Полеты воображения. Разум и эволюция против гравитации

fb2

Полет, воздушная стихия – мечта и цель, которая гипнотизировала человека на протяжении тысячелетий. Земная гравитация – суровая реальность, которая противостоит этой мечте и которую неизбежно учитывает и природа. Эволюция подходила к полету рационально: если для целей сохранения вида нужно летать, средства для этого непременно появятся, даже если для этого потребуются миллионы лет. Человек, в свою очередь, придумал множество способов подняться в воздух и перемещаться на большие расстояния: от крыльев мифологического Икара до самолета был пройден большой путь благодаря тому, что во все времена есть люди, способные в своем воображении взлететь ввысь, даже оставаясь на земле. Именно они накапливают знания, открывают новое и ведут за собой: “Быть может, та же тяга к приключениям, которая обуревала полинезийцев, открывавших новые острова, и сегодня живет в том «зове пространства», который побуждает представителей нашего вида колонизировать Марс – и, возможно, в далеком будущем добраться и до звезд?”

В формате PDF A4 сохранен издательский макет книги.

First published in the UK in 2021 by Head of Zeus Ltd An Apollo book

Издание осуществлено при поддержке “Книжных проектов Дмитрия Зимина”

Иллюстрации Яны Лензовой

© Richard Dawkins, text 2021

© Jana Lenzova, illustrations, 2021

© А. Бродоцкая, перевод на русский язык, 2023

© ООО “Издательство ACT”, 2023

Издательство CORPUS ®

Глава 1

Мечты о полете

Вам когда-нибудь снится, что вы летаете, словно птица? Мечтаете ли вы об этом наяву? Я – да. И я очень люблю такие сны и мечты. Скользишь себе над кронами деревьев безо всяких усилий, то взмываешь вверх, то камнем падаешь вниз, играешь с третьим измерением и вертишь им как хочешь. Компьютерные игры и очки виртуальной реальности подстегивают воображение и отправляют нас в полет через вымышленные волшебные миры. Но ведь это не по-настоящему. Неудивительно, что великие умы прошлого, не в последнюю очередь Леонардо да Винчи, мечтали присоединиться к птицам и придумывали механизмы, которые помогли бы в этом. Об этих старинных разработках мы еще поговорим. Они не взлетали – по большей части и не могли бы взлететь. Но это не убивало мечту.

ОРНИТОПТЕР ЛЕОНАРДО ДА ВИНЧИ

Такое могло произойти только в воображении. Но что это было за воображение!

Название “Полеты воображения”, как и следовало бы ожидать, означает, что перед вами книга о полете – о всевозможных способах преодолеть гравитацию, которые открыли люди за многие века и другие животные за многие миллионы лет. Однако в ней говорится и о безудержном полете мыслей и идей, который вызывают сами размышления о возможности летать. Такого рода отступления даны мелким шрифтом и часто предваряются специально выделенным словом “Кстати…”,

Начнем с полетов самых сверхъестественных: опрос, проведенный в 2011 году агентством Associated Press, показал, что 77 % американцев верят в ангелов. Мусульмане обязаны в них верить. Католики по традиции считают, что за каждым из нас присматривает личный ангел-хранитель. Выходит, вокруг нас трепещет множество крыльев, бесшумных и невидимых. В сказках “Тысячи и одной ночи” говорится, что, если сесть на ковер-самолет, можно перенестись куда заблагорассудится одной силой мысли. Легендарный царь Соломон владел ковром-самолетом из сверкающего шелка – таким огромным, что он выдерживал вес сорокатысячного войска. С него он мог повелевать ветрами, и они несли его, куда бы он ни пожелал. Древнегреческие мифы рассказывают о Пегасе – великолепном белом крылатом коне, на котором герой Беллерофонт отправился на бой с чудовищем Химерой. Мусульмане верят, что пророк Мухаммед совершил “ночное переселение” на крылатом скакуне. Он перенесся из Мекки в Иерусалим верхом на Бураке – крылатом конеподобном звере, которого обычно изображают с человеческим лицом наподобие легендарных древнегреческих кентавров. Именно такое “ночное переселение” происходит с каждым из нас во сне, а путешествия, которые нам снятся, в том числе и полеты, бывают не менее удивительными, чем у Мухаммеда.

Герой древнегреческого мифа Икар прикрепил к своим рукам крылья из перьев и воска. Обуянный гордыней, он подлетел слишком близко к солнцу, оно растопило воск, и он рухнул наземь и разбился. Красивое предостережение – мол, не возносись слишком высоко, – хотя на самом деле чем выше поднимался Икар, тем ему становилось холоднее, а не жарче.

“ПОГИБЕЛИ ПРЕДШЕСТВУЕТ ГОРДОСТЬ, И ПАДЕНИЮ – НАДМЕННОСТЬ” (прит. 16:18)

Икар подлетел слишком близко к солнцу, упал и разбился насмерть.

КОНАН-ДОЙЛЬ ВЕРИЛ В ФЕЙ

Ни Шерлок Холмс, ни профессор Челленджер не поверили бы мошенницам, которые обманули их создателя.

Зато писателем он был великолепным!

Раньше считалось, что ведьмы летают на метлах, а недавно к ним присоединился и Гарри Поттер. Санта-Клаус со своими оленями мчится от трубы к трубе высоко над тучами, приносящими декабрьский снег. Гуру и факиры – мастера медитации – заманивают ложными обещаниями научить зависать над полом в позе лотоса. Левитация – настолько популярный миф, что о ней рисуют карикатуры – почти столько же, сколько о необитаемом острове. Моя любимая – что неудивительно – из журнала New Yorker, прохожий на улице смотрит на дверь высоко в стене, на двери вывеска – “Общество любителей левитации”.

Сэр Артур Конан-Дойль создал образ Шерлока Холмса – воплощение криминалистической логики, самого знаменитого гениального сыщика в литературе. Среди персонажей Конан-Дойля есть и грозный профессор Челленджер – олицетворение беспощадного научного здравомыслия. Очевидно, что Конан-Дойль восхищался обоими и тем не менее позволил себе поддаться на детский розыгрыш, который не вызвал бы у двух его героев ничего, кроме презрения. Детский в буквальном смысле слова, поскольку его обманули две девочки, которые забавы ради подделали фотографии крылатых “фей”. Двоюродные сестры Элси Райт и Фрэнсис Гриффитс вырезали нарисованных фей из книжки, наклеили на картон, развесили в саду и сфотографировали друг дружку так, словно играют и разговаривают с ними. Конан-Дойль стал всего лишь одним из самых знаменитых среди великого множества людей, которые поверили в “Фей из Коттин-гл и”. Он даже написал целую книгу “Пришествие фей” и тем самым распропагандировал свою крепкую веру в крылатых созданий, порхающих с цветка на цветок, словно мотыльки.

Вспыльчивый профессор Челленджер, узнав об этом, загремел бы: “От кого произошли эти феи? От обезьян – независимо от обычных людей? Какова эволюционная природа их крыльев?” Сам Конан-Дойль был врачом и разбирался в анатомии, поэтому он должен был бы задаться вопросом, какой эволюционный механизм создал крылышки фей: были ли они отростками лопаток или ребер либо возникли как что-то совершенно новое. На наш современный взгляд бесспорно, что фотографии – подделка. Но не будем несправедливы к сэру Артуру: все это произошло задолго до фотошопа, в те времена, когда господствовало убеждение, что “камера не лжет”. Мы, поколение, прекрасно знающее интернет, понимаем, что подделать фотографию – пара пустяков. Двоюродные сестры из Коттингли в дальнейшем признались в своих проделках, но лишь когда им перевалило за семьдесят, а Конан-Дойль давно скончался.

А мечта о полете жива до сих пор. Она движет нашим воображением каждый день, когда мы порхаем по интернету. Сейчас, когда я пишу эти строки, находясь в Англии, мои слова загружаются в “облако” – словно взлетают туда, чтобы потом спуститься в компьютер в Америке. Я могу найти в сети изображение вращающейся Земли и совершить виртуальный полет из Оксфорда в Австралию, по пути полюбовавшись Альпами и Гималаями. Я не знаю, станут ли когда-нибудь реальностью антигравитационные машины из научной фантастики – сомневаюсь и больше не буду упоминать о такой возможности. В этой книге будут без малейших отклонений от научных фактов перечислены способы укрощения гравитации, а не буквального преодоления ее. Мы, люди, при помощи наших технологических достижений и другие животные при помощи своих биологических особенностей можем подниматься над землей, вырываться из-под тирании гравитации, пусть лишь временно и частично, – и как же мы это делаем? Прежде всего нам нужно ответить на вопрос, почему животному может быть полезно оторваться от земли. Зачем нужно летать в мире природы?

Глава 2

Зачем нужно летать?

Ответов на этот вопрос так много, что, пожалуй, читатель в недоумении, зачем мы стали его задавать. Придется нам спуститься с небес на землю и поискать ответ. Раз речь идет о живых организмах, то он будет дарвиновским. Все живые существа стали такими, как они есть, в результате эволюционных изменений. А для живых организмов ответ на каждое “зачем” всегда и без исключений один и тот же: естественный отбор, выживание наиболее приспособленных.

Для чего же нужны крылья в переводе на дарвиновский язык? Нужны ли они для выживания животного? Да, конечно, и мы обратимся ко множеству конкретных способов воплощения этого ответа на практике (например, высматривать пищу с высоты). Но выживанием все не ограничивается. В дарвиновском мире выживание – лишь средство достижения главной цели – размножения. Самцы ночных бабочек, как правило, крыльями ловят попутный ветер, чтобы подлететь к самке, ориентируясь на ее запах, причем некоторые чувствуют его даже в пропорции одна часть на квадриллион. Для этого у них есть большие высокочувствительные усики-антенны. Выживанию самца это никак не способствует, потому что цель – размножение.

“Я ЧУЮ САМКУ ЗА ТРИ МИЛИ”

Усики-антенны – вот, например, роскошные, похожие на перья усики этого мотылька – способны уловить запах самки с очень далекого расстояния, если ветер дует в нужную сторону. Самцы ночных бабочек фильтруют воздух антеннами и при этом поворачиваются, сканируя все направления в пространстве.

Вернемся к идее выживания не отдельных особей, а генов. Особи умирают, а гены остаются жить в виде копий. Гены, по крайней мере “хорошие”, могут прожить множество поколений, даже миллионы лет. Плохие гены не выживают – именно это означает слово “плохой”, если ты ген. А как качество гена может быть “хорошим”? Ген хороший, если создает тела, хорошо приспособленные для выживания, размножения и передачи этого самого гена дальше. Гены, создающие у ночных бабочек гигантские усики, сохранились, потому что передались яйцам, отложенным самками, которых эти самые усики обнаружили.

Точно так же крылья хорошо обеспечивают долгосрочное выживание генов, создающих крылья. Гены, создающие хорошие крылья, помогают своим обладателям передать эти самые гены следующему поколению. А потом – новому. И так далее, пока после бесчисленных поколений мы не увидим животных, которые довели искусство полета до совершенства. Недавно (в эволюционном смысле) инженеры-люди придумали способы, очень похожие на те, которые применяют животные, что неудивительно, поскольку физика есть физика, а птицы и летучие мыши в процессе эволюции были вынуждены бороться с теми же законами физики, что и сегодняшние авиаконструкторы. Но самолеты – плод разума, их создали нарочно, а птиц, летучих мышей, мотыльков и птерозавров никто нарочно не создавал, они сформировались в ходе естественного отбора. Они хорошо летают, поскольку на протяжении многих поколений их предки летали немного лучше, чем их соперники, которые поэтому и не сумели стать их предками, а значит, не передали гены скверного полета. В других книгах я рассказал об этом подробнее, а здесь этого вполне достаточно.

У каждого вида свои способы полета. Есть птицы, например павлины, для которых летать – тяжкий труд, и они поднимают свое тело в воздух, чтобы отлететь совсем недалеко, только если нужно спастись от хищников, а потом опускаются на безопасном расстоянии. То же самое в море делают летучие рыбы. В этих случаях полет можно рассматривать как прыжок с поддержкой. Между тем есть хищники, которые тоже умеют летать. Воздушная гонка разворачивается на эволюционных промежутках времени: добыча становится проворнее, чтобы ее не поймали, и хищники в ответ тоже становятся ловчее. Добыча учится хитроумным маневрам, а хищники – контрмерам. Прекрасный пример – состязание ночных бабочек и летучих мышей. Летучие мыши прокладывают путь в темноте и находят добычу при помощи необычайного органа чувств. Мозг рукокрылых анализирует эхо их собственных ультразвуковых (слишком высоких для нашего слуха) импульсов. Обнаружив в поле своего сонара бабочку, летучая мышь начинает испускать импульсы чаще, переходя с медленного “тик-тик-тик” на дробное “ра-та-та-та”, а затем, уже на последней стадии атаки, на “т-р-р-р-р-р-р-р-р-р-р-р”. Если считать, что каждый звуковой импульс – это проба окружающей обстановки, легко понять, почему повышение частоты повышает точность обнаружения добычи. Миллионы лет эволюция оттачивала эхо-технологию летучих мышей, в том числе сложное мозговое программное обеспечение, которое ее обслуживает. Одновременно хитроумные эволюционные процессы шли и у ночных бабочек: у них появились уши, настроенные точно на нужную ультравысокую частоту, чтобы слышать вопли врага, развились автоматические защитные приемы, выполняемые рефлекторно, как только бабочки слышат летучую мышь – насекомые виляют, ныряют, петляют в воздухе. Летучие мыши, в свою очередь, выработали у себя стремительные рефлексы и большую маневренность полета. Кульминация охоты напоминает воздушный бой “спитфайров” с “мессершмиттами” во время Второй мировой. Эта драма разворачивается ночью, для нас в полной тишине, поскольку наши уши глухи к пулеметным очередям звуковых импульсов, которые издают летучие мыши. Уши бабочек, кроме них, почти ни на что не настроены. Вероятно, летучие мыши – главная причина, по которой у бабочек есть уши.

Кстати, пушистыми ночные бабочки стали, вероятно, тоже для защиты от летучих мышей. Когда инженеры-акустики хотят избавиться от эха в помещении, они обшивают стены звукопоглощающим материалом с такими же свойствами, как и пушок ночных бабочек. Но у некоторых ночных бабочек есть дополнительный трюк. Их крылья покрыты крошечными чешуйками-камертонами, резонирующими с ультразвуком летучих мышей, в результате чего они “исчезют с радаров”, совсем как стелс-бомбардировщик. Некоторые бабочки сами издают ультразвук, вероятно, чтобы сбить радар летучей мыши. Причем довольно много видов ночных бабочек применяют ультразвук в брачных играх.

Птицам, которые ищут корм на земле, нужно летать, чтобы быстро перемещаться из той зоны, где пищи уже нет, в следующую. Хищные птицы и падальщики осматривают окрестности с высоты. Добыча падальщиков уже мертва, им ни к чему спешить, поэтому они могут позволить себе взлетать в вышину и осматривать огромные площади в поисках знаков, указывающих, скажем, на тушу убитого львами зверя. Такими знаками могут быть другие падальщики. Заметив труп, птицы плавно планируют вниз. Хищники, например орлы и соколы, ищут живую добычу, поэтому высматривают ее с меньшей высоты и пикируют оттуда часто с огромной скоростью.

“ЮНКЕРСЫ” ИЗ МИРА ПТИЦ

Олушевые – мастера ловить рыбу с воздуха. Здесь показана только одна олуша, но огромная стая, пикирующая в воду одновременно, – это незабываемое зрелище.

К подобной тактике прибегают и многие птицы-рыболовы вроде крачек и северных олуш – они пикируют в воду и ныряют. Северные олуши осматривают большие участки открытого океана в поисках признаков рыбьих косяков, возможно, темных пятен на поверхности или присутствия других птиц, которые успели первыми. Плотная стая северных олуш или их близких родственников, других олушевых, пикирует с огромной высоты и бомбардирует косяк рыб со скоростью 100 км/ч – это одно из самых великолепных зрелищ, которые дарит нам природа. Их беспощадный блицкриг снова напоминает Вторую мировую войну – пикирующие бомбардировщики “юнксрсы” или японские самолеты-камикадзе. С той поправкой, что олушевые вовсе не идут на смерть. Точнее, обычно они не погибают, но при неудачном нырке все-таки могут и сломать шею. К тому же, если нырять с огромной скоростью всю жизнь, в конце концов испортишь себе зрение, и жизнь многих олуш обрывается именно из-за слепоты[1]. Поэтому можно сказать, что ныряние сокращает им жизнь. Однако, если бы они не ныряли, они умерли бы от голода. Олушевые – настолько узкие специалисты по нырянию, что, утратив это умение, не смогли бы конкурировать с другими птицами, в том числе с чайками, которые высматривают добычу с поверхности воды.

Кстати, подобные наблюдения – это интересный урок по истории эволюции, с которым мы будем сталкиваться на протяжении всей книги, – урок компромисса. Естественный отбор иногда вынуждает животное сокращать свою жизнь в старости, если при этом оно успешнее размножается в молодости. Как мы только что видели, “успех” на дарвиновском языке означает именно возможность оставить много копий своих генов. Гены, которые помогают олуше лучше ловить рыбу в молодости, успешно передаются следующему поколению, даже если приближают смерть птицы в старости. Такого рода логика поможет нам понять, почему мы стареем, хотя сами не ныряем за рыбой. Мы унаследовали гены многих поколений предков, которые хорошо умели быть молодыми. Им необязательно было хорошо уметь быть старыми: обычно к этому времени они успевали покончить с размножением.

Олушевые очень проворны, однако чемпионы по пикированию все-таки соколы, которые ловят птиц в полете. Когда сапсан устремляется к жертве, то есть камнем падает вниз, он может развивать неимоверную скорость – 320 км/ч. Чтобы пикировать в воздухе с такой скоростью, оптимальная форма тела должна быть совсем не такой, как для горизонтальных полетов: пикирующий сапсан складывает крылья, как истребитель с изменяемой геометрией крыла. Такая колоссальная скорость чревата трудностями и опасностями. Птицы не смогли бы дышать, если бы у них не было специально видоизмененных ноздрей (устройство которых отчасти было скопировано в реактивных двигателях очень быстрых самолетов). На такой головокружительной скорости сопротивление воздуха могло бы буквально сломать птице шею. Как и у олушевых, налицо компромисс между краткосрочными преимуществами: успехом в размножении с одной стороны и риском безвременной гибели с другой.

Для чего еще нужно летать? Отвесные скалы – прекрасное место, чтобы строить гнезда и выводить птенцов, не опасаясь наземных хищников. Чайки-моевки мастерски строят гнезда на таких недоступных утесах, что хищникам, даже другим летающим птицам, нужно сильно постараться, чтобы разорить их. Многие птицы ради безопасности строят гнезда на деревьях. Крылья позволяют быстро попасть на верхушку дерева и доставить туда материалы для гнезда, а в дальнейшем и пищу для птенцов. Многие деревья дают плоды – пищу для туканов, попугаев, других птиц и крупных видов летучих мышей. Конечно, обезьяны, в том числе человекообразные, тоже собирают плоды и для этого лазают по деревьям, но даже самая спортивная обезьяна не может тягаться с птицей в гонке по веткам. Самые ловкие из всех обезьян, лазающих по деревьям, – гиббоны, и они освоили технику так называемой брахиации, очень похожей на полет.

КУЛЬМИНАЦИЯ ЭВОЛЮЦИОННОЙ ГОНКИ ВООРУЖЕНИЙ

Сапсаны пикируют на летающую добычу (своего противника по гонке вооружений) со скоростью до 320 км/ч.

Брахиация (от brachium, лат. – рука) – это способ перемещения по деревьям, при котором гиббоны раскачиваются на очень длинных руках, перебирая ими, будто ногами, бегущими по воздуху. Гиббон несется по лесу на головокружительной скорости, перелетая – здесь я применяю это слово практически буквально – с ветки на ветку на расстояние в несколько метров. Строго говоря, это не полет, но результаты приблизительно те же. Вероятно, и наши предки практиковали брахиацию на каком-то этапе истории, но я уверен, что тягаться с гиббоном мы не могли бы никогда.

Цветы производят нектар – главное авиатопливо колибри и нектарниц, бабочек и пчел. Пчелы выкармливают свои личинки пыльцой, которую тоже собирают с цветов. Без цветущих растений невозможно существование целого семейства пчел в пределах более широкого класса насекомых, и они эволюционировали вместе (коэволюционировали), начиная еще с мелового периода, примерно 130 миллионов лет назад. Когда нужно быстро перепархивать с цветка на цветок, что может быть лучше крыльев?

Летает и большинство насекомых, и ловить их в воздухе – искусство, которым владеют ласточки и стрижи, мухоловки и мелкие виды летучих мышей. Умело ловят насекомых на лету и стрекозы, которые высматривают их своими огромными глазами.

ЦЕЛАЯ ЖИЗНЬ В ПОЛЕТЕ

Стрижи довели идею жизни в полете до совершенства. Они даже спариваются, не приземляясь. Возможно, ходить по земле для них так же непривычно, как для нас – плавать под водой.

Стрижи поедают насекомых и ловят их исключительно в воздухе. Они настолько преданы полету, что на землю не спускаются. Стрижи даже освоили непростое мастерство спаривания в воздухе. Подобно тому как морские черепахи покинули сушу, чтобы жить в воде, предки стрижей покинули сушу, чтобы жить в воздухе. И те, и другие возвращаются, только чтобы отложить яйца. А в случае стрижей – чтобы высидеть их и выкормить птенцов. Складывается впечатление, что, если бы можно было откладывать яйца на лету, стрижи бы так и делали, подобно тому, как киты ушли на шаг дальше черепах, и теперь им больше незачем возвращаться на сушу.

Стрижи славятся проворством и напоминают нам, что главное преимущество полета – это необычайная скорость перемещения. Сто лет назад огромные океанские лайнеры пересекали Атлантику за много дней. Теперь мы перелетаем ее за считаные часы. Разница в основном объясняется тем, что сила трения в воде больше, чем в воздухе. Даже в воздухе она меняется в зависимости от высоты. Чем выше взлетает самолет, тем ниже лобовое сопротивление в разреженном воздухе – вот почему современные авиалайнеры летают так высоко. Почему же они не взлетают еще выше?

Прежде всего, им не хватило бы кислорода, необходимого двигателю для сжигания топлива. Ракетные двигатели, разработанные для полетов вне пределов земной атмосферы, несут запас кислорода с собой. На устройство самолетов, летающих на очень большой высоте, влияют и другие факторы. Как мы узнаем из 8-й главы, им нужен воздух, чтобы обеспечить подъемную силу, а на очень больших высотах воздух так разрежен, что им нужно лететь быстрее, чтобы получить необходимую подъемную силу. Самолеты, предназначенные для полетов на небольшой высоте, плохо летают на большой, и наоборот. Ракетам не нужна подъемная сила воздуха, поэтому им не нужны крылья. Их двигатель толкает их в направлении, противоположном силе гравитации. А как только они набирают первую космическую скорость, двигатели можно отключить, и ракета начинает невесомо парить, продолжая перемещаться невероятно быстро.

В детстве я не понимал, как ракетные двигатели работают в космосе, ведь там позади них нет воздуха и не от чего “отталкиваться”. Я был неправ. “Отталкивание” тут ни при чем. Приведу две-три более приземленные аналогии. Когда стреляет большое артиллерийское орудие, ощущается мощная отдача. Когда снаряд вылетает из дула, орудие откатывается назад. Никто не считает, что отдача вызвана тем, что снаряд “толкает” воздух перед орудием. На самом деле внутри гильзы взрывается порох, газ оказывает сильное давление во всех направлениях, силы, стремящиеся в стороны, уравновешивают друг друга. Сила, направленная вперед, выталкивает снаряд из дула, почти не встречая сопротивления. Сила, действующая в противоположном направлении, воздействует на само орудие, отчего оно и откатывается на колесах. Та же сила отдачи позволяет вам ехать по льду на санках, стреляя из ружья в направлении, противоположном желаемому движению. Если вам интересно физическое объяснение этого явления, на сей счет у нас есть третий закон Ньютона: сила действия равна силе противодействия. Дело не в том, что пули отталкиваются от воздуха и поэтому санки приходят в движение. В вакууме вы бы ехали еще быстрее. То же самое происходит в вакууме и с ракетным двигателем.

Поскольку ось Земли наклонена, по мере вращения планеты вокруг Солнца меняются времена года. А значит, места, где лучше всего кормиться и размножаться, все время разные, в зависимости от сезона. Перемещения на большие расстояния требуют затрат, но многие животные готовы на это ради того, чтобы найти места с более благоприятной погодой. И разумеется, более благоприятная – это не обязательно та, которую мы, люди, считаем подходящей для летнего отдыха. Киты мигрируют из теплых краев, где спариваются, в более прохладные воды, где течения обеспечивают больше питательных веществ для их пищевой цепочки. Крылья позволяют птицам покрывать огромные дистанции. Мигрируют многие виды птиц, однако рекорд расстояния принадлежит полярной крачке, которая ежегодно преодолевает путь в 20 тысяч километров от Северного полярного круга, где птицы спариваются, до Южного полярного круга и обратно. Дорога занимает всего два месяца. Такие колоссальные расстояния за столь короткое время можно покрыть только по воздуху. Полярная крачка получает два лета в году без ветров, и этот яркий пример показывает, почему мигрирующих видов животных так много.

МИРОВОЙ РЕКОРДСМЕН ПО МИГРАЦИИ

Полярная крачка перелетает от полюса до полюса и никогда не видит зимы – только два полярных лета на расстоянии в 20 тысяч километров друг от друга.

Многие мигрирующие животные проявляют чудеса навигации и совершают настоящие подвиги выносливости. Европейские ласточки зимуют в Африке, а на следующее лето возвращаются в ту же точку, в свое собственное гнездо. Как птицам такое удается, долгое время оставалось тайной, и только сейчас ее начинают разгадывать. Орнитологи надевают на лапки птиц специальные колечки, которые снабжены миниатюрными GPS-передатчиками. Для отслеживания курса больших стай перелетных птиц использовались даже радары. Мы начинаем понимать, что у птиц есть несколько приемов навигации, и разные виды на разных стадиях миграционного процесса предпочитают разные сочетания методов. Свою роль играют и ориентиры на местности, особенно на последних этапах пути, когда они возвращаются в старое гнездо. Но и во время долгого путешествия птицы следуют течению рек, побережьям и горным хребтам. Многие виды организуют миграцию так, чтобы молодых во время первого перелета сопровождали старшие и более опытные. Птицы пользуются не только ориентирами на местности, но и встроенными компасами. Уже установлено, что некоторые виды ощущают магнитное поле Земли. Как именно они видят и чувствуют, куда указывает компас, не всегда понятно, но сам факт уже доказан. Причем слово “видеть” здесь, вероятно, вполне уместно, поскольку главенствующая на сегодня теория гласит, что этот аппарат находится в глазном яблоке птицы.

“И ВСЕ, ЧТО МНЕ НУЖНО, – КРАСАВЕЦ-КОРАБЛЬ, ДА СВЕТ ПУТЕВОДНОЙ ЗВЕЗДЫ”[2]

Проведите воображаемую линию вверх через две звезды в широкой части ковша Большой Медведицы, которые расположены дальше всего от ручки, и продолжайте ее до первой яркой звезды. Это и будет Полярная звезда.

Давно известно, что перелетные птицы (как и насекомые, и другие животные) пользуются солнцем как компасом. Разумеется, солнце меняет видимое положение в небе – утром оно на востоке, а к вечеру переходит на запад, в полдень проходя юг (или север, если вы в Южном полушарии). Это означает, что перелетная птица может ориентироваться по солнцу, только если знает, который час. А внутренние часы у всех животных действительно есть. Более того, они есть в каждой клетке. Именно внутренние часы вызывают у нас желание заниматься теми или иными делами, есть или спать в определенные часы дня и ночи. Исследователи во время экспериментов помещали людей в подземные бункеры, полностью отрезанные от всего мира. Люди продолжают вести обычную повседневную жизнь – засыпают и просыпаются, включают и выключают свет, едят и так далее в пределах 24-часового ритма. На самом деле это не ровно 24 часа, а, например, на 10 минут больше, и поэтому суточный ритм постепенно перестает соответствовать смене дня и ночи во внешнем мире. Вот почему эти ритмы называются циркадными (от circa diem, лат. – около дня), а не просто, скажем, дианными (от dies, лат. – день). При нормальных обстоятельствах циркадные часы перезапускаются при виде солнца. Перелетные птицы, как и все животные, снабжены такими часами, которыми и пользуются, если нужно ориентироваться по солнцу как по компасу.

Некоторые перелетные птицы летают ночью, и они умеют читать звезды. Большинство из нас знает, что Полярная звезда стоит практически точно над Северным полюсом, независимо от вращения Земли. Поэтому в Северном полушарии вполне можно полагаться на Полярную звезду как на компас. Но как узнать, которая из множества звезд – Полярная?

В детстве отец научил нас с сестрой массе всего полезного. Среди прочего он показал, как найти Полярную звезду, ориентируясь на ковш Большой Медведицы: нужно прочертить воображаемую линию вверх через две звезды, которые находятся дальше всего от ручки ковша, и вести ее до первой же яркой звезды. Это и есть Полярная звезда. По ночам можно прокладывать путь по ней, конечно, если дело происходит в Северном полушарии. Если же вы находитесь в Южном полушарии, придется прибегнуть к более сложным методам: над Южным полюсом нет никакой удобной яркой звезды, созвездие Южного Креста совсем не так близко от полюса. К этой задаче мы еще вернемся.

Как же летающие ночью птицы различают звезды, даже если они мигрируют в Северном полушарии, где к нашим услугам всегда есть Полярная звезда? Теоретически они могли получить карту звездного неба по наследству записанной в генах, но это несколько надуманно. Есть более правдоподобный способ, и благодаря блестящей серии экспериментов Стивена Эмлена из Корнельского университета мы знаем, что именно к нему прибегают североамериканские индиговые овсянковые кардиналы.

Индиговые овсянковые кардиналы такого красивого синего цвета, что их можно с полным правом называть Синими птицами. У нас в Британии никого подобного не водится, хотя какие-то синие птицы упоминаются в песенке “Английский деревенский садик” на веселый танцевальный мотив. (Кстати, в Австралии как раз встречаются птицы великолепного синего цвета.) В одной военно-патриотической песне поется о синих птицах, кружащих над белыми скалами Дувра[3]. Это было бы красиво, если бы так поэтически обыгрывалась синяя униформа королевских ВВС, но, вероятно, американский поэт не знал, что в Британии нет ни одной птицы с синим оперением. А может быть, это была просто поэтическая вольность.

Индиговые овсянковые кардиналы мигрируют на дальние расстояния и летают по ночам. Если посадить такую птицу в клетку, в сезон миграции она будет биться о прутья с той стороны, в которую полетела бы на воле. Доктор Эмлен изобрел метод, позволяющий точно измерить, насколько птицы предпочитают ту или иную сторону, при помощи специальной круглой клетки: ее нижняя часть представляет собой воронку, выстланную белой бумагой, а на дне лежит штемпельная подушка, на которую птицы часто садятся. Птицы взлетают вверх по конусу, и чернильные отпечатки лапок отмечают предпочитаемое направление. С тех пор это устройство применяют и другие исследователи миграции птиц, и оно стало известно как воронка Эмлена. Оказалось, что осенью кардиналы явно выбирают южное направление, что соответствует их нормальной миграции к местам зимовок в Мексике и на островах Карибского моря. Весной они подлетают ближе к северной стороне воронки Эмлена, что соответствует их обычному возвращению в Канаду и северную часть США.

НЕПОДВИЖНЫЕ, КАК ПОЛЯРНАЯ ЗВЕЗДА?

Чернильные отпечатки лапок индиговых овсянковых кардиналов на стенках воронки Эмлена показывают, в каком направлении птица желает мигрировать (масштаб не соблюден).

Эмлен был в выгодном положении – он имел возможность поместить клетку с воронкой в планетарий. Он проделал серию увлекательных опытов с искусственной картой звездного неба, которую так или иначе изменял. Таким образом он сумел доказать, что индиговые овсянковые кардиналы и правда ориентируются по звездам, особенно по звездам поблизости Полярной звезды, в том числе по созвездиям Большой Медведицы, Цефея и Кассиопеи (не забывайте, эти птицы живут в Северном полушарии).

Пожалуй, самым интересным из экспериментов Эмлена в планетарии был ответ на вопрос, откуда птицы знают, на какие звезды ориентироваться. Эмлен не верил, что карта звездного неба передается птицам по наследству. Он считал, что молодые птицы перед перелетами долго наблюдают вращение неба по ночам и усваивают, что один его участок практически неподвижен, поскольку звезды в нем находятся близко к оси вращения. Этот метод помогал бы им, даже если бы Полярной звезды не существовало: они все равно узнавали бы тот участок неба, который сохраняет неподвижность, и это был бы север. Или юг, если речь идет о птицах Южного полушария.

Свою мысль Эмлен проверил при помощи изобретательного эксперимента. Он вырастил птенцов, а пока они росли, показывал им звезды только в планетарии. Одни птицы видели в планетарии ночное небо, вращавшееся вокруг Полярной звезды. Осенью их проверили в клетке-воронке, и они показали, что предпочитают нормальное направление миграции. Другую группу птенцов растили по-другому: они тоже видели только звезды из планетария, но Эмлен отрегулировал механизм так, что ночное небо вращалось не вокруг Полярной звезды, а вокруг Бетельгейзе, другой яркой звезды (левое плечо Ориона, если вы живете в Северном полушарии, и его правая нога – если в Южном). Когда в дальнейшем этих птиц поместили в клетку-воронку, они относились к Бетельгейзе как к настоящему северу и, ориентируясь по ней, предпочитали неверное направление.

Но следует подчеркнуть, что карта и компас – это разные вещи. Чтобы лететь, предположим, на юго-запад, нужен только компас. Но почтовому голубю одного компаса мало, нужна еще и карта. Почтовых голубей сажают в корзину, увозят куда заблагорассудится и выпускают. И они летят домой с такой скоростью, что у них наверняка должен быть способ понять, где их выпустили. Более того, ученые, ставившие опыты с почтовыми голубями, не просто учитывали, удалось ли птице благополучно попасть домой. Нередко, выпустив птицу, они следили за ее полетом в бинокль и отмечали, в каком направлении она летела, когда скрылась из виду. Почтовые голуби в большинстве случаев исчезали в направлении дома, даже если были так далеко, что не могли пользоваться знакомыми ориентирами.

“Я ЗНАЮ, ГДЕ Я, И ЗНАЮ, КУДА ЛЕЧУ”[4]

Почтовому голубю нужен не только компас, но и карта.

До изобретения радио военные при помощи почтовых голубей обменивались сообщениями. Во время Первой мировой британская армия устраивала голубятни в переделанных лондонских автобусах. Во время Второй мировой немцы выпускали специально обученных ястребов, чтобы перехватывать британских почтовых голубей. Это стало началом орнитологической битвы – британские военные получили приказ отстреливать ястребов.

Итак, компаса почтовому голубю недостаточно. Прежде всего птице нужно понять, где она находится. Вообще любой перелетной птице нужна карта, чтобы сверяться с ней, если ветер собьет ее с курса. Более того, исследователи нарочно мешали перелетным птицам следовать курсом – ловили их во время перелета и выпускали в другом месте – например, на 150 километров восточнее. Птицы вместо того, чтобы продолжать лететь по компасу, из-за чего они оказались бы на 150 километров восточнее точки назначения, все равно умудрялись попасть в место назначения. Вероятно, умение корректировать курс впоследствии эволюционировало у птиц в умение находить дорогу домой задолго до того, как люди изобрели корзины, машины и поезда.

Предлагались самые разные теории птичьих “карт”. Несомненно, для опытных птиц важны ориентиры на местности. Есть данные, что для них значимы и запахи – тоже своего рода ориентиры. Теоретически они могли бы пользоваться инерционной навигацией, но это не очень практично. Когда сидишь в машине, даже если у тебя завязаны глаза, чувствуешь, как она разгоняется и тормозит (однако равномерное движение не ощущается, напоминает нам Эйнштейн), в том числе при смене направления. Можно представить, что голубь, сидящий в темной корзине, складывает в уме все разгоны и торможения, все левые и правые повороты, пока машина везет его из родной голубятни туда, где его предстоит выпустить. Теоретически птица могла бы после этого вычислить, где находится место, где его выпустили, относительно родной голубятни.

Теорию инерционной навигации проверил ученый Джеффри Мэтьюз. Он посадил голубей в светонепроницаемый барабан и вращал его все время, пока вез их из голубятни к месту, где намеревался выпустить. Даже после пережитого бедняжки сумели найти дорогу домой. Это делает теорию инерционной навигации маловероятной. Здесь я должен вступиться за ученого. В одной популярной книге предполагалось, что это экспериментальное устройство было передвижной бетономешалкой – наверняка вы видели, как они мерно вращаются на шасси грузовика. Этот яркий образ вполне соответствует чувству юмора доктора Мэтьюза, но на самом деле устройство выглядело не так.

А ЕСЛИ МОРЕХОДЫ ЗАНОВО ОТКРЫЛИ ТЕХНОЛОГИЮ, ИЗВЕСТНУЮ ПТИЦАМ?

Может быть, почтовые голуби применяют что-то похожее на морской секстант? Это не самая глупая мысль, но она нуждается в более надежных доказательствах.

Люди умеют рассчитывать свое местоположение по результатам астрономических измерений. Мореходы издавна для этого применяли секстанты. Во время Второй мировой войны мой дядя, которому не разрешалось знать, где сейчас находится его подразделение, проявил недюжинную смекалку и смастерил секстант, чтобы выяснить секретные сведения. Его едва не арестовали как шпиона.

УСОВЕРШЕНСТВОВАННЫЙ МОРСКОЙ ХРОНОМЕТР ХАРРИСОНА

Какая тонкость деталей, какая отточенная сложность механизма – и каждое крошечное усовершенствование устраняет погрешность еще в несколько миль, которая могла бы стать роковой ошибкой в навигации! Казалось бы, перелетным птицам такая точность не нужна (им не грозит кораблекрушение), но как же они ее добиваются?

Секстант – это инструмент, измеряющий угол между двумя точками, например, между солнцем и горизонтом. Зная этот угол в локальный полдень, можно вычислить свою широту, но при этом надо знать, когда именно настает локальный полдень, а это зависит от долготы. Если у тебя есть точные часы, которые показывают точное время на какой-то опорной долготе, например, на Гринвичском меридиане (или в родной голубятне, если ты голубь), их показания можно сравнить с местным временем, и это теоретически позволит вычислить свою долготу. Но откуда голубь знает, который час в точке, где он находится?

Тот же Джеффри Мэтьюз предположил, что птицы замечают не только высоту солнца, но и его дуговое движение за отрезок времени. Для этого им необходимо некоторое время наблюдать за солнцем, чтобы экстраполировать дугу. Казалось бы, маловероятно, но эксперименты Эмлена показывают, что молодые овсянковые кардиналы проделывают что-то похожее, когда определяют, какой участок неба находится в центре вращения. А ученик Мэтьюза Эндрю Уайтен провел в лаборатории эксперименты на голубях, результаты которых показали, что эти птицы вполне способны на такие же чудеса наблюдательности.

Экстраполируя дугу видимого движения солнца, голуби теоретически могли бы рассчитать, где будет (или было) солнце в самой высокой точке в локальный полдень. Мы уже знаем, что высота солнца в зените указывает им, на какой широте они находятся. А горизонтальное угловое расстояние от предполагаемого зенита указывает на локальное время. Если они сравнят это локальное время со временем на своих внутренних часах, то есть со временем в родной голубятне (личным Гринвичем), это даст им долготу.

Увы, даже крошечная погрешность часов приводит к большим ошибкам в навигации. Великий мореплаватель Фернан Магеллан в свое первое плавание вокруг света взял 18 песочных часов. При использовании их в навигации погрешность была огромной. В XVIII веке британское правительство объявило конкурс с солидной денежной премией тому, кто изобретет морской хронометр – точные часы, которые не отставали бы и не забегали бы вперед даже в качку, которую маятниковые часы не выдерживают. Награду получил йоркширский плотник Джон Харрисон. И хотя у почтовых голубей действительно есть внутренние часы, они не идут ни в какое сравнение ни с хронометром Харрисона, ни даже с песочными часами Магеллана. С другой стороны, перелетной птице, возможно, и не нужна такая точность, как мореходу, который из-за неверных расчетов рискует угодить на рифы.

Чтобы разгадать загадку дальних перелетов птиц, были предложены и другие астрономические теории, такие же общие, как и гипотеза Мэтьюза.

Какими еще картами могут пользоваться птицы? Возможно, картами, основанными на магнетизме: известно, что по ним ориентируются акулы. У разных точек поверхности Земли свои магнитные характеристики. Поясню на наглядном примере. Эта теория опирается на то, что магнитный северный полюс (или южный) не вполне совпадает с истинным Северным полюсом (или Южным). Магнитный компас измеряет магнитное поле Земли, которое лишь приблизительно согласуется с осью вращающейся планеты. Это расхождение между магнитным и истинным севером называется магнитным склонением, и все пользователи компасов, которым нужна точность, вынуждены его учитывать. Магнитное склонение разное в зависимости от места (и времени: из-за движения ядра Земли магнитные полюса с течением столетий иногда меняются местами). Если вы можете измерить склонение, например, измерив угол между Полярной звездой и стрелкой магнитного компаса, указывающей на север, значит, вы можете вычислить, где вы находитесь (также опираясь на интенсивность магнитного поля). Это и будут магнитные характеристики, которые мы ищем.

Есть поразительные данные, что на такое способны тростниковые камышовки, которые водятся в России. В ходе экспериментов с этими птицами в воронках Эмлена ученые искусственно сдвинули магнитное поле на 8,$°. Если бы птицы просто ориентировались по магнитному компасу, предпочитаемое направление их взлета в воронке сместилось бы на ту же величину. Однако на самом деле смещение составило 151°. Сдвиг магнитного поля на 8,5°, который повлиял бы на расчеты на основе магнитного склонения, сообщил им, что они уже не в России, а в Абердине! И, представьте себе, направление, которое они предпочли в воронке Эмлена, было тем самым, которое они должны были бы избрать, если бы очутились в Абердине и хотели попасть в ту же конечную точку, что и обычно. Характеристики магнитного поля в принципе могут быть любыми, не обязательно абердинскими. Этот эксперимент – большой шаг к пониманию, что магнитное чувство может не ограничиваться показаниями компаса. Мне кажется, это до того прекрасно, что даже не верится.

Никто не предполагает, будто птицы осознанно проделывают сложные расчеты, которых требовала бы теория навигации по солнцу Мэтьюза. У птиц нет аналога пера и бумаги, нет таблиц магнитного склонения и силы магнитного поля. Когда во время игры в крикет или бейсбол ловишь мяч, мозг проделывает эквивалент решения сложных дифференциальных уравнений. Но сознание об этом не подозревает и не участвует в том, как мы контролируем ноги, глаза и руки, готовые схватить мяч. Вот и у птиц так же.

Крылатые животные могут попадать и на острова, на некоторых отдаленных нередко нет млекопитающих. Либо единственными млекопитающими (кроме тех, кого завезли люди) оказываются летучие мыши. Почему летучие мыши? Естественно, потому что у них есть крылья. Не считая летучих мышей, такие острова, как правило, принадлежат не млекопитающим, а птицам. Там мы часто обнаруживаем, что птицы монополизируют даже наземные угодья, обычно населенные млекопитающими. Птица киви, символ Новой Зеландии, добывает себе пропитание совсем как наземное млекопитающее, хотя ее предки летали. Киви – типичные островные птицы, у которых атрофировались крылья, так что они больше не летают, – об этом мы поговорим в следующей главе. Однако именно крылья обеспечили им возможность оказаться в нынешнем ареале обитания.

Летающие предки островной птицы попадают туда случайно, возможно, сбившись с пути из-за ветра. И здесь я должен подчеркнуть, что эта глава о том, зачем нужно летать. Искать пищу, спасаться от хищников, мигрировать каждый год туда, где можно прокормиться, – все это явные преимущества крыльев. Естественный отбор усовершенствовал крылья ради тех птиц, которые на них летают. Удачная возможность колонизировать далекий остров – это совсем другое. Естественный отбор не формировал крылья с целью найти острова, которые птицы могли бы колонизировать. Если крылья и обеспечили какое-то преимущество в этом, то мы говорим о редких и крайне нетипичных событиях. Например, когда ураган сбил с курса яйценоскую самку и по счастливой случайности опустил ее на остров.

Примерно 40 миллионов лет назад в Южную Америку попали грызуны и мелкие обезьяны, в результате мы получили их богатое разнообразие. Тогда карта мира выглядела иначе: Африка находилась ближе к Южной Америке, а между ними были острова. Вероятно, обезьяны и грызуны переплывали с острова на остров на естественных плотах из растений или на деревьях, поваленных в море ураганом. Такие нетипичные события могли произойти всего один раз, после чего новоприбывшие странники обнаруживали славное новое местечко, где можно было жить, размножаться, а в дальнейшем и эволюционировать. То же самое происходило и с птицами с той оговоркой, что крылья давали им фору. Тем не менее неверно было бы говорить, что такие случайные колонизации – это преимущество крыльев. Выходит, умение летать – способность невероятно полезная. Но почему же тогда не все животные летают? А точнее, почему многие животные отказались от идеальных крыльев, которые были у их предков?

Глава 3

Если летать так здорово, почему некоторые животные отказались от крыльев?

Он о капусте речь ведет,Потом о королях,И почему моря кипят,И о свиных крылах.Льюис Кэрролл, Алиса в Зазеркалье”, 1871[5]

Сейчас моря не кипят, хотя примерно через пять миллиардов лет вскипят. И свиньи не летают, но почему – вопрос отнюдь не глупый. Это шутливый подход к более общей проблеме: если нечто так прекрасно, почему оно есть не у всех животных? Почему крылья есть не у всех животных? Например, их нет у свиней. На это многие биологи ответят: “Это потому, что в распоряжении естественного отбора никогда не было генетической вариации, из которой могли бы развиться крылья. Не возникло нужных мутаций, причем, вероятно, в силу того что эмбриология свиней просто не располагала средствами, чтобы выпустить отросточки, из которых в дальнейшем могли вырасти крылья”. Но мне этот ответ приходит в голову не первым. Я бы добавил, что крылья не принесли бы свиньям пользы, они мешали бы при их образе жизни, и даже если бы крылья приносили им пользу, экономические затраты перевесили бы их полезность. Крылья – это не всегда хорошо, что доказывает пример тех животных, чьи предки обладали крыльями, но отказались от них.

И СВИНЬИ МОГЛИ БЫ ЛЕТАТЬ

Сейчас они не летают, но, может быть, раньше умели?

А если нет, то почему? Когда вообще резонно задаться вопросом, почему животные чего-то не умеют? Например, спросить, почему некоторые животные не летают?

У рабочих муравьев нет крыльев, они ходят везде пешком. Впрочем, лучше подходит слово “бегают”. Предками муравьев были крылатые осы, то есть современные муравьи потеряли крылья за время эволюции. Но крылья есть у родителей рабочего муравья – и у матери, и у отца. Каждый рабочий муравей – бесплодная самка, снабженная полным набором генов муравьиной матки-царицы, и у нее были бы крылья, если бы ее растили иначе, как подобает царице. Потенциальные крылья спрятаны в генах каждого муравья, свернуты, как пружинки, однако у рабочих особей эта пружина не распрямляется. Должно быть, в том, чтобы иметь крылья, есть что-то дурное, иначе рабочие муравьи реализовали бы свои генетические способности их отращивать. Если у одних самок крылья отрастают, а у других нет, значит, за и против крыльев очень тонко уравновешены.

МУРАВЬИНАЯ МАТКА СБРАСЫВАЕТ НЕНУЖНЫЕ КРЫЛЬЯ

У рабочих муравьев никогда не отрастают крылья, хотя у их отцов и матерей они были и их гены прекрасно знают, как их отрастить. Крылья сильно переоценены.

Матке-царице крылья нужны, чтобы найти новый дом вдали от родного муравейника. О том, почему это хорошо, мы поговорим в II-й главе. Кроме того, крылья дают молодой царице возможность повстречать крылатых самцов не из своего муравейника. Мы еще вернемся к тому, почему такое неродственное спаривание – это хорошо. Рабочие муравьи не размножаются, поэтому этих двух потребностей у них нет. Они проводят основную часть жизни под землей, ползая по тесному пространству. Наверное, крылья мешали бы в узких коридорах и галереях подземного муравейника. На это указывает и то, что муравьиная матка, единственный раз в жизни спарившись и найдя подходящее место для нового муравейника, сбрасывает крылья. У одних видов она их отгрызает, у других – выдирает лапками. Отгрызть себе крылья – довольно жестокий способ доказать, что они не всегда желанны. Свою службу в брачном полете и поиске нового жилья крылья уже сослужили, а для жизни под землей они ненужная роскошь и, возможно, даже помеха, поэтому теперь от них надо избавиться.

МУРАВЬИНЫЕ ЦЕПОЧКИ ВЗАИМОПОМОЩИ

Муравьи великолепно умеют сотрудничать. В этом случае они строятся в длинные цепочки, чтобы утащить многоножку, которую одному муравью ни за что не сдвинуть с места.

Разумеется, рабочие муравьи не все время проводят под землей. Они бегают вокруг муравейника, собирают пищу и приносят ее домой. Даже если под землей крылья мешают, может, стоило сохранить их, чтобы рабочие муравьи могли собирать корм так же, как их предки – осы? Те и правда быстрее муравьев, но задумаемся вот о чем: муравьи часто приносят домой добычу больше собственного веса – например, целого жука. Летать с такой ношей они бы не смогли. Нередко они объединяются, чтобы вместе притащить еще более крупный трофей. Колонны кочевых муравьев могут поднять и тащить даже скорпиона. Осы и пчелы обыскивают обширные площади в поисках маленьких порций пищи, а муравьи ищут корм близко от дома, но переносить его по воздуху было бы слишком тяжело.

Полет – занятие крайне энергозатратное даже без полной загрузки. Как мы вскоре убедимся, летательные мышцы ос – это миниатюрные поршневые двигатели, сжигающие очень много сахаристого авиатоплива. И отращивать крылья тоже дорого: любая часть тела создается из материалов, поступающих в организм в виде пищи, и снабдить четырьмя крылами каждую из тысяч рабочих особей в муравейнике – затея недешевая. Это сильно истощило бы экономические ресурсы колонии. Вероятно, все эти соображения и привели к отказу от крыльев. На страницах этой книги мы будем постоянно сталкиваться с идеей экономического равновесия. Вопросы эволюционных преимуществ – для чего хорош тот или иной орган – всегда предполагают экономическую оценку компромиссов, уравновешивание выгоды и затрат.

Термиты во многом отличаются от муравьев, но есть и общие черты. В детстве, когда я жил в Африке, мы называли их “белыми муравьями”, однако это совсем не муравьи – они даже не родственники. Муравьи – родственники пчел и ос, а термиты ближе к тараканам. В ходе эволюции они независимо пришли к муравьиному образу жизни от своих тараканьих истоков, а муравьи – от осиных. Но при внешнем сходстве у их образа жизни есть важные различия.

КОГДА-ТО ЦАРИЦА ТЕРМИТОВ БЫЛА КРЫЛАТОЙ

А теперь превратилась просто в мегафабрику по производству яиц. Ее брюшко так чудовищно раздулось, что коричневые плашки экзоскелета раздвинулись и отстоят далеко друг от друга.

Рабочие муравьи, пчелы и осы – это всегда бесплодные самки, а рабочими термитами, помимо бесплодных самок, могут быть и бесплодные самцы. Однако термиты похожи на муравьев в том, что рабочие термиты бескрылые, а у плодовитых самок и самцов (цариц и царей) есть крылья, которыми они пользуются в тех же целях, что и крылатые муравьи. К тому же крылатые термиты роятся примерно так же, как и муравьи, и это впечатляющее сезонное зрелище. В детстве мои приятели во время роения белых муравьев вбегали в гущу насекомых и заталкивали их себе в рот, а жареные термиты в Африке считаются деликатесом.

Царицы-матки термитов тоже сбрасывают крылья после брачного полета, как и муравьиные матки, и, вероятно, по тем же причинам. Более того, после этого они так чудовищно раздуваются, что сама идея крыльев становится издевательской. Голова, грудь и лапки остаются узнаваемыми, как у обычного насекомого, а брюшко превращается в огромный жирный белый мешок с яйцами. Матка термитов – яйце-фабрика, утратившая способность к движению. За свою долгую жизнь ей предстоит произвести на свет более 100 миллионов яиц.

Рабочие муравьи и термиты – яркие примеры, с которых стоило начать эту главу, поскольку и те, и другие генетически снабжены всем необходимым, чтобы отрастить крылья, но не делают этого. Муравьиные матки, как мы убедились, готовы даже оторвать или отгрызть себе крылья. Птицы себе крылья не отгрызают, это трудно даже представить. Единственный отдаленно похожий пример – автотомия хвоста. Термин “автотомия” – древнегреческий и буквально означает “самоотрезание”, это умение животного отбросить хвост или его часть, если его схватил хищник. Это полезный трюк, независимо возникший в ходе эволюции у многих видов ящериц и амфибий. Но у птиц он не встречается. В отличие от муравьиных маток, птицы никогда не подвергают автотомии собственные крылья.

Однако на протяжении эволюции у многих птиц крылья атрофировались или вообще исчезли. Особенно на островах, где, как мы знаем, в нелетающих превратилось более 60 видов современных птиц (и гораздо больше, если считать и вымершие виды), в том числе гуси, утки, попугаи, соколы, журавли и более 30 видов пастушков, в частности, крошечный тристанский пастушок с острова Инаксессибл в архипелаге Тристан-да-Кунья.

Почему же островные птицы за время своей эволюции утратили способность летать? Как мы уже знаем, нелетающих птиц часто обнаруживают на островах настолько отдаленных, что туда не добираются ни конкуренты, ни хищные млекопитающие, поэтому птицы, прилетающие по воздуху, могут перейти на образ жизни, не требующий крыльев и обычно узурпированный млекопитающими. Нишу крупных млекопитающих в Новой Зеландии занимали ныне вымершие нелетающие птицы моа. Киви ведут себя как млекопитающие средних размеров. А роль мелких млекопитающих в Новой Зеландии исполняют (или исполняли) нелетающий крапивник (стефенский кустарниковый крапивник, или траверзия) и нелетающие насекомые – гигантские цикады уэта. Все они произошли от крылатых предков.

Во-вторых, птицы “обнаруживают”, что крылья не нужны, если на твоем острове нет хищных млекопитающих. По-видимому, именно это произошло на Маврикии с птицами додо и на соседних островах с их нелетающими родственниками, произошедшими от каких-то летающих голубей.

Я не просто так заключил слово “обнаруживают” в кавычки. Понятно, что предки-голуби, едва высадившись на Маврикии или Родригесе, не огляделись вокруг и не сказали: “Ой, ну надо же, никаких хищников, давайте атрофируем крылья”. На самом деле на протяжении многих поколений происходило другое – те особи, гены которых делали их крылья несколько меньше среднего, добивались большего успеха. Вероятно, потому, что экономили на их отращивании. Поэтому они могли позволить себе вырастить больше детей, которые унаследовали слегка уменьшенные крылья. Таким образом со сменой поколений крылья постоянно уменьшались. Одновременно тела голубей становились крупнее. Это можно считать перераспределением в другие части организма ресурсов, сэкономленных на отращивании крыльев. Полет расходует много энергии, и вполне логично пустить ее на другие цели, в том числе на увеличение размеров. Однако островные животные в целом склонны в ходе эволюции становиться крупнее, поэтому, видимо, дело не только в этом. А в некоторых случаях островные виды уменьшаются, и это обескураживает. Как мы узнаем далее, высказывалось предположение, что виды, прибывшие на остров уже крупными, склонны уменьшаться, а те, кто был маленьким, склонны расти.

Единственными животными, способными колонизировать отдаленные острова, нередко становятся летучие мыши. Однако я не знаю ни одного примера, когда летучие мыши утратили способность летать. По-моему, это удивительно. Казалось бы, к летучим мышам можно применить ту же логику, которая стоит за эволюционным развитием множества нелетающих птиц на островах. Мне приходит в голову, что их просто не заметили – такое тоже нельзя исключать. Может быть, в будущем молекулярные генетики откроют островной вид землероек, который, как окажется, вышел (в эволюционном смысле) из среды летучих мышей. Предаваться таким размышлениям очень увлекательно. Пока складывается впечатление, что мы заблуждаемся, но всегда есть вероятность, что в дальнейшем исследования подтвердят нашу правоту. И не такое случалось. Кому до зарождения молекулярной генетики могло прийти в голову, что киты зародились среди парнокопытных животных? Бегемоты ближе к китам, чем к свиньям! Киты – парнокопытные, даже если у них больше нет копыт!

Возможно, додо утратили крылья из-за отсутствия хищников. Но увы, бедные птицы не пережили нашествия моряков в XVII веке. Предполагают, что слово “додо” происходит от португальского слова “дурачок”: додо не убегали от моряков, которые забивали их палками ради забавы. Однако резонно предположить, что на самом деле не убегали они потому, что до этого на острове не было никого, от кого стоило бы убегать – по той же причине, по которой их предки когда-то утратили крылья. Вероятно, их вымирание было вызвано более важными причинами, чем обычай забивать их палками ради развлечения или охотиться на них ради мяса (по свидетельствам современников, они были невкусные). Религиозные беженцы, крысы и свиньи, прибывшие на кораблях, вступали с додо в пищевую конкуренцию и ели их яйца.

РАСПРАВИТЬ КРЫЛЬЯ ДЛЯ ПРОСУШКИ

Предки галапагосских нелетающих бакланов прилетели на архипелаг на крыльях, таких же больших и с таким же прекрасным оперением, что и у материковых бакланов. На новом месте крылья с течением эволюционного времени уменьшились. Однако галапагосские бакланы и сегодня придерживаются обычая предков и сушат крылья после рыбной ловли.

Галапагосские нелетающие бакланы, очевидно, произошли от бакланов, прилетевших на острова с материка, а их потомки утратили крылья. У всех бакланов есть обычай после рыбной ловли держать крылья раскрытыми для просушки. Это важно, потому что после ныряния крылья намокают, и летать на них невозможно. У большинства водяных птиц этого не происходит, поскольку они смазывают перья жиром. Галапагосские бакланы сушат крылья, хотя не летают. Добавлю, что не все орнитологи согласны, что бакланы раскрывают крылья исключительно ради просушки – возможно, у них есть и другие причины.

ГЛОТАЛИ ЛИ ФОРОРАКОСЫ ДОБЫЧУ ЦЕЛИКОМ?

Перепуганной капибаре грозит опасность окончить свои дни в утробе грозной птицы фороракоса. Чтобы получить представление о масштабе, вспомним, что капибары – это гигантские морские свинки размером с овцу. Фороракосы давно вымерли (вероятно, вы были рады это узнать). Капибары до сих пор с нами (вероятно, вы были точно так же рады это узнать).

Додо и галапагосские бакланы утратили крылья относительно недавно – в последние несколько миллионов лет. Страусы и им подобные лишились крыльев гораздо раньше, и произошло это, вероятно, на давно забытых островах, куда их предки прилетели на полностью развитых крыльях. Однако они усохли до коротеньких отростков. А в случаях новозеландских моа (вымерших) и вовсе исчезли. Остаточные крылья нужны страусам и для того, чтобы хвастаться перед другими страусами, а отчасти – чтобы рулить и удерживать равновесие на бегу, это особенно необходимо, когда бегаешь так быстро, как страусы. Предполагают, что крылья страусам помогают подтормаживать, подобно тому, как некоторые воздушные суда выпускают парашют, когда садятся на лед или на короткую взлетно-посадочную полосу. Крылья нанду, южноамериканских родичей страусов (которых Дарвин и в самом деле называл страусами), пропорционально несколько крупнее, но летать на них невозможно. Нанду и страусы – родственники австралийских эму и вымерших новозеландских моа – относятся к надотряду бескилевых, или бегающих, птиц (Ratites), как и киви. Фороракосы и их родственники, которые вымерли всего лишь два миллиона лет назад в Южной Америке, не относятся к надотряду Ratites. Фороракосы были прожорливыми хищниками, вполне заслужившими свое прозвище “ужасные птицы”. Крупнейшие из них достигали трех метров ростом. Бескилевые – в основном вегетарианцы, с маленькой головой и тонкой шеей. А фороракосы, которых было много видов, обладали крупными головами и массивными шеями. Невольно воображаешь, что они глотали добычу целиком, как делают другие птицы. Может быть, даже капибару – животное, напоминающее гигантскую морскую свинку. Взрослая капибара может быть и метр в длину, то есть не уступает габаритами взрослой овце. Многие видели, как чайки целиком глотают кроликов, а также птенцов из соседних гнезд в колонии чаек. В Южной Америке жили когда-то и гигантские морские свинки величиной с бегемота. Теперь они вымерли, однако, хотя они и были современниками некоторых фороракосов, можно предположить, что те не могли их глотать из-за крупных размеров, по крайней мере не целиком. Но что касается капибары, для “ужасной птицы” она примерно как кролик для чайки.

Китоглавы – восхитительно уродливый исчезающий вид пеликанообразных, они не состоят в близком родстве с фороракосами и настолько малы, что могут летать (совсем неуклюже). Но их облик и пищевые пристрастия позволяют живо представить, каково это, когда ты так мал, что тебя можно проглотить целиком.

ПРЕДСТАВЬТЕ СЕБЕ ВСТРЕЧУ С ТАКОЙ ЖЕ ПТИЦЕЙ, НО ТРИ МЕТРА РОСТОМ

Китоглав слишком мал, чтобы проглотить вас. Но его убийственный взгляд дает представление о том, каково это, когда на тебя смотрит фороракос.

Гигантские новозеландские птицы моа были такой же величины, что и фороракосы, гораздо больше страусов. У большинства бескилевых (и фороракосов) крылья маленькие, но моа пошли дальше и полностью утратили крылья. Даже киты и те подошли к задаче отказа от конечностей не так радикально: утратив задние ноги, они сохранили следы их костей в скелете. У моа кости крыльев отсутствовали полностью[6]. Увы, моа вымерли с прибытием маори. Это произошло всего 600 лет назад, но один мой приятель из Новой Зеландии ошибался, когда уверял меня, будто слышал, как они ревут друг на друга в кустарниках острова Южный.

ПТИЦА РУХ ИЗ “КНИГИ ТЫСЯЧИ И ОДНОЙ НОЧИ”

Птица Рух, способная унести слона, никогда не существовала в действительности – да и не могла бы. Но откуда взялась легенда о ней – может быть, из рассказов путешественников о гигантской нелетающей птице эпиорнис с Мадагаскара?

Маори прибыли в Новую Зеландию около 700 лет назад, практически вчера по сравнению с Австралией, где аборигены появились более 50 тысяч лет назад. Можно ли считать, что аборигены виновны в вымирании множества крупных сумчатых в Австралии, вопрос спорный. Обитали там и огромные нелетающие птицы вроде двухметрового гениорниса (Genyornis), похожего на гуся-переростка. Эти австралийские птицы-великаны не состояли в близком родстве ни с бескилевыми, ни с фороракосами, и их ближайшие ныне живущие родичи – южноамериканские кариамы, длинноногие птицы с изящными хохолками, в несколько раз меньше ростом, чем фороракос.

Гигантскими были и эпиорнисы с Мадагаскара, опять же нелетающие бескилевые. Их существовало несколько видов. Самый крупный, который недавно получил новое название Vorombe titan, достигал трех метров. К вопросу о полетах воображения: среди сказок “Книги тысячи и одной ночи” есть история о Синдбаде-мореходе. Едва ли не самым страшным из приключений Синдбада была встреча с исполинской птицей Рух, которая обитала на экзотическом острове и кормила птенцов слонами. Синдбаду надо было улететь с острова, поэтому он размотал чалму и привязал себя к великанскому когтю птицы Рух, пока та высиживала не менее великанское яйцо.

“ОДНА ИЗ МОИХ ДРАГОЦЕННОСТЕЙ”

В молодости Дэвид Аттенборо собрал яйцо эпиорниса из осколков.

О птице Рух упоминал и Марко Поло, средневековый мореплаватель-венецианец. Он писал, что она была такая громадная, что хватала слонов и убивала их, бросая на землю. Любопытно, что он полагал, что птица Рух родом с Мадагаскара. Именно там мы обнаружили останки эпиорнисов. Возможно, легенда о птице Рух зародилась из рассказов путешественников о гигантских мадагаскарских птицах. В дальнейшем эти рассказы обросли подробностями, сильно преувеличившими размеры птиц и упустившими из виду важный факт, известный тем, кто видел эпиорнисов своими глазами, но не тем, кто распространял слухи: эпиорнисы не умели летать. Они вымерли лишь недавно, возможно в XIV веке; вероятно, этих великанов, как и гигантских моа, истребили нагрянувшие люди, которые ели и их самих, и их яйца, вырубали леса и уничтожали среду обитания исполинских птиц. По-видимому, есть некоторая надежда, что их удастся возродить, например из ДНК, извлеченной из скорлупы их яиц, которые и сегодня в изобилии находят на побережье Мадагаскара. Возможно, мы возродим и моа. Было бы замечательно! Кстати, интересный факт: ближайший ныне живущий родственник гигантских эпиорнисов – новозеландская киви, самая маленькая из бескилевых птиц.

Дэвид Аттенборо нанимал помощников, которые искали на побережье Мадагаскара осколки скорлупы, из которых они с коллегами из съемочной группы при помощи скотча склеили почти целое яйцо эпиорниса. Объем такого яйца был примерно в 150 раз больше, чем куриного. Его скорлупа на удивление толстая, примерно как ударопрочное лобовое стекло машины. Интересно, как птенцы выбирались наружу.

Кстати, вот еще пример того, что в эволюции компромиссов не меньше, чем в экономике. Если речь идет о скорлупе, то чем она толще, тем лучше защищено яйцо от хищников и от веса матери и отца, которые его высиживают. Однако птенцу трудно разбить слишком толстую скорлупу, когда настает пора вылупляться, и на нее идет много ценных ресурсов вроде кальция. Теоретики эволюции любят говорить о компромиссах между “требованиями отбора”. Они постоянно толкают эволюционирующий вид в разных направлениях, что приводит к многостороннему компромиссу. Требование отбора, обусловленное угрозой хищников, заставляет за эволюционное время выработать толстую скорлупу. Одновременно есть противоположное требование – сделать скорлупу тоньше, поскольку некоторые птенцы не могут вылупиться из прочного яйца и умирают. Те птенцы, которые с наименьшей вероятностью погибают внутри яйца, наследуют гены более тонкой скорлупы. С другой стороны, те же самые гены создают скорлупу, которую легко разбивают хищники. Получается, одни птенцы погибают по одной причине, а другие – по прямо противоположной. Со сменой поколений средняя толщина скорлупы останавливается на каком-то компромиссе между противоположными требованиями отбора.

Те птицы, которым необходимо летать, должны удовлетворять еще одному требованию: им нужно быть легкими. В теле летающих птиц предусмотрено все, чтобы снизить их вес: полые кости и девять воздушных пузырей в разных частях тела. Все преимущества, достигаемые подобными мерами, сводятся на нет из-за тяжести яиц. Поэтому птицы носят в себе только одно полностью сформированное яйцо за раз. В кладке может быть несколько яиц, но родители начинают их высиживать, только когда отложено последнее, чтобы птенцы вылупились одновременно. Некоторые хищные птицы служат примером еще одного компромисса, довольно жестокого. Матери откладывают больше яиц, чем намерены высидеть. Если год выдался хорошим с точки зрения пропитания, они, возможно, сумеют высидеть и вырастить всех птенцов. Но в обычный год самый маленький птенец должен умереть, причем нередко его убивают братья и сестры.

У млекопитающих, как правило, иной образ действий. Поскольку естественный отбор не предъявляет к ним того же требования быть сверхлегкими, беременные млекопитающие нередко вынашивают одновременно много эмбрионов (рекорд – 32 – принадлежит мадагаскарскому тенреку, похожему на щетинистого ежика, так что невольно сочувствуешь матери, которой приходится рожать таких детенышей). Это не относится к летучим мышам, у которых размер выводка, как правило, равен одному детенышу по той же причине, что и у птиц. И к людям тоже, но по другой причине. Вероятно, мы не можем выращивать большие выводки из-за большого мозга. Неважно, зачем нам нужен большой мозг (несомненно, от него много пользы), но деторождение из-за него становится особенно трудным и мучительным. До эпохи современной медицины удручающе большая доля женщин погибала в родах, и главной проблемой была огромная голова младенца. Мы снова сталкиваемся с эволюционным компромиссом. Чтобы снизить риск для матери, человеческие младенцы рождаются на довольно ранней стадии развития, но не настолько рано, чтобы поставить под угрозу собственное выживание. Головы у них все же слишком большие, чтобы матери было легко их рожать, а появление двоен, троен и так далее делают роды еще затруднительнее. Младенцы, вынужденные появляться на свет слишком рано, сильнее зависят от родителей, чем детеныши других крупных млекопитающих. Мы не можем ходить, пока нам не исполнится примерно год. Детеныши гну встают на ноги и начинают ходить в тот же день, когда родились. Они тоже рождаются по одному, поскольку должны иметь возможность ходить сразу по выходе из утробы. Если бы они рождались большими выводками, то были бы слишком маленькими, чтобы поспеть за кочующим стадом.

В научно-технической сфере требований, направленных в несовместимых направлениях, великое множество. В этом случае они реализуются не на протяжении эволюционного времени, а хронологически, когда последовательно проекты сменяются на чертежных досках. Самолеты должны быть как можно легче, как птицы, должны быть еще и прочными, как скорлупа. Эти два идеала несовместимы друг с другом, поэтому необходимо найти компромисс. Полеты в самолетах могли бы быть безопаснее, чем сейчас. Но за это пришлось бы платить не только деньгами, но и неудобствами и задержками. Однако и здесь нужно достигать равновесия. Если бы ценность безопасности была бесконечной, каждого пассажира досматривали бы, раздевая донага, и служба безопасности потрошила бы все чемоданы до единого. Но допустимые компромиссы позволяют не доводить дело до таких крайностей. Мы миримся с некоторым риском. Как бы ни возмущала подобная мысль идеалистов в розовых очках, ценность человеческой жизни не бесконечна, ее можно оценить в денежном эквиваленте. Правила безопасности полетов на военных и гражданских воздушных судах уравновешены на уровне разных компромиссов. Экономический баланс расходов и доходов и компромиссы – основа и технологии, и эволюции. Почему летучие мыши – единственные млекопитающие, которые умеют летать? Они составляют существенную долю млекопитающих, примерно пятую часть всех их видов. Но почему мы не видим крылатых львов, пикирующих с небес на крылатых антилоп? Как ни странно, ответ на этот вопрос очень прост. Львы и антилопы слишком большие. А как же тогда летающие крысы? Около 40 % видов млекопитающих – грызуны. Почему никто из них не отрастил себе крылья за те 50 миллионов лет, которые они прогрызали себе дорогу в эволюционной истории? Вероятно, дело в том, что летучие мыши успели первыми. Если бы случилась пандемия какого-то вируса, который истребил бы всех летучих мышей, осмелюсь предположить, что грызуны воспользовались бы случаем и научились не только парить (это они уже умеют), но и летать по-настоящему. Но не станем забывать об экономике. Крылья дорого отращивать и еще дороже использовать, особенно махать ими. Нужно, чтобы они оправдывали эти расходы. И, как мы видели на примере муравьев, крылья могут и мешать. Если ведешь подземную жизнь наподобие голых землекопов (это на диво уродливые маленькие роющие грызуны, живущие социальными группами вокруг суперплодовитой “матки”), крылья могут превратиться в тяжкое бремя.

Итак, мы начинаем составлять список способов, позволяющих животным оторваться от земли при воздействии силы тяжести. Самый простой и наименее трудоемкий способ оторваться от земли: нужно впасть в другую крайность, чем легендарная птица Рух или реальные страус и фороракос. Не будь большим. Будь маленьким.

Глава 4

Маленьким летать проще

Жаль, что феи из Коттингли оказались выдумкой, поскольку, в отличие от ангелов, Бурака и Пегаса, этот маленький народец был как раз нужного размера, чтобы летать без затруднений. Чем ты больше, тем труднее летать. Если ты маленький, словно зернышко пыльцы или мошка, тебе не приходится даже напрягаться – тебя подхватит ветерок, и все. Но если ты большой, как лошадь, полет требует колоссальных усилий, если вообще возможен. Почему размер имеет значение? По одной любопытной причине. Обратимся к математике.

Если увеличить вдвое любой габарит предмета, увеличив пропорционально и остальные габариты, можно предположить, что его объем и вес тоже возрастут вдвое. Но на самом деле предмет станет тяжелее в 8 раз (2×2×2). Такое масштабирование применимо к предметам любой формы, в том числе к людям, птицам, летучим мышам, самолетам, насекомым и лошадям, но особенно это наглядно на примере детских кубиков. Возьмите один кубик. Теперь составьте несколько кубиков, чтобы получился предмет той же формы, но с ребром вдвое больше. Сколько маленьких кубиков в большом кубике? 8. Кубик с ребром вдвое больше исходного весит в 8 раз больше, а форма у них одинаковая.

У МАЛЕНЬКИХ ПРЕДМЕТОВ ОТНОСИТЕЛЬНО БОЛЬШАЯ ПЛОЩАДЬ ПОВЕРХНОСТИ

Если пропорционально увеличивать какой-то предмет, то его объем и, следовательно, вес увеличиваются более резко, чем площадь поверхности. Особенно это очевидно на примере кубиков, однако на самом деле этот закон относится к любым предметам, в том числе к животным.

Если вы попробуете составить кубик с ребром втрое больше, вам нужно будет 27 кубиков – 3×3×3, или 33. Если же выстроить куб с ребром в десять раз больше, у вас, скорее всего, кончатся кубики, поскольку 103 – это целая гора кубиков (1000).

Возьмите предмет любой формы и умножьте его размеры на какое-то число, чтобы пропорционально увеличить его. Объем масштабированного предмета, как и вес, в таких случаях всегда увеличивается на куб этого числа. Эта формула применима не только к кубикам, но и к предмету любой формы, который вам зачем-то нужно масштабировать. Однако, хотя вес увеличиваемого предмета растет как куб, площадь поверхности растет лишь как квадрат. Посчитайте, сколько краски нужно, чтобы покрасить один кубик. Теперь масштабируйте кубик – постройте куб побольше со стороной в два единичных кубика. Сколько вам потребуется краски, чтобы покрасить его? Не вдвое больше и не в 8 раз больше, а всего в 4 раза больше краски. Теперь сделайте куб со стороной в 10 единиц – 10 кубиков по всем измерениям. Мы уже знаем, что такой большой куб весит в 1000 раз больше единичного, потребуется в 1000 раз больше дерева, краски всего в 100 раз больше. Таким образом, чем ты меньше, тем больше отношение площади твоей поверхности к твоему весу. Мы еще поговорим о площади поверхности и о том, почему это так важно, в следующей главе. А пока достаточно сказать, что большая поверхность захватывает больше воздуха.

Продолжим полет воображения: представим себе ангела как человека с крыльями, масштабированную фею. Архангела Гавриила принято изображать примерно того же роста, что и обычного человека – скажем, 170 сантиметров. Примерно в 10 раз больше, чем фея из Коттингли. Значит, Гавриил тяжелее феи не в 10, а в 1000 раз. Только подумайте, насколько больше работы пришлось бы проделать крыльям, чтобы поднять в воздух ангела. А масштабированные крылья были бы по площади не в 1000 раз больше, а всего в 100.

ЗАДУМЫВАЛСЯ ЛИ ЛЕОНАРДО, НЕ МАЛОВАТЫ ЛИ КРЫЛЬЯ ГАВРИИЛА?

“Благовещение”, но с крыльями, которые достаточно велики, чтобы Гавриил мог подняться в воздух. Но даже если так, где архангел прячет мощные грудные мышцы, необходимые, чтобы двигать крыльями? Н где у него “киль” на грудине, к которому крепятся эти мышцы? Леонардо слишком хорошо знал анатомию, чтобы не задумываться об этом.

Если вы бывали в галерее Уффици во Флоренции, вы видели восхитительно прекрасное “Благовещение” Леонардо да Винчи. На нем у архангела Гавриила на удивление маленькие крылышки. Ими было бы трудно поднять даже младенца, не то что Гавриила размером со взрослого человека (даже женственно-хрупкого, каким изобразил его Леонардо). К тому же предполагают, что сначала Леонардо написал крылья еще меньше, а позднее их увеличил какой-то другой художник. Но увеличил недостаточно. Мы подправили репродукцию, чтобы крылья больше соответствовали своему предназначению. Увы, это, мягко говоря, навредило красоте картины. Крылья нелепо торчат из рамы.

КРОШКА-КОЛИБРИ С МОЩНЫМ КИЛЕМ

Взгляните, как велик киль на грудине даже у такой маленькой птички. Он должен быть большим, чтобы держать летательные мышцы, обслуживание которых обходится дорого.

В отличие от всего полотна, проработанного с необычайной тонкостью, место, где крепятся крылья, на картине прописано так неуклюже, словно мастера самого смущала нелепость этой идеи. “Где же ангелы прячут мощные летательные мышцы, без которых им не обойтись? – думал, должно быть, великий анатом. – И где грудная кость, к которой они крепятся?”

Если бы живописец изобразил необходимый киль, он торчал бы довольно далеко в сторону стола, за которым сидит Дева Мария. Пегасу потребовался бы еще более массивный киль, поскольку он конь и весит гораздо больше. Киль Бурака задевал бы землю, когда несчастное создание пыталось бы ходить. Посмотрите на относительно большой киль колибри – эта маленькая птица летает отменно, и насколько массивнее должен быть киль Пегаса! Правда, у летучих мышей нет киля, но у них увеличены и укреплены другие кости грудной клетки, выполняющие ту же задачу.

Ясно, что крылья леонардовского Гавриила слишком малы. Но насколько точно мы можем вычислить размер крыльев, которые потребовались бы живому существу размером с человека, чтобы летать? Было бы проще, если бы мы, подобно создателям “Боинга” и “Аэробуса”, могли бы прибегнуть к расчетам для летательного аппарата с неподвижными крыльями. Но и тогда было бы трудно. Между тем форма живого крыла меняется ежесекундно, при взмахе крыло описывает сложную траекторию, а возникающие при этом воздушные завихрения еще сильнее усложняют расчеты. Пожалуй, проще всего отказаться от теоретических выкладок и посмотреть, есть ли на планете птицы размером с человека.

Все самые крупные современные птицы – нелетающие, вроде страусов. Но среди вымерших было несколько летающих в той же весовой категории, что и человек. Например, гигантская морская птица пелагорнис (Pelagornis). Вероятно, она вела тот же образ жизни, что и альбатрос, и летала так же, поэтому у нее были такие же узкие крылья, но вдвое длиннее. В отличие от альбатросов, у пелагорнисов были выступы по краям клюва, которые выглядели как зубы и, по-видимому, служили зубами – помогали захватывать рыбу и удерживать ее. Вскоре мы увидим, что альбатросы обеспечивают себе подъемную силу особым хитроумным образом и задействуют для этого воздушные потоки, движущиеся по касательной к волнам, и пеларгонисы, вероятно, поступали так же. Размах крыльев у пелагорниса был около шести метров.

САМЫЕ КРУПНЫЕ ЛЕТАЮЩИЕ ПТИЦЫ В ИСТОРИИ ПЛАНЕТЫ

Вымершие пелагорнис и аргентавис с парашютистом для масштаба.

Еще крупнее пелагорнисов или по крайней мере тяжелее, но с тем же размахом крыльев были аргентависы – их латинское название Argentavis magnificens переводится как “великолепная аргентинская птица”, что вполне отражает суть. Вероятно, они были родственниками современного андского кондора, тоже могучей огромной птицы (увы, сейчас на грани вымирания), только аргентависы были значительно крупнее. Они весили около 80 кг, но существенная доля веса приходилась на сами крылья. Они у аргентависа были не такие изящные, как у альбатроса или пелагорниса, и скорее прямоугольные, как у кондора. И гораздо больше по площади, ведь они должны были нести птицу, которая весила больше 10 альбатросов. По оценкам, площадь крыльев у аргентависа составляла приблизительно 8 м2, то есть как у современного спортивного парашюта. Разумно предположить, что аргентависы в основном парили и поднимались на восходящих воздушных течениях, как и современные кондоры и грифы.

ВЕРОЯТНО, КЕТЦАЛЬКОАТЛЬ БЫЛ САМЫМ КРУПНЫМ ЛЕТАЮЩИМ ЖИВОТНЫМ НА ЗЕМЛЕ

Разумеется, кетцалькоатль никогда не встречался с жирафами, их разделяет около 70 миллионов лет. Но если бы они встретились, то смогли бы посмотреть друг другу прямо в глаза.

Только представьте, как жираф взмывает в воздух!

Пожалуй, самым крупным летающим животным в истории был птерозавр Quetzalcoatlus – кетцалькоатль. Птерозавры составляли многочисленную группу летающих рептилий, которых принято называть птеродактилями, хотя на научном языке так называется конкретная разновидность птерозавров гораздо мельче кетцалькоатлей. Строго говоря, птерозавры – не настоящие динозавры, но родственны им и исчезли примерно одновременно с ними во время великого вымирания в конце мелового периода.

Кетцалькоатли были чудовищных размеров. Размах крыльев у них достигал 10-11 метров, что сравнимо с самолетами “Пайпер Каб” и “Сессна” и больше любой птицы. Выпрямившись во весь рост, кетцалькоатль мог бы посмотреть прямо в глаза жирафу. Вероятно, он и в самом деле стоял, выпрямившись во весь рост, опираясь на задние лапы и на суставы сложенных крыльев. Правда, благодаря полым костям кетцалькоатль весил вчетверо меньше жирафа.

Кетцалькоатль задал верхний предел размеров, при которых возможно летать при помощи мышечной силы. Думается, он предпочитал парить, стартуя откуда-нибудь с высоты и подолгу оставаясь в воздухе, а если ему требовалось взлететь с земли, это, вероятно, было нелегко. Похоже, кетцалькоатль пользовался мощными передними конечностями, чтобы набрать высоту. Интересно, как такая длинная шея выдерживала в полете вес массивной головы? Недавние исследования показывают, что кости шейных позвонков были в основном полыми, а от трубки, по которой проходил спинной мозг, расходились укрепляющие распорки вроде спиц на велосипедном колесе.

Мы не знаем, могли ли эти гигантские кожистые древние аэронавты махать крыльями или только взлетали и парили. Это важное различие, и к нему мы еще вернемся в последующих главах.

Кстати, летать – не единственное, что дается труднее, если становишься больше. Ходить и даже стоять тоже труднее. Сказочных великанов изображают похожими на людей нормального сложения, просто уродливых и пропорционально больших размеров. Но если бы кости десятиметрового великана были как у нормального человека, только пропорционально увеличенные, они сломались бы под его весом. Такой исполин весил бы не в 5 раз больше даже высокого двухметрового человека, а в 125 раз больше. Чтобы великан не превратился в груду окровавленных обломков, кости у него должны были бы быть несоразмерно толще обычных человеческих. Подобно костям слонов и больших динозавров, они должны были быть толстыми, как древесные сучья, такими толстыми, что выглядели бы непропорционально короткими.

Размер для животного – один из тех параметров, которые легче всего менять в ходе эволюции, причем в любую сторону. Как мы видели, животные, перебирающиеся на остров, за эволюционное время нередко становятся крупнее – это феномен островного гигантизма. Но при других обстоятельствах новоприбывшие обитатели островов становятся меньше – это островная карликовость. Так произошло с миниатюрными, ростом в метр, слонами, которые когда-то жили на Крите, Сицилии и Мальте. Должно быть, они были просто очаровательны. Существует правило Фостера, гласящее, что животные, которые раньше были маленькими, обычно после переселения на остров становятся крупнее, а животные, которые раньше были крупными, – мельче. Предполагают, что животные, на которых охотятся (обычно они маленькие), становятся крупнее в отсутствие хищников. А крупные животные становятся меньше, поскольку небольшая площадь острова ограничивает их пищевые ресурсы.

Эволюционные изменения размеров не могут быть просто изменениями масштаба в ту или иную сторону. Меняются и пропорции – согласно математическим законам, изученным нами на примере кубиков. Меняется весь облик животного. Те, кто уменьшается, становятся худыми и длинноногими. А у животных, размеры которых растут, конечности становятся толще. С изменениями абсолютного размера должны измениться все пропорции – кости, сердце, печень, легкие, кишечник и все прочие органы, как мы узнаем далее. И все это по тем же математическим причинам, с которыми мы познакомились в начале этой главы.

Вернемся к названию главы. Если ты совсем маленький, вроде феи или мошки, летать проще простого – легчайший ветерок подхватит и унесет, словно паутинку или пушинку. Если и нужны крылья, то скорее чтобы рулить, а не чтобы взлететь с земли.

Феи из Коттингли могли себе позволить довольно маленькие крылья, которыми можно махать без особых мышечных усилий. Фею из “Питера Пэна” зовут Динь-Динь – Tinkerbell. Очаровательная деталь: самое маленькое летающее насекомое мимарида по-английски называется fairyfly – “мушка-фея” (на самом деле она оса), а латинское название одного из видов мимарид – Tinkerbella папа (вспомним, что Нэной звали собаку, которая нянчила детей семейства Дарлинг в “Питере Пэне”). “Перышки” мимариды Tinkerbella папа тоненькие, как паутинки, – это, строго говоря, крылья, но насекомое пользуется ими скорее как веслами, чтобы “грести” в воздухе, где оно парит, чем для обеспечения подъемной силы. Крылья у других видов мимарид больше похожи на обычные. Мимариды на сегодня самые маленькие из известных нам летающих животных. Таким крошкам не составляет никакого труда оставаться в воздухе, наоборот, им бывает трудно спуститься на землю.

МИМАРИДА TINKERBELLA

На иллюстрации в самом начале этой главы показано, как мимарида пролетает сквозь игольное ушко.

Размах крыльев у нее примерно 0,25 миллиметра.

Хорошо, когда ты маленький. Но что, если тебе по каким-то причинам надо быть большим и все равно летать? Есть много веских причин быть большим, даже при высоких экономических затратах. Мелкие животные рискуют быть съеденными, не могут ловить крупную добычу. Соперников из своего же вида, например в брачных играх, легче запугать, когда ты крупнее. Тогда надо найти другой способ оторваться от земли. Это и подводит нас к следующей главе.

Глава 5

Если нужно быть большим и все равно летать, увеличь поверхность тела

В предыдущей главе было показано, что мелкие животные автоматически получают относительно большую поверхность тела по сравнению с весом, поэтому полет дается им легко. Мы убедились в этом на примере математических расчетов с участием детских кубиков. Площадь поверхности мы измеряли в количестве краски, которая нужна, чтобы ее покрыть. Или количеством ткани, которая нужна, чтобы ее одеть. Если ангел имеет ту же форму, что и фея, но в 10 раз выше, площадь кожи, покрывающей ангела, будет в ю2, то есть в 100 раз больше, в то время как объем и вес – уже в 1000 раз больше.

БЕЛКА-ЛЕТЯГА

Лучше было бы назвать ее белкой-парашютисткой или белкой-дельтапланеристкой. Патагий – кожная перепонка, натянутая между лапами, – увеличивает площадь поверхности животного и позволяет ему благополучно планировать с дерева на дерево.

Но какое отношение площадь поверхности имеет к полету? Чем больше поверхность, тем больше площадь, которая может ловить воздушные потоки. Возьмите два одинаковых воздушных шарика, надуйте один так, чтобы у него была большая площадь поверхности, а другой оставьте вялым резиновым мешочком. Сбросьте их одновременно с Пизанской башни. Который упадет на землю первым? Недонадутый, хотя он не тяжелее (а на самом деле даже немного легче). Естественно, если бы вы бросали их в вакууме, они бы упали на землю одновременно (если уж говорить начистоту, в вакууме надутый шар взорвался бы, но суть вы уловили). Я пишу “естественно”, но до Галилея это было бы для всех неожиданностью. Это он доказал, что даже перо и пушечное ядро ударились бы о землю одновременно, если бы их бросили в вакууме.

БИПЛАН

Медленным самолетам нужна относительно большая площадь крыла, чтобы поддерживать заданный вес.

Сегодня бипланы встречаются гораздо реже, чем когда-то, а очень быстрых бипланов не бывает.

В этой главе мы хотим ответить на вопрос, что делать животному, если оно по каким-то причинам вынуждено быть большим, но все равно летать? Оно должно это компенсировать, непропорционально увеличив площадь поверхности своего тела, то есть отрастить себе какие-то выступающие части, например перья (если это птица) или складки тонкой кожи (если это летучая мышь или птеродактиль). Из какого бы количества материала ни состояло твое тело (твой

объем или вес), ты сделаешь важный шаг в сторону полета, если распределишь часть этого объема по большой поверхности. Или по крайней мере в сторону мягкого, как на парашюте, спуска или парения на ветру. Вот почему наша вымышленная версия архангела Леонардо нуждается в таких огромных крыльях. Инженеры выражают это особым термином – “нагрузка на крыло”. Это вес, поделенный на площадь крыла, чем больше нагрузка на крыло, тем труднее оставаться в воздухе.

Чем быстрее летит самолет (или птица), тем больше подъемной силы можно выжать из каждого квадратного сантиметра крыла. Более быстрые самолеты того же веса могут иметь крылья меньшей площади и все равно лететь. Это объясняет, почему у медленных самолетов площадь крыла относительно больше, чем у быстрых. До того, как удалось достичь современных высоких скоростей, первые самолеты были по большей части бипланами. Благодаря такой конструкции получаешь удвоенную подъемную силу, однако и аэродинамическое сопротивление тоже растет. По той же причине иногда строили даже трипланы.

Кстати, если отвлечься ненадолго от темы полета, следует заметить, что отношения между площадью поверхности и объемом очень важны для живых существ в целом. Подобно тому как крылья увеличивают площадь внешней поверхности, а это важно для полета, есть много органов, которые увеличивают площадь внутренней поверхности, чтобы соответствовать увеличению размеров тела. Например, легкие.

Объем или вес животного – хороший показатель количества его клеток. У крупных животных клетки не крупнее обычного, их просто больше. Каждая из этих клеток – и у мыши, и у слона – должна получать кислород и другие жизненно необходимые вещества. У блохи клеток меньше, чем у слона, и все они недалеко от воздуха, кислороду легко попасть в клетки. У взрослого человека около 30 триллионов клеток, и лишь крошечная их доля – клетки кожи, контактирующие с воздухом. Хотя поверхность кожи человека гораздо больше, чем у блохи, на нашей внешней поверхности расположена меньшая доля клеток, мы возмещаем этот недостаток, отращивая себе большую внутреннюю поверхность, которая соприкасается с воздухом. На этом принципе построены легкие, внутри которых сложная система разветвляющихся трубок и трубочек, заканчивающихся крошечными камерами – альвеолами. У вас примерно 500 миллионов альвеол, и, если их расправить, они покроют почти целый теннисный корт. Вся эта поверхность внутри вас соприкасается с воздухом и насыщена кровеносными сосудами. Даже насекомые, которые гораздо меньше, увеличивают площадь поверхности, соприкасающуюся с воздухом, при помощи системы внутренних разветвляющихся воздуховодов – трахей. Все тело насекомого – одно большое легкое.

Кровеносные сосуды в легких ветвятся бесконечно, обеспечивая огромную площадь внутренней поверхности, необходимую, чтобы забирать кислород из легких и распределять его по всем клеткам тела, например, мышечным, где кислород нужен для медленного сгорания, на котором работают мышцы. Кровеносные капилляры обеспечивают гигантскую внутреннюю поверхность для сбора и распределения питательных веществ и снабжают клетки всем необходимым. Обычной клетке нужно находиться примерно на расстоянии 0,05 мм от ближайшего капилляра, то есть в пределах двух-трех диаметров клетки. Капилляры собирают питательные вещества из кишечника, который сам по себе тоже обеспечивает большую внутреннюю площадь поверхности – тоже почти с теннисный корт. Представьте себе, какой огромной длины кишечник свернут внутри вас, и сравните его длину с кишечником дождевого червя – просто трубкой, которая тянется от одного конца червя до другого. Ваши почки снабжены бесчисленными тоненькими трубочками, суммарная площадь поверхности которых опять же огромна, и в этих трубочках кровь фильтруется и очищается от отходов. Если вытянуть в длину все ваши кровеносные сосуды, большинство которых – крошечные капилляры, их можно обмотать вокруг экватора три с лишним раза. Это дает колоссальную площадь поверхности соприкосновения клеток с кровью. Многие большие органы в вашем организме – не только легкие и кишечник, но и печень, почки и так далее – всеми силами стараются повысить рабочую площадь доступа крови к клеткам. В сущности, все изгибы и закоулки кораллового рифа, складки и трещинки древесной коры и бесчисленное множество листьев в лесу – способ несоизмеримо увеличить площадь поверхности, которая необходима живой материи, чтобы жить.

Из этого отступления можно сделать вывод, что название главы – “Если нужно быть большим и все равно летать, увеличь поверхность тела” – применимо не только к полету, но и к дыханию, кровообращению, пищеварению, выведению отходов и вообще ко всему, что происходит внутри животного, а не только к тому, что мы видим снаружи. Но вернемся к полету.

Как мы уже выяснили, чем больше площадь поверхности животного по сравнению с его весом, тем медленнее оно падает в воздухе и тем легче ему обеспечить себе подъемную силу, необходимую для полета. Очевидно, что крылья дают много дополнительной поверхности, для чего бы ни служили – для взмахов или парения. У летучих мышей и птеродактилей это тонкие полотнища кожи. Тонким полотнищам нужен каркас – из костей или чего-то равноценного. Эволюция склонна к оппортунизму и обычно модифицирует что-то уже существующее, а не отращивает нечто совершенно новое. В теории можно себе представить крылья, растущие из спины, как на изображениях ангелов, но для этого пришлось бы отрастить новые кости для их каркаса. Может быть, в нашем распоряжении уже есть какие-то кости, которые можно использовать как каркас для летательных поверхностей? Как мы еще увидим, существуют ящерицы, которые парят на кожаных перепонках, натянутых по бокам, и эти перепонки заимствуют для поддержки ребра. Но более профессиональные летуны – летучие мыши, птицы и птерозавры – пользуются передними конечностями, которые уже снабжены подходящими костями и мышцами, дающими простор для модификаций.

У летучих мышей и птерозавров летательная кожа натянута между передней и задней конечностями одной стороны. У птерозавров большинство костей передней конечности остались довольно короткими, но они отрастили один непомерно длинный палец – четвертый (безымянный). Слово “птеродактиль” буквально означает “крыло-палец”. Этот гипертрофированный палец обеспечивает каркас почти всей передней кромки крыла и тянется до его кончика. Наши пальцы – тонкие, нежные, мы с их помощью можем заниматься деликатной работой, например печатать и играть на пианино. Нам трудно представить себе, чтобы один палец отрос длиннее всей руки и был достаточно сильным, чтобы держать мощное крыло, как у кетцалькоатля. Вот нам урок того, на что способна эволюция, когда пользуется чем-то уже имеющимся. Летательная перепонка сама по себе плохо сохраняется в окаменелостях, поэтому реконструкции разных биологов не всегда совпадают. Мы опирались на самые авторитетные современные реконструкции и нарисовали крыло, доходящее до самой лодыжки. Кроме того, некоторые данные указывают, что по задней кромке крыла от кончика пальца до лодыжки проходило сухожилие, которое дополнительно укрепляло крыло и, возможно, не позволяло ему трепетать на ветру, что не просто помешало бы экономному полету, но и могло порвать перепонку.

ТРИ СПОСОБА ПРЕВРАТИТЬ ПЕРЕДНЮЮ КОНЕЧНОСТЬ В КРЫЛО

Летучие мыши (01) удлинили все пальцы и растопырили их. Птерозавры (02) непомерно увеличили только один палец.

Летучим мышам и птерозаврам пришлось для дополнительной прочности задействовать и заднюю конечность. Птицам (03) это не нужно, поскольку перья сами по себе обладают жесткостью. А кости передних конечностей у них неожиданно (и очень экономично) коротки – по той же причине.

Крылья летучих мышей натянуты на каркас из всех пальцев, не только четвертого, и еще они, как и птерозавры, задействуют в качестве дополнительной распорки для крыла заднюю лапу. Это лишает их возможности нормально ходить. Пожалуй, лучше всех из летучих мышей умеют ходить новозеландские летучие мыши, которые снуют в опавшей листве тамошних лесов. Но в ходьбе и беге им не сравниться с птицей. Я могу себе представить, как ходил птерозавр – пошатываясь и неуклюже балансируя крыльями, точь-в-точь сломанный зонтик.

Птицы поступают иначе. Их летательная поверхность сделана не из кожной складки, а из перьев, которые могут хитроумным образом расправляться. Перья – одно из чудес природы, восхитительное устройство, достаточно прочное, чтобы поддерживать птицу в воздухе, но не настолько жесткое, как кость. При всей своей гибкости перья достаточно прочны, чтобы дать птичьему крылу возможность сэкономить на костях. У некоторых птиц (например, у изображенного на рисунке ворона) костный скелет верхней конечности доходит лишь до половины длины крыла. Остальной размах обеспечивается за счет перьев. Сравните это с летучей мышью или птерозавром, где кость тянется до самого кончика крыла. Кости прочны, но тяжелы, а тяжесть – именно то, чего надо избегать, если ты летаешь. Полая трубка гораздо легче сплошного стержня и лишь немного уступает ему по прочности. Кости у всех летающих позвоночных настолько полые, насколько позволяет разумный риск, и укреплены внутри поперечинами. Птицы могут позволить себе свести скелет крыла до минимума, а вместо него иметь сверхлегкие прочные перья.

Роберт Гук в своей книге Micrographia, вышедшей в 1665 году, одним из первых зарисовал то, что видел в микроскоп, и поразил своих читателей сложными изящными структурами живых организмов. Неудивительно, что его внимание привлекло и перо, “ибо здесь можем мы наблюдать саму Природу, которая приложила все силы, чтобы создать вещество, которое было бы как достаточно легким, так и весьма прочным и жестким”. Далее Гук замечает, что “самые прочные тела по большей части еще и самые тяжелые”, а следовательно, если бы перо было создано иначе, чем в его нынешнем виде, оно было бы значительно тяжелее. Перья крыла скользят друг по другу, поэтому крыло идеально складывается, словно веер, и подстраивается под разные условия полета. В этом отношении крыло птицы совершеннее крыла летучей мыши или птерозавра, которым приходится расплачиваться за возможность менять форму крыла свисающими складками кожи. Опахало крыла состоит из сотен бородок, которые сцепляются и расцепляются с соседними бородками, словно застежка-молния. Такое устройство позволяет достичь того идеального сочетания силы и легкости, которым восхищается Гук. Но это не бесплатно: перо требует постоянного ухода – птица должна клювом приглаживать его, чтобы бородки были хорошо сцеплены и лежали в порядке. Если достаточно долго наблюдать за птицей, наверняка увидишь, как она прихорашивается, причем особое внимание уделяет крыльям. От этого зависит ее жизнь в буквальном смысле, поскольку плохо уложенные перья крыла мешают нормальному полету, и тогда птица не сможет спастись от хищника. Или поймать добычу. Или уклониться от столкновения.

ЧЕТЫРЕХКРЫЛЫЙ ДИНОЗАВР

Такую конструкцию могли бы перенять птицы, но этого не произошло.

Перья – это видоизмененные чешуйки рептилий. Вероятно, изначально они эволюционировали не для полета, а для теплоизоляции, как шерсть млекопитающих. Мы в очередной раз видим, как эволюция воспользовалась тем, что у нее уже есть. (Другой пример: самец черногрудого рябка, обитающий в пустыне, вынужден носить воду своим птенцам издалека. Перья на его грудке изменены таким образом, чтобы впитывать воду, словно губка. В них самец приносит воду домой, и его птенцы высасывают ее.) Плотный пушистый перьевой покров в дальнейшем стал толще за счет укрепленного ствола посередине пера, а его упругая гибкость стала идеальной для полета. Вся летательная поверхность крыла птицы покрыта перьями, и ее площадь очень велика относительно площади поверхности остального тела птицы. Основную нагрузку в полете берут на себя так называемые маховые перья первого порядка. Это большие перья, которыми в основном и писали наши предки, предварительно очинив их.

Только недавно было обнаружено, что перья были распространены у группы динозавров, от которых произошли птицы. По-видимому, тираннозавры (Tyrannosaurus), наводившие ужас на все живое, имели оперение, что почему-то делает их не такими страшными и даже по-своему умилительными. Существовали и четырехкрылые оперенные динозавры. Они жили в меловой период, 120 миллионов лет назад, то есть позднее знаменитого археоптерикса (Archaeopteryx), которого часто называют первой птицей. Вероятно, существа вроде микрораптора (Microraptor, на рисунке) были способны не только парить, но и летать по-настоящему.

ЖУК-СКАКУН

Чемпион по спринту в мире насекомых – и к тому же умеет летать.

Перья достаточно жесткие, чтобы не было необходимости в дополнительных костях позади скелета конечности, и птицы экономят и на самом скелете, который может быть гораздо короче крыла. Одновременно перья достаточно упруги, чтобы прекрасно работать при взмахах. Более того, для натяжения крыла не нужно задействовать задние конечности, следовательно, птицы, в отличие от летучих мышей и птерозавров, прекрасно ходят и бегают (а мелкие – еще и прыгают). Это большое преимущество по сравнению с неуклюжей пародией на ходьбу у птерозавров и летучих мышей.

То же самое преимущество есть и у насекомых. Они вообще не задействуют в полете лапки, поэтому те остаются свободными для ходьбы и бега. Жук-скакун может и взлететь, когда надо спастись от ящерицы, но предпочитает пешую охоту наподобие муравьев и пауков. А во время охоты он может преодолевать по 2,5 м/с, что примерно в 125 раз больше длины его тела. Пытаться понять, что значила бы такая скорость для человека, не совсем честно, но вы можете проделать эти расчеты ради развлечения. И только взгляните на великолепные ноги жука-скакуна – длинные, спортивные!

У крыльев насекомых нет специального каркаса, в отличие от укрепленных костным скелетом крыльев летающих позвоночных. Скелет насекомого – это так или иначе экзоскелет, то есть вся внешняя оболочка тела насекомого – его скелет. Крылья – отростки экзоскелета груди, поэтому они автоматически достаточно жесткие, чтобы вынести вес маленького летающего живого существа.

С точки зрения темы этой главы для нас важно, что у крыльев большая площадь поверхности по сравнению с размерами животного в целом. Она нужна, чтобы обеспечить подъемную силу в воздухе. Крылышки на сандалиях Гермеса, вестника древнегреческих богов (у римлян – Меркурия), были смехотворно малы и смотрятся так же нелепо, как малюсенькие пропеллеры у этого проекта летательного аппарата викторианской эпохи, такого милого, но обреченного на неудачу.

ВОТ БЫЛО БЫ СЛАВНО, ЕСЛИ БЫ ЛЕТАТЬ БЫЛО НАСТОЛЬКО ПРОСТО!

Обреченный на неудачу викторианский проект летательного аппарата – воплощенный полет воображения над “дивным городом с дремлющими шпилями” Мэтью Арнольда. Насколько это в стиле Оксфорда, который он

Глава 6

Пассивный полет: парашюты и дельтапланы

Даже если ты очень тяжелый, при достаточно большой площади поверхности тебе удастся укротить силу гравитации хотя бы настолько, чтобы мягко и безопасно планировать с высоты на землю. Именно для этого нам нужны парашюты. В этой главе мы рассмотрим парашюты и дельтапланы как устройства, увеличивающие площадь поверхности, включив в их число и крылья, но начнем с тех расширителей площади поверхности, которые нельзя называть крыльями.

Как мы уже видели, очень маленькие живые существа автоматически располагают большой площадью поверхности тела относительно веса и могут безопасно парить и опускаться без помощи специально сконструированного парашюта. Белки для этого недостаточно малы. Им нужна небольшая помощь, и для этого они увеличивают поверхность тела. Белки прекрасно и очень быстро лазают, а для ускорения еще и перепрыгивают с ветки на ветку. Их длинный пушистый хвост увеличивает площадь поверхности, так что они способны допрыгнуть до ветки, которая находится немного дальше, чем им удалось бы прыгнуть без особого риска, если бы хвоста у них не было. Назвать хвост летательной поверхностью вроде крыла было бы натяжкой, но годится любая подмога, а белки достаточно малы, чтобы пушистый хвост стал для них полезной поверхностью для опоры на воздух.

ЖИВЫЕ ПАРАШЮТЫ, ЭВОЛЮЦИОНИРОВАВШИЕ НЕЗАВИСИМО

Кагуан, или шерстокрыл (слева), и белка-летяга (справа).

Есть белки-специалистки, так называемые белки-летяги (точнее было бы назвать их белками-дельтапланеристками), которые развили эту идею. В ходе эволюции у них возникли кожные перепонки, которые натягиваются между передней и задней лапой и служат парашютом. Эта перепонка называется патагием (от латинского слова, означавшего оторочку древнеримской женской туники). Белки-летяги умеют не только прыгать с ветки на ветку – они растопыривают при этом лапы, чтобы развернуть парашют, и плавно планируют с дерева на дерево на расстояние до 20 метров. Как и мы на парашютах, они при этом спускаются, но спуск получается медленным и безопасным и позволяет попасть на другое дерево. Как правило, белки планируют с верхушки одного дерева к нижней части ствола другого.

В лесах Юго-Восточной Азии и Филиппин обитают существа, которые развили и усовершенствовали эту идею. Шерстокрылы и кагуаны, которых иногда называют летающими лемурами, на самом деле не лемуры (настоящие лемуры живут только на Мадагаскаре). Их не относят к приматам (группе млекопитающих, к которой принадлежат лемуры, обезьяны и мы с вами), но шерстокрылы им родственны. У них в ходе эволюции тоже появился патагий, как у летяг: он натянут не только между лапами, но захватывает и хвост. Все тело животного, в сущности, – один большой парашют. Площадь патагия у шерстокрылов больше, чем у летяг, и они могут планировать на целых 100 м. Однако их патагий опять же не настоящее крыло. Им нельзя махать – в отличие от крыльев летучей мыши и птицы. Однако шерстокрыл может рулить своим полетом при помощи конечностей, примерно как опытный парашютист при помощи строп. У большинства белок-летяг патагий не захватывает хвост, однако в Китае есть вид гигантских белок-летяг, у которых патагий тянется и вдоль хвоста, правда, совсем немного. Это подсказывает, как мог постепенно эволюционировать патагий шерстокрыла.

У шерстокрылов и белок патагий эволюционировал независимо – это называется конвергентная эволюция. Но они не единственные лесные млекопитающие, которым это удалось. Австралия пребывала в изоляции почти все время после того, как динозавры вымерли, а власть на суше захватили млекопитающие. По воле случая в Австралии млекопитающими, которые оказались готовы подобрать упавшее знамя динозавров, оказались исключительно сумчатые (плюс несколько яйцекладущих млекопитающих – предков утконосов и ехидн). В Австралии и Новой Гвинее в результате эволюции появилось множество видов сумчатых, словно бы соответствующих разным млекопитающим, к которым привыкли в остальных частях света. Были здесь и сумчатые “волки”, и сумчатые “львы”, и сумчатые “мыши”. Я взял эти слова в кавычки, поскольку это были независимо эволюционировавшие “волки”, “львы” и “мыши”, а не те, которых мы, обитатели остальных континентов, назвали бы настоящими. Были здесь и сумчатые “кроты”, сумчатые “кролики” и – как вы наверняка уже догадались – сумчатые “белки-летяги”. Эти австралийские сумчатые парашютисты так и называются – сумчатые летяги. Должен добавить, что для различных зоологических целей, включая эту, большой остров Новая Гвинея, расположенный рядом с Австралией, тоже считается Австралией. На этом острове, помимо прочей сумчатой фауны, есть свои кенгуру, а также свои сумчатые летяги, похожие на австралийских.

Есть несколько видов сумчатых летяг. Все они похожи на знакомых нам белок – патагий у них натягивается между передними и задними лапками, но не захватывает хвост, как у шерстокрылов. Больше всех похож на белку-летягу сахарный летающий поссум, который встречается и в Австралии, и на Новой Гвинее. Он может перелететь с дерева на дерево на расстояние около 50 метров. Выглядит он прямо как брат-близнец белки-летяги, но родство между ними самое что ни на есть далекое – насколько может быть далеким родство между двумя существами, которые все-таки принадлежат к млекопитающим. Такая конвергентная эволюция – красивый пример мощи естественного отбора. Патагий – очень удобная вещь для лесного млекопитающего. Вот он и эволюционировал независимо и у грызунов, и у сумчатых. А также у шерстокрылов. Но мы можем зайти еще дальше. Даже у грызунов патагий независимо возник дважды. Один раз у семейства беличьих, а потом в совсем другом семействе африканских грызунов – у так называемых шипохвостов. Они похожи на летяг американских и азиатских лесов и на сумчатых летяг Австралии и летают точно так же. Но патагий у них эволюционировал сам по себе.

Лесные дельтапланеристы, прежде чем начать свой управляемый спуск по воздуху, должны сначала забраться на высоту. В лесу они для этого забираются на дерево. Но есть и другие способы подняться достаточно высоко, чтобы отправиться в полет. Например, со скалы. Их облюбовали люди, у которых есть свои дельтапланы (и куда более крепкие нервы, чем у меня), а также многие морские птицы, которые могут и махать крыльями, но по возможности предпочитают планировать с утесов, поскольку так легче, а еще поскольку по поверхности утеса проходят полезные воздушные течения, направленные снизу вверх. Стрижи, непревзойденные мастера активного полета, предполагающего взмахи крыльями, не могут взлететь с ровной поверхности. В тех редких случаях, когда им приходится спускаться на землю (чтобы вывести птенцов), они всегда выбирают себе какое-то возвышенное место, с которого могут подняться в воздух. Дэвид Аттенборо со своей съемочной группой компании ВВС сумел заснять, как японские буревестники стоят в очереди, чтобы взобраться по наклонной поверхности (покосившемуся стволу дерева) на свою любимую взлетную площадку.

КАК НАБРАТЬ ВЫСОТУ ПЕРЕД ДОЛГИМ СПУСКОМ

Скольжение от термика к термину (очевидно, не в масштабе).

Однако на первом месте среди способов, при помощи которых парящие птицы, прежде чем начать плавный спуск, могут набрать высоту, иногда поистине огромную, стоят термики. Теплый воздух поднимается наверх. Термик – это вертикальная колонна поднимающегося теплого воздуха в окружении более прохладного. Обычно термики возникают, потому что солнце прогревает землю неравномерно. Некоторые участки, например каменистые предгорья, разогреваются сильнее окружающей земли. Воздух над таким участком тоже нагревается и поднимается вверх, это и есть термик. Место нагретого воздуха внизу термика занимает опускающийся холодный, который тоже, в свою очередь, нагревается и поднимается. Вверху термика воздух остывает и опускается по сторонам термика, замыкая так называемый цикл конвекции. Над термиком, там, где становится прохладнее и конденсируются капельки воды, нередко формируются пушистые кучевые облака, похожие на комочки ваты. Эти облака – опознавательные знаки термика – видны с большого расстояния.

Так вот, подобно шерстокрылу, который может взобраться на дерево и оттуда пуститься в нисходящий полет к основанию другого дерева в отдалении, гриф или другая парящая птица может проделать то же самое с термиком вместо дерева. Но ведь дерево в высоту достигает всего лишь несколько десятков метров, а термик может поднять грифа на несколько километров. Можно наблюдать, как грифы медленно кружат над африканской саванной по восходящей спирали. Движение по кругу помогает им оставаться в пределах вертикального течения термика. То же самое проделывают и люди-планеристы. Один из ведущих специалистов по полету птиц, покойный профессор Колин Пенникьюк, был также и пилотом-планеристом и в исследовательских целях кружил на своем планере высоко среди парящих грифов, кондоров и орлов.

ДЕЛЬТАПЛАН

Почувствуйте себя гигантским птерозавром!

Я никогда не пробовал пилотировать планер, но, думаю, мне понравилось бы. А еще увлекательнее было бы полетать на дельтаплане, когда можно рулить интуитивно, перенося свой вес в подвесной трапеции. Думаю, опытные дельтапланеристы ощущают крыло почти как часть собственного тела. Может быть, так можно почувствовать себя чайкой, которая кружит и парит в восходящих воздушных течениях вдоль утеса, или орлом, который осматривает саванну с вышины, куда его унес термик. Или даже птеродактилем. Но, пожалуй, храбрости у меня не хватит. И уж точно я не стану прыгать с отвесного утеса, не то что некоторые увлеченные дельтапланеристы. Мне кажется, это даже хуже, чем прыгать с самолета с парашютом (хотя у меня нет никаких оснований так думать). Когда я бываю на знаменитых утесах Мохер в Западной Ирландии, мне приходится вставать на четвереньки, чтобы приблизиться к краю, да и то возникает искушение лечь на живот.

Саванну можно представить себе как просторный, очень редкий “лес” из термиков. “Деревья” из восходящего нагретого воздуха могут быть на несколько тысяч метров выше деревьев, на которые взбирается белка-летяга, шерстокрыл или поссум. И расставлены они намного реже. Поэтому, если шерстокрыл может пролететь горизонтальное расстояние около ста метров, гриф способен подняться так высоко, что его плавный спуск с самой вершины термика растянется на километры и может задеть нижнюю часть соседнего термика. Тогда гриф снова поднимется, чтобы подготовиться к спуску к основанию следующего термика. Планеристы говорят, что термики строятся в “улицы”. Руля между термиками вдоль “улицы”, они могут оставаться в воздухе сколько угодно и путешествовать на большие расстояния. Точно так же пользуются “улицами” и орлы, и аисты.

Откуда птицы знают, где следующий термик? По-видимому, оттуда же, откуда и пилоты-планеристы: высматривают кучевые облака, которые висят над термиками, или далекие колонны кружащихся птиц либо читают ландшафт.

Разумеется, перелет к следующему термику на “улице” – не главная причина, по которой гриф хочет набрать высоту. Как мы видели во 2-й главе, парение на большой высоте позволяет грифам искать пищу на очень большой площади, а заметив ее, они плавно опускаются вниз. Как и у многих птиц, у грифов очень острое зрение, и они превосходно видят вдаль. Они способны разглядеть остатки львиной трапезы за многие километры, а кроме того, видят стаи других грифов, которые опускаются со своих термиков к какой-то цели на земле. Поев падали, насытившись и отяжелев, они должны снова взлететь. Тут у них нет выбора: чтобы подняться в воздух и добраться до основания термика, приходится хлопать крыльями, хотя это и требует расхода энергии.

“НА ДОРОГЕ в МАНДАЛАЙ, ГДЕ ЛЕТУЧИМ РЫБАМ РАЙ…”[7]

Признаться, я несколько удивлен, что умение летать по-настоящему, то есть оставаться в воздухе неопределенно долго, не возникло в ходе эволюции у рыб.

Может быть, стоит подождать еще несколько миллионов лет…

Дельфины и пингвины, когда плывут очень быстро, выпрыгивают из воды. Вероятно, эта уловка позволяет сэкономить энергию, поскольку сопротивление воздуха меньше сопротивления воды (хотя предлагались и другие объяснения). Выпрыгивают в воздух и многие рыбы, чтобы спастись от быстрых хищников вроде тунца. Когда так делает целый косяк мелких рыбок, а потом падает в море, это и выглядит, и звучит как ливень. Некоторые рыбы, так называемые летучие, удлиняют прыжок при помощи сильно увеличенных плавников, которые служат им крыльями. Рыбы не могут ими махать в отличие от птиц, но иногда, что поразительно, пролетают паря целых 200 метров на скорости до 60 км/ч, прежде чем снова касаются воды (в этом им помогают восходящие потоки воздуха от волн). Иногда при взлете летучие рыбы виляют всем телом, что, возможно, создает тот же эффект, что и взмахи крыльями. Рыбы плавают, совершая волнообразные движения хвостом. Когда летучая рыба взлетает, последним покидает воду хвост, который продолжает двигаться так, словно рыба еще плывет. Случается, что рыба, уже коснувшись воды, продолжает полет, взмахнув удлиненной нижней лопастью хвостового плавника – тогда ей удается набрать скорость и снова взлететь, не погружаясь в воду всем телом.

С точки зрения тунца-преследователя, летучая рыба внезапно исчезает, перестает существовать. На границе воды и воздуха наблюдается так называемое явление полного внутреннего отражения: хищник из-под воды не видит добычу после того, как она взмывает в воздух. Она скрывается в другом измерении (не совсем буквально), словно нажимает кнопку “гиперпространство” в компьютерной игре.

К несчастью для летучей рыбы, она не только внезапно исчезает из мира тунца, но и так же внезапно врывается в мир поджидающих ее птиц, например, фрегатов. Фрегаты умеют ловить рыбу на поверхности моря, но обычно добывают себе пропитание пиратством – крадут добычу на лету у других птиц. Летучая рыба с точки зрения фрегата очень похожа на птицу, у которой есть что украсть. Должно быть, приемы, позволяющие поймать летучую рыбу, примерно такие же, как те, при помощи которых грабят чайку на лету. И фрегаты и в самом деле мастера ловить летучую рыбу в полете. Фрегаты черные, иногда с красными грудками, и похожи на помесь доисторического птеродактиля с самим дьяволом. Недаром Дэвид Аттенборо говорил, что бедная летучая рыба оказывается между тунцом и фрегатом, как между Сциллой и Харибдой.

Кальмары тоже плавают очень быстро, а некоторые самые проворные независимо и конвергентно приобрели в ходе эволюции те же повадки, что и у летучих рыб, опять же, чтобы спасаться от хищников, с тем любопытным отличием, что эти моллюски и плавают, и летают задом наперед, а больших скоростей достигают при помощи реактивного движения. Они извергают изо рта мощную струю воды и взмывают в воздух, словно стрела, которую они напоминают по форме. Они способны пролетать тридцать с лишним метров, прежде чем упасть обратно в воду – через какие-нибудь три секунды.

Я разграничил парение и активный полет и уделил им отдельные главы из соображений удобства. Но на деле граница несколько размыта. Даже птицы, которые привыкли парить в термиках и планировать по “улицам” из термиков, иногда машут крыльями. Например, альбатросы. В двух следующих главах мы обратимся к настоящему активному полету, где для того, чтобы держаться в воздухе неопределенно долго, нужно непрерывно прикладывать силу, и это либо мускульная сила птицы, либо двигатель внутреннего сгорания или реактивный двигатель самолета.

Глава 7

Активный полет и как это устроено

Мы говорили о том, как большая площадь поверхности позволяет удержаться в воздухе без особых усилий и без особых расходов энергии – парить, планировать или порхать, словно снежинка. Но если вы готовы потрудиться, перед вами открывается множество других возможностей бросить вызов гравитации. Есть два главных способа. Первый – непосредственно поднять себя в воздух. Это прямой и очевидный метод, и именно его практикуют вертолеты, ракеты и дроны. Суда на воздушной подушке поднимаются над поверхностью при помощи направленных вниз пропеллеров. Реактивные самолеты с вертикальным взлетом направляют реактивную струю вниз, чтобы поднять воздушное судно с земли. То же самое делают всевозможные трюкачи вроде потрясающего “летающего солдата”, который пронесся над Парижем в День взятия Бастилии в 2019 году.

ФАНТАСТИЧЕСКИЙ ЛЕТАЮЩИЙ СОЛДАТ

Но почему непременно солдат? Такому чудесному аппарату наверняка можно найти лучшее применение!

Леонардо да Винчи во многом опережал свое время, и среди его проектов был своего рода предшественник вертолета. К сожалению, он вряд ли смог бы подняться в воздух, и не только потому, что должен был работать на мускульной силе человека. Человеческие мышцы слишком слабы, чтобы поднять совокупный вес человека и машины, а уменьшить его невозможно. У современных вертолетов мощные двигатели, которые сжигают большое количество углеводородного топлива, чтобы вращать массивные гудящие винты. Наклонные лопасти направляют вниз сильный ветер и прямо толкают вертолет вверх.

Кроме того, вертолету нужен дополнительный хвостовой пропеллер, который смотрит вбок (или что-то аналогичное), чтобы судно не вертелось, как волчок. По-видимому, это последнее дополнение Леонардо упустил. Штурмовикам “харриер” и их преемникам хвостовой пропеллер не нужен, поскольку у них нет винта. Они поднимаются за счет отражающих реактивных сопел, направленных вертикально вниз. Затем самолет направляет сопла назад, чтобы лететь вперед, подъемную силу он набирает при помощи крыльев, как любой нормальный самолет. А откуда берут подъемную силу нормальные самолеты? Тут все несколько сложнее.

Нормальные самолеты, в отличие от вертолетов, набирают подъемную силу за счет стремительного движения, они толкают себя вперед пропеллерами или реактивными двигателями. А поток воздуха, который мчится навстречу крыльям – над ними и под ними, – поднимает самолет двумя способами, причем оба актуальны не только для рукотворного летательного аппарата, но и для живых летающих существ. Очевидный и главнейший из двух способов называется ньютоновским. На переднюю кромку крыльев давит ветер, который по мере движения судна вперед приподнимает их за счет небольшого наклона вверх. Этот эффект можно ощутить, если высунуть руку в окно несущейся машины. Наклоните ладонь чуть-чуть вверх, и вы почувствуете, как вверх потянет всю руку. Это очевидное ньютоновское объяснение, почему крылья поднимают самолет, и основной способ для самолетов получить подъемную силу. Он сработал бы, даже если бы крылья представляли собой плоские доски, немного наклоненные вверх, поэтому можем называть его эффектом плоской доски.

ПОЖАЛУЙ, НЕ САМОЕ ГЕНИАЛЬНОЕ ИЗ ВЕЛИКИХ ИЗОБРЕТЕНИЙ ЛЕОНАРДО

Даже если четыре человека будут бежать вокруг кабестана со всех ног, это устройство не поднимется над землей ни на сантиметр.

Но параллельно происходит и другой процесс, не такой очевидный. Есть второй способ, которым крылья дают подъемную силу при стремительном движении вперед. Он назван в честь Даниила Бернулли, швейцарского математика, жившего в XVIII веке. Многие не вполне понимают, как взаимодействуют эти два способа. К счастью, самолеты все равно не падают, даже если простыми словами трудно объяснить, как именно им это удается.

Итак, вот второй способ, бернуллиевский, которым крылья обеспечивают подъемную силу. Вы наверняка заметили, что у современных самолетов крылья не плоские, они искусно выгнуты. Передняя кромка толще задней. А форма сечения крыла – тщательно рассчитанная криволинейная фигура, продуманная так, чтобы воздух, обтекая поверхность крыла, давал подъемную силу согласно закону Бернулли.

Закон Бернулли гласит, что, если текучая среда (это выражение означает и газы, и жидкости) движется вдоль поверхности, давление на поверхность уменьшается. Именно поэтому занавеска в душе прилипает к телу. И чтобы этого не происходило, нередко вешают вторую занавеску снаружи бортика ванны. В этом случае поток Бернулли – это ветер, направленный сверху вниз, который генерирует текущая вода. Теперь представьте себе, что у вас есть две душевые насадки, направленные вниз, по обе стороны от занавески. Из одной вода течет быстрее, чем из другой. По закону Бернулли, занавеску “засосет” в ту сторону, откуда вода течет быстрее (“засосет” в кавычках, поскольку то, что мы принимаем за засасывание, на самом деле более высокое давление с другой стороны).

Естественно, ветер давит и на крыло самолета, который мчится вперед, рассекая воздух. Обычно самолеты стараются для усиления воздействия взлетать по возможности против доминирующего ветра. Тут есть некоторая тонкость. Согласно закону Бернулли, сила засасывания зависит от формы поверхности, вдоль которой дует ветер. Криволинейную верхнюю поверхность крыла воздух обтекает быстрее, чем более плоскую нижнюю поверхность. Вспомните поучительный пример занавески в душе. Ветер, в точности как занавеска, подсасывается вверх из-за более низкого давления на верхнюю поверхность крыла.

Объяснить, почему выгнутая верхняя поверхность крыла заставляет воздух двигаться быстрее, задача довольно сложная. Обычно говорят, что две молекулы воздуха, одновременно отправившиеся в путь от передней кромки крыла к задней, одна по верхней поверхности крыла, а другая по нижней, должны по какой-то загадочной причине достигнуть задней кромки одновременно. Иначе говоря, те молекулы, которые следуют по криволинейной верхней поверхности крыла, должны пройти более длинный путь, поэтому, как считается, им приходится двигаться быстрее. Но это не так. На самом деле молекулы вовсе не окажутся у задней кромки крыла одновременно. И не должны, собственно. Тем не менее молекулы воздуха действительно обтекают изогнутую верхнюю поверхность крыла, вместо того чтобы отлетать по касательной, и действительно движутся по криволинейной верхней поверхности быстрее, чем по более плоской нижней, так что эффект Бернулли и в самом деле обеспечивает некоторое количество подъемной силы как следствие.

САМОЛЕТ В РЕЖИМЕ СВАЛИВАНИЯ

Рисунок турбулентности вокруг самолета в режиме сваливания.

При всем при том вклад закона Бернулли в подъемную силу в обычных условиях не так важен, как первый из упомянутых эффектов – эффект плоской доски, он же ньютоновский. Если бы бернуллиевская подъемная сила была больше ньютоновской, самолеты не могли бы летать вверх ногами. А они могут – по крайней мере, небольшие.

Выше я описал, как молекулы воздуха обтекают искривленную верхнюю поверхность крыла и не отлетают по касательной. Но это верно лишь отчасти. Если угол набегающего потока слишком велик, то есть крыло наклонено вверх слишком резко, обтекание нарушается, молекулы воздуха перестают плавно огибать крыло и отрываются от него, и возникают жуткие турбулентные вихри. Давление Бернулли исчезает, и воздушное судно внезапно теряет подъемную силу и, как говорят специалисты, впадает в режим сваливания. Режим сваливания – это очень опасно, и пилот должен принять меры, чтобы снова набрать подъемную силу, то есть уменьшить угол набегающего потока (обычно для этого нужно немного наклонить нос вниз) и тем самым восстановить плавное обтекание воздухом верхней части крыла.

Я упомянул угол набегающего потока, это угол наклона крыла относительно направления воздушного потока. Не путайте это с наклоном (тангажем) самолета относительно поперечной оси, то есть относительно земли. Когда самолет взлетает, наклон очень крут, и поэтому, если вы нарушите правила и оставите на столике стакан с питьем, оно, вероятно, прольется. В этом случае велик и угол набегающего потока. Но так бывает не всегда. У истребителя, взлетающего почти вертикально, большой наклон, но маленький угол набегающего потока, поскольку ветер, дующий на крыло, направлен почти вертикально вниз.

Говорят, что воздушное судно наклоняется, когда угол его наклона относительно земли растет или уменьшается. А когда одно крыло идет вверх, а другое – вниз, говорят, что самолет кренится. Пилоты контролируют крен при помощи элеронов на задней кромке крыла, которые можно поднимать и опускать, а наклон – при помощи таких же горизонтальных поднимающихся и опускающихся плоскостей на хвосте. Добавлю, что самолет рыскает, когда водит носом влево или вправо. Рыскание пилоты контролируют при помощи вертикального руля сзади хвоста. Летающие животные тоже наклоняются, кренятся и рыскают.

Пока что речь у нас шла в основном о самолетах с фиксированными крыльями, поскольку их теоретическая основа проще. Братья Райт и другие первые авиастроители применяли систему для “крутки” крыла – сложный механизм из тросов и блоков, при помощи которого можно было менять форму каждого крыла в отдельности и тем самым рулить летательным аппаратом. Сегодня на смену пришли подвижные элероны. Если говорить о крыле птицы, теоретические расчеты, позволяющие понять, как оно набирает подъемную силу и толкает птицу вперед, оказываются сложнее, чем для самолетов с фиксированным крылом. Птицы не просто машут крыльями: их крылья постоянно меняют форму, чутко реагируя на обстоятельства. Сочетание взмахов и изменений формы делают математику птичьего полета такой сложной, что разобрать ее здесь во всех подробностях практически невозможно. Однако можно утверждать, что у птичьих крыльев те же способы набрать подъемную силу, что и у крыльев самолета, ньютоновский и бернуллиевский, но их взаимодействие сложнее. Пока же поговорим о проблеме сваливания, которая актуальна не только для самолетов, но и для птиц.

Воздушное судно для снижения риска сваливания прибегает к хитроумным устройствам, в числе которых предкрылки. Это маленькие дополнительные крылья, хитроумно пристроенные перед основным крылом таким образом, чтобы оставались промежутки – щели. Сквозь них предкрылки перенаправляют на верхнюю поверхность основного крыла дополнительный воздух. Это позволяет отодвинуть критическую точку, на которой начинается турбулентность, сместить ее назад по верхней поверхности крыла, а следовательно, избежать сваливания. Кроме того, благодаря предкрылкам сваливание начинается при большем угле набегающего потока. При нормальном полете предкрылки обычно аккуратно сложены и убраны. Пилоты приводят их в действие во время взлета и посадки, когда угол набегающего потока велик, а скорость самолета мала. У современных авиалайнеров иногда изящно отогнут кончик крыла. Это снижает и турбулентность, и лобовое сопротивление воздуха, и некоторые птицы тоже отгибают кончики крыльев.

И САМОЛЕТЫ, И ПТИЦЫ ИМЕЮТ ДЕЛО С ОДНИМИ И ТЕМИ ЖЕ ЗАКОНАМИ ФИЗИКИ

И находят для одних и тех же задач похожие, но все же разные решения.

От сваливания страдают не только самолеты. Птицы – живые воздушные судна, и они тоже ему подвержены. Есть ли у них предкрылки, как у самолетов? В некотором роде. У многих парящих птиц образуются заметные зазоры между перьями на кончиках крыльев, и они, похоже, играют ту же роль. Элегантный пример – крылья грифов и орлов. Их огромные маховые перья первого порядка на внешней кромке крыла растопыриваются, словно лопасти вентилятора, и образуют большие промежутки. Поскольку перья очень велики, каждое из них играет роль миниатюрного крыла или предкрылка. Особенно это важно для тех птиц, которые поднимаются по спирали внутри термика, птице нужно описывать небольшие круги, чтобы случайно не вылететь из термика. Поэтому внешнее крыло движется быстрее внутреннего, которое таким образом дает меньше подъемной силы и рискует сваливанием. Здесь необычайно полезны растопыренные перья на конце крыла, которые служат предкрылками для того крыла, которое находится ближе к центру термика.

Когда инженеры совершенствуют крылья самолетов, они часто испытывают свои проекты (обычно миниатюрные модели) в аэродинамической трубе. Вместо того чтобы разгонять модель до большой скорости в воздухе, они направляют на неподвижный самолет или крыло сильный встречный ветер. Иногда к крылу прикрепляют ленточки, чтобы видеть, что происходит, в частности – что делается с турбулентностью, когда меняешь разные параметры (форму крыла или угол набегающего потока). Когда модель крыла начинает сваливаться, ленточки поднимаются вверх, совсем как перья на задней кромке крыла белой цапли при сваливании.

УПРАВЛЯЕМОЕ СВАЛИВАНИЕ У ПТИЦ

Птицы не просто подвержены сваливанию: иногда они прибегают к нему нарочно, чтобы удобнее было садиться на землю. Когда крупная птица вроде серой или белой цапли заходит на посадку, у нее поднимаются перья на задней части крыльев – последствия турбулентности при сваливании.

Испытания в аэродинамической трубе – более легкий способ усовершенствовать проект, чем математические расчеты, которые в случае турбулентности становятся неподъемно сложными. И это, безусловно, более безопасный и дешевый способ, чем строить и испытывать несколько прототипов самолетов с разной формой крыла.

ОРНИТОПТЕР – ИЗОБРЕТЕНИЕ ЛЕОНАРДО

Он мог бы работать как дельтаплан, но махать крыльями при помощи мускульной силы человека было бы бессмысленно.

Разумеется, птичьи крылья усовершенствовались методом проб и ошибок в реальной жизни, причем ошибки в реальной жизни обходятся гораздо дороже, чем в аэродинамической трубе. Они могут привести к внезапной гибели или к сокращению продолжительности жизни и снижению шансов оставить потомство.

Леонардо да Винчи разработал летательные аппараты, немного похожие на современные дельтапланы. Кроме того, он проектировал и так называемые орнитоптеры – летательные аппараты с машущими крыльями, которые приводились в движение мускульной силой человека. Ни один из этих орнитоптеров в реальности не мог бы взлететь, хотя различные планеры, которые изобрел Леонардо, вполне дееспособны. Чтобы летать, махая крыльями, нужно больше энергии, чем могут дать человеческие мышцы. Только в конце XX века были получены ультралегкие материалы, способные компенсировать относительную слабость наших мышц. Когда наконец появились летательные аппараты, приводимые в действие человеком, оказалось, что эти машины не машут крыльями и вообще едва удерживаются в воздухе, что неудивительно.

Пожалуй, самый красивый из этих летательных аппаратов – Gossamer Albatross (“Шелковый альбатрос”), который создал гениальный изобретатель Пол Маккриди. Я имел честь побывать у него дома в Калифорнии.

Мистер Маккриди объяснил мне, почему его так увлекает обтекаемость. В частности, он много занимался автомобилями – его очень огорчало, что их проектируют так, чтобы они лишь выглядели обтекаемо на радость будущим покупателям, но на самом деле все иначе. Например, днище автомобиля не делают обтекаемым, возможно, отчасти потому, что его не видно и это не влияет на продажи. Обтекаемость играет важнейшую роль в жизни плавающих и летающих животных. Если вы когда-нибудь видели, как плавают пингвины и дельфины, вероятно, вы позавидовали их скорости. Люди-пловцы, даже выбритые до гладкости олимпийские чемпионы, по сравнению с ними еле шевелятся. Одно легкое движение хвоста – и дельфин мчится вперед, рассекая воду. Мало того что форма тела дельфина суперобтекаемая, у них еще и кожа постоянно обновляется – внешний слой отслаивается, словно перхоть, каждые два часа. Это снижает количество крошечных водоворотов, которые могли бы снижать скорость дельфина.

Вернемся к “Шелковому альбатросу”. Его приводит в движение опытный велосипедист, который крутит педали модифицированного велосипеда и тем самым вертит пропеллер. В 1979 году устройство успешно пересекло Ла-Манш, стартовав в Англии. Правда, затея едва не провалилась: пилот истощил все свои силы – хотя это был молодой спортсмен – и чуть не потерял сознание, завидев побережье Франции. Летательный аппарат двигался со скоростью от и до 28 км/ч всего в нескольких метрах над водой. Маккриди снабдил свое устройство стабилизирующим крылом, установив его перед главным. Кроме того, что соответствовало названию, крылья аппарата были очень узкие и длинные, с размахом почти 30 метров, а весил он всего 98 кг, причем больше половины приходилось на вес пилота. Маккриди избавил свой аппарат от лишнего веса до последнего грамма. Даже клей, которым он скрепил детали устройства, был сверхлегким. Летающие животные тоже стараются быть как можно легче. Кости у птиц, птерозавров и летучих мышей полые: очередной компромисс между легкостью и прочностью. Может статься, что птицы утратили унаследованные от предков зубы, поскольку те были тяжелее заменившего их рогового клюва. Чем быстрее летательный аппарат, тем важнее роль обтекаемости, потому что сопротивление воздуха растет как квадрат скорости. Неслучайно современные скоростные авиалайнеры, где бы их ни проектировали, выглядят одинаково. Это объясняется не только промышленным шпионажем. Инженеры всех стран имеют дело с общими законами физики. Раньше, когда самолеты летали медленнее, такого единства форм не наблюдалось.

“ШЕЛКОВЫЙ АЛЬБАТРОС”

“Шелковый альбатрос” на пути через Ла-Манш еле выдерживал вес пилота-велосипедиста. Полет всегда требует огромных расходов энергии. Это практически предел того, на что способны человеческие мышцы.

После “Шелкового альбатроса” Пол Маккриди перешел к другим проектам, в частности, построил Solar Challenger (“Солнечный бунтарь”) – летательный аппарат на солнечной батарее, сверхлегкий и сверхобтекаемый. Его крылья и хвост были сплошь покрыты солнечными батареями, которые питали довольно большой пропеллер. Аппарат мог достигать скорости 65 км/ч и высоты более 4000 метров. В дальнейшем летательные аппараты на солнечных батареях смогли даже облететь вокруг света, не в один прием, конечно, путешествие заняло несколько месяцев. Они могут летать и ночью на аккумуляторных батареях, зарядившихся за день.

“Шелковый альбатрос” расширил пределы того, чего можно достичь мускульной силой человека. Он совершил то, что должны были сделать машины Леонардо, причем ему не пришлось махать крыльями, словно птица, как предполагали конструкции Леонардо. Мускульная сила двигала “Шелковый альбатрос” вперед благодаря вращению пропеллера или винта. А подъемную силу аппарат получал косвенно за счет этого движения вперед.

Братья Райт в 1903 году положили начало активному полету, сконструировав двигатель внутреннего сгорания. В 1930-е появились реактивные двигатели. Удивительно, что между достижением братьев Райт и первым сверхзвуковым полетом прошло лишь около 40 лет. И еще через 20 лет представителей нашего вида запустили на Луну и обратно. Я здесь нарочно использую слово “запустили”. Ракеты стартуют в восточном направлении, чтобы воспользоваться скоростью вращения Земли, которая запускает их на орбиту, словно из рогатки. Европейское космическое агентство оборудовало стартовые площадки во французской Гвиане, поскольку она располагается близко к экватору, где вращению Земли легче всего вытолкнуть ракеты на орбиту.

Кстати, приведу очень простое объяснение, как действует закон Бернулли, без единого математического символа. Прежде всего нужно понять, что означает давление воздуха на молекулярном уровне. Давление на поверхность – это суммарное воздействие триллионов молекул, которые по ней барабанят. Молекулы воздуха непрерывно мечутся в случайных направлениях, меняя их всякий раз, когда сталкиваются с чем-нибудь, например, друг с другом или с поверхностью. Когда надуваешь воздушный шарик, его внутренняя поверхность находится под большим давлением, чем внешняя. Внутри больше молекул воздуха на кубический сантиметр, чем снаружи, поэтому каждый квадратный сантиметр резины подвергается более интенсивной молекулярной бомбардировке изнутри, чем снаружи. Возьмите карточку, которая с одной стороны красного цвета, а с другой – зеленого. В безветренный день молекулы бомбардируют обе стороны карточки с одинаковой частотой. Но если подставить карточку красной стороной туда, откуда дует ветер, темп, в котором молекулы будут бомбардировать красную сторону, повысится, и вы ощутите давление ветра на карточку. А теперь о законе Бернулли: поверните карточку горизонтально, красной стороной вверх, теперь ветер дует вдоль карточки (и обтекает обе ее стороны). Молекулы воздуха по-прежнему случайным образом отскакивают от всего, в том числе от обеих сторон карточки. Но движение молекул теперь отчасти определяется направлением ветра. Следовательно, на обе поверхности попадает меньше молекул – они проносятся мимо карточки. Это все равно что сказать, что давление на обе поверхности снижается: карточка не взлетает и не падает. Наконец, мы подстраиваем условия эксперимента так, чтобы ветер вдоль красной поверхности дул быстрее, чем вдоль зеленой. Возьмите для этого, скажем, два фена. Давление на красную поверхность уменьшится сильнее, чем на зеленую, и карточка поднимется вверх.

Глава 8

Активный полет у живых существ

Механика полета у живых существ сложнее, чем механика полета рукотворных машин. Отчасти потому, что машущие крылья толкают животное вперед (принцип самолета) и одновременно толкают воздух вниз (скорее как у вертолета). Если посмотреть, как летает птица в замедленной съемке, вы заметите, что изгиб крыла в сочетании с упругой гибкостью перьев толкает птицу вперед, а это, в свою очередь, обеспечивает подъемную силу двумя уже известными нам способами – ньютоновским и бернуллиевским. Одновременно движение крыла вниз дает подъемную силу само по себе, как мы знаем из начала предыдущей главы. Движение крыла вверх не производит обратного воздействия, отчасти это происходит благодаря кривизне крыла, а отчасти благодаря тому, что оно дополнительно изгибается, локтевой и запястный суставы подтягивают его внутрь, так что площадь крыла сокращается по сравнению с мощным движением вниз.

Птицы и другие летающие живые существа толкают себя вперед и обеспечивают подъемную силу при помощи крыльев. Крылья рукотворных летательных аппаратов дают подъемную силу, но не двигают аппарат вперед. Другую крайность, когда крылья отвечают только за движение вперед, но не за подъемную силу, мы наблюдаем у пингвинов, но это под водой, а не в воздухе. Пингвины легче воды, будто поплавки, им не нужны крылья ради подъемной силы. По суше пингвины ходят медленно и неуклюже, зато под водой мчатся, словно дельфины, хотя те толкают себя вперед иначе – при помощи движений хвоста вверх-вниз. И у дельфинов, и у пингвинов прекрасная обтекаемая форма. Должно быть, предки пингвинов без труда достигли такой обтекаемости, поскольку уже отчасти приобрели ее для полетов в воздухе.

Пользуются крыльями для подводного плавания и другие морские птицы – тупики, олуши, гагарки и кайры. Но они, в отличие от пингвинов, летают на крыльях и в воздухе. Оптимальная форма крыла для воздуха не такая, как для воды. Для подводного плавания больше подходят маленькие крылья. Тупики и кайры вынуждены довольствоваться компромиссом, тогда как пингвины получили возможность совершенствовать крылья исключительно для воды. Крылья у тупиков меньше, чем должны быть в идеале для полетов в воздухе, поэтому тупики вынуждены махать крыльями очень быстро, а следовательно, тратить много энергии. Одновременно их крылья больше, чем должны быть в идеале для плавания. Большие бакланы толкают себя вперед под водой огромными лапами, лишь слегка помогая крыльями, которые служат им в основном для полетов. Бескрылая гагарка, вымерший родственник кайры и гагарки, летать не умела, и ее крылья, как и у пингвинов, были идеально приспособлены для плавания. Иногда бескрылую гагарку называют северным пингвином, и в самом деле, ее латинское название – Pinguinus, но в близком родстве с пингвинами она не состоит. Крылья у нее были слишком маленькие для полета и по форме совсем как у пингвина. Словно бы предками бескрылой гагарки были северные гагарки, которые решили, что лучше расстаться с воздухом и делать что-то одно, но хорошо. Печально, что мы с вами лишены удовольствия видеть бескрылую гагарку своими глазами. Они вымерли из-за людей совсем недавно, в XIX веке. Может быть, наши внуки все-таки увидят бескрылую гагарку. Ее геном удалось секвенировать из образца, который хранится в музее в Копенгагене. Один мой коллега сейчас обсуждает возможность воспользоваться современными технологиями генной инженерии и, отредактировав геном гагарки, затем ввести эти клетки в гонады, скажем, пары гусей, и тогда из одного из их яиц вылупится бескрылая гагарка.

СЕВЕРНЫЙ ПИНГВИН

Увы, бескрылые гагарки вымерли в XIX веке.

Вернемся к полетам. Чтобы продвинуться вперед за счет крыльев, нужно совершать в воздухе движения, похожие на гребки. Колибри довели до предела частоту взмахов-гребков, так что крыло при взмахе вверх почти что переворачивается и слышится жужжание. Крыло колибри при взмахе вверх приносит почти столько же подъемной силы, что и при движении вниз, и дает колибри возможность зависать в воздухе, летать вперед спиной, вбок, а иногда и вверх тормашками. Умение зависать в воздухе стало для птиц важным эволюционным открытием. До этого монополией на нектар владели насекомые, поскольку только они могли садиться на цветки, а птицы были для этого слишком тяжелы. В Старом Свете водятся нектарницы – эквивалент колибри Нового Света. Висеть в воздухе умеют не все нектарницы, а только отдельные виды. А некоторые цветы снабжены особыми отростками, которые словно бы специально созданы, чтобы нектарницам было удобно присаживаться на них.

ЯЗЫКАН ОБЫКНОВЕННЫЙ

Эта бабочка и выглядит, и жужжит так, что ее легко принять за колибри. Бражник языкан обыкновенный – профессиональный конкурент колибри, поэтому в результате конвергентной эволюции стал похож на эту птичку.

Среди насекомых главные мастерицы зависать в воздухе – это цветочницы. Хорошо овладели этим искусством и самые разные виды бражников под общим названием языканы – за необычайно длинный язык, которым они высасывают нектар из цветов. Языканы поразительно похожи на колибри – еще один симпатичный пример конвергентной эволюции. Прекрасно умеют висеть в воздухе и стрекозы. Если наблюдать птицу в полете, даже в замедленной съемке трудно отделить “вертолетный” компонент ее движения (сверху вниз) от “самолетного” (вперед). Отдельные птицы делают упор то на одно, то на другое, например, во время взлета в основном прибегают к “вертолетному”, а затем, уже в горизонтальном полете, переходят на “самолетный”. Разные виды птиц специализируются на том или ином компоненте. Самые крупные птицы, которые умеют по-настоящему зависать в воздухе на достаточно долгое время, – малые пегие зимородки, которые водятся в Африке и Азии. Другие зимородки садятся на что-нибудь, чтобы высмотреть рыбу, а малые пегие зимородки делают это с воздуха, зависая на месте, словно гигантские колибри. Правда, их крылья слишком большие и не жужжат.

Пустельги, высматривая добычу, тоже зависают в воздухе, но иначе: они разворачиваются носом к ветру и летят со скоростью ветра, но в противоположном направлении. Таким образом, их скорость относительно земли равна нулю, тогда как скорость относительно встречного ветра достаточно велика, чтобы обеспечить подъемную силу. Для взмахов крыльями вверх и вниз у птиц есть отдельные мышцы. Большие грудные мышцы (pectoralis major) обеспечивают движение крыла вниз. Эти мышцы могут составлять 15–20 % веса тела. К тому же, как мы уже знаем, им нужен мощный киль грудины. Казалось бы, мышцы для взмаха вверх должны располагаться над крылом, у летучих мышей так и есть. А вот у птиц – нет. Эти мышцы (supracoracoideus) находятся под крылом и тянут его вверх при помощи “троса” (сухожилия) и “блока” через лопатку. Другие мышцы меняют угол наклона крыла, третьи – его форму, сгибая локтевой и запястный сустав.

Альбатросы по большей части парят и скользят по воздуху у самой поверхности моря, они – мастера энергосберегающего полета. К концу жизни альбатрос успевает налетать больше 1,5 миллионов километров и много раз облететь все Южное полушарие. Для обеспечения подъемной силы они пользуются не термиками, а природными воздушными течениями, парят низко и в некоторых случаях пролетают сотни километров, ни разу не сев, почти не шевелят крыльями и тратят совсем мало энергии. Самый крупный вид – странствующий альбатрос, обитающий в южных океанах, непрерывно летает вокруг света, всегда в одном направлении – вместе с преобладающим ветром. Альбатрос не просто пассивно позволяет ветру нести себя, поскольку это не дало бы подъемной силы. Ему нужен эквивалент термика, чтобы набрать высоту перед тем, как планировать вниз. Поэтому он попеременно то планирует по ветру, то поворачивается против него. Когда он летит против относительно слабого ветра у самой поверхности моря, он – словно самолет, набирающий подъемную силу ньютоновским и бернуллиевским способом. Это позволяет альбатросу подняться на такую высоту, с которой можно снова пуститься в долгий парящий спуск по ветру. На этой фазе цикла птица сбрасывает высоту, словно гриф, вылетевший из термика, или шерстокрыл, планирующий с вершины дерева. Затем, очутившись ближе к поверхности моря, где ветер слабее, альбатрос снова поворачивается против ветра и снова набирает высоту. Этот цикл птица повторяет столько, сколько потребуется, и при этом умело регулирует плоскость полета так, чтобы пользоваться восходящими воздушными течениями и вихрями, которые возникают над волнами. Воздушные течения, вырабатываемые волнами, не так надежны, как термики, и довольно нерегулярны. Чтобы обратить их себе на пользу, нужно чутко корректировать плоскость полета каждую секунду, а этого можно достичь только при помощи тонкой “электроники” – высокоразвитой нервной системы.

Для птицы вроде альбатроса, которая прекрасно умеет парить, будучи при этом очень крупной, проблемой становится взлет. Стартуя с земли, они проделывают примерно то же самое, что и самолеты. Сначала разбегаются по “взлетной полосе” против ветра, пока не наберут достаточную скорость, чтобы почувствовать давление на крылья снизу вверх. В колониях альбатросов всегда есть протоптанные взлетные полосы. Я видел их и на Галапагосах, и в Новой Зеландии. Но, в отличие от самолетов, альбатросы еще и машут крыльями, чтобы набрать дополнительную подъемную силу. А в открытом море они иногда садятся на воду, например, чтобы поймать рыбу или, может быть, отдохнуть, хотя могут и скользить над волнами на огромные расстояния. После этого им опять же трудно взлететь. Они хлопают крыльями изо всех сил и быстро бегут по поверхности – это напоминает энергичный взлет старого самолета-амфибии “Сандерленд” (правда, птица еще и машет крыльями). Такие же сложности со взлетом с воды возникают и у лебедей, поскольку они тоже достаточно крупные птицы. Я то и дело слышу громкий ритмичный шелест их крыльев и спешу посмотреть, как они взлетают с поверхности Оксфордского канала у меня под окном – медленно, с натугой.

Кстати, многие птицы могут бегать по поверхности воды. Птичьи крылья укреплены не только костями, но и перьями, это значит, что они не привязаны к задним конечностям, в отличие от крыльев летучих мышей и птерозавров, поэтому птичьи лапы свободны для бега. У многих птиц мощные лапы, и бегают они очень быстро – страусы разгоняются до 70 км/ч. Ящерицы – дальние родственницы птиц, и некоторые ящерицы-василиски, в том числе шлемоносный василиск (очень подходящее название), обитающий в Южной и Центральной Америке, носятся по воде на сильных задних лапах со скоростью 25 км/ч – почти так же быстро, как по земле. Западноамериканская поганка исполняет величественный и немного смешной брачный танец, при котором самец и самка вместе бегут по воде так быстро, что поверхности касаются только лапы и хвост. Примерно такую же способность задействуют и альбатросы, когда разбегаются перед взлетом с воды, только у них уходит на это больше сил. Лапы у альбатросов большие, перепончатые, ножки поганок почти лишены перепонок, но на каждом пальце есть листоподобные выросты, позволяющие достичь примерно того же.

Бесспорные хозяева воздушного пространства – насекомые, которые завладели им почти за 200 миллионов лет до того, как к ним присоединились позвоночные, первыми из которых были птерозавры. Я привык думать, что, как только появляется ниша (какой-то образ жизни или специализация), как тут же какое-нибудь живое существо эволюционирует, чтобы ее занять. Трудно понять, почему позвоночные давным-давно не заняли многочисленные ниши, связанные с полетом: спасение от хищников, поиски пищи с воздуха, миграция на дальние расстояния, ловля насекомых на лету – все то, о чем мы с вами говорили во 2-й главе. В свете 4-й главы я бы предположил, что насекомые заняли воздушное пространство так быстро благодаря маленьким размерам.

ЛЕБЕДИ НА ОКСФОРДСКОМ КАНАЛЕ

Большим птицам очень трудно взлететь.

Но они все равно взлетают.

Примерно 300 миллионов лет назад, в каменноугольный период, существовали гигантские стрекозы с размахом крыльев в 70 сантиметров, которые порхали – если это слово здесь уместно – среди гигантских плаунов и папоротников.

Вероятно, вы заметили забавную ошибку в научно-фантастическом триллере Майкла Крайтона “Парк юрского периода”. Герои встречают стрекоз с метровым размахом крыльев. Автор слишком увлекся собственным сюжетом и забыл, что изначально он строился на прекрасной идее: ученые, восстановившие фауну парка динозавров, вывели всех тамошних обитателей из ДНК, выделенной из крови, которую пили комары, впоследствии увязшие в смоле. Но комары не пьют кровь стрекоз – и вообще самые древние насекомые, сохранившиеся в янтаре, жили на 100 миллионов лет позднее гигантских стрекоз каменноугольного периода.

Доказано, что гигантизм у стрекоз каменноугольного периода был возможен только потому, что тогда в атмосфере было больше кислорода. По самым смелым оценкам, его доля, вероятно, доходила до 35 % (для сравнения, сегодня – 21 %). У насекомых воздух проникает по трубочкам во все тело, если атмосфера была более богата кислородом, это сдвигало верхнюю границу размера несколько выше. Большое количество кислорода в атмосфере приводило к тому, что лесные и степные пожары (в результате удара молнии) случались чаще. Возможно, гигантские стрекозы спасались на своих огромных крыльях от вездесущего огня. В этом им везло больше, чем их ползающим современникам, гигантским многоножкам каменноугольного периода в 2,5 метра длиной или гигантскому скорпиону Pulmonoscorpius размером 70 сантиметров – по-моему, таким существам самое место в страшном сне. Что касается существа под названием Eryops, то его можно описать как гигантского тритона – это был прожорливый хищник, достигавший трехметровой длины, который в каменноугольный период занимал нишу образа жизни крокодилов.

У насекомых нет костей. Чтобы лучше представить себе их скелет, можно рассмотреть их более крупных родственников – омаров. У тех вместо костей что-то вроде роговых суставчатых трубок[8] – так называемый экзоскелет, – внутри которого прячутся мягкие и влажные ткани организма. Крылья насекомых – не видоизмененные передние конечности, как у птиц, а тонкие, как бумага, отростки экзоскелета, подвижно закрепленные на панцире груди. Мышцы, которые поднимают крылья, тянут вниз ближний к телу конец крыла изнутри панциря, поэтому крыло поднимается вверх, словно рычаг. У небольшого числа крупных насекомых, вроде стрекоз, движение крыла вниз обеспечивается мышцами на дальней стороне крепления, как и следует ожидать. Но у гораздо большего количества насекомых у этого движения другой механизм, не такой очевидный. Мышцы, идущие вдоль груди, сокращаются, отчего верхняя часть панциря груди выпячивается. Это косвенно толкает крылья вниз, поскольку они крепятся на груди.

Насекомые способны махать крыльями с невероятной частотой – у некоторых мошек она достигает 1046 раз в секунду, на две октавы выше “до” первой октавы. Это вариант того безумно раздражающего жужжания, которое вы слышите, когда вас вот-вот укусит комар, которое поэт Д. Г. Лоуренс назвал “ненавистной дудочкой”[9]. Невероятно трудно было бы достичь таких частот за счет одних лишь нервов, которые командовали бы мышцам крыла “вверх-вниз” тысячу раз в секунду. Они и не командуют. Вместо них у насекомых автоколебательные мышцы, которые вибрируют сами по себе, запуская нечто вроде очень частой дрожи. Летательные мышцы гнуса или комара – это маленькие поршневые двигатели, которые либо включены, либо выключены. Центральная нервная система просто приказывает: “Лети” (“включай автоколебательный двигатель”). А через некоторое время говорит: “Остановись” (“выключай двигатель”). Все время, пока мускульный двигатель включен, он вибрирует на заданной частоте, которая определяется “частотой настройки” крыльев. Крыло – словно маятник, который качается с заданной частотой, но несравнимо быстрее, чем маятник любых часов. Нота, которую мы слышим, меняется – будь то жужжание комара или шмеля. Но в основном это происходит потому, что, когда насекомое меняет направление, поведение “маятника” меняется под воздействием так называемых сил инерции. Именно поэтому морской хронометр Харрисона стал таким большим шагом вперед – только там были задействованы значительно более медленные колебания. Маятниковые часы на качающемся корабле теряют точность.

ГИГАНТСКИЙ ВОДЯНОЙ КЛОП

Самое крупное насекомое с автоколебательным механизмом крыла. Осторожно: мощные челюсти!

Некоторые более крупные насекомые, например стрекозы и саранча, устроены иначе. Как и у птиц, каждый взмах вверх и каждое движение вниз у них подчиняются командам центральной нервной системы. Автоколебательные механизмы движения мышц обычны для более мелких насекомых, но не для всех. Вероятно, самые крупные насекомые, которые летают таким образом, – гигантские водяные клопы – это грозные тропические создания со страшными челюстями, они больно кусаются, но не ядовиты. По большей части они живут в воде, но могут и летать. Именно благодаря большим размерам это насекомое выбрал для изучения автоколебательной мускулатуры мой оксфордский наставник профессор Прингл по прозвищу Весельчак Джон (улыбку он выдавливал из себя крайне редко).

Летучие мыши, единственные по-настоящему летающие млекопитающие, машут крыльями примерно так же, как птицы. Однако, хотя их крыльям недостает полезной кривизны, которую дают перья, летучие мыши, по-видимому, припрятали в своем кожаном рукаве другой козырь. Вдобавок к главным мышцам, которые управляют взмахами крыльев и промежутками между пальцами, на которых натянута перепонка, в коже крыльев есть ряды тонких, словно ниточки, мышц. Я не знаю, произошли ли эти plagiopatagiales от тех мышц, которые есть в коже всех млекопитающих и предназначены для того, чтобы поднимать волоски дыбом – чудесный реликт того времени, когда у нас было достаточно шерсти, чтобы согреться. Они, по-видимому, применяются для того, чтобы настраивать натяжение разных частей летательных поверхностей летучей мыши. А кроме того, возможно, чтобы добиваться кривизны иным способом, чем у птиц. Эти мышцы тонкой настройки внутри кожи вкупе с движениями пальцев, которые меняют конфигурацию крыла на более грубом уровне, обеспечивают мгновенный контроль над летательными поверхностями. Летучие мыши с их высокотехнологичными сонарами напоминают мне ультрасовременные самолеты-истребители. Конечно, если речь идет о мелких летучих мышах, которые охотятся на насекомых. Крупные крыланы, в том числе летучие лисицы, питаются плодами и не нуждаются в скоростной маневренности, поскольку не преследуют движущиеся цели.

В отличие от мелких летучих мышей, у крупных летучих мышей – крыланов – большие глаза. Зато у них нет сонара, либо он недоразвит и устроен иначе, что указывает на конвергентную эволюцию. Внешне крыланы напоминают мне птерозавров, хотя они, разумеется, млекопитающие. Были ли сонары у птерозавров? У некоторых были большие глаза, а значит, они летали по ночам, но, вероятно, полагались при этом на зрение. Кстати, мне всегда было интересно, был ли сонар у ихтиозавров – вымерших рептилий, напоминавших дельфинов. У дельфинов весьма чувствительный сонар, который возник в ходе эволюции совершенно независимо от летучих мышей. Но у ихтиозавров, в отличие от дельфинов, были очень большие глаза – и поэтому, возможно, не было сонара.

Летательному аппарату приходится мириться с компромиссом между устойчивостью и маневренностью. Джон Мейнард Смит, великий эволюционист и генетик, во время Второй мировой войны занимался проектированием самолетов, а затем вернулся в университет, чтобы стать биологом. Он подчеркивал, что этот компромисс важен для летающих существ вроде птиц точно так же, как и для рукотворных самолетов. Очень устойчивые воздушные суда могут, в сущности, летать сами – по крайней мере, ими сможет управлять даже относительно неопытный пилот. Но за это придется расплачиваться маневренностью. Устойчивые самолеты никуда не годятся как истребители, которым нужна подвижность и гибкость, умение быстро поворачивать и нырять в воздухе. А высокоманевренные самолеты неустойчивы – снова тот же компромисс. Ими могут управлять только асы с быстрой реакцией. Самые современные самолеты устроены так, что даже ас окажется бессилен без помощи бортового компьютера. Возможно, настанет день, когда даже лучших пилотов заменят электронные системы навигации.

Если поискать в царстве животных, окажется, что по части восхитительной маневренности и великолепного инструментария всех опережают мухи, особенно цветочницы. В отличие от других насекомых, все двукрылые (от гнуса и комаров до больших долгоножек, они же караморы, латинское название Diptera) обладают только одной парой крыльев. Вторая пара крыльев у них атрофировалась и в ходе эволюции превратилась в жужжальца — отростки с шишечками на концах, расположенные позади оставшихся крыльев. Жужжальца – это тоже летательные инструменты. Они трепещут, словно миниатюрные крылышки, но для полета совсем не той формы и слишком малы, они служат гироскопом, помогают рулить и сохранять равновесие. Если лишить насекомое жужжалец, оно не сможет летать – будет слишком неустойчивым. Устойчивость ему можно вернуть, приклеив хвост из перышка. Джон Мейнард Смит подчеркивал, что первые птерозавры, например, рамфоринх (Rhamphorhynchus), живший в юрский период, обладали очень длинными хвостами с чем-то вроде весла на конце. Вероятно, рамфоринхи очень устойчиво летали, но плохо маневрировали. Сравните их с птеранодонами (Pteranodon), которые жили на 100 миллионов лет позднее. У тех хвоста практически не было. Согласно Мейнарду Смиту, птеранодоны, вероятно, были маневренными, но неустойчивыми. Не имея хвоста-стабилизатора, им приходилось полагаться на тонкое управление летательными поверхностями, которое осуществлял мозг. А может быть, у птеранодона, как у современных летучих мышей, были мышцы в перепонках крыльев? Они очень пригодились бы ему, поскольку птерозаврам, у которых в крыле был только один палец, недоставало тонкой подстройки крыла, которую обеспечивают пальцы летучим мышам (таким же бесхвостым). Наверное, и мозг у птеранодона был сложнее, чем у рамфоринха, ведь ему нужно было обеспечивать весь необходимый “электронный” контроль? И зачем птеранодону огромный вырост на затылке, уравновешивавший торчащие вперед челюсти? Может быть, вся голова служила продольным рулем и автоматически разворачивала все тело птеранодона туда, куда он смотрел?

Такого длинного костистого хвоста, как у рамфоринха, нет ни у одной современной птицы. То, что мы привыкли называть хвостом птицы, – просто перья без костей, тогда как настоящий хвост – это та куцая гузка, которую мы видим у жареной курицы. Зато у археоптерикса, знаменитой ископаемой птицы юрского периода, которая, весьма вероятно, была предком всех птиц, был длинный костистый хвост, как и у большинства рептилий, в том числе и у рамфоринха. Можно предположить, что археоптерикс был аэродинамически устойчив, но не слишком маневрен, согласно Мейнарду Смиту.

ДОЛГОНОЖКА (КАРАМОРА) И ЕЕ “ГИРОСКОПЫ”

У большинства летающих насекомых четыре крыла, однако у мух – только два (отсюда название Diptera). Вторая пара крыльев в ходе эволюции превратилась в органы чувств под названием жужжальца – палочки с шишечкой на конце, которые служат крошечными гироскопами.

Птицам маневренность необходима, в частности, потому, что они летают стаями, где нужно избегать столкновений с соседками. А в стаи птицы сбиваются по самым разным причинам, важнейшая из которых состоит в том, что вместе безопаснее. Хищные птицы обычно хватают одну особь за раз, а расстояние между хищниками, как правило, большое, поскольку у каждого своя охотничья территория. Чем больше твоя стая, тем меньше вероятность, что именно тебя схватит ястреб или орел. Это правило действует особенно надежно, если удается заполучить место в середине стаи. Это преимущество справедливо и для косяков рыб, и для стад копытных. Такие группы могут быть очень большими, достигать сотен тысяч особей.

ДВА ПТЕРОЗАВРА С РАЗНИЦЕЙ В 100 МИЛЛИОНОВ ЛЕТ

Рамфоринх (вверху) – обладатель длинного хвоста, который, вероятно, позволял ему летать устойчиво, но без особой маневренности. Птеранодон (внизу), более поздний птерозавр, был практически лишен хвоста и в воздухе, возможно, был весьма маневренным, однако неустойчивым.

Таких необычайных размеров достигают перелетные стаи скворцов, поведение которых описывается особым термином мурмурация и отличается поразительной согласованностью. Птицы кружатся, поднимаются, снижаются, поворачивают – и все это словно по команде, будто вся гигантская стая – единый организм. Это впечатление подкрепляется тем, что границы стаи четко обозначены, в ней нет случайных особей. Исполнив восхитительный воздушный танец, птицы пикируют вниз на ночевку, и шелест их крыльев напоминает шум дождя. У наблюдателя возникает искушение заподозрить, будто у стаи есть вожак, однако его нет. Каждая отдельная птица следует общему своду простых правил и внимательно следит за соседками, в результате чего и достигается такая согласованность.

Были созданы компьютерные программы, симулирующие поведение птиц в стае. Начиная с Крэга Рейнольдса и его уникальной для своего времени программы Boids все программисты придерживаются следующего важного принципа: сначала моделируют поведение одной птицы, а затем дополняют его простыми правилами, как реагировать на соседок – например, следить, чтобы они находились от тебя под определенными углами. Затем делают сотни копий этой птицы. Наконец, смотрят, что будет, если выпустить в компьютер все эти сотни копий. В результате смоделированные птицы “сбиваются в стаю” самым реалистичным образом, совсем как живые. Важно понимать, что ни Рейнольдс, ни его последователи не “программировали стаю”. Они программировали одну-единственную птицу. А стая появлялась сама собой как результат клонирования множества копий одной симулированной птицы. Тот же принцип играет важнейшую роль в биологии в целом. Сложные органы и сложное поведение появляются сами собой, когда каждый из множества мелких компонентов следует простым правилам. Сложность в них не встроена, она возникает сама по себе, и эта увлекательная тема заслуживает отдельной книги.

“СЛОВНО ШЕЛЕСТ БЕСЧИСЛЕННЫХ КРЫЛЬЕВ”[10]

Мурмурация стаи скворцов – одно из чудес света.

А теперь вернемся к тому, чем стаи полезны для птиц. Есть еще одна польза, несколько неочевидная, и это относится не к большим стаям, а к знакомым многим из нас косякам перелетных птиц. Они выстраиваются так, чтобы использовать зону пониженного давления, которую создает птица впереди. Лучшая позиция для этого – позади и по диагонали, отсюда и косяки летящих гусей, аистов и многих других птиц. Разумеется, птица во главе косяка этого преимущества лишена. Доказано, что ибисы занимают это место вожака, требующее особых усилий, по очереди. Тем же приемом пользуются и велосипедисты

КОСЯК ЖУРАВЛЕЙ

Все, кроме переднего журавля, используют преимущества зоны пониженного давления, создаваемой журавлем спереди.

во время гонок, а также военные самолеты, чтобы сэкономить топливо. Компания “Аэробус” исследует возможность полетов в таком строю для больших авиалайнеров ради экономии топлива. А третье преимущество стаи – возможность полагаться на других в поисках пищи. Есть экспериментальные данные, что большие синицы высматривают, где и когда кормятся их товарки, и даже подражают им – ищут пищу в тех же местах, где находили ее синицы из той же стаи.

Глава 9

Легче воздуха

Планеры, вертолеты и дельтапланы, пчелы и бабочки, стрижи и орлы, летучие мыши и птерозавры – все они тяжелее воздуха. А воздушные шары и дирижабли – это летательные аппараты легче воздуха. Они плывут в атмосфере безо всяких усилий, поддерживаемые газом (например, водородом или гелием), который легче воздуха, или нагретым воздухом, который легче окружающего холодного. Точнее, их поддерживает более тяжелый воздух, который опускается вокруг них и вытесняет их вверх по закону Архимеда. Насколько мне известно, летательные аппараты легче воздуха существуют только как продукт человеческой изобретательности.

МОНГОЛЬФЬЕР

Произведение искусства в небе.

В истории научно-технического прогресса летательные аппараты легче воздуха появились гораздо раньше аппаратов тяжелее воздуха. Первый полет человека состоялся в Париже в 1783 году – это был воздушный шар, который построили братья Монгольфье. Старший, Жозеф-Мишель, наблюдал за бельем, которое развесили сушиться над огнем, и заметил любопытное явление: карманы, наполнявшиеся горячим воздухом, подталкивали одежду к потолку. Под впечатлением от увиденного Жозеф-Мишель при участии брата Жака-Этьенна, наделенного деловой хваткой, начал изготавливать воздушные шары на горячем воздухе. Они построили несколько шаров, каждый больше предыдущего, и экспериментировали с пассажирами-животными, прежде чем рискнуть жизнью человека, причем таким человеком стала персона голубой крови – маркиз д’Арланд в сопровождении Пилатра де Розье. Последний был ученым, причем весьма находчивым: по свидетельству одного очевидца, шар загорелся, и де Розье потушил пламя камзолом.

Всего через несколько лет состоялся первый полет человека на воздушном шаре, наполненном водородом, и это тоже произошло в Париже. На сей раз полетел профессор Жак Шарль, тот самый, в честь которого назван закон Шарля, управляющий расширением газов. Шарль взлетел в изящной продолговатой гондоле, укрепленной под шаром. Он опустился на землю в нескольких милях от Парижа, где его тут же встретили два герцога. Шарль, недовольный пробным полетом, тут же снова поднялся в воздух, пообещав герцогу Шартрезскому вскоре вернуться, что он с успехом и осуществил. К счастью, на сей раз водородный шар не загорелся. Первые опыты с воздушными шарами были чреваты опасностями, и несколько первопроходцев-аэронавтов поплатились за них жизнью. Трагически, пусть и предсказуемо, погиб де Розье, когда через некоторое время отправился в полет на гибридном воздушном шаре собственного изобретения: шар, подогреваемый горелкой, был подвешен под шаром, наполненным водородом.

Шар братьев Монгольфье был настоящим произведением искусства, достойным особ королевской крови, которые находились среди тысяч зачарованных зрителей. Современные воздушные шары делают любой формы, иногда очень забавной. Первые монгольфьеры были привязаны к земле.

В рассказах современников много противоречий, но по-видимому, горелку шары оставляли на земле, когда улетали, и, должно быть, садились, как только воздух в шаре остывал. Позднее шары снабжались подвесной горелкой, и воздухоплаватели топили ее соломой. Современные воздушные шары сжигают пропан из баллона, который периодически выпускает небольшие и точно нацеленные порции очень сильно нагретого газа глубоко во внутреннюю полость шара.

Казалось бы, идеальный летательный аппарат легче воздуха должен содержать вакуум. Увы, чтобы такой шар не схлопнулся от давления снаружи, ему потребовалась бы необычайно прочная и жесткая оболочка из чего-то вроде стали, вес которой, мягко говоря, противоречил бы названию. Чтобы воздушный шар или дирижабль мог взлететь, ему нужна легкая оболочка, наполненная газом легче той смеси кислорода и азота, из которой состоит воздух. Водород – самый легкий химический элемент, и в первых дирижаблях использовали или его, или каменноугольный газ, богатый водородом, а также другие легкие газы, например метан. Опрометчивое решение! Водород – крайне горючий и взрывоопасный газ. Сегодня создатели дирижаблей, помня о трагической гибели гигантского дирижабля “Гинденбург” в 1937 году, предпочитают второй по тяжести газ – гелий.

Кстати, приобрести столько гелия, чтобы поднять в воздух человека, не каждому по карману. Зато можно купить маленький баллон, чтобы надуть шарики на праздник. Гелий не горюч и относительно безвреден.

Кроме того, на празднике ему найдется и другое развлекательное применение: гелий легче воздуха, и звук в нем распространяется почти в три раза быстрее, чем в воздухе, а значит, если вдохнуть гелий в легкие, будешь разговаривать как Минни Маус. Только не перестарайтесь, вдохнуть слишком много гелия или слишком глубоко – вредно.

В наши дни из-за дороговизны гелия более распространены воздушные шары на нагретом воздухе, который, как мы знаем из разговора о термиках, легче холодного. Нагреть воздух внутри шара при помощи ревущей паяльной лампы дешевле, чем наполнить его гелием, хотя это довольно шумно, что отчасти портит удовольствие от плавного полета над безмятежным сельским пейзажем.

Мне выпало удовольствие трижды летать на воздушных шарах, причем один раз в сопровождении телевизионной съемочной группы. Предполагалось, что я буду распространяться о неброском очаровании вечернего звона в английских деревенских церквушках, пролетая мимо их колоколен и шпилей. Но операторам пришлось ограничиться съемкой только в те моменты, когда оглушительный рев пропановой горелки ненадолго стихал.

По-видимому, мир профессиональных воздухоплавателей очень тесен. Мой третий и самый запомнившийся полет состоялся в Бирме, и по чистой случайности моим пилотом оказался тот же человек, кто управлял шаром, когда мы летали над мирными английскими деревнями. В Бирме мы пролетали над весьма впечатляющим ландшафтом, который был испещрен буквально тысячами буддийских храмов и пагод, окутанных рассветной дымкой, на месте древнего города Паган. Это надо видеть.

ПРОЕКТ УПРАВЛЯЕМОГО ВОЗДУШНОГО ШАРА В ВИДЕ РЫБЫ

Недостающее эволюционное звено между воздушным шаром и дирижаблем?

Управлять воздушными шарами очень трудно, в отличие от дирижаблей. Дирижабль – это, в сущности, большой воздушный шар с привешенной снизу кабиной и пропеллерами, которые подталкивают его горизонтально. Ими можно рулить, поэтому они и называются “дирижабли”, в буквальном переводе – “управляемые”. Первые проекты воздушных шаров снабжались рулевыми механизмами, опробованными в мореплавании, – в том числе парусами, рулями, веслами и гребными колесами. Похоже, это и были первые дирижабли, но я сомневаюсь, что они были так уж управляемы.

Когда летишь на простом воздушном шаре, контролируешь только высоту. Можно попытаться найти плоскость, где ветер случайно дует туда, куда тебе хочется попасть, но это все равно что рулить наугад. Чтобы подняться выше на водородном или гелиевом шаре, нужно сбросить часть балласта (например, песка), который был припасен в корзине. В случае воздушного шара на нагретом воздухе надо ненадолго прибавить огонь пропановой горелки. Чтобы опуститься, нужно потянуть трос и открыть вентиляционное отверстие в самом верху шара, выпустить часть горячего воздуха (или газа, если шар на газе). Просто поразительно, как чутко реагирует воздушный шар на самые незначительные изменения веса. Достаточно сбросить немного балласта, чтобы набрать высоту. Дело в том, что воздушный шар – это аэростат, находящийся в равновесии с окружающим его воздухом. Что это означает?

С высотой плотность атмосферы снижается, поэтому есть какая-то критическая высота, где воздушный шар повисает в совершенном равновесии. Если воздушный шар опускается ниже такой высоты, он поднимется. Если он окажется выше, он опустится. Когда выбрасываешь песок (или разжигаешь горелку), это делается затем, чтобы изменить “предпочитаемую высоту” шара, то есть высоту, где он пребывает в равновесии.

Приведу и другой пример: иногда воздухоплаватели применяют простое, но остроумное устройство, позволяющее автоматически регулировать высоту, однако действует оно только тогда, когда воздушный шар находится близко от поверхности земли. Достаточно спустить из корзины длинный канат – так называемый гайдроп. Канат, даже тонкий, довольно много весит. Когда шар летит низко, почти весь канат волочится по земле, поэтому его вес не входит в общий вес воздушного судна. Если шар поднимается, больше гайдропа оказывается над землей, и его вес слегка притягивает шар вниз. Таким образом, гайдроп автоматически регулирует высоту воздушного шара.

Казалось бы, простая веревка слишком легкая, чтобы на что-то влиять, однако это лишь показывает, насколько чувствительны аэростаты (а все летательные аппараты легче воздуха – это аэростаты). Гигантский дирижабль “Гинденбург” в тот роковой день в 1937 году, когда он взорвался в штате Нью-Джерси, незадолго до катастрофы спустился ниже положенного. На кадрах кинохроники видно, как команда лихорадочно пытается набрать высоту, сбрасывая водяной балласт, и складывается впечатление, что воды было не так уж много сравнительно с размерами самого дирижабля. Во время первого перелета на воздушном шаре через Ла-Манш, который осуществил Жан-Пьер Бланшар в 1785 году, они со спутником-американцем были вынуждены сбросить из своей изящной гондолы абсолютно все, включая собственную одежду.

РАЗДЕТЬСЯ ПОД СТРАХОМ СМЕРТИ

Полет Бланшара через Ла-Манш в 1785 году увенчался триумфом. Однако, когда шар стал опасно снижаться, сам Бланшар и его спутник были вынуждены сбросить за борт все свое снаряжение, включая одежду и рулевое весло.

Я уже упоминал моего старого наставника, сурового Весельчака Джона Прингла, и его исследования автоколебательного механизма полета у насекомых. Кроме всего прочего, профессор Прингл был великолепным пилотом планеров и кое-что знал о том, как держаться в воздухе. Таким же опытом обладал и сэр Алистер Харди, его блистательный предшественник в должности Линакровского профессора зоологии в Оксфорде, который в 1920-е годы был энтузиастом-воздухоплавателем. Харди написал чудесную книжку “Выходные с Уиллоусом” (Weekend with Willows), где описал весьма насыщенное и не на шутку опасное путешествие на воздушном шаре из Лондона в Оксфорд, которое предприняли четыре юных джентльмена. Управлял шаром – несколько безответственно – прославленный аэронавт и конструктор дирижаблей Эрнест Уиллоус, который позднее трагически погиб во время крушения воздушного шара. Их шар летал на каменноугольном газе, и Харди описывает, как им пришлось потрудиться, чтобы найти в Лондоне газовую станцию, где согласились бы накачать шар газом. Один из их компании, приятель Харди Нил Макинтош, обессмертил полет из Лондона в Оксфорд в эпической поэме объемом 426 строк. Приведу из нее всего семь двустиший, чтобы дать представление о его остроумии и о той жажде приключений, которая одолевала всех участников экспедиции, – думается, что-то подобное ощущается и в повести “Трое в лодке, не считая собаки” Джерома К. Джерома.

В какой-то момент между Лондоном и Оксфордом – Харди с друзьями понятия не имели, где именно, – аэронавты обнаружили, что во мгле их подстерегает грозная опасность.

Внезапная ловушка на путиМогла легко в могилу нас свести.Точней не выбрать слова, чем "могила”,Чтоб описать, что нам открылаВ предсмертном озаренье тьма:Стремящуюся к небесам с холмаКладбищенскую церковь – миг,И нас бы шпиль ее настиг.Дрожа и чуя смертный час,Мы быстро сбросили балласт —И вместо наших бренных телПесок в могилы полетел.Шар взвился ввысь, внизу остался шпиль,А вымою смогли услышать быль.[11]

Как мы только что видели, главная беда воздушных шаров – неуправляемость. Никогда не знаешь, где они опустятся, поэтому (я убедился, когда летал на воздушном шаре в окрестностях Оксфорда) всегда нужно, чтобы за тобой ехал автомобиль, который заберет тебя откуда угодно. Мое возвращение на землю после того полета вышло довольно бурным из-за неожиданного порыва сильного ветра, который в последнюю минуту сдул нас вбок и протащил через живую изгородь и кочки по двум полям, пока мы наконец не вывалились из корзины. Я нечаянно приземлился на очаровательную спутницу, которая, впрочем, простила меня. Кроме того, с нами в корзине был гость из Японии, профессор, который не вполне владел английским. Пока мы поднимались на ноги и отряхивали пыль, к нам поспешил фермер, владелец поля.

– Откуда вы? – взволнованно спросил он.

Японский профессор уже слышал этот вопрос и знал ответ.

– Ха, из Японии! – тут же ответил он.

В те давние времена, когда летал Алистер Харди, воздушные шары не сопровождали автомобили и фургоны. Аэронавты высматривали внизу подходящую железнодорожную ветку и старались приземлиться неподалеку. Упаковав шар в холщовый мешок, они махали очередному поезду, и тот послушно останавливался подобрать их, несомненно, к изумлению пассажиров, задержанных в пути происшествием.

Как я уже заметил, по-видимому, помимо людей, никто из животных не овладел в ходе эволюции настоящим эквивалентом воздушного шара. Мелкие пауки и гусеницы иногда прибегают к чему-то подобному, иногда это называют полетами на воздушных змеях, и это более точное выражение, поскольку для этого не нужно быть легче воздуха. Паучок выпускает нить паутины, которую подхватывает ветер и поднимает его в воздух. Некоторые паучата пролетают так сотни километров, образуя воздушный планктон, к которому мы вернемся в II-й главе. Есть данные, что пауки, прибегающие к такому способу полета, набирают при взлете подъемную силу за счет электростатического поля Земли. Статическое электричество можно наблюдать в быту: потрите волосы чем-нибудь пластмассовым, вы заметите, что к пластмассе притягиваются мелкие предметы – скажем, клочки бумаги. Это не магнетизм, хотя на вид и похоже. Это статическое электричество. И именно статическое электрическое поле помогает некоторым маленьким паучатам взлетать в воздух.

Но как же настоящие полеты на воздушном шаре? Неужели нет таких животных, которые летают потому, что они легче воздуха? По-видимому, воздушный шар, возникший естественным образом в ходе эволюции, – нечто не совсем невероятное. Отдельные составляющие этого устройства знакомы многим представителям царства животных. Некоторые рукотворные воздушные шары сделаны из шелка, одновременно и прочного, и легкого. А шелк, само собой, изобрели пауки и – независимо – насекомые, среди которых стоит отметить гусениц-шелкопрядов. Личинки некоторых ручейников делают шелковые сети, чтобы ловить мелких ракообразных себе на корм, и в отличие от обычной паутины рисунок плетения этих сетей очень близок к воздушному шару. Таким образом, изготовление шелка – технология, доступная животным.

Но каким же газом им наполнить эту оболочку? Трудно представить себе, как животные в ходе эволюции могли бы приобрести способность производить гелий. Некоторые бактерии вырабатывают водород, и ведутся разговоры об их промышленном применении, чтобы изготавливать топливо. Животные пользуются умениями бактерий в других сферах, например, чтобы вырабатывать свет. Зато животные в изобилии продуцируют другой легкий газ – метан.

ШЕЛКОВЫЕ СЕТИ

Эта ловушка, которую изготовила из шелка личинка ручейника, не воздушный шар, но она показывает, что живые существа способны построить его из необходимых компонентов.

Этот газ, вырабатываемый коровами, опять же на самом деле производят бактерии (и другие микроорганизмы) в их кишечниках, и это источник парниковых газов в атмосфере. Кроме того, метан выделяется при гниении растений. Он известен как болотный газ и иногда загорается, отчего получаются блуждающие болотные огоньки.

Что касается нагретого воздуха, самый впечатляющий пример выработки тепла у живых существ, который мне известен, – это оружие, применяемое некоторыми японскими пчелами против вторгающихся в их гнезда разбойников-шершней. Пчелы окружают шершня, и тот оказывается в центре плотного шара из пчелиных тел. При помощи вибрации брюшек пчелы поднимают температуру до 47 °C. От этого шершень буквально запекается и погибает. При этом запекаются и погибают и некоторые пчелы.

Как видно, некоторые отдельные компоненты технологии строительства воздушных шаров (тепло, водород, метан и плотная шелковая ткань) все же сделались доступными животным в результате естественной эволюции. И тем не менее я не знаю ни одного примера, когда они в совокупности обеспечили бы животному возможность благодаря этому подняться в воздух. Впрочем, может быть, мы еще просто не открыли этот вид.

Вода значительно плотнее, чем воздух, по этому движение в воде, аналогичное полету аппаратов легче воздуха, встречается сплошь и рядом. Мы сами проделываем это каждый раз, когда плаваем. Конрад Лоренц начинает рассказ о плавании с аквалангом с воспоминаний о полетах во сне в детстве. Так или иначе, мы состоим в основном из воды, а воздух в легких делает нас еще легче. Акулы немного тяжелее воды, поэтому вынуждены постоянно плыть – как птицы вынуждены махать крыльями в воздухе, – иначе они медленно утонут. Зато костистые рыбы (в противоположность хрящевым вроде акул) представляют собой тонко контролируемые гидростаты, способные чутко настраивать собственную плотность. В этом отношении они подобны дирижаблям – тонко контролируемым аэростатам. Как мы уже видели, аэростат находит такую высоту, где подъемная сила, обеспечиваемая менее плотным газом, точно уравновешивается весом судна вместе с пассажирами. Затем аэростат зависает в воздухе в полном равновесии. Рыба проделывает то же самое при помощи идеального контроля над своим плавательным пузырем.

Плавательный пузырь – это надутый газом мешок, спрятанный в теле рыбы. Меняя количество газа в пузыре, рыба регулирует собственную плотность и поэтому поднимается или опускается, чтобы найти в толще воды тот слой, где снова достигается равновесие. Вот почему костистые рыбы плавают с такой легкостью. Отчасти поэтому наблюдение за рыбками в комнатном аквариуме – такой замечательный отдых. Плавательный пузырь позволяет рыбе тратить ровно столько энергии, сколько необходимо для горизонтального движения. В отличие от летающих птиц и от акул, костистым рыбам не требуется тратить энергию на подъемную силу. Птицы делали бы то же самое в воздухе, если бы у них был плавательный пузырь, наполненный метаном. Птицы – не единственные живые существа, у которых в ходе эволюции возникло нечто похожее на плавательный пузырь, средство регулировать собственную плотность.

Каракатицы – не рыбы, а моллюски, родственники кальмаров и осьминогов, – сохраняют гидростатическое равновесие, закачивая и извлекая жидкость из своей пористой “кости” – той самой, которую в молотом виде дают птицам в клетках, чтобы снабдить их кальцием.

Как средство для практических полетов летательный аппарат легче воздуха имеет множество серьезных недостатков, и именно поэтому дирижабль в небе сегодня такое редкое зрелище. Дирижабли и воздушные шары служат чаще для развлечения или для рекламы. Даже водород – самый легкий газ – не настолько легче воздуха, чтобы поднять тяжелый груз, разве что задействовать огромные объемы этого газа. Оболочка для такого количества водорода, естественно, должна быть очень вместительной и при этом легкой, а следовательно, тонкой и непрочной: нередко оболочка дирижабля состоит в основном из мягкой ткани с минимальным жестким или полужестким каркасом. Стабильная форма мешка газа под давлением – это сфера.

Вот почему воздушные шары, начиная с монгольфьера, сферические или почти сферические. Но сферическая форма плохо подходит для быстрого полета, поэтому усовершенствованные дирижабли, снабженные двигателями, вроде знаменитых цеппелинов, тяготели к обтекаемой сигарообразной форме. Однако чем дальше дирижабль отходит от устойчивой сферической формы, тем сильнее его газовый мешок нуждается в жестком каркасе, чтобы сохранять форму. Это дает дополнительный вес, а следовательно, дирижаблю требуется еще больше газа только на то, чтобы удерживать в воздухе само воздушное судно, не говоря уже о грузе и пассажирах. А чем объемнее газовый мешок, тем сильнее сопротивление воздуха при движении вперед. Если вам нужна именно скорость, дирижаблям нечего и тягаться с самолетами, которые набирают подъемную силу за счет горизонтального движения.

С другой стороны, дирижабли дешевы в обслуживании, поскольку не расходуют топливо на набор подъемной силы. Поэтому если скорость не так важна, может возникнуть соблазн воспользоваться дирижаблем. Но поскольку максимальная скорость дирижабля совсем мала – мировой рекорд едва-едва превышает но км/ч, – он не может преодолеть встречный ветер, который нипочем большому реактивному самолету. Вероятно, дирижабли могли бы летать и быстрее, но тогда бы им требовались мощные двигатели вроде реактивного. А эти двигатели были бы слишком тяжелы, чтобы поднять их в воздух за счет принципа аэростата.

Глава 10

Невесомость

А теперь обратимся к последнему способу бороться с гравитацией – к невесомости. На первый взгляд кажется, будто к ней прибегают только люди. Причем люди, далеко продвинувшиеся по пути научно-технического прогресса. Если вы астронавт на Международной космической станции (МКС), в вашем распоряжении восхитительная иллюзия полета. Эти редкие счастливцы ближе всех подошли к воплощению мечты Леонардо.

ПАДЕНИЕ ВОКРУГ СВЕТА

Астронавт чувствует, что летит, а на самом деле находится в свободном падении.

На космической станции нет ощущения верха и низа. Никакие поверхности жилого пространства нельзя назвать полом или потолком. Паришь, словно призрак, а когда настает время обедать (скорее всего, из тюбика, поскольку с тарелки пища улетела бы) в обществе коллеги, каждому может показаться, что второй висит в воздухе вверх тормашками. Чтобы переместиться из одного помещения на космической станции в другое, нужно лететь, подтягиваясь при помощи поручней. Если подпрыгнуть с того, что вы временно назначили полом, даже совсем мягко, сразу взлетишь к потолку и стукнешься головой. Если астронавтам нужно выйти наружу для технического осмотра или ремонта, они опять же свободно парят и должны привязывать себя, чтобы не улететь от космического корабля безвозвратно. Они безо всяких усилий плывут, словно воздушный шар или как рыба, прекрасно владеющая своим плавательным пузырем. Однако, в отличие от рыбы, плывут они не потому, что их плотность такая же, как у окружающей среды, а по другой причине. Напротив, окружающая среда внутри космической станции – это воздух, а снаружи – почти что вакуум, и астронавт гораздо плотнее и того, и другого. Тогда почему же они летают?

Здесь мы подходим к ошибке настолько распространенной, что с ней необходимо разобраться раз и навсегда. Многие полагают, что астронавты ничего не весят, потому что находятся далеко от Земли и до них не доходит ее гравитация. Нет-нет-нет! Космическая станция находится совсем недалеко от Земли, ближе, чем Дублин от Лондона, и гравитация Земли действует на нее почти так же сильно, как и на уровне моря. Нет, астронавты ничего не весят в том смысле, что если они встанут на весы, те покажут, что их вес равен нулю. И астронавт, и весы свободно парят внутри станции, поэтому тело астронавта не оказывает на весы никакого давления. Поэтому вес астронавта равен нулю.

Астронавт и весы, космическая станция и все, что в ней находится, парят в невесомости, потому что находятся в состоянии свободного падения. Они постоянно падают. Падают вокруг света. Сила гравитации действует на них по-прежнему, притягивает к центру Земли. Но одновременно они мчатся вокруг планеты на огромной скорости, так быстро, что каждый раз, когда падают на Землю, промахиваются. Это и означает, что они на орбите. Космическая станция на орбите парит совсем по другой причине, чем воздушный шар в состоянии аэродинамического равновесия. Воздушный шар поддерживается давлением окружающего воздуха. Поэтому воздушные шары не падают. А астронавты на орбите, наоборот, падают. Непрерывно. Луна все время падает – причем уже более четырех миллиардов лет. Падает вокруг света, падает на вечной орбите.

Невесомы ли аэронавты на воздушном шаре? Конечно, нет. Они прочно стоят ногами на полу корзины и не проявляют склонности плавно вылететь из нее, как будто астронавты на орбите. Если бы их взвесили на весах в корзине, весы показали бы их полный вес. Таким образом, настоящая невесомость для нас – последний способ преодолеть гравитацию. Невесомости можно достичь только благодаря последним достижениям научно-технического прогресса. Но постойте! Разве это правда, строго говоря? Давайте подумаем об этом с другой стороны.

Первым астронавтом на орбите был Юрий Гагарин. Он полетел в космос в 1961 году. США, стремясь поспеть за Советским Союзом, запустили в космос Алана Шепарда в том же году. Он не вышел на орбиту, а совершил, в сущности, очень высокий прыжок в высоту – больше 180 километров – ив конце концов плюхнулся обратно в Атлантический океан. Во время фазы ускорения Шепард был далеко не в невесомости. Если бы он тогда встал на весы, те показали бы в 6,3 раза больше его нормального веса.

Он на самом деле был в 6,3 раза тяжелее. Однако после того, как ракетные двигатели отключились, то есть основную часть подъема и почти весь спуск, пока не раскрылись парашюты, астронавт и его капсула были в состоянии свободного падения. И если бы он взял с собой весы, они бы на протяжении большей части этого поразительного прыжка показывали бы, что его вес равен нулю.

Теперь вернемся к вопросу, достигали ли невесомости другие животные, кроме людей. Предварительный ответ – нет, поскольку в ходе эволюции ни у кого не возник ракетный двигатель, позволяющий развить первую космическую скорость. Мы только что видели, что Алан Шепард, в отличие от Юрия Гагарина, не достиг первой космической скорости. Тем не менее оба испытали невесомость. А теперь вспомним о лучшей прыгунье на свете – блохе – и зададимся вопросом, чем она отличается от Алана Шепарда. В отсутствие ракетного двигателя блохе приходится задействовать мышцы.

Кстати, интересный вопрос, имеющий лишь косвенное отношение к нашей теме: мышцы не могут двигаться достаточно быстро, чтобы обеспечить такое внезапное взрывное ускорение, которое нужно, чтобы прыгнуть высоко, как блоха. Энергия блошиных мышц (неизбежно медленных) запасается в упругой пружине. Принцип здесь тот же, что и у рогатки, лука или арбалета. Рогатка способна запустить камень со скоростью намного большей, чем давали бы одни лишь мышцы руки, которые натягивают резинку. Натянутая резинка запасает энергию мышц. Блохи, как и другие прыгающие насекомые, например кузнечики, снабжены восхитительным эластичным материалом под названием резилин. Это эквивалент резинки в рогатке, но лучше, поскольку он суперэластичен. Мышцы блохи “заряжают” резилин, и на это нужно время. Затем запасенная упругая энергия резко высвобождается сразу в обеих ножках, и блоха прыгает высоко в воздух.

Согласно математической теории, абсолютная высота, на которую способно прыгнуть насекомое, никак не связана с его размером. На практике, разумеется, наблюдается колоссальное разнообразие, поскольку одни животные, скажем, блохи и кенгуру (и олимпийские прыгуны в высоту), специализируются на прыжках, а другие, к примеру, слоны и бегемоты (и я) этого не делают. Блоха прыгает на 20 сантиметров в высоту, что не слишком отличается от прыжка обычного человека на месте из положения стоя. Однако пропорционально размерам тела блохи этот прыжок – примерно то же самое, что для человека перепрыгнуть Эйфелеву башню. Другой пример чемпионов-прыгунов – пауки-скакунчики, очаровательные крошки, которые, чтобы подпрыгнуть, резко закачивают жидкость в свои полые лапы. Паук-скакунчик крупнее блохи, а прыгает примерно на такую же высоту, следуя правилу, что абсолютная высота прыжка не зависит от размеров.

ГИГАНТСКИЙ ПРЫЖОК АЛАНА ШЕПАРДА

И прыжок блохи – гораздо ниже, но не менее восхитительный.

Обе траектории – параболы, но с осложняющими факторами.

Теоретически, если пренебречь осложняющими факторами вроде сопротивления воздуха, траектория блохи, как и траектория паука-скакунчика, должна представлять собой изящную кривую, которую математики зовут параболой. Траектория Алана Шепарда – это просто увеличенная версия параболы блошиного прыжка с тем лишь уточнением, что во время первой части подъема его активно толкали вверх двигатели. А работа блошиного двигателя прекращается в тот миг, когда насекомое отрывается от земли. Кроме того, траектория Шепарда осложнялась различными маневрами, которыми он управлял вручную при помощи тормозной двигательной установки, а в конце еще и парашюта.

В научной среде принято по-дружески подшучивать над привычкой физиков-теоретиков (совершенно разумной) излишне упрощать реальность ради облегчения вычислений – мол, они решают все задачи “для сферического коня в вакууме”. Давайте поймем эту шутку буквально и с радостью пренебрежем всеми осложняющими факторами и для блохи, и для Шепарда. Оба описали изящную параболу. Разница лишь в том, что прыжок блохи в высоту достиг 20 сантиметров, а прыжок астронавта – 186 километров; блоху запустила в воздух мышечная энергия, запасенная в резилине, а астронавта – ракетный двигатель. Оба ощутили невесомость: блоха – меньше чем на секунду, астронавт – на несколько минут. Теперь представьте себе, что блоха сидит на крошечных весах. Трудно представить себе весы, подходящие блохе по размеру, но мы как физики имеем полное право на такие допущения. И блоха, и весы, на которых она сидит, в свободном падении (снова пренебрежем сопротивлением воздуха и прочими осложнениями) будут весить ровно столько же, сколько астронавт в том же состоянии: нуль.

Теперь введем в нашу теоретическую волшебную сказку Гагарина на современной космической станции. Невесомость Гагарина на орбите ничем не отличается от невесомости Шепарда или блохи. Это касается не только спуска, когда они очевидно падали. На самом деле блоха, едва оторвавшись от земли, начинает падать, но движется вверх. Как только ракетные двигатели Алана Шепарда перестали толкать его вверх, он начал падать (опять же вверх). И стал невесомым. Невесомость Гагарина просто продлилась дольше. А невесомость астронавта на космической станции длится еще дольше. А невесомость Луны длится вот уже миллиарды лет. Итак, мы делаем вывод, что астронавты – не единственные живые существа, которые преодолели гравитацию, буквально став невесомыми. Как поется в песне: “Это под силу даже ученой блохе”[12].

Глава 11

Воздушный планктон

Высоко в атмосфере мы встречаем так называемый воздушный планктон – аэропланктон. Он состоит из огромного количества зернышек пыльцы, спор, летающих семян, крошечных насекомых вроде мимариды Tinkerbella, миниатюрных паучков на маленьких шелковых парашютиках и много чего еще. Я уже упоминал пауков “на воздушных шарах”, однако над нами летает не только аэропланктон, но еще и бактерии и вирусы.

ВОЛЬНЫЕ, КАК ВЕТЕР

Почему не существует гигантских животных – воздушных шаров, которые глотали бы воздушный планктон, как киты глотают морской?

Разумеется, название “планктон” позаимствовано из океанологии. Поверхностные слои моря, словно огромная колышущаяся степь, кишат микроскопическими растениями, одноклеточными зелеными водорослями и бактериями, которые поглощают солнечный свет для фотосинтеза и тем самым образуют первое звено пищевой цепочки. Водоросли становятся пищей для микроскопических живых существ в планктоне, а их, в свою очередь, едят более крупные животные и так далее. Морской планктон практикует так называемую вертикальную миграцию: по ночам эти существа опускаются в глубину, поскольку там безопаснее, а днем поднимаются к поверхности, чтобы уловить солнечный свет, без которого ничто живое на Земле не может существовать.

Я уже рассказывал о моем старом оксфордском профессоре сэре Алистере Харди в связи с достопамятным перелетом из Лондона в Оксфорд на воздушном шаре. Он всю жизнь занимался исследованиями морского планктона.

Сэр Алистер Харди изобрел непрерывный регистратор планктона (Continuous Plankton Recorder). Этот прибор буксируется за судном, причем это не обязательно специализированное научно-исследовательское судно, подойдет любое. Внутри прибора помещена очень длинная шелковая лента, которую постоянно перематывают два вала. Сквозь шелк проходит морская вода, и при этом в нее попадают планктонные организмы. Затем эту шелковую ленту изучают и вычисляют, в каком именно месте в море выловлен тот или иной организм, зная скорость и курс судна плюс скорость, с которой шелк перематывается с одного вала на другой.

Когда я собирал материалы для этой книги, для меня не стало неожиданностью обнаружить, что профессор Харди интересовался и воздушным планктоном и изучал его вместе с коллегой. Их статья 1938 года – образец ясности изложения и того дружеского, едва ли не разговорного тона, который в наши дни, увы, не допустит ни один научный журнал. Ученые при помощи двух воздушных змеев растянули сеть, в которую ловили воздушный планктон. А что особенно прекрасно, среди прочего оборудования они использовали еще и старый автомобиль – “моррис-буллноуз” 1920-х. Они приехали на нем к месту запуска, а затем приподняли заднюю ось, сняли покрышку с одного из колес и сделали из него ворот, чтобы управлять воздушными змеями. Другие ученые с той же целью пользовались сетями, которые волокли за собой самолеты.

СЭР АЛИСТЕР ХАРДИ

Выдающийся специалист по морскому планктону обратил внимание и на воздушный планктон и изучал его с помощью пары воздушных змеев, которыми управлял при помощи деталей от автомобиля.

В отличие от морского, воздушный планктон не представляет собой основной фотосинтезирующий слой, поддерживающий все остальные пищевые цепочки, хотя и наверху есть и водоросли, и зеленые бактерии, способные к фотосинтезу. Растения, являясь частью воздушного планктона, используют воздух как среду распространения, в том числе пыльцы и семян. Вероятно, вы спросите, почему так важно рассеивать свои семена на большие расстояния. Отчасти это нужно, чтобы избегать конкуренции между родителями и потомством. Но есть и другая причина, не такая очевидная. Для нее нам потребуется любопытная математическая теория, и она применима не только к растениям, но и к животным. Попытаюсь объяснить ее словами, без алгебраических символов.

Если растение или животное живет в наилучшем месте из всех возможных, было бы очевидным преимуществом сделать так, чтобы его потомство росло там же. Тем не менее математическая теория показывает, что животное (или растение), которое принимает меры, чтобы отправить по крайней мере часть своего потомства в дальние края, в долгосрочной перспективе распространит больше своих генов, чем его конкурент, который пристроит всех своих потомков по соседству с родителями. И это справедливо даже в том случае, если “по соседству” (на настоящий момент) – это лучшее место в мире, а “дальние края” в среднем хуже. Почему так получается, можно понять, если вспомнить, что иногда происходят и стихийные бедствия – наводнения и лесные пожары. Естественно, такие катастрофы редки, и вероятность, что они разразятся в “наилучшем месте в мире”, такая же, как и в любом другом месте. Мне всегда представляется полезным начинать размышления об эволюции с того, чтобы заглянуть глубоко в прошлое. Я даже собираюсь написать на эту тему книгу под названием “Генетическая книга мертвых”. Каждое живое существо, животное или растение – последнее в непрерывном роду предков, которым удалось добиться успеха. Предкам это удалось по определению: они прожили достаточно долго, чтобы стать предками, а стать чьим-то предком – это дарвиновское определение успеха. Поэтому растениям нужно распространять свои семена как можно шире, а не просто ронять их на землю у корней родителя, и животным необходимо отсылать прочь некоторых своих детенышей, вроде Христофора Колумба и Лейфа Эриксона, искать счастья в неведомых землях.

Животное (или растение), добившееся успеха, может жить там же, где его родители, но, пожалуй, не в том месте, где десять поколений его прапращуров. В его родословной наверняка найдутся предки, которые обязаны своим успехом тому, что покинули родную гавань. В случае растений это иногда означает, что семена отправили на все четыре стороны по изменчивым ветрам.

Большинство таких семян падают на каменистую почву и погибают. Они не становятся чьими-то предками. Но любое живое существо почти наверняка найдет среди своих предков по крайней мере кого-то, кто жил вдали от родителей и тем самым избежал лесного пожара, землетрясения, извержения вулкана, наводнения и прочих бедствий, которые внезапно опустошили родные места его дедов и прадедов. Отчасти поэтому растения расходуют столько ресурсов на распространение своих семян на большие расстояния, а не идут путем наименьшего сопротивления и не роняют их поблизости. То же самое относится и к животным. Отчасти именно этим объясняется обилие воздушного планктона.

Мой покойный друг и коллега Уильям Гамильтон знаменит своими гениальными дополнениями к теории Дарвина. В некотором смысле он был величайшим из последователей Дарвина 2-й половины XX века. Многие его глубокие идеи сегодня приняты биологами во всем мире. Одним из его относительно небольших открытий и стала теория, которую я только что попытался изложить. Именно Билл выдвинул ее в математической форме вместе с моим коллегой по Оксфорду, австралийским биологом, а в прошлом физиком Робертом Мэем, который в дальнейшем стал президентом Королевского общества и главным советником британского правительства по науке. Однако Билл Гамильтон выдвигал и другие смелые гипотезы, которые еще не восприняты всерьез и на сторонний взгляд кажутся просто безумными. Среди них – его соображения по поводу воздушного планктона.

Его мысль состоит в том, что микроорганизмы вроде бактерий и одноклеточных водорослей в верхних слоях атмосферы становятся катализаторами формирования дождевых облаков. Они научились этому в ходе эволюции, поскольку таким образом получают возможность перемещаться на дальние расстояния по всей планете, а затем вместе с дождем попадать на землю и начинать новую жизнь в новом месте. В эту теорию трудно проверить, и, честно говоря, лишь немногие ученые воспринимают ее всерьез. Я бы не стал списывать ее со счетов, причем не в последнюю очередь потому, что это особенно яркий пример явления, которое я много лет назад назвал (в одноименной книге) “расширенный фенотип”. Идеи Билла намного опережали свое время, и он оказывался прав настолько часто, что от его гипотез не стоит просто отмахиваться. Эта мысль легла в основу трогательной речи на его похоронах.

Начну с предыстории. За несколько лет до смерти Билл опубликовал две версии типично странной для него статьи под названием “План моих похорон. Зачем и почему”. В этой статье он писал:

В своем завещании я отпишу сумму на то, чтобы мое тело перевезли в Бразилию, в тамошние леса. Пусть его положат таким образом, чтобы его не тронули ни опоссумы, ни грифы, точно так же как мы оберегаем от них своих кур, и пусть меня похоронит великий жук-навозник Coprophanaeus. Пусть жуки войдут в мою плоть, похоронят ее, будут жить на ней, и в их детях, и в моих я избегну смерти. Не ждет меня участь ни червя, ни мерзкой мухи – я буду жужжать в сумраке, словно огромный шмель. Я стану множеством, я буду жужжать, словно целый рой, целая стая мотоциклов, и мы, летучие, взмоем друг за другом в дикое небо Бразилии под самые звезды, вознесемся, свободно расправив прекрасные надкрылья. Так в конце концов и я воссияю, словно фиолетовый земляной жук под камнем.

Когда мы, пришедшие проводить его в последний путь, стояли в тот мрачный пасмурный день на опушке Уайтемского леса близ Оксфорда, где так много лет проводились блестящие полевые исследования по экологии, обожаемая возлюбленная Билла, итальянка Луиза Боцци, упала на колени у могилы, объятая скорбью, и заговорила, обращаясь к открытой могиле. Она объясняла, почему было невозможно исполнить волю Билла и оставить его тело в бразильских джунглях:

Теперь твое тело, Билл, лежит в Уайтемском лесу, но отсюда ты снова попадешь в свои любимые джунгли. Ты будешь жить не только в жуке, но и в миллиардах грибных спор и водорослей, которые ветер унесет высоко в тропосферу, и вокруг тебя, вокруг всех вас образуются облака и понесут тебя за океаны, а потом ты выпадешь на землю вместе с дождем и снова взлетишь – и так будет много-много раз, пока наконец в капле дождя ты не соединишься с водами, что разольются по джунглям Амазонии.

К несчастью, Луиза тоже вскоре скончалась. Но ее поэтичные слова высечены на каменной скамье у могилы Билла. Совсем недавно я снова побывал там, как часто делаю. Биллу, безусловно, понравилось бы, что любовь всей его жизни произнесла такую красивую прощальную речь. Поэтому, вероятно, сквозь облака на небе (даже если они возникли не из-за воздушного планктона), все-таки проглядывало солнце.

БИЛЛ ГАМИЛЬТОН, ВЕЛИКИЙ МЕЧТАТЕЛЬ

Величайший последователь Дарвина в моей жизни.

Теперь твое тело, Билл, лежит в Уайтемском лесу, но отсюда ты снова попадешь в свои любимые джунгли. Ты будешь жить не только в жуке, но и в миллиардах грибных спор и водорослей, которые ветер унесет высоко в тропосферу, и вокруг тебя, вокруг всех вас образуются облака и понесут тебя за океаны, а потом ты выпадешь на землю вместе с дождем и снова взлетишь – и так будет много-много раз, пока наконец ты в капле дождя не соединишься с водами, которые разольются по джунглям Амазонии.

Глава 12

“Крылья” растений

За редкими исключениями вроде венериной мухоловки и чувствительного к прикосновениям растения Mimosa pudica у растений нет ничего эквивалентного мышцам. Они не могут двигаться, но у них есть мощная потребность распространять свои семена (см. II-ю главу) и обмениваться пыльцой с другими экземплярами своего вида. И то, и другое они делают в основном по воздуху, обеспечивая себе эквивалент полета различными косвенными способами. Вот почему они достойны особой главы в этой книге.

“СВЕЖИЙ, ПРОСТОЙ И ПРЕКРАСНЫЙ, ОСВОБОДИВШИЙСЯ ИЗ ПЛЕНА ЗИМЫ…”[13]

Каждое семечко одуванчика так мало, что вполне может летать, и снабжено парашютиком, который увеличивает площадь его поверхности.

Пушинки чертополоха, парашютики одуванчика и многие другие семена разлетаются на ветру на все четыре стороны. Они используют некоторые принципы полета, с которыми мы уже встречались. Семечко чертополоха или одуванчика само по себе мало, к тому же оно снабжено аккуратным пушистым парашютиком, чья большая площадь поверхности позволяет ему пролетать большие расстояния. Совсем крошечные и легкие семечки не содержат запаса питательных веществ, которые обеспечивают более массивным семенам отличные стартовые условия. У клена другой компромисс: его семена не такие маленькие, следовательно, не настолько многочисленны, поскольку снабдить семя пищей – это затратно. У семени клена большое крыло, которое может унести его на какое-то расстояние, но не слишком далекое. Не правда ли, оно почти точно копирует крыло насекомого? Махать оно не может, но летит по ветру, а когда опускается, вертится, словно игрушечный вертолетик.

КРЫЛАТОЕ СЕМЯ КЛЕНА

Если не знать заранее, можно было бы принять его за крыло насекомого, верно?

Пожалуй, самый зрелищный пример летающего семени – это семя Alsomitra macrocarpa, яванского огурца. Его плод похож на тыкву, из которого вылетает череда прелестных планеров. Каждый планер состоит из центрального семечка, в обе стороны от которого тянутся тоненькие, как бумага, крылышки. Семена парят и порхают с грацией тропической бабочки. Другие растения отращивают стручки с заведенной пружиной, которые взрываются и разбрасывают семена с огромной скоростью. Семена аистника обыкновенного после этого еще зарываются в землю, словно буравчики, попеременно скручивая и раскручивая свою ость – структуру наподобие плотного шнура.

СЕМЕНА ЯВАНСКОГО ОГУРЦА

Они порхают по лесу, словно бабочки

Многие растения, для того чтобы переправить свои семена как можно дальше, пользуются птичьими крыльями (и звериными лапами). У их колючек есть крючки, которые надежно прикрепляются к перьям или меху, и животные уносят их, чтобы сбросить в другом месте. Вкусные плоды устроены так, чтобы их обязательно съели, и их цель вовсе не доставить удовольствие едоку. Семена проходят через желудочно-кишечный тракт и выходят с другой стороны в хорошо удобренную почву. Однако не все потенциальные едоки одинаково выгодны плоду. Птицы с большей вероятностью унесут семена дальше, а это, скорее всего, полезно для растения. Вероятно, именно поэтому ядовитые ягоды, например паслена, смертельно опасны для большинства млекопитающих, но съедобны для птиц.

Пыльцу тоже нужно распространять. Почему? Это необходимо, чтобы избегать близкородственного скрещивания. Вокруг того, зачем нужен секс, ведется много ученых споров. С какой целью многие животные и растения смешивают свои гены с генами противоположного пола? Почему не поступают так, как тля и палочники – создают собственные копии, избегая всех хлопот, связанных с самцами и спариванием? Возможно, вы думаете, что ответ очевиден, но я заверяю вас, что нет. Какой бы ни была причина, она очень веская, поскольку сексом занимаются почти все животные и растения, хотя это требует колоссальных расходов сил и времени. А если спариваться с самим собой, это лишает смысла всю затею, каким бы ни был этот смысл. Вот почему растения, в том числе гермафродиты, у которых есть и женские, и мужские репродуктивные органы, готовы на все, лишь бы переправить пыльцу другому растению. По воздуху. Поэтому пыльца должна летать, как и семена.

Самый простой способ – просто по ветру. Зернышки пыльцы очень малы, поэтому ветер подхватывает их без труда, как мы знаем из 4-й главы. Но этот метод довольно расточителен. Зернышку пыльцы должно очень повезти, чтобы найти соответствующий женский репродуктивный орган – рыльце другого растения того же вида. Низкая вероятность такого события уравновешивается тем, что растение выбрасывает в воздух миллионы зернышек пыльцы, огромные облака, которые плывут по воздуху. Но существует ли другое решение той же задачи? Растение должно снабдить пыльцу маленьким летательным аппаратом, миниатюрным крылатым фаэтоном, которому потребуется эквивалент органов чувств, чтобы находить другие растения того же вида, и понадобится эквивалент маленького мозга и нервной системы, чтобы контролировать крылья и направлять летающий переносчик пыльцы к выбранной цели.

Но зачем так трудиться? Воздух и так полон летательных аппаратиков. Пчелы и бабочки. Летучие мыши. Колибри. У них уже есть полностью работающие крылья, движимые мышцами, контролируемые мозгом и снабженные органами чувств. Растению нужно лишь найти способ их эксплуатировать.

Подманить насекомое, чтобы оно взяло пыльцу, а затем убедить донести драгоценный груз по воздуху куда нужно.

Пожалуй, слово “эксплуатировать” здесь не годится. Почему бы не создать партнерство, от которого получат пользу обе стороны? Или платить насекомым за услуги? Например, авиационным топливом – нектаром. Естественно, растения не усаживаются с пчелами за стол переговоров и не обсуждают сделку. Дарвиновский естественный отбор поступает иначе – он благоприятствует тем растениям, у которых возникла генетическая склонность вырабатывать нектар. Гены для создания нектара передаются через зернышки пыльцы растения, которые переносят пчелы, соблазнившиеся нектаром. Добавим, что производство нектара обходится дорого.

За аренду крыльев цветы вынуждены раскошеливаться.

Насекомые невольно собирают пыльцу, которая прилипает к их телам, когда они высасывают нектар. Затем они задевают рыльца других растений, куда прилетают за новой порцией нектара, и стряхивают на них пыльцу. Занимаются этим, разумеется, не только пчелы и бабочки. Любят нектар колибри и нектарницы, их сестры из Старого Света и Азии (недаром их так зовут). Опылителями некоторых растений работают жуки и летучие мыши. Как же пчелы и бабочки, колибри и прочие опылители находят нектар? Естественный отбор благоприятствует растениям, которые рекламируют себя-. при помощи соблазнительных ароматов, которые во многих случаях приятны и нам. Например, розы и лилии. В других случаях они не слишком приятны. Цветы, предназначенные для привлечения некоторых мух, пахнут тухлым мясом.

У летучих мышей есть крылья, и некоторые летучие мыши любят нектар, так что нет ничего удивительного в том, что мы обнаруживаем растения, специализирующиеся на эксплуатации крыльев летучих мышей. Но поскольку летучие мыши, когда что-то ищут, ориентируются при помощи эха, а не световых лучей, растения прибегают к скрытой рекламе, которая услаждает не зрение, а слух. В кубинских джунглях распространено вьющееся растение Marcgravia evenia, листья которого имеют форму спутниковых тарелок, которые отражают эхо со многих сторон. Для летучей мыши такой лист в виде тарелки, должно быть, сияет словно неоновая вывеска.

Есть интереснейшие свидетельства, что цветы и пчелы генерируют электрические поля, которые взаимодействуют друг с другом и помогают пчеле искать цель, когда она находится поблизости от нее. Есть даже некоторые данные, что существуют электростатические силы, которые сначала притягивают пыльцу с мужского цветка к телу пчелы, а затем отталкивают ее с тела пчелы и сбрасывают на репродуктивные органы женского цветка.

НАРЦИСС ИЗ ДРЕВНЕГРЕЧЕСКОГО МИФА ВЛЮБИЛСЯ В СОБСТВЕННОЕ ОТРАЖЕНИЕ

Что бы он подумал о том, каким видят цветок нарцисса насекомые – его целевая аудитория?

Нарцисс как мы его видим (01), в ультрафиолетовом свете, где проступают пятнышки, невидимые для нас (02), и покрытый электростатической пылью (03). На самом деле насекомое, скорее всего, видит цветок нарцисса в виде отдельных кадров, как при свете стробоскопа, а не те пять лепестков, которые видим мы.

Впрочем, цветы привлекают опылителей в основном все-таки через зрение. Насекомые хорошо различают цвета. Птицы тоже. И те, и другие видят ультрафиолетовый цвет, который находится вне доступного нам диапазона. Многие цветы украшены узорами, полосами и пятнами, которые видны только в ультрафиолетовом свете. Насекомые не различают красный цвет, а птицы его видят, поэтому, если увидите ярко-красный полевой цветок, можете с полным правом предположить, что его цель – привлекать птиц. Луг, заросший полевыми цветами, – словно Пиккадилли или Таймс-сквер для пчел и бабочек, а ярко раскрашенные лепестки – словно луговые неоновые вывески. Садовники стремятся сделать ярче и цвета, и ароматы и, следовательно, работают инструментами отбора, будто гигантские пчелы.

Если цветок арендует крылья пчел, бабочек и колибри, он расходует пыльцу более целесообразно, чем просто отправляя ее по воле ветра. Когда пчела выбирается из цветка, она сплошь облеплена пыльцой и сразу летит на другой цветок. Однако другой цветок может и не быть того же вида. Может быть, есть способ лучше? Способен ли цветок принять меры, чтобы его пыльца точно попала на цветок того же вида? Есть ли какой-то способ преодолеть “промискуитет” среди насекомых и поспособствовать “верности” цветку? Есть. Цветы припасли множество козырей, раскрашенных всеми цветами радуги. Большинство цветов в пределах одного вида окрашены одинаково. Насекомые, посетившие цветок, склонны следующим выбрать цветок той же окраски. Это несколько снижает вероятность, что пыльца попадет на цветок не того вида. Но лишь несколько. Что еще можно предпринять?

Некоторые цветы держат нектар на дне длинной трубки, так что до него могут добраться только насекомые с очень длинным хоботком. Или только колибри с очень длинным клювом. У южноамериканского колибри-мечеклюва клюв настолько непропорционально длинный, что птица не может пригладить перья на большой части своего тела, это более чем неудобно: как мы знаем из 5-й главы, птицы тратят много времени на приглаживание перьев. Птице, которая не в состоянии пригладить перья на крыльях, бывает трудно летать. С учетом всего этого потребность колибри в настолько длинном клюве, вероятно, особенно сильна. По-видимому, удивительный колибри-мечеклюв стал таким в процессе совместной эволюции с необычайно длинными трубками конкретного цветка – Passiflora mixta. Розовые лепестки рекламируют устье трубки, которая уходит так глубоко, что добраться до нектара не может никто, кроме мечеклюва. Цветки точно знают (вы понимаете, что я имею в виду), что их посетит только мечеклюв и что затем мечеклюв перелетит на другой цветок того же вида. Птица и цветок – верные спутники. Пыльца не пропадет из-за того, что ее перенесли на цветок другого вида.

КРАЙНИЕ МЕРЫ РАДИ ВЕРНОСТИ ОПЫЛИТЕЛЯ

Цветок Passiflora mixta хранит нектар на дне длинной трубки.

Он обоснованно знает, что до нектара доберется только колибри-мечеклюв. И только колибри-мечеклюв перенесет пыльцу на цветок того же вида. Цветок пользуется крыльями мечеклюва – и ему не нужен никто, кроме мечеклюва.

Приведу и прекрасный параллельный пример бабочки-бражника. В 1862 году, когда Чарльз Дарвин трудился над своей книгой об орхидеях, некий мистер Бейтман прислал ему несколько экземпляров этих цветов, в том числе мадагаскарскую орхидею Angraecum sesquipedale. Слово sesquipedale в переводе с латыни означает “длиной полтора фута”. Цветочная трубка у этой орхидеи и вправду достигает таких размеров. В письме своему другу ботанику Джозефу Гукеру Дарвин задал вопрос: “Боже милостивый, какое насекомое способно это высосать?!” А затем он высказал смелое предсказание, что где-то на Мадагаскаре водится бабочка с хоботком такой длины, чтобы добраться до самого дна цветочной трубки этой орхидеи. Дарвин умер в 1882 году, 25 лет спустя один энтомолог открыл на Мадагаскаре местный подвид африканского бражника Xanthopan morganii. Хоботок этого насекомого достигает 30 сантиметров, что триумфально подтверждает предсказание Дарвина и оправдывает название подвида praedicta — “предсказанный”.

БОЖЕ МИЛОСТИВЫЙ, КАКОЕ НАСЕКОМОЕ СПОСОБНО ЭТО ВЫСОСАТЬ?!

Ответ на этот вопрос (до которого Дарвин, увы, не дожил), гласит: Xanthopan morganiipraedicta.

Некоторые цветы, особенно орхидеи, готовы на любые ухищрения, лишь бы соблазнить пчел и заставить себя опылять. Именно соблазнить. Орхидея офрис пчелоносная выглядит как пчела, причем разные ее подвиды имитируют разные виды пчел. Самцы пчел поддаются на обман и пытаются спариться с цветком. Во время этих неуклюжих попыток пыльца облепляет пчелу, и насекомое доставляет его на следующую орхидею, с которой пытается совокупиться. Орхидеи обманывают не только зрение. Некоторые из них вырабатывают поддельные феромоны — химические вещества с сильным запахом, при помощи которых самки насекомых приманивают самцов для спаривания. А есть такие орхидеи, которые мимикрируют под мух или всевозможных ос. Например, орхидеи, прикидывающиеся насекомыми, не вырабатывают нектара, они обманывают насекомых и пользуются их услугами бесплатно.

Развеивать пыльцу по ветру – расточительство, поскольку большая ее часть никогда не достигнет цели, орхидеи представляют собой полную противоположность этому поведению, они прибегают к чудо-средствам, которые обеспечивают опыление с минимальными расходами. Крайний случай представляет собой орхидея рода Drakaea (ее иногда называют “молоточковой орхидеей”), растущая на западе Австралии. Каждый из десяти видов этого рода опыляется своим видом осы, поэтому пыльца почти не расходуется из-за того, что ее принесли на женский цветок не того вида, и не теряется другими способами. У каждого цветка есть отросток-“кронштейн” с гибким сочленением, на конце которого подвешен муляж самки осы. Кроме того, он вырабатывает химическое вещество, копирующее соблазнительный аромат самки осы предпочитаемого вида. Самки этих видов ос бескрылые. Обычно они забираются на самый верх какого-нибудь стебля и дожидаются там, когда им удастся привлечь крылатого самца своим ароматом. Затем самец хватает самку лапками и уносит, спариваясь с ней на лету. Самец пытается проделать то же самое с поддельной самкой на орхидее, хватает ее и пытается улететь. Лихорадочные взмахи крыльев приподнимают его, но поддельная самка не подыгрывает ему – не отрывается от растения. Вместо этого сочленение на “кронштейне” выгибается вверх и несколько раз сильно ударяет его о так называемые поллиним (орхидеи держат пыльцу в виде комочков, которые называются поллинии). После нескольких ударов поллинии открепляются и прилипают к спине самца осы. Рано или поздно он оставляет попытки оторвать “самку” и улетает, чтобы попытать счастья с другой (кажется, жизнь его ничему не учит). Драма повторяется. Самца снова бьют о цветок, и на сей раз поллинии открепляются от его спины и прилипают к рыльцу второй орхидеи. Опыление успешно завершено, а самец осы за свои старания (и, возможно, страдания) не получил ровным счето м ничего.

МОЛОТОЧКОВАЯ ОРХИДЕЯ С НАКОВАЛЬНЕЙ, НАГРУЖЕННОЙ ПЫЛЬЦОЙ

Невероятно изысканное устройство, которое обеспечивает правильную доставку пыльцы. Самец осы думает, что нашел симпатичную самку, пытается улететь с ней в объятиях – и тут его с размаху ударяют о поллинии. Несколько раз.

На том же конце спектра, где изобрели чудо-средство, находятся ковшовые орхидеи Coryanthes, растущие в Южной и Центральной Америке. Вероятно, это самый сложный цветок на свете. В результате взаимной эволюции у него сложились крайне интимные отношения с особой группой маленьких блестящих зеленых пчел – так называемых орхидных пчел. Самец орхидной пчелы применяет феромон – весьма индивидуальный сексуальный аромат, – чтобы привлечь самок. Но пчелы не могут вырабатывать феромоны без посторонней помощи. И орхидеи выделяют ингредиенты для него в виде вещества, похожего на воск, который пчелы запасают в губчатых емкостях на лапках, чтобы в дальнейшем с его помощью привлекать самок. Когда самец пчелы наведывается к орхидее, чтобы собрать этот воск, он с большой вероятностью падает в “ковшик” цветка, где содержится жидкость. Самец барахтается в жидкости, пытаясь выбраться из ковшика, и обнаруживает, что единственный путь к свободе лежит через узкий туннель. Пока он проталкивается сквозь туннель, к его спине прилипают два поллиния. В конце концов самец вырывается на волю и улетает, унося их с собой. Затем, став на несколько минут старше, но ничуть не умнее, он забирается в следующий цветок, снова падает в ковшик и опять проталкивается наружу сквозь туннель. На сей раз в результате его стараний поллинии отлипают от его спины и оплодотворяют второй цветок.

Кстати, интересный вопрос, как такое взаимодействие развивалось в ходе эволюции? Как растение научилось вырабатывать главный ингредиент феромона для пчелы?

Я бы предположил, что когда-то предки пчел вырабатывали феромон сами, а растение взяло эту роль на себя постепенно, шаг за шагом.

Однако мой любимый кандидат на звание совершенного чудо-средства – интимные отношения между инжиром и наездником инжирным. Я посвятил им целую главу в книге “Восхождение на гору Невероятности”. Здесь я просто скажу, что существует более 900 видов инжира, и почти у каждого есть свой личный вид наездника инжирного, который опыляет исключительно его. Итак, растения пользуются крыльями, чтобы распространить свою ДНК, точно так же, как владельцы крыльев пользуются ими, чтобы распространить свою. Однако крылья растений – не свои, а чужие, арендованные у насекомых, птиц или летучих мышей. Если вам интересно, существовали ли цветки, опылявшиеся птерозаврами, – так вот, мне тоже интересно. Ответа на этот вопрос я не знаю, но мне нравится, какие картинки он пробуждает в воображении… Такое вполне вероятно, поскольку цветковые растения возникли в меловый период, когда птерозавров было еще в изобилии.

Грибы, строго говоря, не растения. Это особые живые существа, которые на самом деле ближе к животным, чем к растениям. Но они не двигаются, в отличие от животных. В их случае надо разносить не пыльцу и не семена, а споры. Некоторые грибы светятся в темноте призрачно-зеленым светом. Свет привлекает насекомых, которые, вероятно, полезны для гриба, поскольку разносят его споры.

Глава 13

Разница между летательными аппаратами, созданными эволюцией и разумом

В этой книге рассмотрено примерно полдесятка способов оторваться от земли и остаться в воздухе. В каждой главе я по возможности сравнивал летательные аппараты, созданные человеком, с соответствующими механизмами у летающих живых существ. Но освоение навыка отрываться от земли в этих двух случаях радикально различается. Животные превратились в летающие машины в результате миллионов лет медленных постепенных усовершенствований. Люди строили все более и более совершенные летательные аппараты в результате последовательной смены проектов на чертежной доске, и улучшения происходили в масштабе лет и десятилетий, а не миллионов лет. Конечные результаты нередко схожи, и неудивительно, поскольку задачи были одинаковы. Схожи настолько, что я мог бы оставить ложное впечатление, будто они и возникли одинаково. Пора исправить эту ошибку.

НАЗАД К ЧЕРТЕЖНОЙ ДОСКЕ

Кстати, великий биолог-эволюционист Джон Мейнард Смит в молодости работал конструктором самолетов и лишь затем решил вернуться в университет и переучиться на биолога.

Когда перед нами стоит та или иная задача (например, как избежать сваливания летательного аппарата), удобно начать ее обдумывать с того, с какой стороны подступиться к решению. Если речь идет о рукотворных воздушных судах, инженеры-конструкторы и правда так думают. Видят нерешенную задачу, представляют себе возможные варианты ее решения – например, предкрылки. Рисуют чертежи, иногда, возможно, собираются вместе, чтобы устроить мозговой штурм перед общей чертежной доской или перед компьютером, могут строить прототипы или уменьшенные модели, которые испытывают в аэродинамической трубе. И вот наконец разработанное решение внедряется в производство. Весь процесс научно-исследовательских и опытно-конструкторских работ (НИОКР) занимает всего несколько лет или даже меньше.

У животных этот процесс устроен иначе и идет гораздо медленнее. Там НИОКР, если можно так выразиться, идут на протяжении множества поколений в течение миллионов лет. Никаких размышлений, остроумных идей, целенаправленных изобретений, творческой интуиции. Никаких чертежных досок, инженеров, мозговых штурмов, аэродинамических труб. Происходит лишь одно: у отдельных особей в популяции по воле слепого генетического случая (мутации или перетасовки генов, полученных от родителей разного пола) появляется способность, скажем, летать чуть лучше среднего. Например, мутантный ген дает соколу небольшое преимущество в скорости. Отдельные соколы-носители этого гена чуть чаще ловят добычу. Или, скажем, скворец-мутант умеет маневрировать чуть лучше конкурентов в стае, и это радикально влияет на его способность уворачиваться от хищников и не быть съеденным. Если скворца – носителя “гена медленного полета” – съедают, вместе с ним погибает и ген, он не передается следующему поколению. Либо какой-то генетический тип чуть реже прочих подвергается сваливанию благодаря еле заметному отличию в форме крыла. Такие особи с чуть большей вероятностью выживают и, следовательно, оставляют потомство. Поколение за поколением гены хорошего полета распространяются в популяции все больше и больше. Численность генов плохого полета сокращается, поскольку у их носителей чуть больше вероятность погибнуть. То же самое постоянно происходит с самыми разными генами в популяции, и каждый влияет на полет по-своему. Поэтому что же мы увидим, когда пройдут миллионы лет, на протяжении которых в популяции будут накапливаться гены умения летать? Мы увидим популяцию животных, умеющих летать очень хорошо. Это “хорошо” касается всевозможных мельчайших деталей, в числе которых и способы противодействия сваливанию, умение чутко управлять мышцами, которые подстраивают форму крыла ко всем особенностям ветров и воздушных течений, более экономичная мускулатура крыльев, которая устает немного меньше. Крылья и хвосты в ходе эволюции приобрели нужный размер и форму и идеальны во всем – настолько, словно какой-нибудь инженер оттачивал их конструкцию на чертежной доске и испытывал в аэродинамической трубе.

Конечные продукты и человеческого, и эволюционного дизайна одинаково хороши, одинаково прекрасно летают, и из-за этого нам удобно забыть, насколько разными были процессы их совершенствования. Должно быть, вы уже заметили, что в этой книге я прибегаю к достаточно условной терминологии. Я пишу так, словно и птицы, и летучие мыши, и птерозавры, и насекомые берутся за решение проблем полета примерно так же, как наши инженеры, словно эти задачи решают сами птицы, а не дарвиновский естественный отбор. Этот вольный подход отчасти удобен потому, что так короче: нужно меньше слов и не обязательно каждый раз расписывать, как устроен естественный отбор. А еще он удобен потому, что мы с вами люди и знаем, что такое видеть задачу и придумывать ее решения.

Возникает соблазн предположить, будто сходство между эволюцией и человеческим дизайном идет даже дальше. Мы можем заподозрить, что новые идеи инженеров чем-то напоминают мутации. Такие “мутантные идеи” затем подвергаются чему-то наподобие естественного отбора. Либо идея сразу умрет, если изобретатель быстро обнаружит, что она не годится, либо она умрет на этапе прототипа, который не пройдет предварительных испытаний, например, в виде компьютерной симуляции или в аэродинамической трубе. Модель, разбившаяся в аэродинамической трубе, – сценарий относительно безобидный. Естественный отбор летающих животных более жесток: там неудача в самом деле означает смерть. Это необязательно гибель в результате падения, иногда дефектный проект просто оказывается медлительным и не может сбежать от хищника. Или плохо ловит добычу на лету, что повышает вероятность, что он будет голодать. Эволюция не предусматривает мягкого заменителя для смерти вроде испытаний в аэродинамической трубе. Провал есть провал – либо смерть, либо по меньшей мере невозможность оставить потомство.

Правда, тут мне вспомнилось, что птенцы многих видов часто сначала учатся летать (и мы видим это как своего рода игру) и лишь потом всерьез взлетают. Возможно, это для птиц эквивалент испытаний в аэродинамической трубе: пробы и ошибки, не приводящие к фатальным последствиям, не просто укрепление летательных мышц, но и, вероятно, тренировка координации и навыков у юной птицы. Молодняк многих видов и в самом деле прямо-таки упражняется – без устали прыгает на месте, хлопая крыльями, и таким образом, несомненно, накачивает летательные мышцы, а вероятно, при этом еще и оттачивает навыки полета. Перед нами еще одно различие между эволюционным и инженерным дизайном. Когда инженеры придумывают новый дизайн, им можно начинать заново, с чистой чертежной доски. Сэр Фрэнк Уиттл, один из тех нескольких человек, кому приписывают изобретение реактивного двигателя, не должен был брать уже существующий винтовой двигатель и модифицировать винтик за винтиком, заклепка за заклепкой. Только представьте себе, каким нелепым был бы первый реактивный двигатель, если бы Уиттл и в самом деле вынужден был двигаться вот так, поэтапно, и строить свое изобретение на основе винтового двигателя. Но все было не так – он начал с нуля, с чистого листа ватмана на чертежной доске.

Эволюция устроена иначе. Эволюция обречена шаг за шагом модифицировать уже имеющиеся конструкции. И каждый шаг на этом пути должен просуществовать достаточно долго, чтобы успеть размножиться.

ПОВТОРЕНИЕ – МАТЬ УЧЕНИЯ

Белые совы-родители (мать крупнее отца) наблюдают, как их птенец учится летать.

С другой стороны, из этого не следует, что эволюция всегда вынуждена работать с органом-предшественником, который

по воле случая служит той же цели. Рассуждая в рамках нашей аналогии, можно сказать, что эволюционный эквивалент Фрэнка Уиттла, возможно, и не был бы обречен перестраивать винтовой двигатель шаг за шагом. Вероятно, он мог бы модифицировать какую-то другую часть уже существующего самолета, скажем, выпуклость крыла. Но эволюция никогда не может вернуться к нулевой отметке с совершенно чистой чертежной доской, в отличие от инженера-человека. Она должна начать с какой-то части тела уже существующего и дышащего животного. И все последующие промежуточные стадии должны быть живыми, дышащими животными, которые прожили достаточно долго, чтобы успеть хотя бы размножиться. Вскоре мы видим, что крылья насекомых, вероятно, изначально были не рудиментарными крылышками, а солнечными батареями, которые затем видоизменились.

По поводу того, как происходят инновации в научно-техническом прогрессе человечества, существует две гипотезы, за которыми стоят две философские школы. И это напоминает мне две философские школы в современной теории эволюции. В области прогресса человечества есть теория гения-одиночки, а есть теория постепенной эволюции, которой придерживается мой друг Мэтт Ридли в своей книге How Innovation Works (“Как работают инновации”). Согласно теории гения-одиночки, ни у кого не было ни малейшего представления о реактивном двигателе, пока на сцену не ворвался сэр Фрэнк Уиттл. Но заметили ли вы, что, как осторожно я выразился, он был одним из нескольких человек, которым приписывают изобретение реактивного двигателя? Уиттл запатентовал свою идею в 1930 году, а добился, чтобы двигатель заработал (отдельно, не в самолете), в 1937 году. А немецкий инженер Ханс фон Охайн оформил патент в 1936 году, а первым реактивным самолетом, поднявшимся в небо, был “Хейнкель-178” с двигателем Охайна. Это произошло в 1939 году, за два года до того, как в воздухе оказался самолет “Глостер Е38/39” с двигателем Уиттла. Когда после войны изобретатели встретились, Охайн сказал Уиттлу: “Если бы ваше правительство поддержало вас раньше, не было бы никакой Битвы за Англию”.

Неясно, видел ли Охайн патент Уиттла. Так или иначе, существовал еще патент 1921 года, который получил французский инженер Максим Гийом (о чем Уиттл не знал). Но главное, что я здесь хочу подчеркнуть: ни Уиттл, ни Охайн, ни даже Гийом не придумали реактивный двигатель первыми. Теория гения-одиночки ошибочна. У изобретений, более или менее напоминающих реактивный двигатель, долгая история. Ракеты в качестве оружия использовались в Китае еще в X веке. В Османской империи при помощи ракеты даже запустили человека в воздух (ненадолго). Пишут, что Ладжари Хасан-челеби обнял “семикрылую” ракету, начиненную порохом, и ее запустили из дворца Топкапы над Босфором. В какой-то момент во время полета Ладжари спрыгнул с ракеты на подобии парашюта, упал в море и доплыл до берега, где султан наградил его за отважный подвиг золотом.

Ридли перечисляет один пример за другим – паровой двигатель, турбина, прививки, антибиотики, ватерклозет, электрическая лампочка, компьютер – ив каждом случае развенчивает теорию гения-одиночки. Если вы спросите любого американца, кто изобрел лампочку, он скажет, что То-мае Эдисон. Англичанин ответит, что Джозеф Суон. Более того, подчеркивает Ридли, на изобретение электрической лампочки могут претендовать по меньшей мере 21 человек из разных стран. Эдисон и в самом деле заслуживает признания как человек, который после многолетней упорной работы создал продукт, который можно продавать. Однако лампочка не была изобретена каким-то конкретным гением, а эволюционировала — разумеется, не генетически, но от разума к разуму. За годы, прошедшие после смерти Эдисона, лампочку постоянно улучшали, и у нас уже появились светодиодные лампы, которые во всех отношениях превосходят ее. Технология эволюционирует шаг за шагом – и, пожалуй, нигде это не видно так наглядно, как в случае цифрового компьютера, который эволюционирует с такой скоростью, что модель следующего года, лучше (и дешевле) прежней, появляется чуть ли не раньше, чем удалось как следует поднять продажи модели нынешнего года.

Кто изобрел самолет? Братья Райт. Ну да, пожалуй, это они первыми подняли в воздух пилота-человека при помощи силового двигателя. Но всякого рода планеры появились уже очень и очень давно. Братья Райт много знали о планерах, поскольку долго занимались опытами с ними. Можно сказать, что они взяли планер, долго возились с ним, потом приделали пропеллер и двигатель внутреннего сгорания и на этом взлетели. Но такой упрощенный рассказ не дает представления, что, собственно, значит “возились” – много, терпеливо и профессионально. Они построили аэродинамическую трубу, и она наверняка существенно помогла им подогнать все детали.

Первый в истории полет Орвилла Райта состоялся 17 декабря 1903 года, продлился всего 12 секунд – тогда летательный аппарат пролетел всего 37 метров со скоростью 10,9 км/с. Никто не собирается лишать Орвилла и его брата славы первопроходцев – это было поразительное достижение. Однако теория гения-одиночки несостоятельна и здесь. Самолеты эволюционировали постепенно из планеров и затем, пройдя стадию первых бипланов, превратились в изящные и быстрые авиалайнеры наших дней.

Я говорил о соколе-мутанте и о скворце-мутанте, которые получили больше шансов на выживание, поскольку лучше умели летать. Но тогда получается, что усовершенствование должно было ждать, пока случайно не появится нужная мутация, примерно как ждать, когда объявится нужный гений-одиночка. Однако в эволюции так не бывает, точно так же как научно-технические инновации у людей обычно не должны дожидаться гения-одиночки. Да, мутация действительно служит источником новых идей для эволюции. Однако половое размножение составляет из мутантных генов вместе со всеми прочими множество разных новых комбинаций, которые затем отдаются на суд естественного отбора. Гены, подобно инженерным идеям, тасуются и переставляются, прежде чем от них отказываются. Это сложнее, чем дожидаться, когда появится хитрая мутация (или гений-одиночка).

БРАТЬЯ РАЙТ

Первый в истории полет на силовом двигателе. Обратите внимание на крутку крыла – ее изобрели братья Райт, чтобы контролировать летательные поверхности. В современных самолетах она не применяется, но можно сказать, что нечто подобное

Глава 14

Что толку в половине крыла?

Еще остались люди, которые не верят в эволюцию, несмотря на все неопровержимые доказательства. Они хотят верить, что крылья птицы и летучей мыши – плод целенаправленной творческой мысли, что они сконструированы каким-то великим сверхъестественным инженером. Такие люди называются креационисты. В приличных университетах их не найти. Зато в менее образованных кругах – сколько угодно.

ЛЕСНОЙ ЛЕТУЧИЙ ДРАКОН

Скелет позвоночного дает много вариантов натяжения поверхности для парения. “Летучая ящерица”растопыривает ребра внутри кожной перепонки. Этот дракон только что совершил мягкую посадку на ствол далекого дерева.

Один из излюбленных доводов креационистов опирается на то, о чем я говорил в предыдущей главе: эволюция должна действовать через постепенные небольшие изменения и вынуждена работать с тем, что уже существует, вместо того чтобы перейти прямо к наилучшему решению задачи. А в случае крыльев креационисты любят задавать вопрос, который вынесен в название главы: “Что толку в половине крыла?” Да, говорят они, настоящее полноценное крыло – это очень хорошо, но ведь крылатое животное должно было произойти от бескрылого, и промежуточные стадии вряд ли на что-то годились: сначала десятая часть крыла, потом четверть крыла, потом половина… Разве предок, у которого была всего лишь половина крыла, не должен был шлепнуться на землю и если не разбиться, то по крайней мере попасть в глупое положение? Каждый шаг по эволюционной лестнице к нормальному крылу должен был быть лучше предыдущего, а все промежуточные звенья – животные с частями крыла – должны были выжить. Причем выжить лучше, чем их конкуренты, у которых части крыльев были немного меньше. Конечно, все промежуточные звенья должны были потерпеть неудачу, говорят креационисты. Ни о каком постепенном подъеме к совершенству речи, конечно, не было.

Как отвечают на это ученые? На самом деле вопрос по-детски прост. Вернемся к главе о парашютах и планерах. Вспомним летяг и австралийских сахарных поссумов, шерстокрыла с его кожаным парашютом, натянутым между четырьмя лапами и хвостом. Леса планеты, особенно Юго-Восточной Азии, населены множеством других прекрасных парашютистов и дельтапланеристов. Летучие ящерицы, они же летучие драконы (их латинское название Draco), тоже обзавелись перепонками из кожи, но у них кожа натянута не между растопыренных конечностей, вместо этого ребра у ящерицы торчат в стороны, и на этом каркасе держатся два нежных крыла – помните, мы говорили, что эволюция задействует уже имеющееся, а не начинает с чистого листа? В тех же лесах обитают и “летающие” змеи. У них нет никаких заметных глазу крыльев, (конечностей у них тем более нет). Но их ребра раздвигаются в стороны достаточно, чтобы все тело сделалось плоским и приобрело в сечении ту же кривизну, что и крыло самолета, а это обеспечивает достаточный эффект парашюта, возможно, при содействии закона Бернулли. Змеи могут планировать с дерева на дерево на 30 метров. И все это время они медленно опускаются, однако спуск этот управляемый, они словно плавают в воздухе, проделывая те же волнообразные движения, при помощи которых перемещаются по земле или в воде. В тех же лесах водятся парящие лягушки. У них перепонки натянуты между растопыренными пальцами на всех четырех лапах. Никто из этих планеристов не летает по-настоящему, их летательные поверхности скорее похожи на парашюты, то есть продлевают падение. Как же эволюция создавала их?

ЛЕТАЮЩАЯ ЛЯГУШКА

Летающая лягушка растопыривает пальцы на всех четырех лапах, и перепонки ловят воздух.

Все эти животные-парашютисты живут в лесах, где солнце светит на листья, которые питают все лесное сообщество. Там, в этих воздушных угодьях, резвятся белки, иногда перепрыгивая с ветки на ветку. У беличьего хвоста несколько функций. Белки подают им сигналы другим белкам, он помогает удерживать равновесие во время бега и прыжков по веткам. Насколько мне известно, он используется как зонт в дождь, а пустынные белки укрываются им от солнца. А кроме того, его пушистая поверхность ловит воздух и помогает белкам прыгать дальше на ту малую толику, чем прыгали бы белки без хвоста.

Что же это меняет? Если белка не допрыгнет до намеченной ветки, она рискует упасть и сильно покалечиться. Наверняка существует предельное расстояние, на которое могла бы допрыгнуть белка без хвоста. Даже не очень пушистый хвост дал бы белке возможность прыгать чуть-чуть дальше. Но насколько? Даже если всего на несколько сантиметров, этого было бы достаточно, чтобы у особи с немного более пушистым хвостом было немного больше преимуществ. А где-то там, в вышине, наверняка найдется критическое расстояние между ветками, которое едва способна преодолеть белка с хвостом еще чуть-чуть пушистее. И так далее. Лес обеспечивает весь диапазон расстояний между ветками. Поэтому, как бы далеко ни могла допрыгнуть белка с нынешним хвостом, где-то есть две ветки, расстояние между которыми она могла бы покрыть, только если бы хвост у нее был капельку пушистее или длиннее. У особи из следующего поколения с немного более совершенным хвостом меньше риск упасть и больше вероятность выжить и передать гены усовершенствованного хвоста.

Суть в том, что пушистость хвоста – не то качество, которое или есть, или его нет. Для хвоста любого размера и пушистости существует расстояние между ветками, которое удалось бы преодолеть, только если хвост был бы самую малость больше или пушистее. Поэтому у нас и получается плавный подъем к совершенству. А именно это нам и нужно для обоснования теории эволюции.

Пушистый хвост – не то же самое, что пара крыльев. Это даже не парашют, как у белки-летяги или шерстокрыла. Однако теперь вы легко поймете, как продолжать аргументацию. У любой белки под мышками есть маленькая кожная складочка. Эта складочка чуть-чуть увеличивает площадь поверхности белки, почти не прибавляя ей веса, и может увеличивать расстояние, которое белка может перепрыгнуть. Расстояния между ветками в лесу представляют собой сплошной континуум. Какое бы расстояние ни могла преодолеть конкретная особь, в кронах деревьев всегда найдутся две ветки, дистанция между которыми чуть больше – и ее может преодолеть другая белка, потому что у нее чуть больше площадь складочки под мышками. Тут у нас появляется основа для другого плавного подъема к совершенству. Что нам и требуется для обоснования теории эволюции. В конце этого подъема будет белка-летяга, сахарный поссум или шерстокрыл с полноценным патагием.

Но почему в конце подъема? Зачем останавливаться? Летучие мыши и шерстокрылы двигают конечностями, когда планируют, и это дает им возможность рулить полетом. Не будет ли совсем маленьким шагом вперед научиться двигать лапками ритмичнее и энергичнее, пока это не перейдет во взмахи крыльями, как у птиц? Начнем с того, что, если махать крыльями, это позволит лишь совсем немного удлинить дистанцию плавного спуска. Однако разве не очевидно, что рано или поздно животное научится продлевать полет неопределенно долго? Может быть, именно так и появились летучие мыши?

НЕ С ЭТОГО ЛИ НАЧИНАЛИ ЛЕТУЧИЕ МЫШИ?

У шерстокрыла перепончатые лапы. Однако площадь перепонки составляет лишь малую долю площади большого патагия.

Чтобы сделать летучую мышь из шерстокрыла, достаточно отрастить пальцы.

По воле случая нет никаких ископаемых, которые подсказали бы нам, когда летучие мыши впервые поднялись в воздух, но представить себе правдоподобную траекторию подъема к совершенству мы можем. Патагий шерстокрыла натягивается в основном между костями основных конечностей и хвоста. Однако у него есть перепонки и между короткими пальцами. У водяных птиц и млекопитающих встречаются перепончатые лапы, вспомним уток и выдр. Небольшие перепонки между пальцами бывают от рождения даже у некоторых людей. Это случается из-за одного любопытного явления в эмбриологии – так называемого апоптоза, программируемой смерти клетки. Во время развития эмбриона, в том числе и человеческого, пальцы сначала соединены перепонками, затем их клетки отмирают по тщательно запрограммированному плану. Программируемая смерть клеток – это один из приемов, применяемых, чтобы изваять эмбрион. Перепонки между пальцами есть у всех млекопитающих в утробе матери, а потом они остаются только у выдр и других водных обитателей, которым перепонки нужны, чтобы плавать. А еще – у летучих мышей, которым они нужны, чтобы летать. И у некоторых людей, у которых апоптоз не завершился.

КАК ПРОРЕЗАЮТСЯ ПАЛЬЦЫ

В утробе матери у всех нас есть перепонки между пальцами.

Некоторые их не утрачивают.

Пальцы у шерстокрыла короткие. Сразу видно, как какой-нибудь предок шерстокрыла мог постепенно отращивать пальцы с перепонками и в конце концов стал летучей мышью. Шерстокрылы – одинокая ветвь генеалогического древа, у них нет близких родственников среди других млекопитающих. Ближайшие ныне живущие их родичи после приматов – летучие мыши. Даже если бы они не были родственны летучим мышам, моя логика все равно была бы надежной. Задача приобрести в ходе эволюции патагий, а затем и крылья для предков летучих мышей была отнюдь не сложной, а напротив, совсем простой: достаточно лишь воздержаться от апоптоза, а параллельно удлинить кости пальцев относительно костей передних конечностей. А догадаться, каково было требование естественного отбора, просто до очевидности: постепенное, по сантиметру, увеличение дистанции прыжка, сопровождаемое постепенным удлинением пальцев с перепонками, что давало возможность тонко управлять конфигурацией летных поверхностей. Затем появилось умение махать крыльями, и кульминацией всего этого процесса стал настоящий полет.

Здесь я должен упомянуть, что ученые отстаивают две соперничающие теории того, как позвоночные встали на путь полета. Одна теория – “с деревьев вниз”, другая – “с земли вверх”. Пока что я упоминал только первую. Признаюсь, мне она больше нравится. Но каждая теория справедлива для разных летающих животных. Например, летучие мыши, вероятно, возникли согласно теории “с деревьев вниз”, а птицы – “с земли вверх”, к которой мы сейчас обратимся. Птицы произошли от рептилий, уже покрытых перьями и бегавших на задних лапах. Их предками были динозавры – родичи легендарных грозных тираннозавров.

Бегать на двух ногах можно очень быстро, что доказывают сегодняшние страусы. А если быстро бегаешь на задних ногах, передние конечности участвуют в этом лишь косвенно, в отличие от конечностей галопирующих млекопитающих. Тогда, возможно, им удастся найти другое применение. Спортсмены во время бега энергично машут руками вперед-назад. Страусы при помощи “рук” (или укороченных крыльев, унаследованных от предков) ловят равновесие, особенно на поворотах.

Вероятно, рептилиям было экономичнее бегать, перемежая шаги прыжками. Перья, которые первоначально возникли в ходе эволюции для теплоизоляции, помогали прыгать примерно так же, как пушистые хвосты помогают белкам. Особенно перья хвоста и передних конечностей, которые делали прыжки длиннее – так же, как патагий. Тут, вероятно, оказывалось очень полезно растопыривать передние конечности ради равновесия, так из них и получились рудиментарные крылья, которые еще не позволяли летать по-настоящему, но помогали прыгать. Как бы далеко ни могла прыгнуть рептилия без оперенных передних конечностей, у нее это получалось чуть-чуть дальше, если она их растопыривала. Мы уже знаем, что павлины и фазаны летают неважно, их полет – не более чем затяжной прыжок, при помощи которого птицы избегают опасностей. С течением поколений наблюдался плавный подъем ко все более и более длинным прыжкам ради спасения при содействии все более и более увеличивавшейся площади поверхности оперенных передних конечностей, и кульминацией стали настоящие полеты на произвольные расстояния.

Если обратиться от добычи к хищникам, в нашем распоряжении “теория прыгающего хищника”. Согласно этой гипотезе, существовала какая-то разновидность оперенного динозавра, которая специализировалась на охоте из засады. Это животное пряталось в каком-то месте, откуда открывался хороший обзор, и ждало, когда мимо пройдет добыча. После чего прыгало. Оперенные крылья и хвост ненадолго удерживали хищника в воздухе, а следовательно, он мог наброситься на добычу с большего расстояния. Затем, вероятно, следовал постепенный подъем к совершенству – в постепенном увеличении длины прыжка за добычей.

Существует и еще один вариант теории “с земли вверх”, основанной на беге. Насекомые открыли полет задолго до всех позвоночных, и рои летающих насекомых служили богатым источником пищи, который только и ждал, когда позвоночные разовьются в ходе эволюции настолько, что смогут им пользоваться. Вероятно, быстроногие рептилии прыгали в воздух, чтобы поймать их. Щелкали на них зубами, как сегодняшние собаки. Или, словно кошки, тянулись к ним ловкими передними лапами. Обычная домашняя кошка может подпрыгнуть в воздух на целых два метра и ловит вытянутыми лапами не только насекомых, но и птиц. Так делают и крупные кошачьи, например леопарды, но они ловят более крупных птиц. Делали ли что-то подобное древние рептилии, когда охотились на летающих насекомых? Помогали ли им в этом зачаточные “крылья”, еще не научившиеся летать?

Прежде всего взглянем на знаменитого ископаемого археоптерикса. Во многих отношениях это было промежуточное звено между птицами и животными, которых мы привыкли считать рептилиями. У археоптерикса были крылья совсем как у современных птиц, но с торчащими пальцами. В отличие от современных птиц, у него были зубы как у рептилии. Впрочем, напрасно я говорю о современных птицах: покойный Стивен Джей Гулд в одной из своих прелестных книг по естественной истории Hens Teeth and Horse's Toes (“Зубы курицы, пальцы лошади”) описывает, как изобретательные эмбриологи-экспериментаторы сумели заставить эмбрионы цыплят отрастить зубы. В лаборатории они восстановили древнюю способность, утраченную много миллионов лет назад. Еще у археоптерикса был длинный костистый хвост рептилии, который, несомненно, служил важной летательной поверхностью и стабилизатором наряду с крыльями.

ПТИЦА? РЕПТИЛИЯ? КАКАЯ РАЗНИЦА?

Археоптерикс ближе к рептилии-предку всех птиц, поэтому он служит промежуточным звеном. У него были зубы, торчащие пальцы и длинный стабилизирующий хвост.

Как предполагают некоторые ученые, предки археоптерикса обнаружили, что их перья помогают при ловле насекомых. ГСерья на передних конечностях стали такими длинными, чтобы служить своего рода сачком – загребать летающих насекомых. А потом оказалось, что перьевой сачок служит и примитивной летательной поверхностью. Оперенные конечности помогали рептилии в прыжке ловить в свой сачок даже тех насекомых, которые летали относительно высоко[14]. Летательная поверхность должна быть довольно большой по площади, но и сачок для насекомых тоже. Когда археоптерикс прыгал в воздух за насекомым, сачок служил ему простейшим крылом, которое увеличивало и дальность, и высоту прыжка. Загребающее движение крыла при ловле насекомого, вероятно, напоминало взмах крыла птицы, и это давало дополнительную подъемную силу. Постепенно передние конечности утратили функцию сачка, и на смену ей пришла функция крыла. Таким образом, согласно этой теории, у птиц в ходе эволюции появилась способность летать по-настоящему, махая крыльями. Признаться, мне “теория сачка” и остальные теории из ряда “с земли вверх” представляется менее правдоподобной, чем теория “с деревьев вниз”, однако я упоминаю о них здесь ради полноты. Однако у теории “с земли вверх” есть одна разновидность – теория “бегом вверх по наклонной”. Наземные животные нередко взбегают по стволам деревьев, например, чтобы спастись от хищников. Не все деревья стоят строго вертикально. Некоторые поваленные сухие деревья или отломанные сучья обеспечивают наклонную опору. Представьте себе, что пытаетесь взбежать вверх под углом в 45°. Тут можно помочь себе, махая оперенными передними конечностями. Это еще не крылья, они недостаточно развиты, чтобы парить в воздухе, но если махать ими, когда бежишь вверх по наклонному стволу, они дают ту самую капельку дополнительной подъемной силы и равновесия, которая все меняет. Так что и здесь мы наблюдаем постепенный подъем к совершенству – ив переносном, и в буквальном смысле. И пока протокрылья развивались для покорения наклона в 45°, они автоматически были доступны для усовершенствования, которое позволило бы им преодолеть наклон в 50°.

И так далее. Все это на вид несколько спекулятивно, но ученые уже провели прелестные эксперименты над австралийскими большеногами.

Этих птиц иногда называют кустарниковыми индейками, на самом деле они не индейки. Их так прозвали, поскольку они больше всех остальных австралийских птиц похожи на американскую индейку. Семейство большеногов разработало в ходе эволюции интереснейший метод высиживать яйца. Они на них не сидят, а строят огромную компостную кучу и зарывают яйца в нее. Бактерии в гниющем компосте вырабатывают тепло, поэтому куча становится инкубатором. Яйца в процессе инкубации очень чувствительны к температуре. Если в куче не слишком тепло, они снимают часть материала с верхушки кучи и добавляют новый слой, если в ней слишком холодно. В ходе эволюции клюв у них приобрел функцию термометра, и они втыкают его в компост, чтобы измерить температуру.

Я не смог устоять перед соблазном привести здесь это маленькое отступление. Для этой книги главное то, что птенцы болыпеногов вылупляются уже очень бойкими и самостоятельными. Иначе никак, поскольку родителей рядом нет и присмотреть за ними некому. Примечательно, что уже на следующий день вылупившиеся птенцы уже умеют летать. Они чаще всего убегают от хищников вверх по древесным стволам. И при этом машут крыльями, чтобы подняться повыше. Очевидно, что в прошлом менее развитые крылья помогали предкам болыпеногов взбираться по наклонным стволам. Причем крылья полезны, только если ими махать, как машут ими сегодня птенцы болыпеногов. Мы снова наблюдаем постепенный подъем к совершенству, именно такие подъемы нужны нам, когда приходится объяснять, “что толку в половине крыла”. Вопреки утверждениям креационистов, не так уж трудно представить себе множество сценариев, по которым в ходе эволюции возникло умение летать – возникло постепенно, шаг за шагом. Множество сценариев, при которых лучше половина крыла, чем его отсутствие.

А как же насекомые, которые открыли полет за сотни миллионов лет до позвоночных? Сегодня у большинства насекомых есть крылья, хотя некоторые (скажем, блоха) утратили их, хотя произошли от крылатых предков. Их называют вторичнобескрылыми. Как мы уже знаем, рабочие муравьи и термиты произошли не просто от крылатых предков, а от крылатых родителей. Есть также некоторые первичнобескрылые насекомые, в том числе чешуйницы и ногохвостки, у чьих предков никогда не было крыльев.

Как у всех членистоногих (насекомых, ракообразных, многоножек, пауков, скорпионов и т. д.), тело насекомых состоит из сегментов. Особенно наглядно эта структура видна у многоножек. Они устроены словно поезд из множества вагончиков, выстроенных друг за другом, и у каждого сегмента есть свои ножки. У других членистоногих, например у раков и насекомых, сегментация тоже есть, но она несколько сложнее – разные сегменты (вагончики) в ходе эволюции стали непохожи друг на друга. В поездах тоже иногда много одинаковых вагонов, а иногда у них мало общего, кроме колес и одинаковых механизмов сцепки. Мы, позвоночные, тоже сегментированы, это очевидно по устройству позвоночного столба. Но сегментирована у нас даже голова, надо лишь присмотреться к ней, особенно у эмбриона.

У насекомых первые шесть сегментов составляют голову, однако они срощены, поэтому не сразу заметно, что структура у них как у поезда. То же самое мы наблюдаем у млекопитающих. Следующие три сегмента – грудь. Остальные сегменты составляют брюшко. Каждый из трех сегментов грудки снабжен парой лапок, а у большинства насекомых на двух последних грудных сегментах есть еще и крылья. Мухи (и их родичи, в частности, комары и гнус), как мы уже знаем, – особый случай, поскольку у них только одна пара крыльев, а вторая пара в ходе эволюции уменьшилась и превратилась в гироскопы-жужжальца.

В отличие от крыльев позвоночных, крылья насекомых – не видоизмененные конечности. Мы видели, что это отростки панциря груди. Все шесть ножек освобождаются для ходьбы. По поводу того, как появились крылья, есть много разных теорий. Многие летающие насекомые проходят личиночную стадию развития, и их личинки живут в воде, а на воздух выходят только взрослыми насекомыми. Некоторые такие личинки – нимфы — дышат под водой при помощи жабр. Эти жабры похожи не на рыбьи, а на жабры головастиков – они представляют собой перистые отростки. Некоторые ученые полагают, что крылья насекомых развились из видоизмененных жабр. Другая теория гласит, что водяные нимфы приобрели “паруса”, чтобы скользить по поверхности воды, а в дальнейшем они превратились в крылья.

Главенствующая в наши дни теория объясняет, что маленькие отростки экзоскелета на груди насекомого сначала служили не летательными поверхностями, а своего рода солнечными батареями, увеличивавшими поверхность тела, чтобы улавливать солнечный свет и греть насекомое. Авторы этой теории проделывали опыты на моделях насекомых, частично в аэродинамической трубе. Результаты указывают, что очень маленькие грудные отростки лучше годятся для того, чтобы впитывать солнечный свет, чем для того, чтобы улучшать аэродинамику. А чем больше становились эти зачатки крыльев, тем лучше было для аэродинамики. При исследовании свойств плоских отростков на груди насекомого выяснилось, что существует некий пороговый размер, после которого летательная поверхность становится главным преимуществом, вытесняя солнечную батарею. Так что насекомым нужно было просто стать больше, что делается часто и без всякого труда по самым разным причинам. А когда и крылья у них стали больше, оказалось, что ими удобнее пользоваться в качестве летательных поверхностей, из этих отростков развились полноценные крылья.

Итак, согласно этой теории, первые шаги в сторону эволюционного подъема были проделаны ради солнечного тепла. А когда был преодолен пороговый размер, отростки стали пригодны сначала для парения, а затем и для взмахов с использованием мышц, которые уже имелись в груди насекомого. Вспомним, что говорилось о крыльях насекомых в 8-й главе: они машут в норме потому, что мышцы просто-напросто меняют форму груди. И задумаемся над тем, что лучшая панель для поглощения солнечного света должна быть тонкой – как крыло.

ДАЖЕ НЕ ПОЛОВИНА КРЫЛА

Летающая змея, живущая в джунглях, показывает, как можно летать, просто сделав тело плоским и вдвое увеличив его ширину – и после этого, извиваясь, “плыть” по воздуху с дерева на дерево.

Теорий предлагается много, и какая бы ни пришлась вам по душе, мы так или иначе приходим к выводу, что вопрос “что толку в половине крыла?” – не проблема. И у насекомых, и у птерозавров, и у птиц, и у летучих мышей постепенная, шаг за шагом, эволюция путем естественного отбора отвечает на него сама.

Глава 15

Зов пространства. За пределами полета

Эту книгу я начал с вопроса: мечтаете ли вы, что сможете летать, словно птица, как мечтаю об этом я? А сейчас, завершая ее, я задам другой вопрос: мечтаете ли вы когда-нибудь улететь с родной планеты и добраться до самого Марса? Или до одного из спутников Юпитера? Или до Сатурна? Когда я был молодым, подобные грезы относились к области научной фантастики. Я обожал комиксы про Отважного Дэна, Пилота из Будущего. Дэн и его помощник из Ланкашира Дигби то и дело запрыгивали в свой звездолет, хватали джойстик и исчезали где-то в направлении Юпитера.

ЧТО ПРОИСХОДИТ НА МАРСЕ СЕЙЧАС, КОГДА Я ПИШУ ЭТИ СТРОКИ

Увидит ли будущее процветающую колонию, основанную людьми? Позвонить оттуда домой будет непросто. Путь каждого слова до адресата займет от трех до 22 минут в зависимости от относительного положения на орбите.

Сегодня мы знаем, что все не так просто. Чтобы добраться до места, потребуется несколько лет. Это масштабный проект, требующий усилий сотен ученых и инженеров, которые заранее рассчитают орбиты и составят сложное расписание гравитационных рогаток вокруг других планет по пути. Даже полет на Марс занимает несколько месяцев. Но сегодня это осуществимо. Беспилотный космический аппарат уже проделал этот путь. Илон Маск не просто хочет отправить на Марс свои ракеты. Он намерен основать там колонию. И у него на то самые веские причины.

Помните дискуссию из ii-й главы? Математическую теорию, которая объясняет, почему в ходе эволюции и у растений, и у животных развилась потребность отсылать по крайней мере часть своего потомства попытать счастья в дальних краях? Даже если сами родители живут в лучшем месте в мире? Главная причина, как вы помните, состоит в том, что рано или поздно там, где ты живешь, разразится катастрофа – пожар, потоп, землетрясение, – так что даже лучшее место в мире перестанет быть лучшим местом и превратится в свою противоположность.

Так вот, сейчас лучшее место, где может жить человек, – это, безусловно, Земля. А селиться на Марсе – это просто кошмар. Но вдруг когда-нибудь Землю постигнет катастрофа, такая ужасная, что единственным способом сохраниться для человечества станет основание колонии первопоселенцев где-то далеко? Какая именно катастрофа? Есть несколько вариантов, в том числе долгосрочные последствия изменений климата, пандемия смертельной болезни, всевозможное высокотехнологичное оружие, в частности, биологическое, которое может выйти из-под контроля. Однако я расскажу еще об одной возможности, которая, пожалуй, стоит их всех. Надо признать, в ближайшем будущем такого вряд ли стоит ожидать, но я все равно расскажу о ней, поскольку такой сценарий, скорее всего, никогда не приходил в голову большинству из нас. И хотя в ближайшем будущем он маловероятен, рано или поздно это случится. А тогда все будет хуже, чем в самом страшном сне. Если мы хотим этого избежать, нам придется довести искусство полета до такого совершенства, какого пока что на страницах этой книги мы даже не касались.

Вам известно, что произошло с динозаврами. Их племя царствовало на суше 175 миллионов лет. Для динозавров, каждого по-своему, Земля была идеальной планетой, пока… словно гром среди ясного неба, безо всякого предупреждения, каменная глыба размером с гору не врезалась на скорости 70 тыс. км/ч туда, где сейчас находится мексиканский полуостров Юкатан. Местные динозавры мгновенно испарились – температура взлетела до двух с лишним тысяч градусов Цельсия. Но это было только начало. Воздействие было равноценно нескольким миллиардам атомных бомб того же размера, какую сбросили на Хиросиму, и все они взорвались одновременно в одном месте. Море вскипело, вокруг света прокатилась приливная волна высотой в полтора километра. Но в конечном итоге остальных динозавров добили, скорее всего, не чудовищный жар лесных пожаров и не цунами. От сокрушительного столкновения в атмосферу поднялись плотные облака пепла, пыли и капелек серной кислоты, из-за которых в мире на долгие годы стало темно и холодно. Юкатанским динозаврам очень повезло. Они погибли сразу. А тех, кто остался жить, ждала медленная смерть от голода и холода, поскольку растения, которыми они питались, вымерли из-за недостатка солнца. Мы, млекопитающие, едва-едва сохранились – возможно, благодаря тому, что забрались под землю и впали в спячку. А потом мы вылезли, покрутили носами, поморгали, дивясь медленно возвращавшемуся солнцу. И вот мы здесь – потомки тех немногих выживших: мы, превратившиеся в мышей и носорогов, слонов и кенгуру, антилоп, китов, летучих мышей и людей. Но нам улыбнулась удача. А в следующий раз может и не улыбнуться.

А это случится снова. Метеориты меньших размеров постоянно падают на Землю, и только вопрос времени, когда на нас снова обрушится огромный астероид вроде того истребителя динозавров, нагрянувшего 65 миллионов лет назад. Или даже больше.

Только не надо бояться этого до потери сна и аппетита. Хотя это может случиться еще при вашей жизни и даже на следующей неделе, вероятность невелика: все-таки 65 миллионов лет – долгий срок, а мы вполне можем прожить без крупных столкновений еще столько же. Тем не менее некоторые, в том числе и я, задумываются в приступах пессимизма, не пора ли людям начать готовиться к такому варианту развития событий. Никто этого за нас не сделает. Планета на нас надеется.

В частности, для этого можно развить технологии, позволяющие обнаруживать, перехватывать и отражать приближающиеся астероиды, чья эллиптическая орбита вокруг Солнца грозит пересечься с нашей, почти круглой. До знаний, как это делается, нам рукой подать. Большим шагом в этом направлении было достижение космического аппарата “Розетта”, который сумел сесть на комету. Следующим шагом будет столкнуть угрожающий Земле астероид или комету на немного другую орбиту вокруг Солнца. Чуть-чуть ускорить или замедлить, чтобы его орбита больше не пересекалась с нашей. Изменение скорости в обе стороны требуется неожиданно маленькое. Но нам придется приложить очень большую силу, чтобы повлиять на такой метеор размером с гору, который поставит под угрозу наше существование.

Что бы ни грозило Земле – комета или неостановимая пандемия, – все равно стоит повторить урок из ii-й главы и поговорить об основании колонии людей на другой планете, например, на Марсе. Естественно, Марс тоже может столкнуться с гигантским астероидом. Но две планеты сразу не попадут под удар одного и того же астероида, не станут жертвами одной и той же болезни, а вы наверняка слышали поговорку про то, что не стоит класть все яйца в одну корзинку. Основать колонию на Марсе будет чудовищно трудно: кислорода там так мало, что и говорить не о чем, и почти нет воды. Едва ли он спасет подавляющее большинство людей как отдельных личностей. Но он может сохранить наш вид. Останется хотя бы память, архив всего того, чего мы достигли за столетия – музыка, живопись, архитектура, литература, наука. И останется возможность в дальнейшем заново колонизировать Землю и начать все с чистого листа. По крайней мере, это веская причина захотеть отправиться на Марс.

Когда вы читали в n-й главе о потребности животных и растений отправлять свое потомство в неведомые края, далеко от тех мест, где сейчас так уютно, не напомнило ли это вам некоторые эпизоды истории человечества? Подумали ли вы о тяге к приключениям? О непоседливых первопроходцах? О той силе, которая двигала великими мореходами вроде Христофора Колумба, когда он отплыл в Америку, даже не представляя себе, куда попадет? Подумали ли вы о Фернане Магеллане, чья экспедиция обошла вокруг света (хотя сам он был убит в пути и не вернулся домой)? За ними последовали будущие колонисты, бежавшие от преследований (по крайней мере так было в случае Америки) и не знавшие, какие тяготы их ожидают.

А задолго до них викинги, которых возглавлял Эрик Рыжий, отправились в неведомые западные края и обосновались в Гренландии, повинуясь той же тяге к перемене мест. Сын Эрика, Лейф Эриксон, поплыл еще дальше и добрался до Северной Америки за полтысячи лет до Колумба. Никто не знает, когда предки нынешних индейцев пересекли замерзший Берингов пролив со стороны Азии, но кто может с уверенностью отрицать, что и их влекла та же страсть к приключениям? Вероятно, династия викингов, двигавшаяся в поисках приключений на запад – династия, начало которой положил Эрик Рыжий, – вдохновила и писателя-фантаста Джона Уиндема на создание книги “Зов пространства”, название которой я позаимствовал для этой главы. Его героями стали семь поколений одной семьи, чья наследственная потребность исследовать неведомое уводила их все дальше и дальше в космос.

Эти последние абзацы я пишу в гостиничном номере в Цюрихе, куда меня пригласили на интереснейшую конференцию STARMUS, где ученые, рок-музыканты и астронавты встретились, чтобы отметить пятидесятилетнюю годовщину полета человека на Луну. Многие астронавты, которые приехали сюда, – ветераны американской программы “Аполлон”. Некоторые ступали на Луну. На конференции они один за другим берут слово и в красках рассказывают, как это было – выходить в открытый космос, ходить по Луне, парить в невесомости, видеть Землю снаружи на фоне угольно-черного неба – и как это изменило их. В основном астронавтов набирают из пилотов-испытателей военных самолетов. В целом пилоты-испытатели редко наделены поэтическими талантами и едва ли склонны к экзальтированным чувствам,

КАК ЖЕ ПОЛИНЕЗИЙЦАМ УДАЛОСЬ ОТКРЫТЬ ОСТРОВ ПАСХИ?

Быть может, та же тяга к приключениям, которая обуревала полинезийцев, открывавших новые острова, и сегодня живет в том “зове пространства”, который побуждает представителей нашего вида колонизировать Марс – и, возможно, в далеком будущем добраться и до звезд?

и от этого их свидетельства особенно трогательны. Я вижу в них наследников великих мореплавателей – Эриксонов, Магелланов, Дрейков и Колумбов минувших столетий. А может быть, еще выразительнее было бы сравнение с полинезийцами, которые на каноэ достигли множества островов на просторах Тихого океана и колонизировали их по очереди. Они добрались и до далекого острова Пасхи – должно быть, для них это было то же самое, что для нас долететь до Луны.

А еще, поскольку я биолог-эволюционист, я не могу забыть и о далеком прошлом – наших предках, которые тысячу веков назад вышли из Африки и заселили Азию, Европу, Австралию, перешли через Берингов пролив и стали первыми настоящими американцами. Слышали ли они тот же зов пространства? Или просто скитались поколение за поколением, даже и не представляя себе, что участвуют в великом историческом исходе?

А может быть, если укрупнить масштаб хронологической оси до миллионов лет, тот же зов пространства заставил первую рыбу выбраться на сушу? Была ли это необычайно авантюрная и предприимчивая кистеперая рыба или ей просто помог счастливый случай? А первая рептилия, которая поднялась в воздух? Первый оперенный динозавр, чья дерзновенная страсть к прыжкам породила великое семейство птиц? Гениальный индивидуалист-первопроходец? Или просто везение? Мне искренне хотелось бы знать ответ.

Вернемся на конференцию в Цюрихе. Вторая половина приглашенных – ученые, в том числе несколько нобелевских лауреатов, а они в мире чистой мысли все равно что астронавты, которые делают первые робкие физические шаги в неведомую невесомость. Освобождение от силы тяготения началось с насекомых, птиц, летучих мышей и птерозавров и продолжилось благодаря воздухоплавателям и авиаторам нашего вида, а его кульминация в буквальном смысле – это невесомость, которую ощущают астронавты, а в символическом – полеты воображения, которым предаются ученые.

И лунной ночью из окошка спальниНапротив прямо, ярдах в двадцати,Я созерцал часовню, где стоялНедвижный Ньютон со своею призмойИ молчаливо-каменным лицом —Знак неизменный, мраморная памятьО гении, что неизменно бороздитНеобозримой мысли океан.Уильям Вордсворт, из “Прелюдии”[15], 1799.

Строки Вордсворта об Исааке Ньютоне, вероятно, еще лучше подошли бы для описания Стивена Хокинга, который, жестоко лишенный способности двигаться физически, странствовал по неведомым океанам мысли в полном одиночестве, скрытый за маской вечно безмолвного лица. Думаю, это справедливо, что на цюрихской конференции медаль Стивена Хокинга была присуждена инженеру-мечтателю и пророку “зова пространства”, которому и посвящена эта книга.

Наука в целом видится мне эпическим полетом в неведомое, будь то буквальное путешествие в другие миры или полет сознания, которое отрешенно парит в непривычных математических пространствах. Это может быть и прыжок через телескоп ввысь к далеким удаляющимся галактикам, и нырок в сияющую трубку микроскопа вглубь, в машинное отделение живой клетки, а может быть, и погоня за частицами по гигантскому кольцу Большого адронного коллайдера. Или полеты во времени: либо вперед в сопровождении величественно расширяющейся вселенной, либо назад, за пояс камней, из которого родилась Солнечная система, к самому началу времен.

Подобно тому как полет – это побег от гравитации в третье измерение, так и наука – побег от унылой нормальности повседневной жизни и вознесение по спирали в верхние слои атмосферы воображения.

Ну что ж, расправим крылья и посмотрим, куда они нас унесут.

Об авторе

Ричард докинз

Ричард Докинз входил в состав Саймонского профессората популяризации науки в Оксфордском университете. Его книги продаются миллионными тиражами и опубликованы более чем на сорока языках. В их число входят “Эгоистичный ген”, “Слепой часовщик”, “Бог как иллюзия”, “Магия реальности” и целый ряд других бестселлеров. В 2017 году в честь 30-летия своей премии “Научные книги” Королевское общество провело опрос, какова самая вдохновляющая научная книга в истории человечества. На первом месте оказался “Эгоистичный ген”.

Ричард Докинз – обладатель нескольких почетных докторских степеней в науке и в литературе, член и Королевского общества, и Королевского литературного общества. Он был ведущим научно-популярных документальных фильмов как на канале ВВС, так и на Четвертом канале, а в 1991 году ему было доверено прочитать Рождественские лекции Королевского общества для детей, снятые ВВС. В 2013 году Докинз был объявлен ведущим мыслителем планеты по результатам опроса Prospect Magazine, проведенного среди 10 тысяч читателей более чем из 100 стран.

О художнике

Яна лензова

Яна Лензова – художник-иллюстратор, переводчик и синхронист; родилась и выросла в Словакии, в Братиславе. Два главных ее увлечения – языки и рисование. Первая привела ко второй. После того как Яне Лензовой поручили перевод книги Ричарда Докинза “Бог как иллюзия”, она начала работать над его книгами в качестве иллюстратора. Кроме того, Яна создала несколько книжных обложек и оформила различные блоги, в том числе блог CBC/Radio-Canada, освещавший зимние Олимпийские игры 2014 года.

Яна работает исключительно в цифровом формате от первоначальных набросков до создания цветных иллюстраций. Ниже приведены этапы работы над изображением колибри – первой иллюстрацией, которую Яна нарисовала для этой книги.

Благодарности

Спасибо Энтони Читэму, Джорджине Блэкуэлл, Джесси Прайс, Клемане Жакине, Стивену и Дэвиду Балбус, Эндрю Паттрику, Дэвиду Норману, Майклу, Саре и Кэти Кеттлуэлл, Грегу Стайклезеру, Лоуренсу Крауссу, Леонарду Тремиэлу, Джейн Шефц, Сонье Кеннингтон, Генри Беннет-Кларку, Конни О’Гормли и покойному Рэнду Расселу, которого так не хватает.

Источники иллюстраций

Черно-белые иллюстрации © Shutterstock

Подробнее об источниках

С. 8: Феи (Gluiki)

С. 14–15: Бабочки и мотыльки (Евгения Литвинович)

С. 16: Вампировая летучая мышь (Хейн Нойвенс);

Ночная бабочка (Morphart Creation)

С. 24: Летящие птицы (Мария Игнатович)

С. 31: Индиговый овсянковый кардинал (Morphart Creation)

С. 40–41: Британский навигационный компас (Morphart Creation)

С. 43: Северный бурый киви (Хейн Нойвенс)

С. 54: Додо (Morphart Creation)

С. 66–67: Птичьи яйца (Тивадар Бодор)

С. 69: Крылатый лев (Наталия Барашкова)

С. 83: Слоны (monkographic)

С. 92–93: Кровеносные сосуды (Micro One)

С. 98–99: Перья (Артур Балицкий)

С. 108: Шерстокрыл (Morphart Creation)

С. iio: Белоголовый сип (Gwoeii); Орел (Евгений Тураев)

С. 119: Гигантский кальмар (Диана Хлевняк)

С. 126–127: Аэроплан (чертеж) (Vector things)

С. 138: Аэропланы (Viktoriia_P, by valet, Alexander_Р)

С. 141: Рука с карточкой (Раман Майсей)

С. 145: Ныряющий пингвин (Animalvector)

С. 154–155: Стрекозы (Morphart Creation, Nepart)

С. 156–157: Насекомые (Тивадар Бодор, Артур Балицкий)

С. 160–161: Приборы с панели управления самолета

(Ричард Лашен)

С. 174–175: Воздушные шары на нагретом воздухе (Александр Бабич)

С. 178–179: Воздушные шары на нагретом воздухе (Тивадар Бодор)

С. 182: Колокольня (Morphart Creation)

С. 186–187: Рыбы (Тивадар Бодор)

С. 188: Дирижабли (Артур Балицкий, Morphart Creation)

С. 194–195: Планеты (Артур Балицкий)

С. 196–197: Эйфелева башня (Хейн Нойвенс)

С. 206–207: Карта мира (Intrepix)

С. 208–209: Облака (vectortatu)

С. 219–221: Цветы (Чаннаронг Фернджанда)

С. 236–237: Двойная спираль ДНК (LHF Graphics)

С. 242–243: Реактивный двигатель (shaineast)

С. 244–245: Электрические лампочки (Александр Бабич)

С. 254–255: Белки (Morphart Creation)

С. 258: Страус (Евгений Тураев)

С. 267: Многоножка (Евгений Тураев)

С. 275: Метеор (nickolai_self_taught)

С. 281: Телескоп (pikepicture)

С. 283: Летящий мальчик (ArtMari)