь абстрактные схемы и формулы в стальную и бетонную плоть.

Прискорбно, но факт: химия оказалась менее подготовленной к вторжению электронных машин, чем другие области техники и технологии. Отчасти такое положение объясняется отсутствием специальных кадров. Особенно остро ощущается этот недостаток в Сибири.

Вузы страны каждый год выпускают математиков-исследователей. Однако неутолима жажда нашей науки, техники, промышленности. Стоит ли удивляться, что проблемами химии занимается так мало математиков — раз, два, и обчелся?

Спрашивается, а разве химические вузы не могли бы готовить кадры по профилю «математическая химия»?

От желающих идти в химию нынче отбоя нет. Только почему-то многие мыслят свое будущее место в химии довольно однобоко. Восемь-девять из десяти намерены стать инженерами-химиками. Непременно. И не иначе, как на гигантском химическом комбинате. А ученым-исследователем? И не на капитанском мостике в цехе, а в стеклянном царстве лаборатории под боком у умных машин?

Спросите у школьников: хотят ли они пойти в математическую химию? В ответ почти наверняка воцарится робкое молчание. Нет, не потому, что не хотят. Потому что, как правило, просто не знают, о чем речь.

Топологическая химия. Квантовая химия и биология. Передовые эшелоны широкого фронта химических исследований. Они ждут своих новобранцев.

Спору нет, увлекательно работать в новой области, где сошлись пути двух древних наук, где перед творческой инициативой открываются широчайшие горизонты. Непочатый край исследований, результаты которых с нетерпением ждет страна. Тысячи молодых специалистов-химиков приходят ежегодно в наши исследовательские лаборатории. Какой-то процент из них мог бы посвятить себя математической химии, или, если угодно, химической математике.

Но дело не в названии. Современной химии нужны люди, грамотно разбирающиеся в машинной математике.

Химизация, умноженная на математизацию?

Скорейшему выполнению планов химизации способствуют именно математические методы, умножающие творческую мощь наших ученых и инженеров. Они намного убыстряют внедрение новой химической технологии.

До 1980 года осталось ровно пятнадцать лет. Как раз тот интервал времени, в какой укладывается обычно цикл работ по созданию промышленного химического аппарата. Но ведь этот срок можно сократить раз в пять с помощью математического моделирования! Так что у химии есть все возможности приблизить эпоху коммунизма.

Широкое наступление химии требует от ученых и инженеров не только разрабатывать новую технологию. Необходимо эффективное управление производственными процессами.

Химическое производство — непрерывный поток. Малейшее нарушение режима в одном из звеньев моментально сказывается на состоянии всей технологической цепочки разом, начиная с загрузки сырья и кончая выпуском готовой продукции. Приходится внимательно следить за работой каждого агрегата в отдельности. И всей их совокупности, конечно. А это не так просто.

Огромны пульты управления современных химических заводов. Нервно подрагивают стрелки приборов, дергаются по меланхолично ползущим бумажным лентам перья самописцев, то гаснут, то вспыхивают сигнальные лампы и световые табло — попробуй уследи за всеми показаниями разом! Человек может устать, отвлечься, заболеть — да мало ли случайностей подстерегает рулевых большого завода! И даже в том случае, когда тревожный вой сирены возвещает об опасности, скорость реакции человеческого организма на сигнал может оказаться недостаточной. Вот вам и авария…

Глаз — самый быстродействующий аппарат изо всех органов чувств. Однако и он не в состоянии отличить один предмет от другого, если они сменяются чаще чем пять раз в секунду. А сигналы на контрольном щите иногда чередуются гораздо скорее — ведь их так много! У оператора порой в глазах рябит при взгляде на приборную доску.

Всего четверть секунды требуется хорошо тренированному пилоту, чтобы отреагировать на упреждающий сигнал прибора. А за это время реактивный самолет пролетает 150 метров. Контактный аппарат вырабатывает десятки килограммов серной кислоты.

Да, у нервной системы есть свой потолок скоростей, выше которого не прыгнешь, как бы ты ни был опытен и скор. Между тем малейшая неточность — и государство несет миллионные убытки.

Впрочем, даже при безаварийной работе диспетчеру очень трудно подбирать наиболее выгодные параметры технологического режима. Придя на работу, оператор за несколько минут усвоит лишь самое главное из тех сведений о состоянии процесса, которые накапливались у предыдущей смены. Новая смена не сразу освоится с ситуацией и лишь неполное время сможет вести процесс в оптимальных рамках. Да и сумеет ли вообще дежурный мастер подобрать оптимальный режим? Мозг не справляется в достаточно короткое время с огромным потоком информации, хлещущим со шкал многочисленных сигнализаторов. Нужны феноменальная память и молниеносная сообразительность, чтобы быстро перепробовать всевозможные варианты и выбрать из них наилучший.

Такую «память и сообразительность» имеют электронные машины.

На большом нефтеперегонном заводе за показаниями приборов следят сотни операторов. Всех их может заменить одна электронно-вычислительная машина. Но даже тысячи операторов не заменят эту машину.

Самое большее, на что способен весь дежурный персонал, — это устойчиво поддерживать заранее заданный режим. «Электронный мозг» умеет непрерывно регулировать процесс так, чтобы он, несмотря ни на какие изменения, шел в наиболее выгодном режиме.

Делается это так. В блок памяти вводится программа с математическим описанием технологического процесса. Показания приборов, переведенные в форму электрических импульсов, поступают с контрольных точек завода в машину. Эти сигналы сравниваются с теми требованиями, которые записаны (тоже в виде импульсов) на магнитных лентах или других запоминающих устройствах. Совпадение тех и других оставляет машину безучастной. Если же обнаружилось расхождение, в мгновение ока на выход поступают управляющие сигналы. Они приводят в действие исполнительные механизмы, которые тут же изменяют в нужном направлении давление, влажность, температуру или скорость потока.

Так машина поддерживает стационарный, заранее заданный режим. Но она может и нарушать его! Если у нее в памяти есть еще и программа оптимизации.

Активность катализатора со временем падает. Выход продукта тоже. Как же быть?

Поначалу машина самостоятельно пробует, например, повысить давление. Это немедленно сказывается на состоянии всей технологической схемы. Выждав секунду-другую, машина накапливает информацию. Затем она стремительно анализирует ситуацию. Ага, выход продукта повысился! Значит, надо и дальше увеличивать давление в аппарате. Так продолжается до тех пор, пока не будет найдено наилучшее значение параметра. Затем машина начинает изменять температуру, расход и так далее. Сигналы с контрольных постов непрерывно сверяются логическим узлом с заданной программой. Так подыскивается новый режим, самый экономичный из всех возможных.

Конечно, не всегда проста зависимость производительности от величины параметра. Мы уже знаем, что при низких температурах синтез аммиака практически не идет. А при нагревании равновесие смещается так, что выход продуктов уменьшается. Но машина способна варьировать и противоречивые параметры, запоминая наилучшие их комбинации.

Правда, не для всех технологических процессов имеются достаточно полные математические описания. Да и составлять их не легко. Не беда: можно создать самонастраивающиеся системы автоматического управления. Они будут работать по неполной программе, накапливая опыт, запоминая удачные сочетания условий и забывая остальные.

Для заводов синтетического каучука у нас построена электронная машина «Марс-300». Она предназначена для централизованной инспекции сразу по тремстам точкам технологической линии. Все данные регистрируются машиной за полминуты.

Результаты осмотра поступают на выход в числовой форме. При отклонениях от стабильного режима начинает моргать красный глазок на панели вычислительного устройства.

Основные функции «Марса-300» контрольные. Но машина способна выполнять также и некоторые операции управления — пуск, остановка, защита при взрывах.

На Новомосковском химкомбинате завершается комплексная автоматизация аммиачных цехов. Вся информация многочисленных агрегатов будет обрабатываться электронно-вычислительной машиной. Пять минут на размышление — и вывод готов: как и где подправить процесс, чтобы себестоимость оставалась минимальной (экономический оптимум) или выход продуктов был максимальным (оптимум технологический). Оба значения могут не совпадать. Например, увеличение давления с целью увеличить выход продукта потребует большего расхода электроэнергии на вращение моторов компрессоров. А из-за этого может подпрыгнуть вверх значение себестоимости. Но все зависит от программы, вложенной в машину. Она будет точно и беспрекословно выполнять предписание человека.

Машина эта не простая. Самопрограммирующая. Она по ходу дела вносит коррективы в первоначальную программу, подлаживаясь к особенностям технологического процесса и подгоняя его параметры к наивыгоднейшему сочетанию. Подсчитано, что «электронные администраторы» только на Новомосковском комбинате обеспечат ежегодную экономию в миллион рублей.

Изучая профессиональный состав кадров в химической промышленности, статистика выяснила, что до половины заводского персонала занято на таких операциях, которые можно автоматизировать. А нужда в специалистах-химиках растет с каждым годом. Вот почему проблема автоматизации становится особенно актуальной.

Автоматический анализатор, обслуживаемый одним человеком, заменяет два десятка лаборантов. Представляете, сколько резервов рабочей силы высвободят подобные приборы в сочетании с электронными машинами?

Далее. Чем устойчивей режим, тем долговечнее оборудование. И тем меньше потребность в ремонтниках. Мгновенная корректировка технологического процесса по плечу лишь машинам. Только с их помощью удается свести пульсации на нет. Так стабилизация режимов «сокращает штаты», увеличивая число рабочих рук для других видов труда в химической промышленности.

И это не все. Автоматический контроль и машинное регулирование несут с собой в химию скорость. В самом деле: раньше химическая аппаратура строилась в расчете на ограниченные возможности ручного управления. Сейчас эти ограничения снимаются. Быстродействующие электронно-вычислительные устройства могут регулировать самые стремительные процессы. Даже если они неравновесные. Марковские. Значит, можно использовать цепные реакции горения и взрыва! Так электронная техника делает реальным прогноз академика Трапезникова. Химии быстрой, химии горячей — быть!

Математика и кибернетика распахивают перед химией неохватные горизонты.

В гостях у Монжа-Бертолле.

…Огромный заводской цех. Впрочем, это уже и не цех в обычном смысле слова. У него нет стен. Нет крыши. Да и зачем они? Компрессоры, насосы, колонны синтеза, скрубберы, газгольдеры, трубы не боятся дождя. Им не страшен рыжий бич металлов — ржавчина, ибо они сделаны из прочных и жаростойких полимеров. Сквозь прозрачные стенки видно, как в одних реакторах бушует пламя. В других процессы идут при обычной температуре. Но с необычной скоростью и производительностью. Ведь в них работают катализаторы, напоминающие ферменты!

Завод не имеет дымовых труб. Здесь нет ни газообразных, ни жидких отходов. Они полностью утилизированы. То, что нужно для процесса, возвращено в технологическую схему. Остатки поступают на склад. Это сырье для других цехов.

Вокруг ни души. Лишь кое-где на заводском дворе маячат редкие фигуры в белых халатах. Это рабочие, занятые на тех операциях, автоматизация которых пока неосуществима.

Вместо многоэтажного административного корпуса — небольшая будка, похожая на трансформаторную. Но не ищите в ней электронных машин. Их здесь нет. Они за тридевять земель — в крупном вычислительном центре. Оттуда осуществляется контроль сразу за десятками заводов. В будке собраны лишь самые необходимые приемные устройства и переключатели, которые служат посредниками между далекой машиной и исполнительными органами механизмов.

Над складскими помещениями простерта прозрачная пленка. Это гибкая полупроводниковая электростанция. Ток, возбужденный солнечным светом, накапливается в аккумуляторах, чтобы непрерывно вращать электромоторы.

Завод сравнительно небольшой. Но производительность его колоссальна. День и ночь из бункеров в непрерывно подходящие составы ссыпаются сотни и тысячи тонн готовой продукции. А сырье? Оно поступает из расположенного рядом большого соленого озера.

На воротах большие буквы: «Химический завод им. Н. С. Курнакова». А ниже надпись помельче: «Спроектирован электронными машинами в 198… году».

Последнюю цифру трудно разобрать: на нее падает тень от густой листвы. Деревья буйно разрослись вокруг и внутри заводского двора. Завод-сад, бесшумный, бездымный, безлюдный, без устали несет трудовую вахту на благо народа, построившего коммунизм…

А неподалеку от завода раскинулись современные корпуса исследовательских лабораторий. Сверкающая лента асфальта бежит к большой человеческой фигуре, одиноко стоящей перед входом. Он смотрит строго, пряча улыбку в бронзовые усы, пушистые гренадерские усы создателя химической топологии. Табличка над дверьми гласит: «Институт математической химии АН СССР имени Монжа-Бертолле». О, это будет мечта каждого журналиста — посетить такой институт. Разумеется, никто из тамошних брюнетов не будет носить париков, а блондины не станут распускать по ветру свои белокурые локоны. Но из-под современных причесок на вас нет-нет да и посмотрят черные ли, голубые ли, но, ей богу, вдохновенные глаза Монжа-Бертолле — удивительного своей символичностью образа, порожденного фантазией народа.

Оглавление

На перекрестке старых дорог … 5

Глава 1 Наследие призрака? … 11

Глава 2 В мире странных архитектур … 111

Глава 3 Необыкновенная связь … 191

Глава 4 «…Где дышит интеграл» … 253