В книге описаны физические принципы действия, основные типы конструкций и характеристики наиболее эффективных и малогабаритных преобразователей ультрафиолетового, видимого и инфракрасного излучений Солнца непосредственно в электрическую энергию — солнечных элементов (СЭ) из различных полупроводниковых материалов. Показаны перспективы широкого применения СЭ и батарей на Земле для экологически чистого получения электроэнергии.
Для широкого круга читателей, интересующихся вопросами солнечной энергетики.
Рецензенты:
доктор технических наук
В. А. ГРИЛИХЕС,
доктор технических наук
Б. В. ТАРНИЖЕВСКИЙ
© Издательство «Наука», 1987 г.
Предисловие
Впервые энергия солнечного излучения была преобразована в электрическую энергию с достаточно высоким КПД с помощью полупроводниковых фотоэлектрических преобразователей, которые вскоре получили название солнечных элементов. Электронная аппаратура спутника Земли или автономной метеостанции, заброшенной в горах, мгновенно оживает, когда на соединенную с ней электрическими проводами солнечную батарею-набор тонких (толщиной в доли миллиметра!) полупроводниковых солнечных элементов — падает солнечный свет.
Большой путь пройден наукой о солнечном фотоэлектричестве за короткий период времени — около тридцати лет — с момента разработки в СССР и США первых солнечных батарей из кремния и арсенида галлия, которые можно было рассматривать как энергетические установки.
Обеспечение полетов пилотируемых космических кораблей, искусственных спутников Земли, межпланетных станций требует затраты значительных количеств электроэнергии, потребляемой системами автоматики, управления, связи, жизнеобеспечения т. п. После доставки на Луну советского лунохода электрическая энергия впервые в мире стала использоваться для передвижения автоматов на других небесных телах. Необычные эксплуатационные условия (невесомость, глубокий вакуум, контрастные изменения температуры — от +200 до —200oC) не позволяют широко использовать в условиях Луны известные на Земле традиционные методы получения электричества.
Для выработки на борту космических аппаратов электроэнергии чаще всего применяют солнечные электростанции. Электрогенерирующая система состоит, как правило, из первичного основного генератора — полупроводниковых преобразователей солнечной энергии (солнечных батарей), системы автоматики, химического накопителя энергии (аккумуляторной батареи), который запасает выработанную первичным генератором энергию и отдает ее приборам станции по мере необходимости.
Построенные по этому принципу системы энергоснабжения уже длительное время успешно применяются на космических аппаратах различного назначения — искусственных спутниках Земли, автоматических межпланетных станциях, направляемых на Венеру и к Марсу, на первой в мире пилотируемой орбитальной станции «Салют» и новой усовершенствованной станции «Мир». За время, прошедшее с 1958 г., когда первая советская солнечная батарея успешно функционировала на третьем искусственном спутнике Земли, а американская — на спутнике «Авангард», в области прямого преобразования солнечной энергии в электрическую с помощью полупроводниковых фотоэлектрических преобразователей достигнут большой прогресс.
Усовершенствование технологии полупроводниковых материалов, получение широкого класса новых полупроводников с высокой степенью очистки от примесей, успехи теории физических процессов в полупроводниковых приборах позволили в последние годы увеличить КПД полупроводниковых преобразователей солнечного излучения в электрическую энергию.
Основу работы этих приборов составляет процесс взаимодействия солнечного света с кристаллом полупроводника, во время которого фотоны высвобождают в кристаллах электроны — носители электрического заряда. Специально созданные в объеме кристалла области с сильным электрическим полем (например, так называемые
Работа в космосе предъявляет солнечным элементам очень жесткие и подчас противоречивые требования. Действительно, поглощая возможно больше световой энергии, они не должны перегреваться. Кроме этого, солнечные батареи должны обладать способностью длительное время противостоять потокам корпускулярного излучения, действию частиц высоких энергий, быть радиационно стойкими при минимальном их весе.
Солнечные элементы и батареи — немногие из полупроводниковых приборов, работающих в открытом космосе. В то время как диоды и транзисторы размещаются в герметизированных, иногда теплоизолированных приборных отсеках, панели с солнечными батареями нагреваются до 80 °C, когда их освещает Солнце, и остывают до —150 °C во время захода космических аппаратов в тень Земли, испытывают воздействие ультрафиолетовой области излучения Солнца и микрометеоритных потоков.
Кроме большого количества сложных полупроводниковых приборов, солнечная батарея содержит оптическую систему, избирательно пропускающую в полупроводник только полезное излучение и одновременно защищающую его от нежелательного воздействия потоков корпускулярной радиации, а также увеличивающую излучательную способность освещаемой и тыльной поверхностей солнечных элементов.
Солнечные батареи доказали свою незаменимость, высокую надежность и долговечность при работе на борту космических аппаратов, особенно после того как удалось защитить их от неблагоприятных воздействий окружающей среды.
Начались успешные испытания солнечных батарей на Земле, изучение параметров и ресурса батарей при эксплуатации в тяжелых климатических условиях, поиски оптимальных конструктивных решений, выбор лучших герметизирующих и светостойких материалов, изолирующих от внешней среды тонкие хрупкие полупроводниковые кристаллы, пленки и ленты, из которых получают сейчас элементы для наземного применения. И здесь учеными многих стран получены обнадеживающие результаты. В СССР уже около десяти лет более ста фотоэлектрических электростанций бесперебойно снабжают электроэнергией речные бакены, сигнальные огни, системы аварийной связи, лампы маяков и многие другие объекты, расположенные в районах труднодоступных для доставки топлива и энергоснабжения.
Электрическую мощность от 100 до 200 Вт можно получить с 1 м2 современных солнечных батарей на ярком свету, и при этом не происходит никакого загрязнения окружающей среды вредными химическими веществами, отработанной теплотой и т. п. Солнечные батареи, несомненно, являются чистым источником энергии. Они все шире будут применяться в космосе и на Земле, по мере того как все промышленные страны мира будут проникаться убеждением в недопустимости загрязнения окружающей среды при использовании традиционных способов получения электроэнергии.
Значительные результаты достигнуты сейчас не только при практическом использовании солнечной энергии, но и в разработке теоретических основ прямого преобразования солнечной энергии. Недавно удалось показать, что фотоэлектрический метод преобразования теоретически позволяет использовать энергию Солнца с КПД, достигающим 93 %! А ведь первоначально считали, что максимальный верхний предел КПД солнечных элементов составляет не более 26 %, т. е. значительно ниже КПД высокотемпературных тепловых машин. За успехами теории, что уже было не раз доказано историей науки, должны последовать практические достижения. Первые подтверждения этому недавно появились — были экспериментально получены полупроводниковые каскадные солнечные элементы с КПД около 30 %.
Преобразование энергии в современных солнечных элементах с высоким КПД основано на фотовольтаическом эффекте, который возникает в неоднородных полупроводниковых структурах при воздействии на них солнечного излучения. Неоднородность структуры солнечного элемента может быть получена в наиболее простом случае легированием одного и того же полупроводника различными примесями (создание
Эффективность преобразования солнечной энергии зависит от электрофизических характеристик неоднородной полупроводниковой структуры солнечного элемента, а также от его оптических свойств, из которых наиболее важна фотопроводимость, обусловленная явлениями внутреннего фотоэффекта в полупроводниках при облучении их солнечным светом.
Затронутые выше вопросы теории и практики солнечных элементов подробно, доступно и вместе с тем достаточно строго освещены в предлагаемой читателю научно-популярной книге профессора Μ. М. Колтуна. Автор книги — известный исследователь, разработавший ряд новых солнечных элементов и батарей, создавший системы просветляющих, радиационно стойких и теплоотражающих оптических покрытий, защищающих солнечные элементы от воздействия радиации и температурных перегревов даже при работе около горячей Венеры или на поверхности Луны.
В настоящей книге изложены физические основы и принцип действия солнечных элементов из разных материалов, описаны разнообразные конструкции элементов, представлены их основные оптические и электрофизические характеристики.
Глава 1
СОЛНЕЧНОЕ ИЗЛУЧЕНИЕ В КОСМОСЕ И НА ЗЕМЛЕ
Состав электромагнитного излучения, испускаемого Солнцем, и природа происходящих при этом физических явлении
Солнце представляет собой удаленный от Земли на расстояние 149,6 млн км термоядерный реактор, излучающий энергию подобно абсолютно черному телу при температуре 5785 К (приближение, которое наиболее часто используется). Энергия поступает на Землю главным образом в форме электромагнитного излучения в спектральном диапазоне от коротких радиоволн длиной 30 м до рентгеновских лучей с длиной волны 10-10 м. Наибольшая часть энергии излучения Солнца сосредоточена в видимой и инфракрасной областях спектра.
Почти пять миллиардов лет в недрах Солнца происходят термоядерные реакции — превращение ядер водорода в ядра гелия, приводящие к освобождению огромного количества энергии. Ведь в глубине Солнца температура достигает 15–20 млн град. Ежесекундно 600 млн т водорода в недрах Солнца превращаются в гелий, однако масса Солнца столь велика, что за миллиарды лет она уменьшилась лишь на доли процента. Масса Солнца составляет 2×1027 т, что более чем в 330 тыс. раз больше массы Земли!
Существует две основных последовательности ядерных превращений водорода в гелий в ядре Солнца. Один из этих процессов — углеродно-азотный цикл, в котором в конечном счете ядро атома углерода поглощает четыре протона, излучает два позитрона (положительно заряженные античастицы по отношению к электрону) и превращается в нестабильное ядро атома кислорода. Затем ядро атома кислорода распадается на ядра углерода и гелия. Таким образом, восстанавливается первоначальное ядро углерода, и общий эффект состоит в превращении четырех протопоп в одно ядро гелия,
Вторая последовательность — это протон-протонная реакция, в которой два протона сталкиваются и излучают позитрон и нейтрино при образовании дейтерия, тяжелого изотопа водорода, в ядре которого существуют как нейтрон, так и протон. Другой протон добавляется к дейтерию, образуя легкий изотоп гелия, гелий-3. Затем два ядра гелия-3 объединяются и образуют одно ядро обычного гелия, гелия-4, и два свободных протона. Результат здесь снова состоит в объединении четырех протонов в ядро гелия. Количество высвобождающейся энергии примерно в миллион раз больше энергии, выделяемой в химической реакции горения.
Земля движется вокруг Солнца по эллиптической орбите. Небольшая вытянутость орбиты порождает годовые колебания интенсивности солнечного излучения, достигающего Земли. Наклон (угол относительно нормали к плоскости орбиты Земли) оси собственного вращения Земли, близкий к 23,5°, приводит к сезонным изменениям высоты Солнца над земным горизонтом. Диаметр Солнца составляет около 1,39×109 м. C Земли Солнце выглядит диском с угловым размером 31o59′. Это средний угловой диаметр; его годовое изменение составляет ±1,7 %.
Солнце имеет непрерывный спектр излучения, пересекаемый в некоторых местах темными линиями поглощения (так называемыми фраунгоферовыми линиями), влиянием которых при энергетических расчетах можно пренебречь. Распределение энергии в спектре Солнца весьма неравномерно, и истинная кривая спектральной плотности потока как внеатмосферного, так и наземного солнечного излучения имеет довольно сложный вид (рис. 1.1).
Интегральная плотность потока солнечного излучения, падающего нормально на поверхность, может быть определена интегрированием спектральной плотности в диапазоне изменения длины волны от нуля до бесконечности. Эта величина для околоземного космоса изменяется незначительно, поскольку расстояние от Земли до Солнца при ее движении по орбите отклоняется лишь в пределах 98,3—101,7 % от среднего расстояния, что приводит к соответствующим сезонным изменениям плотности потока солнечного излучения.
Рассматривая энергетические характеристики солнечного излучения, необходимо обратить внимание на одну особенность представления кривых спектрального распределения плотности потока лучистой энергии Солнца (рис. 1.1). На графиках, характеризующих это спектральное распределение, по оси ординат откладывается обычно величина размерность которой не совпадает с размерностью какой-либо энергетической величины, например, поверхностной плотности потока излучения
В связи с этим во многих работах в качестве наиболее показательной для графического представления спектральной характеристики выбрана логарифмическая шкала длин волн. Использование такой шкалы позволяет выразить спектральную плотность солнечного излучения в единицах поверхностной плотности лучистого потока (Вт/м2), отнесенных к спектральному интервалу, на протяжении которого длина волны излучения меняется в
Распределение плотности потока излучения, испускаемого Солнцем, по его поверхности достаточно равномерное, но объемный характер излучения приводит к некоторому спаду яркости от центра солнечного диска к краю.
В центре солнечного диска визуальная яркость в 1,22 раза больше средней. Ближе к краю яркость диска уменьшается, изменяется спектр излучения (относительное содержание красных лучей по мере удаления от центра диска возрастает), вследствие того что цветовая температура по краям ниже, чем в центре.
Весь поток излучения передается к внешним частям Солнца радиационным путем, и только в области, расположенной непосредственно под видимой поверхностью Солнца, имеет место конвективный процесс передачи энергии. Фотосфера, видимая поверхность Солнца, в действительности представляет собой очень тонкий слой, толщиной всего несколько сотен километров. Лучи, поступающие от краев солнечного диска, проходят сквозь относительно большие толщи вещества, поэтому от глубоких, более горячих слоев фотосферы приходит сравнительно меньший поток излучения, что вызывает так называемое потемнение к краю диска. Покраснение излучения к краю диска объясняется тем, что длинноволновая часть излучения легче, чем коротковолновая, проникает сквозь толщи вещества.
Космическое солнечное излучение
на границе с атмосферой Земли
Для точных измерений КПД солнечных элементов необходимо обеспечить полное воспроизведение стандартных параметров солнечного излучения, таких, как плотность потока, спектральное и угловое распределение энергии, однородность и стабильность потока. Стандартные параметры солнечного излучения должны быть согласованы — в данном случае между разработчиками солнечных элементов в разных странах мира.
При измерении характеристик солнечных элементов, предназначенных для космоса, в качестве стандарта повсеместно приняты условия, соответствующие условиям солнечного облучения плоскости, расположенной по нормали к направлению на Солнце и удаленной от неги на расстояние, равное одной астрономической единице (среднее расстояние от Земли до Солнца). Энергетическую облученность
На протяжении последних пятидесяти лет принятое значение солнечной постоянной уточнялось не один раз: в 1923 г. в первых работах по солнечным элементам использовалось 1350 Вт/м2, предложенное К. Дж. Абботом; в 1954 г. Ф. Джонсон получил 1393 Вт/м2; в начале 70-х годов в качестве стандарта было выбрано 1353 Вт/м2, выведенное в США Μ. П. Такаекарой; в настоящее время наиболее достоверным считается 1360 Вт/м2, определенное в СССР Е. А. Макаровой и А. В. Харитоновым.
Зная абсолютное значение солнечной постоянной, можно найти энергию, которая поступила на поверхность солнечных элементов и батарей, работающих во внеатмосферных условиях, что требуется при расчетах их КПД. Однако, чтобы определить полезную электрическую энергию, полученную от солнечного элемента, необходимо точно измерить также спектральное распределение падающей радиации, особенно в интервале спектральной чувствительности современных солнечных элементов (для элементов из кремния — от 0,3 до 1,1 мкм).
Спектральное распределение энергии излучения Солнца неоднократно измерялось как с поверхности Земли, так и непосредственно за пределами атмосферы.
Анализ разнообразной научной информации о характеристиках солнечного излучения дает все основания отдать предпочтение спектральному распределению, предложенному Макаровой и Харитоновым, которое приводится в табл. 1 Приложения.
Именно это распределение используется сейчас и Европейским космическим центром при определении КПД солнечных элементов.
Изменение солнечной постоянной вследствие цикличности солнечной активности изучалось многими исследователями. Анализ наземных измерений солнечной постоянной показывает, что среднее квадратическое отклонение результатов ее определения, связанное с явлениями, происходящими на Солнце, составляет ±0,1 %, а с возможными колебаниями поглощения радиации внутри орбиты Земли — ±0,14 %. Высотные измерения показали, что во вторую половину 22-летнего солнечного цикла солнечная постоянная изменилась не более чем на 0,75 %. Дальнейшие исследования с помощью аппаратуры, установленной на ориентируемых космических станциях, позволят определить изменения солнечной постоянной за больший период времени.
Реальные условия эксплуатации батарей космического назначения незначительно отличаются от условий, принятых в качестве стандарта. Спектральное распределение энергии излучения (среднее по диску) постоянно по всей области пространства, где работают космические аппараты. Угловая расходимость пучка отличается не слишком сильно, составляя на среднем расстоянии орбиты Меркурия около ±42′, Венеры ±22′, Марса ±11′, Юпитера ±3′. По вычислениям, выполненным применительно к астрономическим условиям, характерным для 80-х годов нашего столетия, при солнечной постоянной 1360 Вт/м2 плотность потока солнечного излучения на границе атмосферы Земля изменяется от среднего значения в пределах ±3,5 % — от 1406 Вт/м2 в начале января каждого года, когда Земля находится на минимальном расстоянии от Солнца, до 1315 Вт/м2 в июле, когда Земля расположена в дальней точке орбиты.
Для прогнозирования выходной мощности расположенных на низколетящих спутниках Земли батарей, состоящих из солнечных элементов, способных преобразовывать в электрическую энергию и ту часть солнечного излучения, которое может попасть на тыльную поверхность батареи, необходимо знать интегральный коэффициент отражения солнечного излучения от поверхности Земли (альбедо Земли). Величина альбедо может колебаться в зависимости от рельефа местности, состояния атмосферы и облачности в значительных пределах: от 0,1 (ясная погода) до 0,9 (Земля покрыта плотным слоем облаков). Обычно в среднем альбедо Земли для большинства орбит низколетящих спутников составляет 0,35—0,3.
Отраженное от Земли и ее облачного покрова солнечное излучение, так же как и тепловое излучение Земли в инфракрасной области спектра, влияет и на рабочую температуру космических аппаратов. Поток собственного теплового излучения Земли, попадающий на солнечную батарею, оценивается обычно для низколетящих спутников Земли величиной 200–300 Вт/м2. Его влияние проявляется не только в повышении равновесной температуры батареи на освещаемой части орбиты (явление несомненно отрицательное из-за заметного падения мощности батареи с ростом температуры), но и в подогреве батареи на участке орбиты, проходящем в тени Земли, что предохраняет батарею от чрезмерно резкого термоциклирования и положительно сказывается на ее работоспособности при длительной эксплуатации на орбите.
Вернемся к основному назначению солнечных элементов и батарей — преобразовывать излучение Солнца в электроэнергию с возможно большей эффективностью. Установлено, что в сравнительно узком спектральном интервале от 0,3 до 1,1 мкм разница в значениях суммарного количества падающей на кремниевые солнечные элементы радиации, определяемого при использовании солнечной постоянной по разным литературным источникам, не очень велика и составляет: 991 Вт/м2 (Μ. П. Такаекара), 1039 Вт/м2 (Ф. Джонсон), 1014 Вт/м2 (Е. А. Макарова и А. В. Харитонов).
Сравнение различных спектральных кривых распределения энергии излучения внеатмосферного Солнца показывает, что в области между максимумами излучения Солнца и спектральной чувствительности кремниевых солнечных элементов (0,6–0,8 мкм) распределение Джонсона (несмотря на значительное отличие в солнечной постоянной) ближе к распределению Макаровой и Харитонова, чем распределение Такаекары.
Этот вывод подтвердился при определении интегрального фототока кремниевых солнечных элементов по кривым спектрального распределения излучение Солнца (исходя из спектральных зависимостей чувствительности элементов) и путем экстраполяции к нулевой воздушной массе результатов натурных измерений, выполненных в первой половине 70-х годов зарубежными исследователями на острове Мальта и советскими — на высокогорной станции Государственного астрономического института им. Штернберга вблизи Алма-Аты. Если данные расчетов фототока с использованием спектрального распределения Джонсона принять за 100 %, то интегральный фототок, определенный по спектру Макаровой и Харитонова, составит 99,3 %, а по спектру Такаекары — 95,7 %, что существенно отличается от первых двух значений.
Эксперименты на острове Мальта и на высокогорной станции около Алма-Аты и расчет по спектру Макаровой и Харитонова дают прекрасно согласующиеся между собой результаты.
Для определения во внеатмосферных условиях КПД солнечных элементов и батарей из самых разнообразных полупроводниковых материалов в настоящее время наиболее целесообразно использовать спектральное распределение солнечного излучения за пределами земной атмосферы, предложенное Е. А. Макаровой и А. В. Харитоновым.
Поглощение солнечного излучения в атмосфере и характеристики наземного солнечного излучения
Плотность потока и спектр солнечного излучения на поверхности Земли зависят от высоты Солнца над горизонтом, от высоты местности над уровнем моря, от состояния атмосферы и оптических свойств подстилающей поверхности.
Высота Солнца над горизонтом определяет длину пути лучей в атмосфере, для определения которой введена специальная величина, называемая оптической массой атмосферы
Атмосферным массам (на уровне моря) 1; 1,5; 2; 3; 5 соответствуют следующие значения высоты Солнца: 90o, 41o49′, 30o, 19o27′ и 11o32′. Атмосферная, или воздушная, масса зависит также от высоты местности над уровнем моря: с увеличением высоты значение атмосферной массы снижается пропорционально давлению воздуха. На верхней границе атмосферы масса равна нулю, что обычно обозначается как условия AM0, в то время как наземным измерениям соответствуют условия AM1, AM1,5 и т. д.
Воздушная масса принимается равной единице на Земле на уровне моря при ясном безоблачном небе, когда Солнце находится в зените и лучи его попадают перпендикулярно на поверхность измеряемых элементов (атмосферное давление в этом случае p0= 1,013×105 Па).
Воздушная масса в любой точке земной поверхности может быть определена по уравнению
m=p/
где
Состав атмосферы существенно влияет на параметры наземного солнечного излучения. Проходя сквозь атмосферу, космическое солнечное излучение претерпевает поглощение и рассеяние.
Поглощение обусловлено целым рядом составляющих атмосферы: водяным паром, озоном, кислородом, углекислым газом и др. В основном поглощение определяется водяным паром. Рассеяние вызывается молекулами газов (рэлеевское рассеяние) и аэрозолями. Аэрозольное рассеяние зависит от количества и размера частиц пыли, взвешенной в атмосфере.
Солнечное излучение, прошедшее сквозь атмосферу, с учетом рэлеевского рассеяния может быть оценено как
τr=exp(-0,008735λ~4,08mp/p0).
Пропускание, уменьшенное из-за поглощения парами воды, характеризуется частью солнечных лучей, прошедших сквозь атмосферу в спектральных областях полос поглощения воды:
τω=exp(-kω(λ)ω),
где kω (λ) — коэффициент поглощения солнечного излучения парами воды; ω — слой осажденных паров воды в атмосфере.
Следует отметить, что поглощение парами воды и постоянными составляющими атмосферы, такими, как озон, кислород, углекислый газ, аммиак, весьма селективно. Эмпирические соотношения для расчета поглощения каждой из этих составляющих атмосферы выведены, но значительно более наглядное представление о задержке ими проходящего на Землю солнечного излучения можно получить из рис. 1.3.
Для оценки аэрозольного рассеяния пользуются понятием «мутность атмосферы». Прямой солнечный поток, ослабленный в результате аэрозольного рассеяния, можно определить по формуле
τα=exp(-βλ-αm),
где β — коэффициент мутности; α — коэффициент, который называют показателем селективности.
Коэффициент мутности характеризует количество взвешенных в воздухе частиц, показатель селективности — состав частиц по размерам: чем мельче частицы, тем выше α и тем большая часть излучения ослабляется в ультрафиолетовой и голубой областях спектра. Предполагается, что для различных атмосферных условий коэффициент α изменяет свое значение от 0,8 до 2, а коэффициент β — от 0,01 до 0,375.
При выводе обобщающей формулы, учитывающей все виды потерь солнечного излучения в процессе прохождения сквозь земную атмосферу, предполагалось, что спектральная плотность потока наземного излучения Солнца в узком интервале длин волн
где c1, C2 и c3=βλ-α — изменение длины оптического пути соответственно из-за рэлеевского рассеяния, наличия слоя озона и запыленности воздуха;
Tλ1=exp(-c4(ωm)½), Tλ2=exp(-c5ωm), Tλ3=1-
где c4-c6 — эмпирические константы.
В настоящее время разработаны различные модели атмосферы, с использованием которых можно рассчитывать на ЭВМ оптическое пропускание земной атмосферы по отношению к солнечному излучению.
C 1974–1975 гг. в странах, разрабатывающих солнечные элементы и батареи, начались активные исследования по выбору стандартного спектра наземного солнечного излучения применительно к измерению их параметров. Сначала был предложен стандартный солнечный спектр, соответствующий атмосферной массе
Следует отметить, что условия, близкие к AM1, наблюдаются практически только в тропиках и на средних широтах в высокогорье. В связи с этим были продолжены работы по выбору стандартного спектра и оптимальных методов измерения, наиболее полно отражающих условия эксплуатации большинства наземных фотоэлектрических установок,
В 1975 г. в США была разработана временная методика испытаний солнечных элементов наземного назначения, предусматривающая три способа измерений: на естественном солнечном излучении с использованием эталонных солнечных элементов, с применением неселективных радиометров и на солнечных имитаторах. В методике описываются приборы и оборудование, необходимые для проведения испытаний, рекомендуются способы градуировки эталонных элементов. В качестве стандартных предложены условия облучения при атмосферной массе
Однако условия АМ2 тоже недостаточно точно соответствуют средним условиям работы наземных солнечных элементов и батарей, особенно летом в южных районах. В связи с этим временная методика была переработана. В усовершенствованной методике в качестве стандарта приняты условия, соответствующие атмосферной массе m=1,5 (обозначаемые как условия AM1,5). Считается, что толщина слоя осажденных паров воды составляет 2,0 см, озона — 3,4 мм, коэффициент мутности β=0,12 и показатель селективности α=1,3. Плотность прямого потока в спектре AM1,5 равна 834,6 Вт/м2. Этот спектр представлен кривой
Детальному изучению вопросы метрологии солнечных элементов подверглись на советско-американском семинаре в сентябре 1977 г. в Ашхабаде. После подробного обсуждения специалистами разных стран, в том числе Великобритании, СССР, США и Франции, в 1982 г. методика измерений солнечных элементов при условии AM1,5 была взята за основу выбора стандартного спектра Международной электротехнической комиссией ООН. Используя этот спектр наземного солнечного излучения, а также другие расчетные и экспериментальные спектры прямого солнечного излучения, можно оценить эффективность использования солнечных элементов из различных полупроводниковых материалов в разнообразных климатических и географических условиях. Однако следует учитывать, что солнечные элементы, работающие без концентраторов излучения, преобразуют в электроэнергию не только прямое, но и диффузное солнечное излучение, в том числе ту его часть, которая определяется молекулярным рэлеевским рассеянием атмосферы. Диффузная составляющая излучения неба может быть весьма значительной даже в ясные дни, что хорошо видно из данных, приведенных на рис. 1.4 и 1.5.
В связи с этим в 1986 г. Технический комитет № 82 Международной электротехнической комиссии ООН принял решение выбрать в качестве стандартного при измерениях солнечных элементов и батарей наземного применения поток полного солнечного излучения, равный 1000 Вт/м2 со спектром, характерным для условий AM1,5 при альбедо подстилающей поверхности 0,2. Спектральное распределение излучения этого стандартного наземного спектра представлено кривой
В настоящее время создана и успешно применяется методика измерений солнечных элементов наземного использования, единая для стран — членов СЭВ. Наиболее активное участие в ее разработке принимали специалисты из НРБ, ВНР, МНР, ПНР, СССР и ЧССР. Методика включает измерения характеристик солнечных элементов на естественном Солнце, на имитаторах Солнца, а также на сконцентрированном солнечном излучении. При ее разработке учитывалась возможность согласования условий измерения в более широком международном масштабе; в ней использован опыт исследований, проводившихся в разных странах мира. В качестве стандарта приняты два варианта условий облучения: m=1, E=1000 Вт/м2; m=1,5 — Eпp=850 Вт/м2. Параметры атмосферы в обоих случаях одинаковы: слой осажденных паров воды 2,0 см, озона 3,4 мм, коэффициент мутности β=0,12 и показатель селективности α=1,3.
Согласно этой методике характеристики солнечных элементов можно измерять в прямом и полном потоках излучения.
Здесь, вероятно, следует подробнее остановиться на общепринятых определениях прямого и полного потоков солнечного излучения и на методах их измерения в традиционной светотехнике.
Прямым называют поток лучистой энергии Солнца, приходящий на единицу поверхности плоского приемника, расположенного перпендикулярно падающим лучам. Речь идет, следовательно, об энергетической облученности, создаваемой Солнцем при нормальном падении лучей. Термин «прямое» указывает на то, что имеется в виду излучение, приходящее непосредственно от Солнца, без какого бы то ни было дополнительного учета рассеянной или отраженной радиации.
Наряду с измерениями прямого солнечного излучения большое теоретическое и практическое значение имеют повседневные измерения суммарного, или полного, солнечного излучения (суммы прямого и рассеянного излучений), приходящего на горизонтальную поверхность.
Самый общий метод измерения потоков солнечного излучения основан на способности ряда устройств преобразовывать солнечную энергию в тепло, причем для измерения количества получаемого тепла используются достоверные и точные классические калориметрические методы.
Успешно может быть использован метод определения количества электроэнергии, необходимой для нагрева теплоносителя до тех же значений температуры, что и при воздействии солнечного излучения (электрическая компенсация), и нулевой метод, сводящийся к измерению превышения температуры или температурной разности. При абсолютных измерениях определяется нагрев хорошо известного количества воды. При относительных менее точных измерениях определяется скорость нагрева приемника (серебряного диска), или разность температуры приемника, находящегося в равновесии с окружающей средой, и температуры окружающей среды, которая предполагается изотермичной. Измерения проводятся, например, при помощи биметаллических термометров или термопар.
В первом приближении полагают, что теплообмен, осуществляемый за счет теплопроводности, конвекции и излучения, пропорционален разности температур. Очевидно, что эта гипотеза приемлема в большинстве случаев для небольших разностей температур. Таким образом, можно установить линейную зависимость падающей энергии от разности температур, так как равновесная температура приемника определяется балансом энергии, поступающей извне и теряемой в окружающую среду путем теплопроводности, конвекции и излучения приемной поверхности.
Для измерения прямого излучения Солнца используются пиргелиометры, приемная поверхность которых всегда перпендикулярна потоку. Приборы такого же типа для повседневных наблюдений называются также актинометрами.
Приборы для измерения суммарного солнечного излучения называются пиранометрами. В качестве приемников обычно употребляются термоэлементы, расположенные в горизонтальной плоскости.
В солнечной фотоэнергетике солнечное излучение превращается в электроэнергию полупроводниковыми преобразователями, обладающими селективной спектральной чувствительностью. В связи с этим определение как прямого, так и полного потоков солнечного излучения должно осуществляться не с помощью пиргелиометров и пиранометров, а с помощью эталонных солнечных элементов, с такой же селективной спектральной чувствительностью, как у измеряемых элементов и батарей. Конструкция и градуировка эталонных солнечных элементов будут подробно рассмотрены в гл. 3. Здесь же следует указать, что от соответствия спектральных чувствительностей эталонного и измеряемых солнечных элементов и батарей будет решающим образом зависеть точность определения КПД и выходной мощности фотоэнергетических устройств.
При измерениях в прямом потоке исследуемые и эталонные элементы должны быть ориентированы на Солнце с точностью 2°, причем их поле зрения следует ограничить углом 10°. Измерения можно проводить при плотности потока излучения (определяемой по эталонному элементу) не менее 750 Вт/м2 при m≤3.
При измерениях в полном потоке измеряемый и эталонный элементы ориентируются на Солнце с точностью ±5° и устанавливаются под углом к горизонтальной плоскости не более 60°. Плотность потока излучения должна быть не менее 800 Вт/м2, атмосферная масса — не более 2. Мутность атмосферы, облачность и альбедо подстилающей поверхности контролируются в период измерений по общему действию рассеянного излучения на солнечные элементы: отношение тока эталонного элемента при измерениях в полном потоке, к току, измеряемому в прямом потоке, не должно превышать 1,3. Поле зрения эталонного элемента при измерении плотности прямого потока необходимо снизить до 10°.
Важность стандартизации спектра солнечного излучения и состава атмосферы при измерениях можно проиллюстрировать следующим примером: при одинаковой атмосферной массе 1,5 и безоблачном небе в зависимости от влажности и количества аэрозольных частиц плотность прямого потока солнечного излучения может изменяться, как показывают данные натурных измерений, от 943 до 616 Вт/м2.
Глава 2
ПРИНЦИП ДЕЙСТВИЯ, КОНСТРУКЦИЯ
И ХАРАКТЕРИСТИКИ СОЛНЕЧНЫХ ЭЛЕМЕНТОВ
Оптические и электрофизические свойства полупроводниковых кристаллов и слоев
Около тридцати лет прошло с момента проведения первых работ, положивших начало современной фотоэлектрической энергетике. Эти исследования, в свою очередь, опирались на стройную теорию фотоэлектрических явлений в полупроводниках, созданную в 30—40-е годы нашего столетия. В СССР развитие этого направления физики полупроводников определили работы академика А. Ф. Иоффе и его школы, углубившие наше понимание природы фотопроводимости и фотоэлектрических явлений в полупроводниках и полупроводниковых
Вполне закономерно, что созданию солнечных элементов предшествовали детальное изучение оптических свойств полупроводников и исследование процессов взаимодействия света с веществом внутри полупроводникового материала, приводящих к появлению избыточных, неравновесных носителей заряда.
Для понимания оптических и фотоэлектрических свойств солнечных элементов необходимо хотя бы кратко рассмотреть качественные особенности зонной структуры полупроводников, ее отличие от электронного строения металлов и изоляторов и основные оптические характеристики полупроводниковых веществ. Полезно также описать методы исследования оптических, структурных и электрофизических параметров отдельных полупроводниковых слоев элементов. Эти параметры в значительной мере определяют как характеристики, так и эффективность солнечных элементов и батарей.
При образовании твердого тела, например кристалла полупроводника, атомы настолько сближаются друг с другом, что их внешние электронные оболочки перекрываются.
Вместо индивидуальных орбит отдельных атомов появляются коллективные орбиты, и подоболочки атомов объединяются в зоны, единые для всего кристалла. Характер движения электронов при этом изменяется кардинальным образом: электроны, находящиеся на определенном энергетическом уровне одного атома, получают возможность без затраты энергии переходить на подобный же уровень соседнего атома и тем самым свободно перемещаться вдоль всего кристалла.
Внутренние оболочки в изолированных атомах, а следовательно, и в кристаллах целиком заполнены. Самая же верхняя зона, образованная из уровней, на которых располагались валентные электроны, не всегда заполнена до конца. Электропроводность кристаллов, их оптические и многие другие свойства в основном определяются степенью заполнения валентной зоны и расстоянием от нее до самой верхней зоны, получившей название зоны проводимости. Электроны, попавшие из валентной зоны, например за счет теплового или оптического возбуждения, в зону проводимости, могут принимать участие в переносе электрического тока. Перемещение электронов на освободившиеся места в валентной зоне создает встречное движение положительных зарядов, называемых дырками. Положительный заряд всегда образуется в валентной зоне после ухода электрона, ведь до этого зона была электронейтральпой.
Вещества, у которых валентная зона заполнена целиком, а расстояние до следующей зоны велико, называются диэлектриками.
Для металлов характерно другое энергетическое строение: валентная зона заполнена частично либр перекрывается со следующей свободной зоной, зоной проводимости.
Если же у вещества валентная зона заполнена целиком, но энергетическое расстояние до зоны проводимости мало (условно — менее 2 Эв), то такие вещества называют полупроводниками. Электропроводность и другие свойства полупроводников сильно зависят от внешних условий, особенно от температуры
σ=40exp
где
Электропроводность металлов в силу постоянства концентрации свободных носителей определяется температурной зависимостью подвижности электронов и с ростом температуры медленно падает.
Если представленное выше соотношение прологарифмировать, то оно примет следующий вид:
lnσ=ln
Полученную зависимость можно изобразить графически в так называемых полулогарифмических координатах и получить прямую, тангенс угла наклона которой φ позволяет рассчитать важнейший параметр полупроводника, определяющий его электрические и оптические свойства — ширину запрещенной зоны
Следует отметить, что зависимость логарифма электропроводности от 1/Т представляет собой наклонную прямую линию лишь для чистых, лишенных посторонних примесей полупроводников, получивших название собственных. Легирующие примеси, вводимые в полупроводники, как правило, для придания им электронного или дырочного характера электропроводности, занимают энергетические уровни в запрещенной зоне вблизи дна зоны проводимости (доноры), легко отдающие электроны в зону проводимости при неболь-том тепловом или оптическом возбуждении или около потолка валентной зоны (акцепторы), на которые легко забрасываются электроны из заполненной нижней зоны, вследствие чего в кристалле появляется исключительно дырочная проводимость, не сопровождаемая движением электронов в верхней зоне.
Для примесных полупроводников зависимость ln σ от
Характер температурной зависимости электропроводности не может быть положен сейчас в основу четкого определения полупроводников и их отличия от других веществ. Теоретически и экспериментально изучены многочисленные случаи отклонения от указанных выше зависимостей. Так, в сильно легированных полупроводниках электропроводность с повышением температуры не растет, а слабо уменьшается, почти как у металлов. Обнаружены полупроводниковые сверхпроводники, у которых электропроводность резко возрастает при приближении температуры к абсолютному нулю. Найден обширный класс полупроводников, в которых перенос заряда осуществляется ионами, а не электронами, электропроводность которых подчиняется совершенно иным закономерностям (таковы, например, стеклообразные полупроводники). В связи с этим в настоящее время правильнее определять полупроводники как класс веществ, свойства которых могут изменяться в очень широких пределах под действием различных внешних воздействий (температуры, освещения, давления, электрических и магнитных полей и др.). Именно эта особенность полупроводников обусловила получение на их основе исключительно чувствительных фото- и термосопротивлений, электронных приборов, например диодов, транзисторов, тиристоров, детекторов электрического и магнитного полей или радиационных частиц, тензодатчиков и др., которые было бы невозможно создать из металлических или диэлектрических веществ.
Из полупроводниковых кристаллов и слоев изготавливаются п солнечные элементы, для работы которых имеют большое значение особенности взаимодействия солнечного излучения и полупроводникового материала, процессы передачи энергии фотонов попадающего в полупроводник света электронам — носителям электрического заряда внутри полупроводника.
В квантовой механике элементарные частицы, в том числе и электроны, рассматриваются одновременно и как волны. В связи с этим при описании движения элементарных частиц используются не только такие величины, как энергия
Зонную структуру кристалла часто представляют в виде диаграммы
Вид зависимости
Если минимум зоны проводимости и максимум валентной зоны совпадают в
Если же экстремумы зон не совпадают и требуется изменение
У многих полупроводников в силу сложного строения энергетических зон поглощение излучения носит смешанный характер: начавшись с непрямых переходов (в этом случае для переброса электрона требуется меньше энергии и первоначально поглощаются фотоны небольших энергий), процесс поглощения при более высоких энергиях происходит уже исключительно за счет прямых переходов.
Следует отметить также, что значение ширины запрещенной зоны, определенное при измерениях оптического поглощения, зависит в значительной степени от концентрации свободных носителей заряда в полупроводнике, температуры и наличия в запрещенной зоне примесных уровней. Если состояния вблизи дна зоны проводимости и потолка валентной зоны заполнены носителями заряда, то оптические измерения дадут для ширины запрещенной зоны примесного полупроводника значения более высокие, чем для чистого собственного полупроводника. Если примесная зона слилась с краем ближайшей разрешенной зоны, что может произойти при сильном легировании, то ширина запрещенной зоны уменьшится. Сужение
Коэффициент поглощения полупроводника а определяется условием, что энергия волны уменьшается в
где
Коэффициент поглощения а материала связан с его показателем поглощения
На рис. 2.1 представлены зависимости коэффициента поглощения
Столь очевидные отличия спектральных зависимостей коэффициента поглощения рассматриваемых полупроводниковых материалов объясняются различием в их зонной структуре и характере оптических переходов. В арсениде галлия (так же как в теллуриде кадмия и фосфиде индия) осуществляются сразу прямые оптические переходы зона— зона: поглощение резко увеличивается при появлении в спектре излучения фотонов с энергией, превосходящей ширину их запрещенной зоны, и коэффициент поглощения а быстро достигает значений 104—105 см-1. Поглощение в кремнии (в основной полосе) начинается с непрямых переходов при 1,1 эВ с участием как квантов света, так и квантов колебаний решетки — фононов, коэффициент поглощения растет сравнительно медленно (до значений 103—104 cм-1)× Только при энергии фотонов около 2,5 эВ переходы зона — зона становятся прямыми: поглощение резко возрастает.
Для германия также характерны непрямые оптические переходы, начинающиеся при 0,62 эВ (коэффициент поглощения от 1 до 102 см-1), и только при энергии фотонов более 0,81 эВ основное поглощение определяется прямыми переходами.
Следует отметить, что значения термической ширины запрещенной зоны полупроводников, рассчитываемых по рассмотренной выше температурной зависимости электропроводности, близки, как правило, к значениям оптической ширины запрещенной зоны, определяемым краем основной полосы поглощения, совпадающим с началом непрямых оптических переходов зона — зона.
Спектральные зависимости коэффициента поглощения (см. рис. 2.1) показывают, что, применяя кремний, можно использовать для преобразования в электрический ток большую часть солнечного спектра (излучение с длиной волны 1,1 мкм и короче), т. е. более 74 % энергии внеатмосферного солнечного излучения. Для арсенида же галлия фотоактивным (способным перебросить электроны через запрещенную зону) является излучение с длиной волны 0,9 мкм и менее, и в силу только этого ограничения лишь 63 % энергии Солнца во внеатмосферных условиях может быть преобразовано в электрическую. Однако из-за непрямых оптических переходов и малых значений коэффициента поглощения в области края основной полосы поглощения толщина кремниевого солнечного элемента, поглощающего все фотоактивное излучение, должна быть не менее 250 мкм, в то время как аналогичная толщина солнечного элемента из арсенида галлия может составлять не более 2–5 мкм. Эту особенность спектральных характеристик поглощения необходимо учитывать при разработке высокоэффективных и дешевых тонкопленочных солнечных элементов.
Если энергия фотонов падающего излучения настолько мала, что они не могут перебросить электроны из валентной зоны в зону проводимости, то под воздействием излучения электроны могут совершать переходы внутри разрешенных зон, Это отразится на спектре поглощения в длинноволновой области непосредственно за краем основной полосы поглощения полупроводника. Данный вид поглощения, получивший название поглощения свободными носителями, проявляется тем сильнее, чем выше концентрация ионизированных примесей и, следовательно, свободных носителей заряда в полупроводниках, а также чем больше количество свободных носителей, инжектированных в полупроводник под действием света или электрического тока.
Изучение спектров поглощения длинноволнового излучения в полупроводниках привело, как уже указывалось, к обнаружению еще нескольких видов поглощения: на колебаниях решетки; примесного; экситонного, связанного с возбуждением пары электрон — дырка, однако не влияющего на концентрацию свободных носителей заряда, в силу того что по кристаллу в этом случае движется возбужденное состояние, а не отдельно электрон и дырка.
Спектры поглощения дают обширную и полезную информацию о структурных особенностях кристалла, о степени его легирования, позволяют определить энергию активации примесей и, следовательно, положение занимаемых ими в запрещенной зоне энергетических уровней. C помощью спектров поглощения удается исследовать даже столь тонкий эффект, как присутствие в кремнии растворенного кислорода (благодаря характерной для него полосе поглощения при 9 мкм), и определить концентрацию кислорода в кремнии.
Коэффициент отражения полупроводников в области основной полосы поглощения практически не зависит от степени легирования примесями, ионизирующимися при комнатной температуре, однако в длинноволновой области спектра наблюдается резкий рост коэффициента отражения с увеличением количества таких примесей и, следовательно, концентрации свободных носителей в полупроводнике, что позволяет получить из результатов оптических измерений дополнительную информацию об электрофизических характеристиках полупроводника.
Спектральные зависимости коэффициента отражения кремния, легированного сурьмой, мышьяком и фосфором, с концентрацией свободных носителей заряда (электронов) от 7,4×1018 до 1,67×102° см-3, и арсенида галлия, легированного цинком, с концентрацией свободных носителей заряда (дырок) от 1,7×1019 до 1,5×1020 cм-1, представлены на рис. 2.2, где хорошо видны положение минимума на спектральных кривых отражения от поверхности кремния и арсенида галлия и зависимость длины волны минимального отражения от концентрации свободных носителей.
Поглощение света свободными носителями увеличивается с ростом длины волны, а повышение
Эта особенность спектров отражения легированных полупроводников в инфракрасной области может быть положена в основу простого оптического метода определения концентрации носителей
Более сложные и точные методики определения концентрации, подвижности и эффективной массы свободных носителей заряда по коэффициентам отражения легированных полупроводников в инфракрасной области спектра детально описаны в ряде работ. В некоторых из них измеренные зависимости отражения сравниваются с эталонными кривыми в весьма широком спектральном диапазоне — от 1 до 50 мкм. Исследование инфракрасных спектров отражения от поверхности полупроводников дает возможность получить информацию не только об электрофизических свойствах кристаллов, но и о состоянии их поверхности, качестве химической и механической обработки, когда глубина нарушений поверхности составляет от 1 до 50 мкм и соизмерима с длиной волны инфракрасного излучения, используемого для измерений. Это удается сделать несмотря на то, что из-за трудностей регистрации суммарного отражения и его диффузной составляющей в инфракрасной области измеряется, как правило, лишь зеркальная составляющая коэффициента отражения и ее температурная зависимость.
Оптические исследования тонких легированных слоев кремния и других полупроводников было бы значительно легче и точнее выполнять с помощью излучения, которое сильно поглощается материалом полупроводника. Таким, например, является ультрафиолетовое излучение с длиной волны 0,2–0,4 мкм, почти полностью поглощаемое слоями кремния толщиной всего 0,05—0,1 мкм. Однако изменение концентрации свободных носителей заряда в полупроводнике в очень широких пределах практически не влияет на его оптические свойства в коротковолновой области спектра.
Спектры отражения в ультрафиолетовой области помогли выполнить фундаментальные исследования для физики твердого тела — установить особенности зонной структуры полупроводников, подтвердив выводы теории. Характерные для многих полупроводниковых материалов всплески отражения объясняются резким ростом показателя поглощения, что вызывается межзонными переходами при большой ширине запрещенной зоны в тех областях зависимости
C помощью измерения коэффициента зеркального отражения в ультрафиолетовой области спектра также удается весьма тонко контролировать качество механической и химической полировки поверхности полупроводниковых кристаллов, поскольку коэффициент отражения в этой области спектра заметно зависит от глубины остающихся после полировки нарушений на поверхности кремния и арсенида галлия. Только после того, как глубина нарушений в результате дополнительной полировки становится меньше длины волны ультрафиолетового (0,2–0,4 мкм) и видимого (0,4–0,75 мкм) излучений, использованных при измерениях, коэффициент отражения в этих областях спектра перестает изменяться.
Высокой эффективности оптического контроля способствует наличие пиков отражения, имеющихся у кремния и арсенида галлия в ультрафиолетовой области спектра. Например, контроль за состоянием поверхности кремния лучше вести при длине волны 0,28 мкм, где коэффициент отражения хорошо отполированного кремния достигает 70 %. Для увеличения различия между коэффициентами отражения пластин с разной обработкой поверхности полезно воспользоваться прибором для наблюдения многократного отражения ультрафиолетового излучения от набора пластин с одинаковой обработкой поверхности. В этом же приборе другой набор хорошо отполированных пластин позволяет выделить из спектра источника ультрафиолетовое излучение с длиной волны 0,28 мкм, наиболее полезное для контроля состояния поверхности кремния.
Для этой же цели могут быть использованы также более сложные по конструкции приборы, в которых выделение необходимого спектрального интервала осуществляется с помощью кварцевых призм, дифракционных решеток, параболических и поворотных зеркал.
Оптические измерения имеют и свои ограничения. Так, например, исследование свойств тонких слоев сильнолегированных полупроводников с помощью спектров отражения инфракрасного излучения не может привести к количественным результатам, когда глубина проникновения излучения в материал полупроводника превышает толщину слоев. Это положение подтверждается при исследовании тонких
Приведем пример подобного комплексного подхода к исследованию тонких легированных слоев в солнечных элементах. В экспериментах одной из групп советских исследователей использовался кремний
Профиль концентрации свободных носителей тока исследовался при последовательном удалении слоев кремния толщиной 160–500 А анодным окислением в 0,04 А-растворе азотнокислого калия в этиленгликоле.
Проводимость удаляемых слоев измерялась четырехзондовым методом. Пересчет к средней концентрации свободных носителей в удаленном слое велся с использованием описанных в литературе методик. Общая глубина легированного слоя оценивалась по методу косого цилиндрического шлифа.
Коэффициенты пропускания и отражения в области 1—25 мкм определялись с помощью инфракрасного спектрофотометра с использованием приставки для измерения коэффициента зеркального отражения.
На рис. 2.4 (кривая
Проведенные электронографические исследования поверхности кремния, подвергнутой бомбардировке ионами фосфора, обнаружили аморфизацию кремния вплоть до глубины 0,2 мкм, причем верхний слой толщиной 0,05 мкм из монокристаллического состояния перешел полностью в аморфное. Количественная оценка средней по слою концентрации носителей тока (см. кривую
Уменьшение количества радиационных дефектов и увеличение концентрации электрически активных внедренных атомов фосфора, как известно, легко достигаются тепловым отжигом образцов: глубина залегания
Была сделана попытка исследовать распределение концентрации свободных носителей в легированном слое по изменению коэффициента отражения в инфракрасной области спектра. Коэффициент отражения образцов, не подвергнутых отжигу после ионной бомбардировки, совпадает с коэффициентом отражения нелегированного кремния. В этом случае поверхностная концентрация свободных носителей N≃1018 см-3, однако глубина залегания перехода настолько мала (0,2–0,3 мкм), что легированный слой оказывается в высокой степени прозрачным в окрестности λ=19 мкм. Это говорит о том, что для мелких
Этот вывод, сделанный на основании эксперимента, подтверждается расчетом. После подстановки в соотношение, связывающее показатель и коэффициент поглощения, значений λ=19 мкм и k=4,1 для легированного кремния получим, что глубина проникновения света, на которой плотность потока излучения снижается в
Таким образом, исследование спектров отражения как в инфракрасной, так и в ультрафиолетовой областях, дополненное измерениями электрической проводимости слоев, дает возможность получить информацию об электрофизических и оптических свойствах кристаллов и слоев, используемых в солнечных элементах, в частности, помогает оценить концентрацию свободных носителей заряда, качество обработки поверхности, степень отжига дефектов, параметры зонной структуры, в том числе ширину запрещенной зоны полупроводника и ее температурную зависимость.
Преобразование оптического излучения в электроэнергию в полупроводниковых солнечных элементах
Фотоэлементы, основанные на фотоэффекте в полупроводниковых структурах с
Начиная с открытия в середине прошлого века фотоэлектрических свойств селена и создания в конце прошлого и начале нашего столетия на основе селена и гетеросистемы медь — закись меди первых фотоэлектрических преобразователей светового излучения в небольшие электрические сигналы, делались неоднократные попытки повышения КПД таких преобразователей и превращения их в источник электрической энергии значительной мощности.
Усовершенствование технологии, а также применение оптических фильтров позволили получить селеновые фотоэлементы, спектральная чувствительность которых практически повторяла кривую чувствительности человеческого глаза. Улучшенные селеновые фотоэлементы нашли широкое применение в качестве фотоэкспонометров в фото- и киноаппаратуре. Однако коэффициент полезного действия фотоэлементов не поднимался выше 0,5 %.
Успешное развитие фотоэлектрического метода преобразования энергии излучения началось лишь после создания зонной теории электронного строения полупроводников, разработки методов их очистки и контролируемого легирования, выяснения той определяющей роли, которую играет запорный слой на границе полупроводников с противоположным типом проводимости.
В 1954 г. появилось краткое сообщение о разработке солнечного элемента с кпд около 6 %, а в 1958 г. на борту советских и американских спутников Земли уже работали кремниевые солнечные батареи, снабжавшие электроэнергией электронную аппаратуру·
За прошедшее время КПД солнечных элементов резко возрос, чему способствовали все лучшее понимание физических явлений, происходящих в солнечных элементах, создание все более совершенных технологических приемов их изготовления и разработка новых усовершенствованных конструкций элементов из разнообразных полупроводниковых материалов. В СССР особенно много для развития фотоэлектрического метода преобразования солнечной энергии сделали H. С. Лидоренко, А. П. Ландсман, В. С. Вавилов, Ю. П. Маслаковец, В. К. Субашиев, А. М. Васильев, Ж. И. Алферов, в США — II. Раппопорт, М. Принс, Дж. Лоферский, М. Вольф, Г. Раушенбах, Дж. Ландмайер, Г. Брандхорст.
Большинство вентильных фотоэлементов, созданных в первые десятилетия развития фотоэлектричества, — селеновые, сернистогаллиевые, сернистосеребряные, сернистомедные, германиевые и некоторые другие — используются по-прежнему в основном как индикаторы излучения. Кремниевые фотоэлементы, а в последнее время и фотоэлементы из арсенида галлия и других широкозонных полупроводников благодаря высокому КПД, достигающему в настоящее время у лучших образцов 15–22 % (а при использовании сложных каскадных систем на их основе даже 27–30 %), широко применяются как фотоэлектрические преобразователи солнечного излучения или солнечные элементы.
Фотоэлектрогенераторы для прямого преобразования энергии излучения Солнца в электрическую, собранные из большого числа последовательно и параллельно соединенных солнечных элементов, получили название солнечных батарей. Современные солнечные батареи генерируют на свету значительную электрическую мощность и применяются как для питания радиосхем, средств связи, счетчиков космических частиц, так и для энергоснабжения большинства космических аппаратов и многих наземных автономных устройств различного назначения.
Полупроводниковый, например, кремниевый, солнечный элемент наиболее распространенной конструкции представляет собой систему из двух полупроводниковых слоев с проводимостями
Уровень Ферми, определяющий равновесие между дырками и электронами, во всем материале должен быть одинаковым. Это условие обеспечивается двойным заряженным слоем в области
Рис. 2.5. Структура энергетических зон полупроводника в области неосвещенного
Высота потенциального барьера
Следует отметить, что положение уровня Ферми и, следовательно, высота потенциального барьера зависят от температуры и концентрации примесей в полупроводниковом материале по обе стороны
Оптическое излучение, падающее на поверхность полупроводниковой структуры с
Диффундирующие к
Таким образом, одновременно с появлением разности потенциалов на внешних электродах вследствие освещения происходит изменение и потенциального барьера, существовавшего в неосвещенном
Таким образом, с момента начала освещения по мере накопления избыточной (по сравнению с равновесной) концентрации электронов в электронной части
Когда число создаваемых светом избыточных пар сравняется с числом пар, уходящих через
Измерение тока короткого замыкания солнечного элемента одновременно с исследованием спектрального состава и плотности падающего оптического излучения позволяет получить представление об эффективности каждой из стадий процесса преобразования излучения в электрическую энергию, происходящего внутри элемента.
Прежде всего, конечно, полезно условиться о том, по отношению к какому — падающему или поглощенному — потоку излучения производится оценка рассматриваемых процессов. В пределах линейной зависимости тока короткого замыкания солнечного элемента от плотности потока излучения справедливо соотношение
Iκ 32(λ) =Iκ 31(λ)/(1-r(λ)),
где Iκ 32(λ), Iκ 31(λ) — ток короткого замыкания солнечного элемента при заданной интенсивности соответственно поглощенного и падающего излучений;
Для нахождения
Для сравнения малоизученных полупроводников, когда известно только значение ширины запрещенной зоны
Весьма полезна для анализа и оценки качества солнечного элемента такая характеристика, как спектральная зависимость тока короткого замыкания элемента, рассчитанная на один квант поглощенного света. Эту величину обычно называют эффективным квантовым выходом солнечного элемента Qэф. Если N0 — число квантов, падающих на единицу поверхности полупроводника, то
Qэф=Iκ 32/N0
где Iκ 32 измеряется в электронах в секунду, a Qэф выражается в электронах на квант (фотон).
Эффективный квантовый выход элемента зависит от двух параметров:
Qэф=βγ,
где β — квантовый выход внутреннего фотоэффекта, определяемый числом пар электрон — дырка, создаваемых внутри полупроводника каждым поглощенным квантом за счет процесса фотоионизации; γ — эффективность собирания носителей (или, иначе, коэффициент разделения носителей) потенциальным барьером
Принято считать квантовый выход фотоэффекта равным единице, если каждый поглощенный квант создает одну пару электрон — дырка.
Квантовый выход внутреннего фотоэффекта для кремния был изучен с помощью прецизионной установки, позволявшей одновременно измерять ток короткого замыкания полупроводниковых кристаллов с
Квантовый выход внутреннего фотоэффекта при этом рассчитывался по формуле
β=Iκ 31/ (1-r)
где
Эти измерения были выполнены на кристаллах с
В результате анализа полученных экспериментальных данных был сделан вывод, что в широком диапазоне энергии падающих квантов
Таким образом, можно считать, что первый акт взаимодействия оптического излучения с полупроводником (внутри кристалла) происходит практически без потерь с эффективностью, близкой к 100 %, в широкой области спектра,
Однако в большинстве полупроводников, использующихся для создания солнечных элементов, несмотря на равный единице квантовый выход ионизации (а также при γ>l в ультрафиолетовой области) с увеличением энергии квантов возрастают потери в расчете на энергию одного кванта в силу конечного значения ширины запрещенной зоны обычного полупроводникового материала.
Переход к солнечным элементам более сложной структуры, которые будут описаны в гл. 4 настоящей книги, например на основе каскадных систем, или к элементам с контролируемым градиентом ширины запрещенной зоны по глубине (большой у поверхности полупроводника и уменьшающейся в глубь материала, что отвечает спектральной зависимости коэффициента поглощения) позволяет полностью избавиться от таких оптических и энергетических потерь и увеличить КПД преобразования солнечного излучения в электрическую энергию.
Оптические излучения различных длин волн проникают на разную глубину (поскольку эта величина существенно зависит от энергии квантов) и создают свое пространственное распределение рожденных светом пар электрон — дырка (см. рис. 2.1).
Дальнейшая судьба рожденных пар зависит от их диффузионной длины в данном полупроводниковом материале. Если она достаточно велика, то созданные светом избыточные неосновные носители заряда успеют (даже без участия тянущего электрического поля) только за счет процесса диффузии дойти до области
Решающую роль в эффективности этой стадии преобразования оптического излучения внутри полупроводника играет соотношение между диффузионной длиной
Рассмотрим два крайних случая расположения
Pис. 2.7. Распределение числа созданных оптическим излучением пар электрон — дырка по глубине кремния при падении излучения разной длины волны перпендикулярно плоскости
Очевидно, что эффективность собирания для перпендикулярного и параллельного расположения
На первый взгляд параллельное расположение кажется более предпочтительным, ибо для полного собирания и разделения носителей наиболее существенным является распределение пар носителей в направлении, перпендикулярном
Разработанные на основе такого расположения
Однако расчетным и экспериментальным путем было установлено, что из-за весьма небольших размеров микроэлементов рекомбинация созданных светом пар на освещаемой поверхности играет при параллельном расположении
Если при параллельном расположении концентрация созданных светом пар
где
Концентрация пар, уменьшающаяся в глубину полупроводника, может быть подсчитана для области поглощения полупроводникового материала с помощью зависимости
Результаты таких расчетов для кремния, выполненных при нескольких значениях длины волны, показаны на рис. 2.7. Вертикальные линии, ограничивающие области, определяемые диффузионной длиной носителей заряда в материале
Ординаты построенных кривых пропорциональны α exp
Таким образом, отношение заштрихованной площади к общей площади под кривой дает возможность в соответствии с соотношением для квантового выхода внутреннего фотоэффекта определить эффективность собирания γ (при условии, конечно, что квантовый выход фотоионизации β=1).
Планарная конструкция солнечных элементов, изображенная на рис. 2.6,а, стала основной и получила наибольшее распространение. Такие солнечные элементы были созданы из самых разнообразных материалов, причем направления оптимизации этой конструкции можно легко определить, анализируя результаты расчетов, аналогичные выполненным для кремния и представленным в графической форме на рис. 2.7.
Очевидно, что для повышения γ и Ik3 необходимо увеличивать диффузионную длину неосновных носителей заряда по обе стороны
Подобное же условие следует выполнять и для базовой области солнечного элемента (расположенной за
Вольт-амперная характеристика солнечного элемента
На основные фотоэлектрические параметры солнечных элементов, такие, как вольт-амперная характеристика и спектральная чувствительность, влияют и оптические, и электрофизические свойства полупроводника. Лишь детальный анализ позволяет определить, чем вызвана недостаточно высокая эффективность данного солнечного элемента. Однако для этого прежде всего необходимо измерить основные его характеристики, что дает возможность понять причины возникновения, природу и преобладающий вид потерь.
Уже в первых работах, посвященных теории и экспериментальному изучению свойств солнечных элементов, было показано, что вольт-амперная характеристика солнечного элемента отличается от вольт-амперной характеристики полупроводникового диода появлением члена
где
обычная темновая характеристика, в которой
Для реального солнечного элемента характерно наличие последовательного сопротивления контактных слоев, сопротивлений каждой из
ln
В уравнение введен коэффициент А, отражающий степень приближения параметров реального прибора к характеристикам идеального.
Это уравнение можно записать в более удобном для практического использования виде:
что позволяет построить эквивалентную и измерительную схемы солнечного элемента (рис. 2.8).
Расчет вольт-амперных характеристик по последней формуле позволил наглядно представить влияние последовательного и шунтирующего сопротивлений на свойства солнечного элемента. Результаты этих расчетов приведены на рис. 2.9. Выходная мощность
где величина ξ, называемая коэффициентом заполнения вольт-амперной характеристики, показывает степень приближения формы вольт-амперной характеристики к прямоугольной: ζ≃0,8–0,9 означает получение элементов с высокой выходной мощностью. У современных кремниевых солнечных элементов коэффициент ζ обычно составляет 0,75—0,8. Уменьшение шунтирующего сопротивления от бесконечно большого до столь малого, как 100 Ом, сравнительно мало влияет на форму вольт-амперной характеристики (см. рис. 2.9) и, следовательно, на выходную мощность солнечного элемента. В то же время небольшие изменения последовательного сопротивления, например от 1 до 5 Ом, приводят к резкому ухудшению формы вольт-амперной характеристики и значительному снижению выходной мощности.
Как световая, так и темновая вольт-амперные характеристики солнечного элемента могут быть исследованы еще более детально. При этом для ряда элементов часто обнаруживается, что в зависимости от уровня напряжения механизм протекания обратного тока насыщения через
где
В настоящее время разработан ряд достаточно точных методик, позволяющих по измеренным темновым и световым вольт-амперным характеристикам солнечных элементов рассчитать значения
На рис. 2.10 представлена типичная вольт-амперная характеристика: световая (измеренная на имитаторе внеатмосферного Солнца) и темновая (измеренная с приложением внешнего смещения в темноте в прямом — IV квадрант и обратном — II квадрант направлениях). Часть световой характеристики, расположенной в I квадранте, и ее продолжение (IV квадрант) представляют собой прямую линию. Наклон этой прямой к оси токов характеризует последовательное сопротивление солнечного элемента
где
Часть характеристики в I квадранте и ее продолжение (II квадрант) тоже являются прямой линией. Наклон ее к оси напряжений характеризует собой шунтирующее сопротивление солнечного элемента
где
В связи с тем, что на световой вольт-амперной характеристике наклон прямой около точки
Построение темновой характеристики позволяет также найти обратный ток насыщения
Поскольку, однако,
Для первого из этих методов можно воспользоваться темновой характеристикой диода, записав ее в виде уравнения прямой в отрезках:
ln
Это уравнение применяется при расчетах только в случае больших токов (когда
Имеется еще один метод определения
Запишем ранее рассмотренные уравнения с учетом падения напряжения на последовательном сопротивлении и рекомбинации в
В режиме холостого хода I=0,
ln
При каждом новом значении плотности потока излучения лабораторного имитатора Солнца, устанавливаемом с помощью эталонного солнечного элемента с линейной зависимостью тока короткого замыкания от освещенности, измеряются значения
Таким образом, из световых вольт-амперных характеристик удается также определить параметры
Из рассмотрения основных процессов, происходящих внутри солнечного элемента при преобразовании оптического излучения в электроэнергию, становится ясно, что эффективность каждого из них зависит от оптических и электрофизических свойств полупроводникового материала (отражение от поверхности, квантовый выход фотоионизации, диффузионная длина неосновных носителей тока, спектральное положение основной полосы поглощения), от характеристик
Желание примирить часто взаимно исключающие требования и найти оптимальное компромиссное техническое решение привело разработчиков к выбору планарной конструкции солнечного элемента (см. рис. 2.6,
Радиационно-защитные, теплорегулирующие и просветляющие покрытия, нанесенные на светоприемную поверхность солнечных элементов, позволяют увеличить количество света, проходящего в глубь полупроводника, сбросить путем излучения избыточное тепло, возникающее в солнечном элементе при работе, и защищают элементы от воздействия корпускулярной радиации (электроны, протоны) в космосе и от неблагоприятных климатических факторов на Земле.
Внешнюю, обращенную к падающему оптическому излучению полупроводниковую область солнечного элемента из кремния делают очень тонкой и сильно легируют (до максимальной концентрации атомов примеси 1020—1021 см-3), например, атомами фосфора, так что она становится областью η-типа. Базовую область полупроводника p-типа чаще всего легируют сравнительно слабо — до концентрации атомов примеси 1016—1017 см-3, например, бором (обычно при получении монокристалла). Внешнюю поверхность элементов покрывают занимающей, как правило, 5–7 % площади сеткой из токосъемных полос различной конфигурации, а на тыльной стороне создают сплошной или сетчатый контакт.
Разделенные полем
Необходимо отметить, что вследствие многочисленных термообработок, которым подвергаются слои полупроводника на различных технологических стадиях изготовления солнечных элементов, и введения при этом нежелательных примесей и центров рекомбинации многие оптические и электрофизические параметры полупроводникового материала изменяются, отклоняясь от исходных значений. В связи с этим самым точным является определение параметров полупроводника в конце технологического цикла. Обычно это делается расчетом по выходным характеристикам солнечных элементов — таким, как вольт-амперная характеристика пли спектральная чувствительность, а также по другим, более специфическим, например, по вольт-емкостной (изменение емкости элемента от приложенного напряжения) или люкс-амперной (зависимость основных фотоэлектрических параметров от освещенности) характеристикам. Обычно эти характеристики измеряются в тех случаях, когда солнечные элементы используются в системах автоматики и оптоэлектронных устройствах, где важную роль играют быстродействие и линейность характеристик при низких и высоких освещенностях.
Малая диффузионная длина в легированном слое диктует необходимость мелкого залегания
Высокое слоевое сопротивление верхнего легированного слоя кремния
При изготовлении верхнего токосъемного контакта возникает сложная проблема: необходимо обеспечить достаточно хороший омический (невыпрямляющий) контакт, который при нанесении и последующей обработке не пробивал бы очень тонкий легирующий слой.
Эксперимент показывает, что создание металлического слоя целиком на всей внешней поверхности с последующим образованием контактного рисунка травлением приводит к появлению микрозакорачивающих участков, уменьшению
При слоевом сопротивлении от 50 до 100 Ом/□ на внешней поверхности солнечного элемента площадью 2×2 см достаточно создать один контакт в виде полоски шириной 0,5–1,0 мм по любой стороне элемента и от шести до двенадцати отходящих от него контактных токосъемных полос шириной 0,05 — 0,1 мм, чтобы понизить составляющую легирующего слоя в общем последовательном сопротивлении элемента
Однако при очень мелкозалегающих
В последнее время предложен ряд новых материалов для создания контактов к легированным слоям малой толщины, например из нитридов титана, которые в сочетании с кремнием обладают ничтожно малым переходным сопротивлением.
Оптимальный полупроводниковый материал для создания солнечного элемента
Солнечным элементом с
Структуры и солнечные элементы на их основе называются варизонными, если ширина запрещенной зоны изменяется, например, убывает от поверхности в глубь кристалла за счет плавного изменения химического состава материала, и на некоторой глубине расположен
Поскольку в солнечных элементах
На ранних стадиях изучения гомогенных солнечных элементов считалось, что для их изготовления желательно применять полупроводник, у которого ширина запрещенной зоны равнялась бы энергии фотонов, соответствующей максимуму солнечного спектра, т. е. примерно 2 эВ. В дальнейшем стало ясно, что для создания солнечных элементов следует выбирать полупроводник с меньшей шириной запрещенной зоны, что приводит к увеличению числа фотоактивных квантов солнечного спектра и росту
Наличие двух противоположных тенденций во влиянии исходного материала на свойства солнечных элементов показывает, что только в результате анализа всей вольт-амперной характеристики солнечного элемента и влияния на нее спектра падающего излучения может быть получена строго обоснованная зависимость возможного КПД от ширины запрещенной зоны полупроводника.
Такой расчет выполнен впервые Дж. Лоферским в 1956 г. с использованием спектров наземного солнечного излучения, измеренных Ч. Абботом. Оптические и фотоэлектрические потери оценивались значениями, весьма близкими к оптимальным для солнечных элементов из разных полупроводниковых материалов. Последующий расчет максимального КПД привел к нескольким полезным наглядным зависимостям, некоторые из которых представлены на рис. 2.13 и 2.14.
Анализ полученных результатов расчета позволил наметить пути разработки солнечных элементов из многих других полупроводниковых материалов, а не только из кремния. Наиболее подходящими для получения максимального КПД, заметно превышающего КПД кремниевых солнечных элементов, являются полупроводники с
Для наземного солнечного излучения уменьшается (по сравнению с внеатмосферными условиями) оптимальное значение ширины запрещенной зоны полупроводника, позволяющего получить наибольшее значение КПД. Важным для достижения максимального КПД фотоэлектрического преобразования энергии является механизм протекания обратного тока через
В солнечном элементе с
Выше было показано, что в основной полосе поглощения полупроводника, определяющей область спектральной чувствительности солнечных элементов, изготовленных из этого материала, квантовый выход фотоионизации β=1. Следовательно, эффективный квантовый выход солнечного элемента Qэф и коэффициент собирания носителей γ представляют собой практически одно и то же, поэтому обе эти величины будем теперь обозначать одинаково — коэффициент собирания
Коэффициент собирания (по определению, отношение числа избыточных носителей заряда, разделенных
где
Результаты таких расчетов, выполненные с использованием зависимости α(λ) для кремния и арсенида галлия, представлены на рис. 2.15.
Для качественной оценки собирания носителей заряда из разных областей солнечного элемента или полупроводникового фотоприемника полезны также следующие данные о глубине проникновения в кремний оптического излучения различной длины волны λ (мкм), определяемой величиной 1/а (мкм):
В ряде работ получены наглядные формулы расчета Iκ.3(λ) и
Составляющая
При базовом слое
Это уравнение лежит в основе простого и достоверного метода определения диффузионной длины неосновных носителей в базовом слое солнечных элементов
Q(λ)
В современных солнечных элементах In≃0,15÷0,5 мкм и для λ=1 мкм αs1=80 см-1, следовательно, член exp (-
Измерив
Более сложными являются случаи, когда
В ряде работ рассмотрены различные способы определения отдельных параметров солнечного элемента при некоторых упрощающих условиях расчета и эксперимента.
Так, предложен метод оценки диффузионной длины неосновных носителей в легированном слое по сопоставлению расчетных (при изменении параметра
По приведенным выше данным о глубине проникновения в кремний оптического излучения различной длины волны п из рис. 2.15 легко определить, какой длины волны оптическое излучение должно использоваться в таких экспериментах, чтобы избыточные носители создавались преимущественно в верхнем легированном слое элементов.
Глубина
Анализируя отдельные (в основном коротковолновые) участки спектральной зависимости коэффициента собирания, можно оценить отношение
Интересен способ определения глубины залегания
Диффузионную длину неосновных носителей
Спектральная чувствительность и коэффициент собирания солнечных элементов
Спектральная чувствительность солнечного элемента представляет собой спектральную зависимость его тока короткого замыкания, рассчитанного на единицу энергии падающего оптического излучения.
Для обычных, не прецизионных измерений спектральной чувствительности используется зеркальный монохроматор со стеклянной оптикой. Источником света служит обычно ленточная вольфрамовая лампа накаливания, тело накала которой с помощью зеркального эллиптического отражателя проецируется на входную щель прибора. Стабильность светового потока поддерживается за счет постоянства тока накала лампы, который контролируется амперметром.
Такая лампа дает возможность проводить измерения в видимой и инфракрасной областях спектра (до границы пропускания стекла). При измерениях в ультрафиолетовой области спектра от 0,4 до 0,3 мкм применяется лампа накаливания с увиолевым стеклом, цветовая температура которой 3200 К, а при измерениях в области длин волн менее 0,3 рекомендуется использовать водородную лампу, поскольку она дает сплошной спектр и отличается высокой (по сравнению с другими газоразрядными лампами) стабильностью. Рабочие щели монохроматора, как правило, изменяются от 1 мм для области спектра 0,4–0,5 мкм до 0,25 мм в области длин волн больше 0,9 мкм, с тем чтобы спектральная ширина щели оставалась постоянно в пределах 0,01—0,015 мкм. Изменение длины волны осуществляется небольшим поворотом зеркала, что позволяет выделяемому излучению любой длины волны проходить через призму с минимальным отклонением от первоначального пути.
Для устранения рассеянного света при измерениях спектральной чувствительности в различных областях спектра используются соответствующие светофильтры. За выходной щелью монохроматора помещаются две линзы, с помощью которых расходящийся световой поток может быть распределен по всей поверхности или собран на части солнечного элемента. Этот световой поток на определенном расстоянии от второй линзы проецируется в полоску, полностью попадающую на приемную пластину термоэлемента. Затем солнечный элемент устанавливается на место термоэлемента таким образом, чтобы весь свет, измеренный термоэлементом, вписывался в приемную поверхность солнечного элемента.
Измерения плотности потока монохроматического излучения могут быть осуществлены, например, с помощью вакуумного компенсационного элемента. Термоэлемент включается на вход низкоомного потенциометра. Чувствительность термоэлемента периодически проверяется по эталонным светоизмерительным лампам, отградуированным по цветовой температуре и силе света.
В качестве неселективных могут быть также использованы приемники излучения, основанные на металлических термопарах, пленочных термоэлементах, полупроводниковых термостолбиках. Градуировку этих приемников полезно осуществить несколькими независимыми методами: применяя эталонную лампу; с помощью встроенной обмотки замещения, по которой пропускается определенный ток; используя модель абсолютно черного тела с известной температурой.
При измерениях сначала весь спектр монохроматора от 0,4 до 1,16 мкм градуируется с помощью термоэлемента, а затем на его место устанавливается солнечный элемент, ток короткого замыкания которого измеряется по компенсационной схеме. Установка и снятие исследуемого элемента после каждого изменения длины волны привели бы к значительно большим погрешностям за счет неточности механических перемещений.
В качестве индикатора нуля используется обычно гальванометр, измерительным прибором может служить микроамперметр с шунтом.
Энергия на выходе монохроматора изменяется при измерениях во всем спектральном диапазоне от 0,002 до 0,02 мВт (что соответствует потоку фотонов 1,5×1012 -1×1014 с-1).
Следует отметить, что из-за нелинейности люкс-амперной характеристики многих солнечных элементов при переходе от низких освещенностей, создаваемых монохроматическим светом, к высоким, характерным для солнечного излучения вне атмосферы или в ясные дни в наземных условиях, особенно ответственные прецизионные измерения спектральной чувствительности, например для эталонных солнечных элементов, проводятся на усовершенствованных установках.
В условиях облучения даже однократным солнечным потоком плотность падающего на поверхность элемента потока энергии, составляющая около 100 мВт/см2, на несколько порядков выше плотности потока, создаваемого обычным монохроматором (как правило, от 10 до 20 мкВт/см2). От уровня засветки при измерении спектральной чувствительности зависит, в частности, значение диффузионной длины неосновных носителей заряда
Совершенно очевидно, что измерение спектральной чувствительности, в частности, эталонных солнечных элементов (с целью последующего пересчета ее на спектральное распределение энергии стандартного спектра и определения градуировочного значения фототока) следует проводить, добиваясь засветок, близких к реальным условиям работы эталонных элементов.
Одной из первых установок для измерения спектральной чувствительности при облученности, аналогичной солнечной по плотности падающего потока, было устройство, состоящее из мощной вольфрамовой галогенной лампы накаливания и восьми узкополосных интерференционных светофильтров, сквозь которые исследуемые солнечные элементы поочередно освещались предварительно откалиброванными по мощности потоками излучения. В дальнейшем две подобные установки (включающие от 8 до 18 светофильтров с полушириной полосы пропускания каждого около 200 А, перекрывающих область спектра от 0,35 до 1,2 мкм) были использованы в исследовательском центре им. Льюиса (Кливленд, штат Огайо, США). Источником излучения служила также галогенная лампа мощностью 1000 Вт. Полученные данные были использованы для пересчета спектральной зависимости тока короткого замыкания эталонных солнечных элементов на стандартные спектры солнечного излучения и сравнения расчетного фототока с результатами градуировки на высотных самолетах, ракетах, шарах-зондах.
Фильтровый монохроматор для измерения спектральной чувствительности солнечных элементов был затем значительно усовершенствован. В качестве источника излучения, расположенного перед узкополосными светофильтрами, использовалась лампа-вспышка с энергией, излучаемой в момент каждой вспышки, около 600 Дж (снабженная алюминированным отражателем, установленным сзади лампы), которая, однако, не обеспечивала необходимой однородности потока (неравномерность облученности на освещаемой поверхности составляла ±8 %).
Небольшая длительность светового импульса от ксеноновой лампы-вспышки предотвращала перегрев как измеряемых солнечных элементов, так п интерференционных фильтров. Свет лампы-вспышки поступал на измеряемый солнечный элемент через один из шестнадцати интерференционных светофильтров, установленных на вращающемся дискодержателе.
Эта установка была предназначена для экспрессного определения спектральной чувствительности. Получение абсолютных значений фототока обеспечивалось в этом случае сравнением измеряемого тока короткого замыкания с током эталонного элемента.
Импульсный ток солнечных элементов измерялся с помощью электронной схемы и отображался на цифровом табло. Плотность потока излучения лампы-вспышки без светофильтров превышала 50 солнечных постоянных, что позволяло создавать условия измерений чувствительности, близкие к условиям эксплуатации солнечных элементов.
Абсолютная градуировка установки проводилась с применением эталонного элемента, чувствительность которого измерялась на монохроматоре, откалиброванном с помощью неселективного термоэлектрического приемника при длине волны 0,546 мкм. Погрешность градуировки составляла ±2 % (абсолютных) и ±1 % (относительных).
При использовании для спектральных измерений лазеров или высокоинтенсивных источников света (мощных ламп накаливания и ламп-вспышек) с интерференционными фильтрами, однако, не создается необходимого (соответствующего внеатмосферному) распределения^ носителей заряда по толщине элемента. В связи с этим наиболее достоверные данные о чувствительности солнечных элементов могут быть получены при одновременном освещении элементов модулированным потоком монохроматического излучения и смодулированным потоком, имитирующим солнечное излучение при соответствующем спектре и плотности потока. При первых применениях такого метода для градуировки эталонных солнечных элементов нужный уровень инжекции носителей заряда создавался с помощью лампы накаливания. Однако спектр подсвечивающего излучения должен воспроизводить солнечный, поскольку нелинейность световой характеристики с увеличением длины волны сильно возрастает.
Этот метод градуировки был подробно изучен и усовершенствован советскими исследователями. Снижение погрешностей, связанных с нелинейностью спектральной характеристики и несоответствием распределения генерированных светом носителей по толщине элемента, возникающему при измерениях, реальному распределению, характерному для условий эксплуатации солнечных элементов, было достигнуто следующими способами: использованием более совершенных неселективных радиометров для измерения монохроматического излучения и светосильных монохроматоров; выбором излучения для подсветки, достаточно точно воспроизводящего солнечный спектр; применением модулятора, обеспечивающего минимальное содержание гармоник высшего порядка. Подсвечивающее излучение создавалось с помощью галогенных ламп с встроенными интерференционными фильтрами, позволяющими в области 0,4–1,1 мкм получить распределение энергии, близкое к солнечному спектру, а при абсолютной градуировке монохроматора применялся специально разработанный полостной термоэлектрический радиометр с обмоткой замещения. Для этой же цели полезно (кроме встроенной электрической обмотки замещения) использовать эталонирование по модели черного тела. Схема установки по измерению спектральной чувствительности, созданной специально для градуировки эталонных солнечных элементов, приведена на рис. 2.16.
Главная отличительная особенность разработанной установки — наличие подсветки лампами-фарами, на отражатель и пропускающее окно которых нанесены многослойные интерференционные фильтры, корректирующие спектр встроенной в фару лампы под солнечный. На поверхности измеряемого элемента создается облученность 1360 Вт/м2, которая контролируется термоэлектрическим радиометром с большим полем зрения. Радиометр имеет точную энергетическую калибровку в широком спектральном интервале. Лампы подсветки получают энергию от высокостабильных источников питания, имеющих низкое содержание высокочастотных гармоник.
Монохроматическое излучение достаточной интенсивности обеспечивается в этой установке дифракционным монохроматором с решеткой 600 линий/мм. Для исключения влияния спектров высших порядков использовалось устройство (переменное гасящее сопротивление, включенное в цепь лампы и связанное с поворотным механизмом дифракционной решетки монохроматора), уменьшающее цветовую температуру тела накала лампы снижением тока при работе в длинноволновой области спектра. Ток короткого замыкания при монохроматическом освещении во время этих измерений определяется при фиксации светового луча на различных участках фотоактивной поверхности эталонного солнечного элемента и затем усредняется по всей рабочей поверхности.
Монохроматический поток, модулированный частотой 900 Гц, направляется на элемент. Взаимное расположение щели монохроматора и модулятора, а также форма окна модулятора выбираются таким образом, чтобы монохроматический модулированный поток был по возможности приближен к синусоидальному. Необходимое условие — измерение в режиме короткого замыкания, в связи с чем переменный сигнал снимается через разделительную емкость, а солнечный элемент шунтируется сопротивлением порядка 0,5 Ом. Высокочастотная составляющая тока короткого замыкания подается на селективный усилитель с калиброванным коэффициентом усиления, напряжение с которого преобразуется в пропорциональный сигнал измерительным преобразователем и регистрируется в цифровой и графической формах. Для использования данных каждого эксперимента в расчетах на ЭВМ информация может быть представлена на перфоленте в стандартном коде.
Пересчет результатов измерений спектрального распределения чувствительности нескольких кремниевых солнечных элементов на спектр внеатмосферного солнца и затем расчет интегрального значения тока короткого замыкания элементов показал, что в случае нелинейных солнечных элементов ошибка в определении градуировочного значения тока для внеатмосферных условий из-за измерения чувствительности без подсветки имитированным солнечным излучением может достигать 7 %. Использование установки с модулированным сигналом и подсветкой имитированным солнечным излучением позволяет устранить эту погрешность.
Абсолютное значение спектральной чувстительности рассчитывается как отношение Iκ3
Эксперименты и расчеты показывают, что составляющая верхнего легированного слоя кремния в суммарном коэффициенте собирания
При создании солнечных элементов из арсенида галлия также наблюдается отмеченная тенденция. Гомогенный
Были выполнены также расчеты для солнечных элементов из кремния и арсенида галлия при близкой толщине слоев и одинаковой скорости поверхностной рекомбинации. Результаты этих расчетов показывают, что составляющая базового слоя в суммарном коэффициенте собирания
По спектральной чувствительности исследованных солнечных элементов были рассчитаны время жизни и диффузионная длина неосновных носителей в областях по обе стороны
При бесконечно большом времени жизни и диффузионной длине неосновных носителей в обоих слоях солнечного элемента и при нулевой скорости поверхностной рекомбинации (а также при
При отсутствии поверхностной и объемной рекомбинации все носители, созданные в полупроводнике излучением длиной волны λ, должны собираться и разделяться
Отсюда видно, что спектральная чувствительность линейно зависит от длины волны:
Длинноволновой край спектральной чувствительности солнечных элементов ограничен лишь энергетическим положением края основной полосы поглощения (или, как его ранее часто называли, красной границей фотоэффекта), которое определяется шириной запрещенной зоны полупроводника и характером оптических переходов зона — зона. Левый край чувствительности для планарного солнечного элемента зависит в основном от скорости поверхностной рекомбинации на обращенной к свету поверхности элемента.
Ниже представлены предельные значения спектральной чувствительности полупроводникового солнечного элемента планарной конструкции, рассчитанные при указанных ранее идеализированных условиях (нулевая скорость поверхностной рекомбинации, бесконечно большие время жизни и диффузионная длина неосновных носителей заряда и нулевое значение коэффициента отражения):
Анализ результатов расчетного и экспериментального определений спектральной чувствительности позволяет сделать несколько выводов о выборе основных направлений совершенствования технологии солнечных элементов.
Улучшение спектральной чувствительности в длинноволновой области может быть достигнуто за счет увеличения времени жизни неосновных носителей в базовом слое, например, путем перехода к более чистому и высокоомному исходному полупроводниковому материалу и сохранения его свойств в процессе изготовления солнечных элементов.
На основе кремния могут быть изготовлены солнечные элементы с очень высокой чувствительностью в коротковолновой и ультрафиолетовой областях спектра вплоть до 0,2 мкм. C этой целью необходимо резко уменьшить скорость поверхностной рекомбинации и глубину залегания
Таким образом, изучение спектральной чувствительности и коэффициента собирания солнечных элементов исключительно полезно для дальнейшего улучшения свойств солнечных элементов, увеличения их КПД и, следовательно, расширения сферы их применения.
Глава 3
КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ
СОЛНЕЧНЫХ ЭЛЕМЕНТОВ
Методика измерения КПД
Для определения КПД солнечных элементов и батарей необходимо (так же как в случае любых других преобразователей излучения) измерить количество энергии излучения, поступающей на солнечный элемент, и количество электроэнергии, выработанной им. Проблема, однако, осложняется несколькими обстоятельствами: энергия поступает к элементу в форме солнечного излучения, спектральный состав и мощность которого продолжают уточняться даже для внеатмосферных условий, а характеристики наземного солнечного излучения чрезвычайно сильно зависят от состояния атмосферы и часто изменяются в течение весьма непродолжительных периодов времени;
создание имитаторов Солнца, копирующих по всем основным параметрам внеатмосферное или выбранное в качестве стандарта наземное солнечное излучение, представляет собой пока не решенную полностью научно-техническую задачу;
при разработке стабильных эталонных солнечных элементов для настройки имитаторов Солнца следует учитывать особенности оптических и электрофизических свойств каждого типа элементов, в частности их спектральной чувствительности;
при измерении выходных электрических параметров элементов и батарей необходимо иметь в виду сильное влияние последовательного сопротивления элементов и сопротивления измерительных приборов на получаемые значения.
Таким образом, определение КПД солнечных элементов и батарей представляет собой сложную комплексную проблему, и это выделило метрологию полупроводниковых преобразователей солнечного излучения в самостоятельной раздел исследований по фотоэлектричеству.
Основной параметр солнечных элементов и батареи — световая нагрузочная вольт-амперная характеристика — позволяет определить генерируемую электрическую мощность по произведению
Качество солнечных элементов и батарей, количество дефектных элементов в батарее могут быть оценены также косвенными методами — по измерению прямой и обратной ветвей темновой вольт-амперной характеристики; по интегральному коэффициенту поглощения солнечного излучения поверхностью батареи, рассчитываемому исходя из результатов измерений спектральных коэффициентов отражения; по интегральному коэффициенту собственного теплового излучения поверхности батарей, различному у дефектных и высококачественных элементов; по яркости электролюминесценции (у солнечных элементов на основе арсенида галлия).
Измерения параметров солнечных элементов и батарей могут быть выполнены в лабораторных, натурных наземных и космических условиях по указанным выше методикам.
Рассмотрим ряд научно-технических вопросов, связанных с проблемой контроля качества, определения параметров солнечных элементов и батарей из различных полупроводниковых материалов и разнообразного практического применения, погрешностей измерения и прогнозирования характеристик элементов в процессе эксплуатации.
Имитаторы солнечного излучения
Имитаторы Солнца используются в различных областях науки и техники: при моделировании тепловых режимов космических аппаратов и испытании материалов на воздействие космических условий, в медицинских и биологических исследованиях, в растениеводстве, фотометрии, калориметрии, гелиотехнике. Известно множество разнообразных оптических схем и конструкций имитаторов Солнца, и среди них разработаны и успешно используются оригинальные имитаторы для измерения параметров солнечных элементов и батарей.
В идеальном случае имитаторы должны с наилучшим приближением воспроизводить все параметры солнечного излучения — параллельность лучей, стабильность во времени и равномерность освещения, спектральный состав, плотность потока. Однако такие приборы чрезвычайно сложны и дороги, параметры их светового потока все же отличаются от естественного солнечного, поэтому в зависимости от конкретного назначения создаются специализированные имитаторы. В установках, предназначенных для измерения характеристик солнечных элементов и батарей, меньше внимания уделяется достижению коллимации пучка для получения параллельности лучей, соответствующей солнечному потоку, и больше — созданию достаточно хорошего приближения к спектру излучения Солнца, обеспечению стабильности и однородности потока. Но и здесь подход может быть разным. В производстве при серийном изготовлении солнечных элементов применение имитаторов с точным воспроизведением спектра не всегда обязательно, особенно для относительных измерений, например, таких, как текущий контроль качества, сортировки элементов и их групп по электрическим параметрам, чтобы обеспечить малые потери на коммутацию после сборки батареи. Для этих целей можно подобрать имитатор с оптимальным соотношением между сложностью конструкции и точностью измерений.
Наиболее прост, удобен для использования в производственных условиях и стабилен имитатор, состоящий из вольфрамовых ламп накаливания с зеркальными или матовыми отражателями, соответствующий набор которых может обеспечить освещение солнечных элементов для батарей практически любой площади.
Значительная часть инфракрасного излучения ламп накаливания (вызывающего перегрев солнечных элементов при измерениях) может быть устранена с помощью установленных между лампами и элементами теплоотражающих фильтров из стеклянных пластин с прозрачными проводящими пленками на основе оксидов олова и индия или станнатов кадмия с поверхностным слоевым сопротивлением менее 50 Om∕□ (пленка должна находиться на стеклянной пластине со стороны лампы).
Еще большего уменьшения инфракрасной составляющей излучения ламп можно добиться введением теплопоглощающего фильтра, образуемого слоем воды толщиной 2–4 см. Для охлаждения самого водяного фильтра может быть использован внешний радиатор или проточная вода, а для удаления из перегретой воды пузырьков воздуха фильтр снабжается механическими щетками.
Подобные простые имитаторы с водяным фильтром могут быть использованы для экспрессного контроля качества солнечных элементов и их групп (размерами до 20×30 см) на всех стадиях процессов изготовления, а без водяного фильтра — для контроля качества солнечных батарей.
Спектр ламп накаливания, применяемых для контроля качества солнечных батарей большой площади, может быть значительно исправлен и приближен к солнечному нанесением на внутреннюю поверхность колбы лампы (как перед вольфрамовой нитью накала, так и сзади нее) многослойных интерференционных светофильтров. Колба лампы предохраняет светофильтры от неблагоприятного воздействия внешней окружающей среды (в частности, повышенной влажности), а последствий термического воздействия излучения вольфрама, приводящего к кристаллизации слоев многослойного светофильтра и последующему отслаиванию его от стекла, удается избежать, как показал в своих исследованиях А. С. Иванцев (Всесоюзный институт источников света, г. Саранск), если ввести между диэлектрическими слоями светофильтра и стеклом тонкую полупрозрачную пленку хрома, нанесенную при большой скорости конденсации в глубоком вакууме. Осаждение постепенно испаряющегося слоя вольфрама на стекло и светофильтры также можно предотвратить, используя лампу-фару с нанесенными на ее колбу светофильтрами, внутрь которой встроена малогабаритная, но достаточно мощная вольфрамовая лампа в кварцевой оболочке. Из таких ламп-фар может быть собран имитатор Солнца для измерения параметров солнечных батарей любой площади.
Для измерения параметров крупных солнечных батарей и групп солнечных элементов сейчас разработаны и уже используются имитаторы на импульсных ксеноновых лампах. Эти имитаторы не имеют оптики, и равномерность освещения на большой облучаемой площади (2×2 м и выше) достигается за счет значительного удаления измеряемой батареи от лампы. Для коррекции спектра применяется интерференционный или иногда водяной фильтр. Очень важно, чтобы имитатор был оснащен соответствующей измерительной аппаратурой, которая должна обеспечить за время одного импульса длительностью около 1 мс замер всех точек вольт-амперной характеристики. Подобные имитаторы создают на площади 2,5×2,5 м облученность с неравномерностью +2 %.
При измерениях на импульсных имитаторах солнечная батарея не успевает прогреться, и ее температура близка к комнатной.
В качестве стандарта при квалификационных испытаниях в различных странах использовались разные значения температуры солнечных батарей и элементов: 40, 28 и 25 °C. В США и Западной Европе за стандарт принята температура 28 °C. Такой выбор вряд ли можно назвать удачным, поскольку при работе солнечные элементы и батареи обычно разогреваются, и реальные внеатмосферные и наземные условия эксплуатации солнечных батарей точнее отражает температура 40 °C. В СССР и странах СЭВ измерения готовых батарей, как правило, проводятся именно при такой температуре.
При измерениях на импульсных имитаторах вычислительные устройства автоматически пересчитывают характеристики батарей к задаваемой рабочей температуре. Пересчет ведется по средним температурным коэффициентам, которые имеют заметный разброс. Импульсные имитаторы снабжают устройством для термостабилизации измеряемых батарей, температуру которых контролируют в момент измерений. Термостабилизирующее устройство может быть выполнено на основе, например, инфракрасных излучателей, устанавливаемых при измерениях с темновой стороны батарей.
Необходимо также кратко остановиться на сверхмощных ксеноновых лампах непрерывного горения, каждая из которых (при достаточно хорошей имитации спектра внеатмосферного солнечного излучения) может создать необходимую плотность потока излучения 1360 Вт/м2 на поверхности солнечной батареи площадью в несколько десятков квадратных метров. Примером такого источника излучения может служить разработанная Всесоюзным научно-исследовательским светотехническим институтом металлическая ксеноновая лампа сверхвысокого давления мощностью 40 кВт. Лампа взрывобезопасна, снабжена двойным охлаждаемым водой кварцевым окном в металлическом корпусе, однако ввиду значительной неравномерности освещения по площади, достигающей ±20 % на краях облучаемой поверхности, такие лампы лучше использовать лишь в устройствах для исследования светового старения космической техники или приближенной оценки работоспособности солнечных батарей, а не при измерениях их фотоэлектрических параметров.
Для исследовательских целей и выборочных измерений выпускаемых и разрабатываемых солнечных элементов используют имитаторы с высоким качеством воспроизведения спектра и однородным потоком. Равномерное освещение получают за счет смешивания пучков лучей, которое может быть выполнено несколькими способами. В отечественном имитаторе C–I на лампе накаливания с цветовой температурой 3100 К равномерность облученности ±10 % на площади 20×30 мм получена наложением двух пучков излучения. Спектральная коррекция осуществляется с помощью цветных оптических стекол. C помощью светофильтров достигается достаточно хорошее воспроизведение спектра в интервале 0,4–1,1 мкм, однако при этом сами светофильтры поглощают значительную часть энергии излучения лампы накаливания, что требует почти десятикратного превышения исходного потока излучения над имитированным и интенсивного охлаждения светофильтров. При полном использовании энергии излучения лампы накаливания мощностью 750 Вт с помощью двухлучевой схемы и применении специальной системы охлаждения (светофильтры погружаются в прозрачный четыреххлористый углерод, охлаждаемый проточной водой) возникшие трудности удается преодолеть.
Постоянство спектра имитатора C–I контролируется с помощью «сине-красного отношения» — отношения токов короткого замыкания эталонного солнечного элемента при поочередном введении перед ним двух светофильтров, пропускающих излучение соответственно в сине-зеленой и инфракрасной областях спектра. Изменение уровня плотности потока излучения при постоянстве его спектрального состава обеспечивается диафрагмами переменного раскрытия и нейтральными или сетчатыми светофильтрами.
Для получения высокой равномерности освещения в точных имитаторах все чаще используется специальный смеситель — оптический интегратор, представляющий собой пакет линзовых элементов гексагонального сечения. На выходной торец пакета проецируется изображение тела накала ламп. Интегратор состоит из большого количества (до 19) отдельных проекционных систем, каждая из которых, формируя свой пучок, направляет его на всю рабочую зону, где пучки всех элементов смесителя накладываются друг на друга. В отличие от обычной системы проекции, когда неравномерность яркости тела накала воспроизводится на облучаемой поверхности, здесь первичное изображение дробится, и в результате происходит наложение множества световых пятен от каждого элемента смесителя. В итоге облученность в различных точках освещаемой поверхности отличается от среднего значения на ±2–3 %.
Параллельность лучей достигается в большинстве современных имитаторов за счет применения коллиматоров (как правило, параболоидных зеркал или линз Френеля), в фокусе которых размещается изображение тела накала источников излучения, которое, в свою очередь, создается концентраторами (чаще всего эллипсоидами с большим углом охвата). Угол деколлимации равен отношению половины диаметра пучка лучей в фокусе коллиматора к его фокусному расстоянию.
Источником излучения большинства зарубежных имитаторов служит ксеноновая лампа высокого давления. Спектр коррегируется интерференционными светофильтрами, позволяющими приблизить спектр лампы к спектру внеатмосферного Солнца.
Имитатор Спектросан Х-25 фирмы Спектролаб (США), созданный для измерений параметров солнечных элементов, дает пучок с неравномерностью не более ±2 % на площади диаметром 300 мм при расстоянии 1,5–2 м от кассеты со светофильтрами. Сменный комплект фильтров позволяет получать как внеатмосферный, так и наземный солнечные спектры, правда, весьма далекий от стандартного спектра (условия AM1,5).
На аналогичных принципах построены имитаторы фирмы Ушио Электрик (Япония), Ориел (США), Оптикал Радиейшн Kopn. (США), Бош (ФРГ) и др.
Среди отечественных имитаторов на средние площади хорошие параметры имеет прибор, разработанный во Всесоюзном научно-исследовательском светотехническом институте. Неравномерность освещения в этом имитаторе не превышает ÷2 % на площади 150×200 мм, что достигается с помощью смесителя, выполненного в виде достаточно протяженного (длиной от 1 до 2 м) вертикального полого зеркального световода с поперечным сечением, несколько превышающим рабочую площадь. Имитатор, однако, не воспроизводит высокой параллельности лучей, которая характерна для внеатмосферного солнечного излучения. Источником излучения в этом имитаторе служат две металло-галогенные лампы со спектром, близким к солнечному, — ртутные газоразрядные лампы с добавками иода и бромида олова.
Следует отметить, что использование в достаточно точных имитаторах внеатмосферного излучения Солнца устройств, довольно быстро изменяющих во времени свои оптические характеристики и требующих регулярной замены (многослойные интерференционные светофильтры, сложные лампы, пропускание колб которых ухудшается со временем, а характеристики излучения не постоянны), не позволяет применить эти имитаторы для контроля качества солнечных элементов в процессе производства. К тому же такие имитаторы не рассчитаны на измерение параметров солнечных батарей, имеющих, как правило, большую площадь (несколько десятков и сотен квадратных метров).
Сложный характер наземного солнечного излучения при различных воздушных массах (см. рис. 1.1) делает весьма трудной задачу имитации такого излучения, даже если ограничиться целью воспроизведения стандартного солнечного излучения в условиях AM1,5 в области длин волн от 0,4 до 1,1 мкм.
Вероятно, получение точного спектрального распределения стандартного наземного солнечного излучения возможно лишь с помощью монохроматора с изменяющейся по заданной программе щелевой или штырьковой диафрагмой, что, однако, не позволяет даже при светосильном монохроматоре достичь освещенности, характерной для солнечного излучения. Второй возможный путь такой имитации — воспроизведение наземного солнечного спектра по отдельным спектральным участкам с помощью ксеноновой или галогенной лампы, снабженной набором сменных узкополосных интерференционных светофильтров. Оба способа, к сожалению, создают поток имитированного солнечного излучения на очень небольшой площади в несколько квадратных милли- или сантиметров.
В связи со сложностью точной имитации наземного солнечного излучения получили широкое распространение методы приближенного воспроизведения наземных спектров имитаторами со спектром излучения, повторяющим сглаженную, усредненную кривую излучения Солнца при условиях AM1,5. Путем подбора или расчета необходимого комплекта светофильтров для имитаторов внеатмосферного излучения любой рассмотренной конструкции можно добиться достаточно хорошего приближения к наземным солнечным спектрам при требуемой плотности потока прямого излучения.
Известен, например, имитатор для измерения параметров солнечных элементов, состоящий из двух ламп — ксеноновой и вольфрамовой. У ксеноновой лампы длинноволновая часть спектра (правее 0,7 мкм) «отрезана» с помощью фильтра на основе раствора медного купороса, охлаждаемого водой, а коротковолновое излучение вольфрамовой лампы накаливания (левее 0,55—0,6 мкм) поглощается фильтром из цветного стекла. Смешение на облучаемой поверхности солнечного элемента двух коррегированных таким образом лучистых потоков дает возможность при изменении мощности ламп и толщины фильтров получать сглаженную кривую как внеатмосферного, так и наземного солнечного излучения.
Жидкостной оптический фильтр на основе раствора медного купороса может быть также применен для приближения к спектру Солнца спектрального излучения обычных ламп накаливания.
Можно сделать сравнительно простой наземный имитатор на лампах накаливания со стеклянными фильтрами и диффузным отражателем, обеспечивающим равномерное освещение рассеянным светом, близким к наблюдающемуся в натурных условиях. Как показали эксперименты, такой отражатель позволяет получить неравномерность, не превышающую ±5 % на площади 40×40 мм. Линзовая оптика в имитаторе отсутствует. Источник излучения — галогенные лампы с цветовой температурой 3400 К. Хорошее приближение к сглаженной кривой спектрального распределения полного потока наземного излучения при атмосферной массе 1,5 можно получить с помощью специальных цветных стекол.
Более полно реальные условия наземного солнечного излучения воспроизводятся при использовании оптической схемы, показанной на рис. 3.1. Правый луч одной лампы и левый луч другой проходят через светофильтр и, освещая солнечные элементы под углом, близким к нормальному, имитируют поток прямого солнечного излучения. Другая пара лучей, проходя системы коррекции и попадая на солнечные элементы под острым углом, имитирует рассеянное излучение неба. Как показали расчеты, спектральное распределение излучения лампы накаливания с цветовой температурой 3400 К можно преобразовать в спектральное распределение прямого солнечного потока при стандартных параметрах с помощью светофильтра, состоящего из нескольких специально подобранных цветных стекол различной толщины и слоя дистиллированной воды. Оптимизация толщины фильтров проводилась разработчиком этой схемы И. С. Оршанским (Всесоюзный научно-исследовательский институт источников тока) на ЭВМ, что позволило достичь хорошей коррекции спектра ламп.
Эталонные солнечные элементы и их градуировка
Учитывая, что спектральное распределение энергии излучения даже высококачественных имитаторов отличается от стандартного солнечного, а чувствительность солнечных элементов селективна, проводить настройку интенсивности имитаторов с помощью неселективных приемников излучения (радиометров) нецелесообразно. Для этой цели применяются специально отградуированные эталонные солнечные элементы. Эталонные, или стандартные, солнечные элементы, иногда также называемые светоизмерительными приемниками, — это фактически радиометры с селективной чувствительностью.
Плотность потока солнечного излучения при одинаковом значении воздушной массы и, казалось бы, сравнительно небольших вариациях основных составляющих атмосферы может изменяться, как показали расчеты, достаточно сильно. Из сравнения различных атмосферных условий следует, что плотность потоков солнечного излучения при нескольких измерениях, фиксируемая неселективным радиометром, может быть почти одинаковой, в то время как спектральный состав излучения будет отличаться столь существенно, что солнечные элементы (в силу селективной чувствительности) будут вырабатывать при этом различную электрическую мощность и значительно отличающиеся токи. Даже у высококачественных элементов различие в токах короткого замыкания, измеренных в наземных условиях при одинаковой энергетической облученности, но разном состоянии атмосферы, составляет в эксперименте около 15 %. В то же время, например, одинаковая плотность солнечного излучения 672 Вт/м2 (зафиксированная в разные дни измерений в одном и том же пункте земной поверхности) может наблюдаться для следующих двух состояний атмосферы: при m=3, толщине слоя озона 5,5 мм, β=0,02, α= 1,3 и при m=1,5, толщине слоя озона 2 мм, β=0,17, α=0,66 (толщина слоя осажденных паров воды в обоих случаях 2,0 см), хотя очевидно, что спектральный состав излучения при столь разных параметрах атмосферы будет заметно отличаться.
Сравнение градуировочного коэффициента — отношения интегрального фототока с единицы площади элемента, определенного по спектральной чувствительности, к плотности потока солнечного излучения, падающего на эту площадь, — для большого числа солнечных элементов показало, что если настройка интенсивности излучения имитаторов из вольфрамовых ламп без фильтра проводится неселективным радиометром, то погрешность измерения тока короткого замыкания солнечных элементов достигает 50 %.
При использовании имитаторов на основе вольфрамовых ламп с дихроическим фильтром погрешность составит 30 % (при прогнозировании значений тока во внеатмосферных условиях) и 10 % (в наземных), а для имитаторов на основе ксеноновых ламп с короткой дугой и интерференционными фильтрами погрешность равна 15 % для наземных измерений и 3–5 % для космических.
При градуировке эталонных солнечных элементов определяют ток короткого замыкания в стандартных условиях облучения. C помощью эталонного солнечного элемента настраивают имитатор — регулируют поток его излучения до тех пор, пока ток короткого замыкания эталона станет таким же, как при стандартных условиях.
Следует отметить, что в этом случае энергетическая облученность рабочей зоны имитатора не будет в точности совпадать с энергетической облученностью, создаваемой естественным солнечным излучением в стандартных условиях, поскольку излучение оценивается по его воздействию на селективно-чувствительный солнечный элемент конкретной конструкции из определенного полупроводникового материала.
Обычно для оценки излучения по его воздействию на приемник с конкретной спектральной чувствительностью вводят эффективные величины: оценка излучения по его воздействию на глаз человека производится в люксах, по воздействию на кожу — в эритемных единицах и т. д. В случае солнечных элементов вводится не эффективная величина, требующая нового названия; а эквивалентная. Так, если источник с произвольным спектром при некоторой энергетической облученности создает в солнечном элементе ток, равный внеатмосферному, то при этом энергетическая облученность для данного типа излучения эквивалентна 1360 Вт/м2.
Например, при освещении лампой накаливания с цветовой температурой 2850 К кремниевый солнечный элемент с мелкозалегающим
Применение эталонных солнечных элементов позволяет проводить удовлетворительные по точности измерения на имитаторах с плохой коррекцией спектра и даже при использовании источников излучения с произвольным спектральным распределением энергии. Погрешность оценки электрических характеристик солнечных элементов в этом случае будет зависеть от степени отличия спектральной чувствительности измеряемого и эталонного элементов. Таким образом, основное требование, предъявляемое к эталонным солнечным элементам, — идентичность их оптических свойств и спектральных характеристик характеристикам тех солнечных элементов, для измерения которых они применяются. Особенно это касается спектральной чувствительности. При использовании эталонных элементов в наземных условиях с имитаторами, имеющими широкий пучок излучения, важна также и угловая зависимость чувствительности, в значительной степени определяемая микрорельефом поверхности солнечного элемента, влияющим на коэффициент отражения света при различных углах падения. Даже самый совершенный технологический процесс изготовления не обеспечивает идентичности оптических и спектральных характеристик всех элементов данного типа, поэтому в качестве эталонных желательно отбирать элементы, имеющие характеристики, близкие к средним для выпускаемой продукции.
Проектирование эталонных солнечных элементов включает в себя создание конструкции, исследование стабильности и метрологических характеристик, разработку аппаратуры и методики градуировки.
Конструкция эталонных солнечных элементов в зависимости от назначения может быть разной, но во всех случаях должно обеспечиваться основное требование, предъявляемое к средствам измерений, — высокая стабильность всех параметров. Это, в свою очередь, приводит к необходимости надежной термостабилизации солнечных элементов или точного измерения их температуры. Эталон простейшей конструкции представляет собой солнечный элемент, укрепленный на металлической пластине (в углублении) и защищенный стеклом. Для поддержания постоянной температуры эталонный элемент устанавливается обычно на термостатированном столике.
В 1980–1982 гг. в СССР был разработан, усовершенствован и предложен в качестве стандарта для стран СЭВ новый эталонный солнечный элемент с прямоугольной фоточувствптельной поверхностью размерами 30×35 мм (и больше) и с фоточувствптельной поверхностью круглой дисковой формы диаметром 50 мм больше) для измерения параметров элементов и батарей космического и наземного применения соответственно.
Новый эталонный элемент имеет встроенный холодильник, снабженный радиатором, через который может протекать вода от термостата, и чувствительный термодатчик. В качестве фоточувствительного датчика в этих эталонах используются солнечные элементы из кремния с мелкозалегающим
На корпусе нового эталона может крепиться тубус, уменьшающий поле зрения до ±2,5o, что необходимо для измерения прямого потока солнечного излучения при определении характеристик батарей, работающих с концентраторами. На тубусе для контроля параметров атмосферы (содержания паров воды, озона и аэрозолей) предусмотрена возможность установки интерференционных светофильтров, которые пропускают излучение в узких спектральных интервалах, соответствующих селективным полосам поглощения в спектре наземного солнечного излучения.
Постоянное совершенствование технологии изготовления и создание новых типов солнечных элементов вызывают необходимость измерения параметров солнечных элементов с нестандартным распределением спектральной чувствительности. При этом необходимо иметь набор солнечных элементов с различными вариантами спектральных характеристик. Солнечные элементы для таких эталонов получают изменением глубины залегания
Элементы для эталонов отбираются из числа серийно выпускаемых или изготавливаются специально. При отборе основное внимание обращается на качество торцевых поверхностей, на значения шунтового и последовательного сопротивлений. Важно, чтобы свойства солнечных элементов, используемых для этой цели, были однородны по площади (особенно спектральная и интегральная чувствительности). Желательно, чтобы у них был минимальный температурный коэффициент тока короткого замыкания. Отобранные по этим параметрам элементы монтируются в оправы и проходят естественное или ускоренное старение. Затем определяется стабильность чувствительности. Исследование проводят в течение длительного времени, при этом методика должна обеспечивать, чтобы погрешность относительных измерений не превышала 0,1 %. При первичной градуировке используются эталонные элементы с высокой стабильностью чувствительности; изменения тока короткого замыкания таких элементов с течением времени составляют не более чем ±0,5 %. Для эталонных солнечных элементов наземного применения проверяются также угловые зависимости чувствительности и линейность зависимости
Кремниевые солнечные элементы, предназначенные для энергетических целей и используемые как эталонные, в обычных условиях отличаются наиболее стабильными характеристиками из всех преобразователей солнечной энергии. Эти солнечные элементы обладают также линейной зависимостью тока короткого замыкания (в эталоне они работают в режиме короткого замыкания) в довольно широком диапазоне изменения плотности потока излучения и имеют небольшой температурный коэффициент тока короткого замыкания 0,1–0,2 %∕° С; их чувствительность охватывает видимую и ближнюю инфракрасную области спектра. Могут применяться в эталонах и кремниевые солнечные элементы со сверхмелким
Абсолютная градуировка эталонных солнечных элементов трудоемка, требует длительного времени и значительных затрат, поэтому эталоны, прошедшие такую градуировку, используют только в качестве первичных эталонов образцового средства измерения. Для каждодневных целей применяются светоизмерительные приемники — вторичные и рабочие эталоны.
Эталонные элементы работают в режиме короткого замыкания, и градуировка их заключается в определении тока короткого замыкания при нормируемых условиях спектрального состава и плотности потока солнечного излучения (внеатмосферного или наземного). Возможны два принципиально различных типа градуировки: на естественном солнечном излучении и в лаборатории с использованием средств измерений, поверенных по Государственному эталону, с измерением спектральной чувствительности эталонных солнечных элементов по усовершенствованным методикам.
При градуировке эталонных элементов, предназначенных для настройки имитаторов внеатмосферного солнечного излучения, применяется множество методов первого типа: измерения на космических аппаратах, ракетах, шарах-зондах, высотных самолетах, на поверхности земли.
При градуировке на космических аппаратах и ракетах значение тока для внеатмосферных условии получают в результате непосредственных измерений. Градуировка на космических аппаратах, помимо высокой стоимости, встречает ряд сложностей, связанных с возвращением эталонных элементов на Землю, и поэтому используется, как правило, только для проверки точности других методов. Ракеты, поднимающиеся на высоту более 200 км, возвращают эталонные элементы на Землю. Все измерения проводятся на высоте не менее 100 км.
Шары-зонды поднимаются на высоту 30–40 км, где спектральное распределение энергии солнечного излучения определяется практически только полосами поглощения озона и в очень небольшой степени аэрозольным рассеянием. Влияние озона и аэрозолей учитывается введением поправки.
Самолеты для научных исследований обычно поднимаются на 12–13 км. Ориентация эталонных солнечных элементов на Солнце осуществляется летчиком с помощью оптического прицела. Измерения начинаются при подъеме на 3–4 км. Параметры солнечного излучения зависят от высоты полета самолета над уровнем моря и от положения Солнца над горизонтом в момент измерений, т. е. от оптической массы атмосферы. Проводились измерения на научном самолете при значениях абсолютной атмосферной массы от 1,4 до 0,14. Значение тока для внеатмосферных условий определялось экстраполяцией результатов к нулевой атмосферной массе. Это значение можно получить таким же образом по данным измерений в наземных, желательно высокогорных условиях.
Метод, который наиболее часто используется при градуировке под естественным солнечным излучением на поверхности Земли (как правило, в высокогорных условиях), заключается в эктраполяции результатов измерений к нулевой атмосферной массе. При градуировке последовательно измеряют ток короткого замыкания эталонных солнечных элементов для различных значений атмосферной массы (разная высота Солнца). Поскольку работа проводится в стационарных условиях, достаточно знать зависимость тока короткого замыкания эталонов от относительных значений атмосферной массы. Внеатмосферное значение тока короткого замыкания солнечных элементов получают путем линейной экстраполяции зависимости логарифма тока от относительной атмосферной массы к ее нулевому значению.
Практически метод осуществляется путем измерения тока короткого замыкания эталонных элементов в течение половины солнечного дня. Логарифмы измеренных значений тока наносятся на график в функции атмосферной массы, через экспериментальные точки проводится прямая линия (так называемая прямая Бугера), которая линейно экстраполируется к значению тока при нулевой атмосферной массе. Строго говоря, зависимость логарифма тока короткого замыкания от атмосферной массы оказывается линейной только для монохроматического света. Кремниевые солнечные элементы чувствительны в достаточно широкой области спектра, и вследствие эффекта Форбса для них эта функция изображается слабо вогнутой кривой. Однако при градуировке экстраполяцию проводят линейно, a затем вносят поправку на эффект Форбса. Для вычисления поправки (значение которой находится в пределах 1–3 %) необходимо знать спектральное распределение коэффициента прозрачности атмосферы в течение всего периода градуировки эталонных элементов, когда производятся измерения тока короткого замыкания эталонных солнечных элементов в зависимости от высоты Солнца над горизонтом.
Эти измерения проводят в сухих горных районах, где выше прозрачность атмосферы и для которых в определенные периоды года характерна устойчивость оптических свойств атмосферы. Для контроля стабильности оптических свойств атмосферы одновременно с измерениями ведут наблюдения за солнечным ореолом.
В СССР градуировка эталонных солнечных элементов осуществляется с 1965 г. регулярно один-три раза в год в окрестностях Алма-Аты на высокогорной станции Государственного астрономического института им. П. К. Штернберга (43° с. ш., 77° в. д., 3040 м над уровнем моря), сотрудниками которого во главе с Э. В. Koноновичем создана программа расчета тока
Пример определения
Если значения относительной воздушной массы, полученные во время измерений в высокогорных условиях, перевести в абсолютные величины, то зависимость логарифма тока короткого замыкания от абсолютной воздушной массы дает возможность определить ток короткого замыкания эталонных солнечных элементов не только для условий AM0, но и для AM1, AM1,5 и АМ2, а также для больших значений воздушной массы.
Однако при градуировке эталонов на согласованном в международном масштабе спектре требуется соответствие ему спектра наземного солнечного излучения, использованного при измерениях, не только по значению воздушной массы, но и по остальным параметрам: плотности потока излучения, коэффициенту мутности и селективности, количеству осажденных паров воды и озона. Сравнение спектра солнечного излучения, измеренного в день проведения испытаний в высокогорных условиях, со стандартным позволяет внести необходимую поправку в значение тока эталонов, определенное по зависимости, подобной показанной на рис. 3.2, для любых значений абсолютной воздушной массы. Тем самым удается на основании результатов высокогорных измерений получить достаточно точные градуировочные значения тока эталонных элементов для оценки параметров наземных солнечных элементов. Приведение к стандартному спектру может быть также осуществлено без детального исследования спектра солнечного излучения в определенный день — достаточно знать глубину нескольких характерных полос в спектре, что позволяет оценить содержание водяных паров, озона и аэрозолей в этот день.
Как правило, результаты градуировки эталонных солнечных элементов несколькими методами сравниваются между собой и показывают достаточно хорошее совпадение получаемых значений.
Измерения в наземных, лабораторных
и космических условиях
Наземные параметры солнечных элементов в зависимости от условий измерения изменяются: по мере увеличения воздушной массы, возникновения пасмурности, облачности, дымки, появления капель дождя КПД солнечных элементов, как правило, значительно растет, хотя абсолютное значение генерируемой ими мощности падает. Причину этого явления легко понять из сравнения кривых спектрального распределения энергии солнечного излучения при различных атмосферных массах (см. рис. 3.3): при увеличении значения атмосферной массы от 1 до 5 плотность потока излучения падает, но максимум проходящего сквозь атмосферу излучения сдвигается вправо, приближаясь к максимуму спектральной чувствительности солнечных элементов из кремния и арсенида галлия.
В июне 1982 г. в г. Будапеште на имитаторе наземного солнечного излучения были проведены совместные советско-венгерские измерения вольт-амперных характеристик и КПД солнечных элементов в лабораторных условиях.
Источником света в имитаторе служила ксеноновая лампа высокого давления, спектр которой коррегирован интерференционным фильтром. Настройка имитатора осуществлялась с помощью эталонного солнечного элемента (чувствительная поверхность 30×35 мм), разработанного п отградуированного в СССР. Конструкция эталона, как уже указывалось, предложена в качестве стандартной для стран СЭВ. Градуировка проведена для наземных условий AM1,5 (плотность прямого потока 850 Вт/м2) и для условий AM1 (плотность потока 1000 Вт/м2).
При работе на имитаторе использовался разработанный Институтом электротехнической промышленности ВНР прибор для автоматического измерения и записи вольт-амперной характеристики, в комплект которого входит мини-ЭВМ, что позволяет одновременно определить оптимальные параметры солнечных элементов.
В приборе использован четырехзондовый метод съема тока с отдельной цепью подключения вольтметра, который позволяет значительно точнее по сравнению с двухзондовым (см. рис. 2.8) измерить напряжение на солнечном элементе. Поскольку в цепи вольтметра при четырехзондовой схеме протекает очень малый ток, падение напряжения на сопротивлении перехода между контактом солнечного элемента и токосъемным зондом и на сопротивлении проводов ничтожно, и, следовательно, вольтметр регистрирует напряжение, которое установилось непосредственно на солнечном элементе. Как показали эксперименты, для элементов площадью 5,4 см2 при стандартной плотности потока излучения и
В любом варианте электрической схемы по мере увеличения переходного сопротивления контакт солнечного элемента — токосъемный зонд, сопротивления проводов и внутреннего сопротивления амперметра измерения параметров солнечного элемента будут проводиться в области вольт-амперной характеристики, все более удаленной от точки короткого замыкания, и для элементов с высоким последовательным сопротивлением ошибка измерений будет весьма ощутимой.
Для точного определения тока короткого замыкания элементов может быть применена схема с дополнительным источником, позволяющим подавать встречное напряжение. Особенно удобно использовать ее для измерений при повышенных концентрациях солнечного излучения или при исследовании параметров солнечных элементов с большой площадью фоточувствительной поверхности. Такая схема применяется, например, для измерений характеристик блок-элементов (модулей с параллельно соединенными солнечными элементами) большого размера, имеющих высокое значение тока при малых напряжениях.
Результаты проведенных в г. Будапеште в июне 1982 г. и повторенных в Москве в мае 1986 г. советско-венгерских экспериментов по измерению параметров солнечных элементов на имитаторе Солнца сравнивались с данными, полученными на этом же имитаторе при его настройке по солнечному элементу, сличенному с эталоном, принятым в США для измерения наземных элементов применительно к условиям AM1, который был продемонстрирован на советско-американском семинаре в 1977 г. в Ашхабаде. При настройке по эталону США наблюдалось завышение КПД элементов, составлявшее для венгерских элементов в среднем 8 %, для советских — 6 %, что объясняется, по-видимому, отличиями в методах градуировки эталонов, применяемых в СССР и США.
Различие в результатах измерений при настройке имитаторов с помощью разных эталонов указывает на необходимость использования единого стандартного спектра наземного Солнца при градуировке эталонов. Намеченный в последнее время выбор стандартного наземного спектра (условия AM1,5), согласованного в международном масштабе, является, по-видимому, единственно правильным решением сложного вопроса градуировки наземных солнечных элементов, поскольку при этом можно проводить сопоставление эффективности и качества солнечных элементов и батарей, выпускаемых разными странами и фирмами.
Градуировка эталонов для оценки эффективности работы солнечных элементов и батарей космического назначения с использованием общепринятого в настоящее время спектра AM0 Макаровой и Харитонова также позволяет достаточно точно настраивать лабораторные и заводские имитаторы Солнца и прогнозировать характеристики солнечных батарей при эксплуатации во внеатмосферных условиях. Труднее учесть переменную по спектру и потоку и непостоянную во времени часть солнечного излучения, отраженную от облаков и подстилающего рельефа Земли и эффективно используемую двусторонними и прозрачными в инфракрасной области спектра солнечными батареями. Однако расчетные и экспериментальные исследования, вероятно, позволят в недалеком будущем достаточно точно пред-сказывать возможное увеличение тока солнечных батарей низколетящих спутников Земли за счет этой составляющей внеатмосферного солнечного излучения.
Уже не раз подчеркивалось, что солнечный элемент, предназначенный для создания эталона, должен обладать основными особенностями, свойственными спектральным, фотоэлектрическим и оптическим характеристикам измеряемых элементов. Например, при оценке КПД партии солнечных элементов из кремния с
Однако выполненные советскими исследователями измерения на автоматической межпланетной станции «Венера» (результаты которых опубликованы в журнале «Гелиотехника» в 1983 г.) говорят о том, что возможен и другой подход: создание стабильного солнечного элемента, например, из кремния со сравнительно глубоким
Как было установлено в ходе полета автоматических межпланетных станций «Венера-13 и -14», при определении параметров солнечных элементов для внеатмосферных условий (спектр AM0, плотность потока излучения 1360 Вт/м2) на имитаторе Солнца из ламп накаливания без коррекции спектра с плотностью излучения 1000 Вт/м2 для кремниевого эталона с глубоким
Подобным же образом можно поступить и в случае градуировки имитаторов Солнца для измерений параметров наземных солнечных элементов. В паспорт эталона, используемого при настройке имитаторов внеатмосферного Солнца, при этом следует внести значение переходного коэффициента от AM0 к стандартным наземным условиям AM1,5, определенное или пересчитанное, как и в предыдущем случае, для такого же значения рабочей температуры, причем ток при AM0 и AM 1,5 должен быть отнесен к плотности соответствующего потока излучения. Значения подобных переходных коэффициентов были получены советскими специалистами из результатов высокогорных измерений и путем использования абсолютной спектральной чувствительности данного эталонного элемента и стандартных спектров AM0 и AM1,5.
Для кремниевых солнечных элементов с мелкозалегающим
Для солнечных элементов на основе гетероструктуры AlGaAs-GaAs он составляет 1,26, 1,24 и 1,18 при толщине слоя AlGaAs соответственно 15, 10 и менее 1,0 мкм. Для тонкопленочных солнечных элементов на основе гетероструктуры Cu2S-CdS переходный коэффициент от AM0 к AM1,5, как правило, равен 1,04, а для элементов на основе гетероструктуры ITO-Si этот коэффициент составляет, по результатам расчетов, 1,10-1,11.
Качественно (а в некоторых случаях и количественно) близкие результаты были получены американскими исследователями. Измеренная на фильтровом монохроматоре (источник излучения — мощная вольфрамовая лампа накаливания) спектральная чувствительность кремниевых элементов была пересчитана ими на спектры излучения Солнца для условий AM0 и AM1, что позволило затем определить интегральные значения тока короткого замыкания исследуемых элементов и переходные коэффициенты от условий AM0 к условиям AM1, равные: для обычных элементов без покрытий 1,08; для элементов с текстурированной неотражающей поверхностью, полученной селективным химическим травлением, 1,14; для обычных элементов с просветляющей пленкой из двуокиси кремния 1,15; для таких же элементов наземного назначения с большой глубиной залегания
Аналогичные данные получаются при пересчете спектральной чувствительности солнечных элементов из различных полупроводниковых материалов на новый спектр полного (прямого + диффузного) солнечного излучения при
Глава 4
НОВЫЕ КОНСТРУКЦИИ СОЛНЕЧНЫХ ЭЛЕМЕНТОВ
Высокоэффективные солнечные элементы из кремния
Среди различных типов фотоэлектрических преобразователей лишь монокристаллические кремниевые солнечные элементы в настоящее время нашли широкое применение в солнечной энергетике (например, в системах энергообеспечения искусственных спутников Земли). Большой практический опыт и знания, накопленные при производстве монокристаллических солнечных элементов из кремния, обеспечивают возможность перехода к полностью автоматизированной технологии изготовления солнечных элементов. Если к тому же учесть, что кремний относится к наиболее распространенным в природе химическим элементам, а монокристаллические кремниевые солнечные элементы обладают высокой эффективностью (КПД многих образцов достигает сейчас 18–19 %), то кремний можно считать во всех отношениях перспективным материалом для создания наземных фотогенераторов — фотоэлектрических преобразователей солнечной энергии.
Монокристаллический кремний в виде массивных образцов относится к наиболее подробно и глубоко исследованным полупроводниковым материалам. Технология получения и обработки кремния, а также изготовления электронных схем и приборов на его основе до сих пор остается базовой технологией в электронной промышленности благодаря высокому уровню развития и быстрому совершенствованию. При этом кремний занимает ведущее положение во всех областях электроники. Кроме того, кремний используется в оптоэлектронике, интегральной оптике и вычислительной технике.
Развитие высокоэффективных кремниевых солнечных элементов с обычным
Стремление приблизить
Разработка солнечных элементов с
В силу высокой чувствительности в фиолетово-голубой части спектра описываемые солнечные элементы получили название фиолетовых. Плотность тока короткого замыкания таких солнечных элементов удалось довести до 40–42 мА/см2. Спектральная зависимость токовых потерь фиолетовых солнечных элементов, рассчитанная с учетом спектрального распределения внеатмосферного солнечного излучения, показывает, что их коэффициент собирания близок к 1,0 почти во всей области чувствительности. Потери в коротковолновой области спектра относительно невелики, и дальнейшее улучшение использования солнечного излучения возможно не за счет совершенствования внутренней структуры солнечных элементов (ибо
Уменьшение толщины верхнего легированного слоя важно не только для повышения фоточувствительности, но и для улучшения диодных характеристик солнечных элементов. Согласно расчетным и экспериментальным данным, параметры легированного слоя определяющим образом влияют на величину тока насыщения и, следовательно, фото-ЭДС. Подобная роль обусловлена, во-первых, эффектами, связанными с высоким уровнем легирования — сужением запрещенной зоны и уменьшением эффективной концентрации основных носителей, появлением обратного градиента поля, и, во-вторых, чрезвычайно низким временем жизни носителей заряда, вероятно не превышающим 1 нс. Для снижения тока насыщения рекомендуется уменьшить толщину верхнего слоя и обеспечить оптимальный уровень легирования 2-1019 см-3 (ранее при создании элементов разработчики стремились к получению в верхнем легированном слое концентрации примеси и свободных носителей заряда на уровне 1021 см-3, близком к пределу растворимости фосфора в кремнии). Влияние возросшего слоевого сопротивления должно быть скомпенсировано соответствующей структурой контактной сетки.
При разработке фиолетовых солнечных элементов эти требования были реализованы за счет ряда технологических и конструктивных новшеств. Основные из них: низкотемпературная (770–800oC) диффузия в потоке газа носителя, относительно малая поверхностная концентрация легирующей примеси (1019 см-3) и густая контактная сетка (8—10 полос/см) при ширине полоски ~50 мкм.
Для уменьшения потерь на отражение света был разработан метод обработки поверхности кремния, позволивший создать «неотражающий», или «черный», солнечный элемент из кремния с высоким КПД. Отличие такого солнечного элемента — особый пирамидообразный, текстурированный (рис. 4.2,
Дополнительный эффект текстурирования поверхности — уменьшение глубины поглощения света. Происходящее в результате этого возрастание эффективного коэффициента поглощения
Помимо традиционной плоской, планарной, конструкции в последние годы широко исследуются солнечные элементы со сложной конфигурацией
Вертикальное расположение
Наиболее удачно последняя конструкция реализована в солнечных элементах с рельефной структурой поверхности, схематически изображенной на рис. 4.2,
Другое очевидное достоинство такого солнечного элемента — высокая объемная фоточувствительность, достигаемая за счет близкого расположения вертикальных участков
Улучшение оптических и фотоэлектрических характеристик солнечных элементов достигается также созданием в легированном и базовом слоях фотоэлемента тянущих электростатических полей (за счет, например, направленного изменения распределения примесей или градиента ширины запрещенной зоны по глубине элемента).
Влияние внутренних электрических полей на эффективность собирания и КПД полупроводниковых солнечных элементов исследовано достаточно хорошо. Первые работы были связаны с рассмотрением однородного поля с постоянными значениями подвижности и времени жизни носителей, не зависящими от концентрации примесей. Дальнейшее усложнение моделей солнечных элементов с встроенным полем привело к изучению неоднородных электрических полей и параметров диффузии, зависящих от пространственных координат. Однако проведенные исследования носили сугубо теоретический характер, а предлагаемые распределения примесей были трудно воспроизводимы.
Солнечные элементы практически всегда имеют внутренние электрические поля, возникающие в местах значительного перепада концентрации примеси по глубине кристалла или слоя, однако обычно эти поля носят случайный характер и являются следствием используемой технологии. В связи с этим возникает задача нахождения профилей концентрации примесей, значительно повышающих эффективность собирания носителей из легированного слоя и в то же время получаемых с помощью хорошо отработанных технологических методов.
Расчет и эксперимент, выполненные в одной из отечественных работ, показали, что пористая оксидная пленка, предварительно образованная на поверхности кремния методом анодного окисления, дает возможность даже при однократной термодиффузии получить двуслойную структуру легированной области. Часть диффузанта, например фосфора, проходя через поры, образует область низких концентраций примеси в зоне, близкой к
Оптимальный режим однократной диффузии через предварительно созданную оксидную пленку определенной пористости дает возможность получать
Другой технологический прием создания сложного распределения примесей — двойное легирование. Диффузионный слой, образованный в процессе первой термической диффузии, стравливается до глубины 0,5–0,6 мкм, затем осуществляется вторичное легирование по режиму однократной термодиффузии. Полученные
Была обнаружена повышенная чувствительность экспериментальных солнечных элементов в коротковолновой области спектра, что объясняется преобладающим (над эффектом ухудшения параметров диффузии неосновных носителей в области повышенной концентрации) влиянием введенного тянущего поля сложной конфигурации.
Вольт-амперные характеристики солнечных элементов с двуслойной структурой легированной области также значительно лучше, чем у обычных. Плотность нагрузочного тока с единицы полезной площади таких солнечных элементов при глубине залегания
Таким образом, обоснованное теоретически и воспроизведенное экспериментально двухступенчатое распределение примесей приводит к значительному улучшению вольт-амперных и спектральных характеристик солнечных элементов даже при сравнительно большой глубине залегания
Резко увеличить коротковолновую спектральную чувствительность кремниевых солнечных элементов можно также, используя пассивирующую пленку, например, диоксида или нитрида кремния. Пленка содержит встроенный электрический заряд и вместе с тонким легированным слоем кремния, как и у солнечных элементов с тянущим полем в легированной области, будет образовывать двуслойную структуру
В одной из работ, например, подобная структура
Распределение примесей фосфора и бора в легированной пленке SiO2 и в верхнем слое кремния было получено с помощью метода спектроскопии вторичных ионов. Мелкозалегающий
Распределение примеси, как и при контролируемой диффузии через анодную окисную пленку, имеет двухступенчатый профиль (с небольшим скачком концентрации примеси на границе раздела SiO2—Si). Следовательно, в этом случае также образуется тянущее электростатическое поле повышенной эффективности, что подтверждается высоким коэффициентом собирания в коротковолновой области солнечного спектра у полученных элементов. Для них также характерно необычайно большое значение
Влияние поверхностной пассивирующей пленки на коэффициент собирания в коротковолновой области спектра и
Если базовый слой обычных элементов, например
Модели солнечных элементов с тянущим полем значительной протяженности в базе вскоре были вытеснены моделью с резким изотипным переходом[7]
Для создания высокоэффективных солнечных элементов можно было бы использовать почти собственный кремний, продиффундировав примеси
При получении солнечных элементов
Преимущества солнечных элементов с изотипным переходом у тыльной поверхности сказываются в том случае, когда диффузионная длина неосновных носителей в базовом слое больше толщины базового слоя или по крайней мере равна ей. Это требование приводит к необходимости использовать для создания базового слоя достаточно чистый полупроводниковый материал с повышенным удельным сопротивлением или уменьшать толщину базового слоя до значений, меньших диффузионной длины носителей заряда в данном материале. В настоящее время получены зависимости диффузионный длины
Солнечные элементы с
Солнечные элементы на основе кремния (а также других полупроводниковых материалов), прозрачные в длинноволновой области спектра за краем основной полосы поглощения, представляют собой разработку, сыгравшую большую роль в наблюдаемом нами сейчас бурном прогрессе полупроводниковой фотоэнергетики, ибо на основе таких элементов оказалось возможным реализовать на практике многие казавшиеся неосуществимыми теоретические модели элементов с очень высоким кпд, в частности каскадные элементы. Принципиальная возможность создания таких солнечных элементов обеспечивается прозрачностью любого чистого высокоомного полупроводникового материала за краем основной полосы поглощения. Однако если базовый слой солнечных элементов выполняется из сравнительно чистого материала с малым содержанием легирующих примесей, то верхний слой для уменьшения сопротивления растекания тока носителей заряда, разделенных
Низкое значение времени жизни и диффузионной длины неосновных носителей заряда в легированном слое приводит к необходимости уменьшения толщины этого слоя до значений в диапазоне 0,15—0,5 мкм. Поглощение инфракрасной области солнечного излучения (λ от 1,1 до 2,5 мкм) элементом с легированным слоем такой толщины не превышает 1–3 %. Таким образом, тенденция к уменьшению глубины залегания
Два других препятствия — поглощение излучения в сплошном тыльном контакте и высокое отражение от тыльной поверхности элемента — были преодолены путем замены сплошного тыльного контакта на сетчатый и нанесения просветляющего покрытия с оптической толщиной 0,3–0,4 мкм. Расчет показал, что при сетчатом тыльном контакте определенной конфигурации можно сохранить последовательное сопротивление и коэффициент заполнения нагрузочной вольт-амперной характеристики прозрачного кремниевого солнечного элемента практически на уровне элемента обычной конструкции со сплошным тыльным контактом.
Равновесная рабочая температура у прозрачных солнечных элементов из кремния в космосе значительно ниже, чем у обычных, вследствие того, что интегральный коэффициент поглощения солнечной радиации составляет, как показали данные прямых измерений этой величины в космических условиях, не 0,92—0,93 (значения, характерные для элемента обычной конструкции со сплошным тыльным контактом из плохо отражающего металла), а 0,72—0,73.
Солнечные элементы с тыльным сетчатым контактом, прозрачные в инфракрасной области спектра, начиная от длины волны 1,1 мкм, были получены в СССР из кремния и арсенида галлия и на основе тонкопленочных структур Cu2S — CdS во Франции. Как показали расчеты для геостационарной орбиты, у таких солнечных элементов в космосе температура должна понизиться на 10–15°, а выходная мощность возрасти на 5–7 %.
Прозрачные солнечные элементы из кремния и арсенида галлия были успешно использованы также для создания первых реальных моделей каскадных солнечных элементов.
Нефотоактивное длинноволновое инфракрасное излучение может быть не только пропущено сквозь прозрачный солнечный элемент, но и отражено от его тыльной поверхности к источнику излучения. Для этого на тыльную поверхность прозрачных солнечных элементов, свободную от токосъемного омического контакта, должен быть нанесен слой высокоотражающего металла, например алюминия, меди, серебра.
Отражающий слой может быть получен испарением в глубоком вакууме обычной трехслойной структуры титан — палладий — серебро непосредственно на поверхность кремния, свободную от контактных полос, или создан одновременно с алюминиевым контактом. Однако необходимое для получения хорошего омического контакта впекание алюминия при высоких температурах приводит к уменьшению коэффициента отражения таким слоем инфракрасного излучения.
Значительно выгоднее использовать для увеличения отражения в нефотоактивной части спектра слой высокоотражающего металла, нанесенный на поверхность кремния между полосами сетчатого контакта на тыльной стороне. В этом случае можно ограничиться сравнительно небольшим (до температуры 150–200 °C) подогревом поверхности кремния для увеличения адгезии слоев и сохранить отражение в инфракрасной области от границы кремний — металл на достаточно высоком уровне.
К столь же высоким значениям коэффициента отражения приводит решение аналогичной задачи другим простым и технологичным способом: приклейкой кремнийорганическим каучуком к тыльной стороне прозрачных солнечных элементов стеклопленок с нанесенным слоем алюминия или серебра. При этом к внешней поверхности элементов или группы — модуля из таких элементов — может быть приклеено стекло с нанесенной на его поверхность (обращенную к элементу) сеткой из отражающего металла в местах, расположенных над токосъемными контактами самих солнечных элементов или над электрическими соединениями между ними. Изменяя ширину полос отражающей сетки, можно регулировать температуру таких элементов при увеличении или уменьшении потока солнечного излучения. Солнечные батареи такой конфигурации обладают в космосе более низкой равновесной рабочей температурой (на 25–35 °C) и повышенной термостойкостью, что было экспериментально подтверждено в ходе длительной эксплуатации в космических условиях на борту советских межпланетных станций «Венера-9» и «Венера-10».
Следует отметить, что оптические характеристики прозрачных солнечных элементов из различных полупроводниковых материалов с отражающими покрытиями на тыльной стороне весьма близки к оптическим характеристикам дихроических светоделительных зеркал, что делает весьма перспективным применение таких солнечных элементов для создания высокоэффективных фотоэлектрических систем со спектральным разделением солнечного излучения и последующим преобразованием его в электроэнергию элементами с различной спектральной чувствительностью. Прозрачные солнечные элементы могут при этом выполнять одновременно две функции: активно преобразующего элемента системы и светоделительного зеркала.
Советскими специалистами была впервые высказана также идея о том, что можно создать двусторонние солнечные элементы, совмещая элементы, прозрачные в инфракрасной области спектра, с элементами с изотипным переходом у тыльной поверхности
Введение изотипного перехода в конструкцию прозрачных солнечных элементов позволяет резко снизить скорость поверхностной рекомбинации
В отличие от самых первых моделей элементов двусторонней конструкции с двумя
Изготовление двусторонних солнечных элементов не сложнее производства солнечных элементов и батарей с односторонней чувствительностью, прошедших многолетнюю проверку при эксплуатации в космосе. Изотипный барьер под сетчатым тыльным контактом можно создать ионным подлегированием бором с последующим термическим отжигом или нанесением методом химической пульверизации прозрачной токопроводящей пленки SnO2 (образование изотипного перехода происходит при этом в основном за счет влияния встроенного электрического заряда).
G целью увеличения эффективности двусторонних солнечных элементов с изотипным тыльным переходом желательно использовать при создании базового слоя более высокоомный, чем обычно, материал, например, перейти от монокристаллического кремния с p=0,5÷1,5 Ом×см к кремнию с p=7,5÷10 Ом×см (или уменьшить толщину базового слоя).
Для низколетящих спутников Земли использование двусторонних солнечных элементов с изотипными переходами у тыльной стороны создает значительный резерв мощности, что подтвердили лабораторные эксперименты, в которых плотность потока солнечного излучения, падавшего на двусторонние элементы с тыльной стороны, составляла 0,3 от плотности потока излучения с верхней лицевой стороны в связи с тем, что среднее альбедо Земли близко к этому значению. Результаты измерений, проведенных в лаборатории, позволяют оценить возможный прирост мощности солнечных батарей, выполненных из двусторонних элементов с изотипным переходом у тыльной поверхности, при установке их на низколетящих спутниках Земли (высота орбиты 200–400 км). Эти результаты были качественно подтверждены затем прямым космическим экспериментом, выполненным советскими учеными на орбитальной станции «Салют-5». Среднее альбедо Земли во время этого полета составляло 0,25, а ток двусторонних солнечных батарей был в среднем на 17–18 % (а за первые десять витков на 15±2 %) больше, чем у односторонних солнечных батарей обычной конструкции.
Дешевые солнечные элементы из кремния
и автоматизированная технология их получения
Реальная перспектива широкого использования солнечных элементов не только на борту космических аппаратов, но и в наземной солнечной энергетике, в самых разнообразных отраслях промышленности, сельского хозяйства, в автоматических системах управления, а также в быту делает актуальной проблему создания экономичного, полностью автоматизированного производства солнечных элементов из недорогих и тонких полупроводниковых слоев.
Решение этой проблемы усложняется тем, что длительное время в стремлении получить максимальное значение КПД и оптимальные оптические и электрические параметры разработчики солнечных элементов не стремились к уменьшению их толщины, не старались удешевить, механизировать и автоматизировать производство солнечных элементов или процесс сборки их в батарею и часто использовали для создания элементов и батарей самые разнообразные и разнородные физические и химические процессы и операции. Например:
при изготовлении кремниевых солнечных элементов высокотемпературной диффузии примесей для создания
при производстве элементов из арсенида галлия применяются толстые дорогие подложки и трудоемкий процесс жидкостной или газовой эпитаксии для получения слоев твердого раствора алюминия в арсениде галлия, повторяющих совершенную структуру монокристаллической подложки;
в изготовлении тонкопленочных элементов на основе гетеросистемы сульфид меди — сульфид кадмия одновременно участвуют «сухой» (нанесение слоев сульфида кадмия на проводящие подложки) и «мокрый» (образование гетероперехода путем химической реакции в жидкой фазе между поверхностным слоем сульфида кадмия и однохлористой медью) методы.
В то же время очевидно, что успешное решение проблемы автоматизации процесса получения солнечных элементов основано на возможности создания технологии производства, включающей небольшое число однородных операций, а для удешевления изготовления элементов требуется переход ко все более тонким и недорогим слоям и широкому применению полимерных материалов (при сохранении, конечно, оптических и электрических характеристик элементов на достаточно высоком уровне).
В последнее время в этом направлении произошли существенные изменения, и достижения в создании простой технологии дешевых солнечных элементов наземного применения даже начинают использоваться в производстве солнечных батарей космического назначения.
Создается, например, методика получения кремния прямым восстановлением диоксида кремния; освоен способ непрерывного вытягивания лент кремния, позволяющий исключить из процесса производства дорогие и трудоемкие операции резки, шлифовки, химической и механической полировки пластин кремния; методом химической пульверизации получены просветляющие покрытия, контакты и пленки для легирования.
Такая технология может быть названа «химической». В то же время успешно разрабатывается «физическая» технология изготовления солнечных элементов, в которой нанесение просветляющих покрытий, контактов и внедрение легирующей примеси осуществляется ионной бомбардировкой в вакууме, а отжиг образовавшихся при этом дефектов в легированном слое — путем сканирования лазерным или электронным лучом, причем эти операции могут непосредственно следовать одна за другой.
Как правило, новые технологические процессы разрабатываются применительно к кремниевым солнечным элементам. Однако значительные успехи достигнуты и в улучшении качества и удешевлении солнечных элементов других типов.
Несмотря на заметные успехи на пути удешевления и упрощения технологии создания солнечных элементов, процесс их производства пока еще содержит десятки трудоемких операций. Вероятно, только кардинальное изменение основных этапов получения солнечных элементов позволит в ближайшем будущем полностью автоматизировать процесс их производства. Несколько активно разрабатываемых новых моделей солнечных элементов, возможно, позволят на практике решить эту задачу. Оптические и электрические характеристики таких элементов несколько отличаются (в частности, более высокой чувствительностью в ультрафиолетовой области спектра) от характеристик традиционных солнечных элементов с
Большинство таких моделей является той или иной модификацией барьера Шоттки — барьера между полупрозрачным слоем металла и полупроводником. Резкий изгиб зон в полупроводнике на границе с металлом создает разделяющий барьер, необходимый для работы солнечного элемента. Роль полупрозрачного металла могут также выполнять полупрозрачные проводящие оксидные пленки из широкозонных полупроводниковых материалов.
Параметры подобных солнечных элементов на основе кремния были постепенно улучшены и путем оптимизации свойств полупрозрачных металлических пленок доведены до уровня, характерного для монокристаллических кремниевых солнечных элементов с
Изгиб зон на поверхности полупроводника и разделяющий барьер можно получить также за счет оксидного слоя с сильным встроенным зарядом. Этот инверсионный слой, как, впрочем, и диффузионный легированный слой, может быть использован также для уменьшения скорости поверхностной рекомбинации на освещаемой поверхности; разделение носителей заряда в этом случае осуществляется на р+- и n+-барьерах к базовому слою, расположенных с тыльной стороны элемента, что, кстати, облегчает коммутацию элементов в группы и модули солнечной батареи с помощью печатного монтажа.
Процесс изготовления всех перечисленных моделей солнечных элементов выгодно отличается от высокотемпературной термодиффузии (800–900oC), применяемой для получения
Нанесение барьеров Шоттки или МОП-структур может быть осуществлено в едином технологическом цикле с получением контактов и просветляющих покрытий двумя способами:
все операций Проводятся в одной вакуумной камере или в ряде камер, соединенных шлюзами, с использованием трафаретных масок или «сухой» фотолитографии;
все операции осуществляются на воздухе или в среде инертного газа методами химической пульверизации, шелкографии, химического пли электрохимического нанесения.
Следует, однако, отметить, что высокие значения КПД (12–15 % в наземных условиях) солнечных элементов с барьером Шоттки, а также с МОП- и ПОП-структурами получены, как правило, с использованием изотипного
В качестве примера на рис. 4.4 представлена спектральная зависимость чувствительности и коэффициента собирания одного из солнечных элементов из монокристаллического кремния с ПОП-структурой и тонким промежуточным слоем (десятки ангстрем) оксида SiOx на поверхности кремния. Верхний прозрачный проводящий слой (пленка ITO)[8] был нанесен методом химической пульверизации из смеси оксидов индия и олова. Толщина этого слоя 700 А (при поверхностном слоевом сопротивлении около 120 Om∕□), вследствие чего он одновременно выполнял роль эффективного просветляющего покрытия. У полученных солнечных элементов при измерении на имитаторе внеатмосферного Солнца КПД составлял 10,8 %. Это значение может быть существенно увеличено путем снижения последовательного сопротивления элементов, в частности, за счет оптимизации свойств пленки ITO, а также размеров и толщины контактной сетки на верхней освещаемой поверхности элементов.
Для получения дешевых и в то же время достаточно эффективных солнечных элементов перспективно использование кремниевых слоев, полученных на графитовых пластинках или пленках (так называемого «кремния на графитовой ткани»).
Типичный процесс изготовления дешевых и высокоэффективных солнечных элементов, как показано в ряде детальных исследований, состоит из следующих этапов:
распыление расплава металлургического кремния и его очистка посредством многократного выщелачивания в водной среде;
осуществление направленной кристаллизации расплава на поверхности термостойких графитовых пластин, лент или тканей (служащих подложками), в результате которой образуются слои металлургического кремния
последовательное выращивание эпитаксиального слоя p-Si толщиной ~25 мкм с удельным сопротивлением 0,1–1,0 Ом×см и неоднородно легированной пленки n+-Si толщиной ~10 мкм методом химического осаждения из паровой фазы с использованием термически активированной реакции восстановления трихлорсилана (необходимая легирующая примесь содержится в водороде) при температуре подложки около 1150o C и средней скорости роста ~1 мкм/мин;
получение контактной сетки с помощью вакуумного испарения Ti и Ag через металлическую маску;
создание просветляющего покрытия из SnO2 путем окисления тетраметилолова пои температуре 400o C в атмосфере Аr;
отжиг полученной структуры в атмосфере Не, стимулирующий диффузию примесей к границе зерен.
Графитовая пластина служит омическим контактом к
Проводимые испытания стабильности солнечных элементов рассмотренных моделей должны выявить физико-химическую совместимость всех слоев, использованных в таких многослойных структурах, при непрерывном освещении и повышенной температуре. Несомненно, однако, что для обеспечения длительной эксплуатации новых солнечных элементов потребуется тщательная герметизация и защита их от влияния внешней среды.
Тонкопленочные солнечные элементы из аморфного кремния и других полупроводниковых материалов
В настоящее время большое число исследований посвящено тонкопленочным солнечным элементам на основе аморфного кремния, так называемого α-Si, — интересного полупроводникового материала, который получается в основном разложением соединений кремния в высокочастотном разряде в вакууме.
В первых исследованиях было показано, что число рекомбинационных центров в запрещенной зоне аморфного кремния, полученного, в разряде, на несколько порядков меньше, чем в кремнии, нанесенном на различные подложки методом испарения в высоком вакууме. Улучшению свойств аморфного кремния помогает включение в состав материала от 5 до 50 ат.% водорода, в результате чего образуется практически сплав кремния и водорода, что, в свою очередь, облегчает легирование материала фосфором или бором для создания проводимости
Основным достоинством данного материала является высокий коэффициент поглощения а, более чем на порядок превышающий а монокристаллического кремния. На рис. 4.5 представлена зависимость α (λ) для аморфного кремния. Практически все фотоактивное для данного материала солнечное излучение поглощается в нем на глубине 1,5–2 мкм, что позволяет использовать для изготовления солнечных элементов в 50—100 раз меньше дорогостоящего полупроводникового материала.
Однако первые же результаты исследований аморфного кремния показали, что из-за малых значений времени жизни и диффузионной длины носителей заряда в этом материале (
Напряжение холостого хода таких элементов достигает 0,8 В, однако плотность генерируемого фототока не превышает 12 мА/см2 при КПД около 5,5 % в условиях измерения на Солнце со спектром AM1.
Еще одна сложная проблема в области создания солнечных элементов из аморфного кремния — необходимость уменьшения переходного сопротивления контакт — полупроводниковый слой, которое у многих элементов составляет от 3 до 10 Ом×см2, что приводит к ухудшению вольт-амперной характеристики и низким значениям коэффициента ее заполнения.
Использование тянущих электростатических полей, рост проводимости
Увеличения КПД солнечных элементов из аморфного кремния следует добиваться одновременно с улучшением стабильности их характеристик, ибо фотопроводимость некачественных пленок α-Si: H может уменьшиться в десять раз и более за семь-восемь часов непрерывного освещения, а при нагреве выше 300o C начинается экзодиффузия водорода из пленок, резко ухудшающая их параметры. Улучшению стабильности и качества пленок аморфного кремния способствует трехстадийный метод их получения. Сначала на подложку наносится пленка α-Si, не содержащая водорода (методом испарения в высоком вакууме с помощью электронного луча или термически). Скорость конденсации этого слоя 2–5 А/с. Затем проводится отжиг, уплотняющий пленку и уменьшающий количество и объем микропустот. После этого осуществляется гидрогенизация пленок α-Si при обработке в водородной плазме с использованием сильноточных плазменных источников, позволяющих получить ионы водорода с энергией 20–25 кэВ, насыщающие пленки аморфного кремния на глубину до 0,3 мкм. Таким методом получаются стабильные пленки высокого качества, вероятно, за счет практического отсутствия микропустот в них.
Стабилизации свойств и увеличению фотопроводимости таких пленок способствуют также лазерный отжиг, ионное легирование, подогрев подложки до 200–400 °C при их нанесении. У солнечных элементов с
Из-за высокого последовательного сопротивления аморфных солнечных элементов КПД солнечных батарей на их основе не превышает 2–3 % (велики потери на коммутацию). Несмотря на относительно невысокий КПД, уже в настоящее время небольшие экономичные солнечные батареи, состоящие из восьми последовательно соединенных солнечных элементов из аморфного кремния, вырабатывающих мощность всего лишь 4,5 мкВт/см2 при свете люминесцентной лампы (освещенность около 300 люкс), широко используются на практике для электропитания малогабаритных электронных часов и калькуляторов со световыми индикаторами на жидких кристаллах. Спектральная чувствительность элементов из аморфного кремния в близкой к ультрафиолетовой области солнечного спектра превосходит чувствительность солнечных элементов из монокристаллического кремния (рис. 4.6) и напоминает спектральную зависимость чувствительности человеческого глаза, что делает перспективным применение таких элементов также в фото- и киноэкспонометрах.
Длительное время лидирующее положение среди тонкопленочных солнечных элементов занимали различные гетероструктуры на основе тонких пленок соединений
Первый метод называется «мокрым». При его использовании поверхность солнечных элементов и самого гетероперехода носит развитый характер из-за многочисленных углублений и выступов зерен, увеличившихся в ходе химического травления. Это обстоятельство уменьшает коэффициент отражения света от поверхности солнечных элементов, но увеличивает обратный ток насыщения.
По второму методу, получившему название «сухого», образуется почти планарный гетеропереход, плоскопараллельный по отношению к подложке, но фоточувствительность пленок сульфида меди, получаемых в ходе реакции в твердой фазе, несколько уступает фоточувствительности пленок, образующихся «мокрым» способом.
Различают два типа тонкопленочных солнечных элементов на основе распространенной гетеросистемы сульфид меди — сульфид кадмия: тыльно-барьерный и фронтально-барьерный.
При фронтально-барьерной конструкции пленка сульфида кадмия осаждается в квазизамкнутом объеме в вакууме на подогреваемую до 200–300° G подложку из молибдена, полиимидной пленки или медной фольги, покрытой слоем цинка. Затем «сухим» или «мокрым» способом создается слой сульфида меди. Контакт к этому слою наносится в виде сетки из медных полос, испаряемых в вакууме через трафаретные маски, или создается приклейкой с помощью токопроводящей пасты позолоченной медной сетки (или ее прижимом липким слоем защитной полимерной пленки).
При изготовлении тыльно-барьерных солнечных элементов на подогреваемую стеклопленку или пластину из стекла с прозрачным токопроводящим слоем оксидов олова и индия (ITO) наносится слой сульфида кадмия и создается гетеропереход сульфид меди — сульфид кадмия, причем медный контакт к слою сульфида меди в этом случае может быть сплошным, полученным испарением слоя меди, поскольку тыльно-барьерный тонкопленочный элемент освещается со стороны стекла.
Толщина слоя сульфида кадмия обычно составляет от 2 до 40 мкм, слоя сульфида меди от 0,05 до 0,15 мкм. Ширина запрещенной зоны сульфида меди 1,2 эВ, сульфида кадмия 2,4 эВ, спектральная чувствительность тыльно-барьерных элементов (рис. 4.7, кривая
Вероятно, происходящая при термообработке диффузия атомов меди из контактов в поверхностный слой элементов улучшает как стехиометрический состав слоя сульфида меди, так и его фоточувствительность. Положение длинноволнового края чувствительности элементов до термообработки соответствует краю поглощения сульфида кадмия (
Экспериментально полученные в разных странах тонкопленочные солнечные элементы на основе гетеросистемы сульфид меди — сульфид кадмия в основном (при измерениях на наземном Солнце) имеют КПД 4–7 %, однако уже получены отдельные элементы с КПД, превышающем 10 % при измерениях на имитаторе наземного Солнца.
Для такого резкого увеличения КПД были использованы предложенные ранее усовершенствования, в частности сочетание напыленных контактов к сульфиду меди с контактной сеткой, приклеенной к ним токопроводящей пастой, что резко снижает последовательное сопротивление элементов. Кроме того, слой сульфида меди был создан не «сухим» способом, позволяющим увеличить
Некоторые из путей дальнейшего повышения КПД тонкопленочных элементов основаны на использовании структур, оказавшихся столь эффективными при улучшении характеристик солнечных элементов из кремния или арсенида галлия. В частности, дополнительное легирование сульфида меди с поверхности атомами меди позволяет получить структуру
Имеются направления усовершенствования параметров, характерные и специфичные именно для солнечных элементов данного типа. Например, замена слоя Cu2S слоем InP или CuInSe2 приводит к значительному увеличению коэффициента собирания, уменьшение плотности состояний в области гетероперехода (постоянные кристаллической решетки сульфида кадмия и этих материалов весьма близки), а при использовании вместо сульфида меди теллурида хрома удается существенно улучшить стабильность характеристик тонкопленочных элементов во времени, хотя, конечно, основную роль в увеличении срока службы таких элементов при длительной эксплуатации играет применение многослойных просветляющих и защитных покрытий. Для увеличения производительности процесса получения слоя сульфида кадмия и его удешевления успешно используется вместо испарения в квазизамкнутом объеме метод химической пульверизации на воздухе или нанесение с помощью газотранспортных реакций.
Электрофизические и оптические свойства большого числа гетеросистем на основе полупроводниковых соединений
Высокий КПД (16 % для условий AM0) получен советскими и зарубежными исследователями в комбинированной монокристаллическо-тонкопленочной гетероструктуре, образованной соединениями
Существуют планы крупномасштабного применения тонкопленочных элементов гетеросистемы сульфид меди — сульфид кадмия и ее модификаций в наземной солнечной энергетике, но в настоящее время эти элементы применяют на практике в основном как малогабаритные и очень чувствительные детекторы ультрафиолетового и видимого излучения Солнца и искусственных источников света (рис. 4.8).
Солнечные элементы из арсенида галлия
с гомо- и гетеропереходами
К арсениду галлия с середины 50-х годов, когда начались активные исследования в области фотоэлектричества, привлечено внимание большого числа ученых и инженеров, поскольку в солнечных элементах из этого полупроводникового материала с гомогенным
Несмотря на некоторые недостатки (хрупкость, большая плотность), у арсенида галлия имеются несомненные преимущества перед кремнием. В силу большой ширины запрещенной зоны способность арсенида галлия преобразовывать длинноволновое солнечное излучение ограничена (арсенид галлия поглощает излучение с длиной волны менее 0,9 мкм). Однако это же обстоятельство приводит к существенно меньшим значениям обратного тока насыщения
Эти преимущества арсенида галлия были полностью подтверждены в ходе более чем десятимесячной эксплуатации солнечных батарей, снабжавших электроэнергией советские межпланетные автоматические аппараты «Луноход-1, -2», о чем разработчики этих батарей сообщили на Всемирном электротехническом конгрессе в Москве в 1977 г.
Солнечные батареи из арсенида галлия при температуре 130–140oC на поверхности Луны генерировали выходную электрическую мощность, более чем в два раза превосходившую мощность, ожидаемую, по расчетным данным, для кремниевых солнечных батарей в этих условиях. В данном случае было особенно важно иметь высокую эффективность батарей, поскольку решение задачи осложнялось ограниченной площадью, на которой могла быть размещена солнечная батарея (откидная крышка космического аппарата). На радиатор космического аппарата было нанесено зеркальное теплоотражающее покрытие из радиационно стойких стекло-пленок со слоем алюминия или серебра на внутренней поверхности, позволявшее улучшить тепловой режим работы электронной аппаратуры этого автоматического межпланетного аппарата. Отношение интегрального коэффициента поглощения солнечного излучения αc к интегральному коэффициенту собственного теплового излучения поверхности ε данного покрытия составляло менее 0,2.
В начале и конце лунного дня при малых углах подъема Солнца над лунным горизонтом солнечное излучение, отражаясь от зеркального радиатора, попадало на откинутую крышку космического аппарата. В эти моменты с помощью телеметрической информации было четко зафиксировано увеличение тока солнечных батарей и повышение их температуры от 120 до 140oC. Радиатор использовался одновременно как своеобразный концентратор-отражатель.
Солнечные элементы с
Следует сказать, что основные пути усовершенствования солнечных элементов с
Для созданного в лаборатории солнечного элемента из гомогенного арсенида галлия с мелкозалегающим
Такие гетероструктуры служат не только для изменения (как правило, расширения) спектральной чувствительности; они позволяют создавать в солнечных элементах из арсенида галлия значительные тянущие электростатические поля как за счет градиента распределения легирующей примеси по глубине элемента (что является единственно возможным способом получения тянущих полей в случае кремниевых солнечных элементов), так и за счет градиента ширины запрещенной зоны полупроводника.
Один из наиболее простых и оригинальных технологических приемов создания такой плавной варизонной структуры на поверхности солнечного элемента из арсенида галлия был разработан советскими авторами еще в середине 60-х годов. При этом для получения структуры использован не метод жидкостной или газовой эпитаксии, а хорошо отработанная техника термодиффузии. Для изготовления солнечного элемента применяли пластинку из арсенида галлия n-типа с концентрацией носителей Nn=1÷5×1017 см-3, в которой путем термодиффузии фосфора в эвакуированной кварцевой ампуле (остаточное давление 10-6 мм рт. ст.) при температуре выше 900o C создавались поверхностный слой фосфида галлия и тонкая переходная область, состав которой плавно менялся от GaP до GaAs, что соответствовало изменению ширины запрещенной зоны
Изменение вида кривой спектральной чувствительности в таких элементах может быть легко достигнуто различной глубиной залегания
В дальнейшем было обнаружено, что в силу практически полного соответствия постоянных решетки твердого раствора алюминия в арсениде галлия и чистого арсенида галлия образуемый ими гетеропереход обладает весьма малой плотностью состояний и центров рекомбинации на границе раздела, что обеспечивает в этих структурах двустороннее собирание носителей заряда с высоким квантовым выходом. На основе такой гетероструктуры ленинградскими и московскими физиками в начале 70-х годов был создан солнечный элемент с η = 11 % при измерениях на имитаторе внеатмосферного солнечного излучения.
Наибольшее распространение нашли затем в СССР и за рубежом солнечные элементы на основе гетеросистем
Ширина и химический состав широкозонного фильтра могут меняться, существенно влияя на свойства получаемых солнечных элементов. Например, при увеличении толщины этого слоя, а также слоя p-GaAs и степени легирования обоих слоев резко уменьшается последовательное сопротивление элементов (и становится выгодно использовать их при больших концентрациях потока солнечного излучения); при уменьшении толщины верхних слоев элементов практически исчезают оптические потери на поглощение в этих слоях. Изменение химического состава слоя окна (в частности, содержания алюминия в нем) позволяет создать на поверхности вари-зонную структуру, помогающую собиранию носителей заряда, рождаемых коротковолновым светом в верхних слоях солнечных элементов. Для расчета и оптимизации оптических и электрических свойств солнечных элементов на основе таких гетероструктур прежде всего необходимо знать зависимость ширины запрещенной зоны и характера оптических переходов в основной полосе поглощения от состава материала, а также оптические константы полупроводниковых слоев.
Как было показано в ряде исследований, для полупроводникового соединения AlxGa1-xAs при
На рис. 4.9 представлена зависимость ширины запрещенной зоны AlxGa1-xAs от состава данного полупроводникового соединения (от величины
Влияние толщины и состава верхних слоев на оптические характеристики и КПД солнечных элементов с широкозонным окном-фильтром из AlxGa1-xAs и
Расчетная оптимизация параметров солнечных элементов на основе арсенида галлия с гетеропереходами, проведенная в ряде работ, показала, что, уменьшая толщину верхнего слоя твердого раствора и изменяя его состав (увеличивая содержание алюминия), можно значительно расширить спектральную чувствительность таких элементов в коротковолновую область спектра. Расчетные спектральные зависимости коэффициента собирания солнечных элементов данного типа при разной толщине слоя твердого раствора Al0.36Ga0.14As и следующих параметрах элементов: толщина слоев
Следует отметить, что высокие значения коэффициента собирания данных элементов в длинноволновой области (при λ=0,6÷0,9 мкм) объясняются сравнительно большим значением диффузионной длины носителей в
Эксперимент подтверждает результаты расчетов. Вольт-амперная нагрузочная характеристика экспериментальных солнечных элементов говорит о том, что их КПД в условиях наземного Солнца уже заметно превышает 20 % и может быть увеличен до 25 %, например, за счет использования очень тонких верхних слоев твердого раствора с плавно меняющимся по глубине химическим составом и шириной запрещенной зоны, образующих варизонную структуру. Возможность получения таких слоев методами газовой и молекулярной эпитаксии в настоящее время теоретически и экспериментально доказана.
Повышение КПД солнечных элементов из простых и сложных полупроводниковых структур
Повышение КПД солнечных элементов имеет как научное, так и инженерно-экономическое значение: уменьшение себестоимости электроэнергии, получаемой от солнечных элементов, может быть достигнуто не только путем применения дешевых исходных полупроводниковых материалов и автоматизации технологии их изготовления, но и благодаря резкому росту КПД, хотя это и требует дополнительных затрат, которые тем не менее окупаются при эксплуатации таких сравнительно дорогостоящих солнечных элементов.
Вероятно, сразу после опубликования первых работ, где предельно достижимые КПД солнечных элементов ограничивались значениями 24–25 %, начались поиски оригинальных физических идей, которые можно было бы положить в основу новых, более эффективных моделей солнечных элементов, чтобы открыть дорогу исследовательским и практическим работам по реализации таких элементов. Выдвинутые вскоре модели каскадных и многопереходных солнечных элементов, элементов с гетеропереходами, встроенными электрическими полями, варизонными структурами, долгое время не удавалось проверить в эксперименте, хотя предельный теоретический КПД большинства новых моделей поднимался до уровня 30–50 %. В то же время благодаря успешной практической реализации многих новых моделей солнечных элементов в эксперименте в наземных условиях был достигнут КПД 14–15 % для дешевых кремниевых солнечных элементов,· базовый слой которых получен сравнительно простыми и экономичными методами, и от 20 до 25 % для элементов на основе гетероструктур в системе твердый раствор алюминия в арсениде галлия — арсенид галлия.
Теоретические исследования, направленные на развитие и усовершенствование модели объемного фотоэффекта в полупроводниковых структурах, рассчитанной применительно к преобразованию солнечной энергии, показали, что если для создания солнечного элемента выбирать варизонную структуру, в которой максимальное значение ширины запрещенной зоны (на поверхности) соответствует крайнему коротковолновому участку солнечного спектра, а минимальное (у разделяющего барьера вблизи тыльной поверхности) — крайнему длинноволновому, а также обеспечить большое отношение подвижностей электронов и дырок, то в таком элементе возможно полное поглощение и преобразование энергии фотонов солнечного излучения в электроэнергию. Таким образом, ограничение предельного значения КПД преобразования оптического излучения Солнца полупроводниковыми солнечными элементами практически было снято, указывалась даже возможность достижения КПД, превышающего 60 %.
В настоящее время намечен и экспериментально исследован ряд новых направлений, развитие которых может привести к получению на практике высокого КПД преобразования солнечного излучения непосредственно в электрическую энергию.
Из теории следует (и подтверждается экспериментально), что КПД солнечного элемента растет с увеличением интенсивности освещения. В объеме полупроводника возникает ЭДС Дембера, связанная с разницей в подвижности рожденных светом электронов и дырок и их взаимодействием. Если свет падает на
Таким образом, как показывают данные, приведенные на рис. 4.12, только за счет повышения плотности потока солнечного излучения в 1000 раз КПД солнечного элемента из оптимального полупроводникового материала с шириной запрещенной зоны около 1,4 эВ возрастает до 35 % (см. рис. 4.12, кривая 7).
Результаты этих расчетов вдохновили многих исследователей на создание наземных фотогенераторов с солнечными элементами, работающими при весьма высоких концентрациях потока, достигающих уже сейчас уровня 400—500-кратных (с перспективой дальнейшего увеличения до 2000—2200-кратных по сравнению с обычным солнечным).
Если это направление повышения КПД солнечных элементов требует решения инженерных и конструкторских задач, связанных с отводом большого количества избыточной теплоты для сохранения температуры элементов на достаточно низком уровне, а также с созданием долговечных концентраторов солнечной энергии со светостойкими покрытиями, то два других перспективных способа резкого увеличения КПД преобразования солнечного излучения с помощью солнечных элементов находятся еще на стадии физических исследований в условиях лаборатории. Внешне эти два пути прямо противоположны.
Первый из них требует резкого сужения широкополосного солнечного спектра и затем превращения этого спектрально преобразованного потока излучения в электрическую энергию с помощью солнечного элемента с
Второй путь связан с созданием каскадной системы из нескольких солнечных элементов, прозрачных в длинноволновой области спектра за краем основной полосы поглощения, причем каждый из них будет эффективно преобразовывать соответствующую часть падающего излучения, в результате чего перекрывается весь спектральный интервал солнечного излучения и тем самым как бы резко расширяется спектральная чувствительность солнечного элемента.
Сузить широкополосное солнечное излучение можно различными путями, например направив концентрированный солнечный поток на теплоприемник, выполненный в виде модели черного тела с селективным термостойким излучателем, покрытым окисью эрбия, преимущественно излучающим в области спектра от 1 до 2 мкм. Солнечные элементы из германия или из кремния будут преобразовывать такой спектрально суженный (практически без потерь) поток солнечного излучения с КПД выше 25 %. Для солнечных элементов с большей шириной запрещенной зоны, например, из арсенида галлия с гомо- или гетеропереходом, следовало бы разработать селективный тепловой излучатель более коротковолнового участка спектра, что позволило бы получать в эксперименте еще большие значения кпд.
Для сужения солнечного спектра могут быть использованы полупроводниковые светодиоды на основе гетероструктур в арсениде галлия, преобразующие с почти 100 %-ным квантовым выходом коротковолновое излучение в длинноволновое, отвечающее по энергии ширине запрещенной зоны гомогенного арсенида галлия. Академиком Ж. И. Алферовым и его сотрудниками было предложено совместить в одном монолитном многослойном солнечном элементе такую переизлу-чающую структуру с преобразователем оптического излучения в электроэнергию на основе гетероструктуры твердый раствор алюминия в арсениде галлия — арсенид галлия.
Энергетические зонные диаграммы различных солнечных элементов на основе арсенида галлия представлены на рис. 4.13.
В случае переизлучающей структуры между двумя областями окна-фильтра область, обращенная к свету (область 2), имеет состав Al0,8Ga0,2As, а переизлучающая структура (область 4) — состав Al0,1Ga0,9As с постепенным увеличением (область
Солнечные элементы с переизлучающей структурой между областями окна-фильтра особенно подходят для преобразования солнечного излучения очень высокой интенсивности, ибо имеют широкий спектральный диапазон чувствительности и низкое последовательное сопротивление. В ходе исследований были изучены световые вольт-амперные характеристики солнечных элементов на основе арсенида галлия с гетеропереходом и переизлучающей структурой для различных степеней концентрации солнечного потока (вплоть до 2570-кратной). Максимальная электрическая мощность, снимаемая с нагрузки к одному из таких элементов диаметром 1 см, составила при измерениях в наземных условиях 13,5 Вт. Следовательно, для получения более 100 Вт электрической мощности требуется всего восемь таких элементов с концентраторами, в то время как ту же электрическую мощность в наземных условиях от солнечных элементов высокого качества обычной конструкции обеспечивает плоская панель площадью не менее 1 м2 (более 10 тыс. элементов площадью 1 см2 каждый).
Очевидно, что затраты, связанные с трудоемкой технологией изготовления новых солнечных элементов сложной многослойной структуры, полностью себя оку-пят, и, возможно, что при широком применении таких элементов стоимость электроэнергии, получаемой от солнечных элементов, снизится на два-три порядка и приблизится к стоимости электроэнергии от традиционных источников (тепловые электростанции, гидроэлектростанции).
После разработки эффективных гомо- и гетероструктур на кремнии и арсениде галлия возник интерес к созданию из них каскадных солнечных элементов. Электрическое соединение элементов в каскаде влечет за собой определенные технологические и конструктивные усложнения, в связи с чем были сделаны попытки получить каскадные элементы в единой монолитной структуре, создаваемой последовательным выращиванием с помощью жидкостной, газовой или молекулярной эпитаксии слоев на подложке из арсенида галлия, например, как это показано на рис. 4.14. Верхний (2) и нижний (4) солнечные элементы в такой двухкаскадной системе соединяются последовательно с помощью туннельного
Высокое качество полученных туннельных переходов позволяет ожидать новых результатов на пути создания монолитных каскадных солнечных элементов, и в последнее время появились сообщения о росте КПД таких элементов.
Значительно больших успехов добились исследователи, использующие два или три солнечных элемента, расположенных перпендикулярно друг другу. Солнечное излучение концентрируется с помощью линзы Френеля и падает на одно или два многослойных ди-хроических зеркала, которые расщепляют спектр на отдельные участки, направляя к каждому элементу излучение того спектрального состава, в котором данный элемент имеет максимальную чувствительность (рис. 4.15).
Для практической реализации таких систем большое значение имеет не только КПД отдельных солнечных элементов (причем они должны возможно более резко отличаться по области спектральной чувствительности), но и высокое качество, а также стабильность параметров (при длительном непрерывном освещении) применяемых дихроических зеркал, которые, как правило, изготавливаются нанесением в вакууме 17–19 (или более) чередующихся прозрачных пленок ZnS (показатель преломления n=2,3) и Na3AlF6 (n=1,35). Излучение, пропущенное зеркалом, проходит к солнечному элементу на основе арсенида галлия, а отраженное — к кремниевому элементу (см. рис. 4.15).
Двухкаскадная система с дихроическим зеркалом при 165-кратной концентрации наземного солнечного излучения с плотностью потока 894 Вт/м2 (спектр падающего излучения соответствовал условиям AM1,23) характеризуется, как показано в одной из работ, следующими параметрами солнечных элементов, измеренными при температуре обоих элементов 30o С (водяное охлаждение):
Полученный суммарный КПД двухкаскадной системы, как видно, составляет 28,5 %.
Улучшение качества дихроических зеркал и отдельных солнечных элементов дает возможность получить в таких системах с расщеплением спектра суммарный КПД 30–32 % при средних (50—100-кратных) и около 40 % при высоких (более 1000) концентрациях солнечного излучения.
Для создания каскадных систем с дихроическими зеркалами лучше всего использовать следующие полупроводниковые материалы: для
Следует отметить, что системы с дихроическими зеркалами избавляют разработчиков элементов от необходимости решать сложную проблему, возникающую при изготовлении монолитных каскадных элементов, получаемых эпитаксиальным наращиванием слоев, — сочетать в каскадном элементе слои с близкими постоянными кристаллической решетки и коэффициентами термического расширения.
В будущем, возможно, вообще отпадет необходимость в использовании дихроических зеркал при применении для преобразования солнечного излучения и одновременного расщепления спектра солнечных элементов (см. с. 119), прозрачных в длинноволновой области за краем основной полосы поглощения с высоко-отражающим металлическим покрытием или зеркалом на тыльной поверхности.
Глава 5
СОЛНЕЧНЫЕ БАТАРЕИ
И НАЗЕМНЫЕ ФОТОГЕНЕРАТОРЫ
Жесткие и гибкие солнечные батареи с высоким отношением мощности к весу
Солнечные батареи космических аппаратов представляют собой сложные электромеханические устройства, обеспечивающие электрическое соединение солнечных элементов, их размещение на единой несущей основе, прочность и устойчивость всей конструкции при вибрации и маневрах, а также возможность ее раскрытия, монтажа и ориентации в условиях космоса.
Главные элементы конструктивной схемы ориентируемой солнечной батареи — несущая опора, или подложка, на которой монтируются солнечные элементы и межэлементные соединения, силовая конструкция (рамы, балки, мачты и т. п.), механизмы и силовые узлы системы раскрытия и ориентации.
В зависимости от механических характеристик несущей опоры, или подложки, солнечные батареи разделяют на конструкции с жесткой, полужесткой и гибкой несущими поверхностями.
Жесткая несущая конструкция солнечных батарей, как правило, состоит из двух плоских тонких листов и находящегося между ними сотового наполнителя. Она характеризуется весьма большой частотой собственных колебаний и высокой жесткостью при работе на изгиб, обеспечивающей малые прогибы панелей. Удельные характеристики таких солнечных батарей: 100–120 Вт/м2, 20–40 Вт/кг.
Гибкие солнечные батареи имеют несущую подложку, характеризуемую нулевой жесткостью на изгиб, развертываемую и удерживаемую в рабочем положении с помощью раскладных мачт, балок или пантографов. Конструкции солнечных батарей с гибкой несущей поверхностью могут быть двух типов: свертываемые, пли рулонные, и складные, или пакетные. Удельные характеристики гибких батарей зависят от типа применяемых солнечных элементов и могут составить 100–120 Вт/м2 и 40–80 Вт/кг.
За рубежом для космических аппаратов, работающих на геосинхронной орбите, создаются так называемые гибридные солнечные батареи, состоящие из жестких панелей, которые располагаются близко к корпусу космического аппарата и вырабатывают энергию на участке перелета с опорной орбиты на стационарную, п гибких солнечных батарей, которые развертываются на рабочей орбите. Необходимость применения таких батарей обусловлена тем, что при использовании двигателей большой тяги для межорбитальной транспортировки космического аппарата гибкие солнечные батареи не выдерживают возникающих перегрузок. Примером гибридной конструкции может служить солнечная батарея, схематически изображенная на рис. 5.1.
Принципы, заложенные в конструкцию подобных солнечных батарей, использованы также при разработке энергетического модуля, который предназначается для увеличения продолжительности пребывания в космосе орбитальной ступени транспортного космического аппарата «Спейс Шаттл», а также для энергоснабжения и обслуживания на орбите автономных космических объектов. Общий вид такого энергомодуля в пристыкованном к орбитальной ступени транспортного космического аппарата состоянии и в свободном полете схематически изображен на рис. 5.2.
Поскольку основной вклад в массу гибких панелей дают солнечные элементы, очень актуальной является задача уменьшения их толщины и повышения удельной мощности. Наиболее перспективны в этом отношении ультратонкие (толщиной 50 мкм) кремниевые солнечные элементы и солнечные элементы на основе гетероструктуры AlGaAs — GaAs. Увеличение размера солнечных элементов и использование элементов с обволакивающими тыльными контактами упрощает сборку и снижает удельную стоимость панелей солнечных батарей. Ожидается, что применение всех перечисленных конструктивных мероприятий должно привести к снижению удельной массы солнечных батарей и получению удельных характеристик, достигающих 120–160 Вт/м2 и 200 Вт/кг.
Температурная стабилизация, просветление и защита солнечных батарей от радиации с помощью оптических покрытий
Интенсивные потоки частиц, в основном свободных электронов и протонов, образующих в околоземном пространстве так называемые радиационные пояса, приводят к ухудшению электрических параметров полупроводниковых приборов, установленных на космических аппаратах. Особенно сильно это отрицательное влияние сказывается на полупроводниковых солнечных батареях, которые с целью максимального использования солнечного излучения приходится монтировать на внешней поверхности аппаратов или на специальных выносных панелях.
Хотя в настоящее время предложены интересные способы повышения радиационной стойкости самих полупроводниковых материалов, такие, как введение ионов лития или высокотемпературный отжиг (до 400o C для кремния и до 200–250 °C для арсенида галлия), создание покрытий из прозрачных и радиационно стойких материалов по-прежнему является наиболее эффективным способом защиты солнечных батарей.
Эффективность прозрачной защиты основана на том, что ею сильно «срезаются» или вообще не пропускаются к полупроводнику частицы малых энергий, которых особенно много в спектре радиационных поясов Земли[9]. К тому же именно частицы малых энергий наиболее разрушительно действуют на солнечные элементы, уменьшая их КПД.
Основная трудность практического решения этой проблемы состоит в том, что, кроме защиты от повреждающего действия радиации, оптические покрытия должны обладать высокими просветляющими и теплорегулирующими свойствами, т. е. уменьшать коэффициент отражения в рабочей области спектра и предохранять солнечные элементы от перегрева путем увеличения интегрального коэффициента собственного теплового излучения поверхности ε до значений в пределах 0,8–0,9. Необходимость просветления рабочей поверхности вызвана высоким коэффициентом отражения (35–40 %) чистой полированной поверхности солнечных элементов в области спектральной чувствительности 0,4–1,1 мкдо; это означает, что без уменьшения потерь на отражение не могут быть получены солнечные элементы с высоким КПД. Увеличение собственного теплового излучения поверхности солнечного элемента особенно важно в связи с тем, что для полированной высоколегированной (концентрация примесей (1–2)×102° см-3) поверхности кремниевых элементов без теплорегулирующего покрытия е составляет 0,19—0,24.
Для универсальной системы покрытий, впервые созданной в СССР в 1964–1965 гг., был использован принцип, положенный в основу получения двуслойного покрытия, обладающего высокими просветляющими и теплорегулирующими свойствами. Увеличение коэффициента излучения поверхности кремниевых солнечных элементов с 0,19—0,24 до 0,9 происходит при двуслойном покрытии благодаря верхнему теплорегулирующему кремнийорганическому слою толщиной 40–80 мкм (nτu=1,51), с селективными оптическими характеристиками: для него характерны прозрачность в области 0,4–1,1 мкм и поглощение в области теплового излучения поверхности при 30–40 °C, т. е. в интервале спектра 3—30 мкм.
Высокая эффективность просветления при применении двуслойного покрытия достигается правильным выбором пленки из сернистого цинка (
n=(nтnnSi)1/2=(1,5×3,7)1/2=2,3.
Пленка ZnS может быть заменена на пленки оксидов тантала, титана или церия, имеющих близкий к ZnS показатель преломления.
В 1984–1985 гг. в отечественных работах было показано, что пленка ZnS (или Ta2O5, CeO2, TiO2) может успешно сочетаться со второй просветляющей пленкой из смеси оксидов индия и олова, имеющей показатель преломления 1,7–1,8. Просветляющее покрытие, состоящее из двух слоев, например из ZnS и In2O3, позволяет расширить область низкого отражения от поверхности солнечных элементов, получить кривую отражения с двумя минимумами и, кроме того, снизить последовательное сопротивление элементов благодаря высокой электропроводности пленки из смеси In2O3 и SnO2 или из In2O3. В этом случае оптимальное покрытие из двуслойного станет трехслойным, из трехслойного четырехслойным, например, будет состоять из двух просветляющих пленок и слоя кремнийорганического лака или из двух просветляющих пленок, слоя оптического клея и внешней защитной пластины.
Чтобы такие покрытия могли выполнять еще и роль защиты солнечных элементов от радиации, верхний теплорегулирующий слой при сохранении своих оптических свойств, высокого коэффициента излучения и стойкости к условиям эксплуатации в вакууме должен иметь достаточную толщину.
Оказалось, что единственным способом увеличить толщину защитного слоя является приклейка прозрачных в области 0,4–1,1 мкм пластин из неорганического материала, не темнеющего под длительным воздействием ультрафиолетового излучения Солнца и космической радиации. Испытания показали, что из многих исследованных материалов этим требованиям удовлетворяют лишь синтетические: сапфир (Al2O3), плавленый кварц, а также специальные сорта стекол.
Из кривых пропускания сапфира, плавленого кварца и боросиликатного оптического стекла с добавкой 2 % CeO2 (рис. 5.3) видно, что стекло (во многом благодаря добавке CeO2) непрозрачно для ультрафиолетового излучения с λ≤0,35 мкм. Следовательно, оно будет защищать клеящий состав от потемнения под действием ультрафиолетового излучения лучше, чем плавленый кварц и сапфир.
В качестве клеящего состава после длительных исследований был выбран прозрачный кремнийорганический каучук, сохраняющий высокую эластичность до весьма низкой температуры. Благодаря пластической деформации каучука снимаются внутренние напряжения, возникающие в клеевом слое при термоциклировании. Характерная для кремнийорганических каучуков плохая адгезия к стеклу и кремнию была улучшена с помощью весьма тонких (2–5 мкм) промежуточных слоев светостойкого кремнийорганического лака, предварительно наносимых на стекло и просветленный кремний. Обладая не меньшей исходной прозрачностью, чем эпоксидная смола, выбранные кремний-органические материалы из-за прочных молекулярных связей имеют значительно большую стойкость к ультрафиолетовому излучению. Испытания показали, что кремнийорганический каучук под защитным стеклом при облучении в течение периода, равносильного пребыванию на Солнце в продолжение 600 ч (время, после которого, по данным измерений, заканчиваются процессы образования окрашивающих центров в кремнийорганических покрытиях), практически не потемнел, что объясняется, кроме повышенной стойкости к ультрафиолетовому излучению Солнца, полной прозрачностью тонкого слоя кремнийорганического каучука для топ небольшой части ультрафиолетового излучения (0,35— 0,4 мкм), которая пропускается стеклом с 2 % CeO2.
Измерения спектральной чувствительности и нагрузочной вольт-амперной характеристики (под имитатором солнечного излучения с плотностью потока
Спектральное распределение коэффициента отражения полированной приемной поверхности кремниевых солнечных элементов до и после нанесения защитных и теплорегулирующих покрытий представлено на рис. 5.4, где в области солнечного спектра (0,2–3 мкм) использована «деформированная» шкала λ, отражающая распределение солнечной энергии по спектральным интервалам, в остальной части спектра шкала λ равномерна. Кривые
Несмотря на сложность и трудоемкость такого решения, для защиты от ультрафиолетового излучения и уменьшения αc в ряде зарубежных работ было предложено наносить на внутреннюю поверхность стеклянных пластин, приклеиваемых к внешней поверхности солнечных элементов из кремния или арсенида Галлия, интерференционный фильтр, состоящий из 38, 41, 58 слоев. Однако высокое отражение в области солнечного спектра достигается при этом только в интервале 1,1–1,8 мкм, причем оптические свойства фильтров подвержены значительным изменениям при облучении ультрафиолетовым излучением и ядерными частицами.
Для солнечных элементов из кремния и арсенида галлия с тонким диффузионным слоем существует, как впервые было показано советскими учеными, еще одна возможность уменьшения их радиационного перегрева — пропускание солнечного излучения в области 1,1–3 мкм сквозь элемент.
Солнечные элементы из кремния и арсенида галлия, прозрачные в инфракрасной области солнечного спектра, были получены в СССР экспериментально. Оптические характеристики таких солнечных элементов представлены на рис. 5.5. Следует отметить, что прозрачные в инфракрасной области элементы из кремния в предельном случае могут пропускать сквозь себя 26 % энергии внеатмосферного солнечного излучения (часть солнечного излучения в интервале 1,1–2,5 мкм), а прозрачные в инфракрасной области элементы из арсенида галлия даже 35 % (часть солнечного излучения в спектральном интервале 0,9–2,5 мкм). Были получены также солнечные элементы из других цолупроводниковых материалов, таких, как сульфид кадмия и германий, прозрачные в длинноволновой области за краем основной полосы поглощения. На обе поверхности прозрачных солнечных элементов, предназначенных для работы в условиях воздействия радиации, наносятся трехслойные покрытия.
Еще одним преимуществом солнечных элементов, прозрачных в инфракрасной области солнечного спектра, является их стойкость к резкому термоциклированию в вакууме. Удаление контактного слоя с большей части тыльной поверхности, крепление секций на гибкой и эластичной подложке вместо жесткой металлической позволили в значительной мере снять внутренние напряжения на границах контактирующих сред.
Как показали дополнительные исследования, термоциклирование, происходящее при заходе в тень Земли и выходе из нее, выдерживается солнечными элементами, прозрачными в инфракрасной области солнечного спектра, без какого-либо уменьшения отдаваемой ими электрической мощности.
Для проверки результатов лабораторных испытаний трехслойных покрытий на спутниках, неоднократно пересекающих во время полета радиационные пояса Земли, таких, как «Электрон» и «Молния-1», были поставлены эксперименты по исследованию влияния длительного ультрафиолетового и радиационного облучения на прозрачность оптических покрытий для кремниевых солнечных элементов. Например, один из экспериментов состоял в измерении во времени тока короткого замыкания и тока нагрузки расположенных рядом, постоянно ориентированных на Солнце экспериментальных модулей, в одном из которых на каждый солнечный элемент было нанесено трехслойное покрытие, а над другим была закреплена пластина из плавленого кварца с помощью металлической обоймы (без кремнийорганического клея между стеклом и непросветленными солнечными элементами). Полученные экспериментальные данные представлены на рис. 5.6. Отсутствие сколько-нибудь заметного различия в ходе кривых
Из рис. 5.6, на котором приведено также изменение в тех же условиях тока нагрузки модулей, снабженных тонкими двуслойными и однослойными покрытиями (кривые
Наземные фотогенераторы в герметизирующих оболочках, использующие однократный или концентрированный поток солнечного излучения
Первоначально считалось, что создание наземных фотогенераторов из различных полупроводниковых солнечных элементов не встретит заметных научно-технических или инженерных трудностей, поскольку для этого типа устройств условия работы значительно легче, а возможности ремонта несоизмеримо больше, чем для космических солнечных батарей. Однако достаточно быстро выяснилось, что отрицательное воздействие, например, влаги воздуха на параметры солнечных элементов оказывается зачастую гораздо более сильным, чем влияние термоциклирования на околоземных орбитах. Это обстоятельство выдвинуло проблему герметизации наземных солнечных элементов в одну из наиболее актуальных. При этом оказалось, что экранировать от неблагоприятного воздействия различных климатических факторов необходимо не только фотогенерирующую часть этих устройств, но и многие вспомогательные узлы установок, такие, как дополнительные отражатели или концентраторы солнечного излучения.
В настоящее время КПД большинства наземных солнечных фотогенераторов из кремниевых солнечных элементов составляет 12–13 %, и это означает, что при плотности падающего на элементы потока солнечного излучения 800 Вт/м2, характерной для средней полосы СССР в ясные летние дни, каждый квадратный метр фотогенерирующей части подобных устройств может обеспечить получение около 100 Вт электрической мощности. Сейчас испытываются самые разнообразные конструкции наземных фотогенераторов. Различаются они главным образом по способу герметизации солнечных элементов и по оптической схеме используемого концентратора солнечных лучей, если, конечно, в установке предусмотрено применение многократных потоков излучения, что позволяет резко уменьшить стоимость получаемой электроэнергии, ибо концентрирующее устройство, как правило, в десятки и сотни раз дешевле непосредственно самих солнечных элементов.
Покрытия наземных фотогенераторов защищают в отличие от космических батарей не отдельные солнечные элементы, а целые модули. Покрытия солнечных элементов на земле герметически плотно соединены с поверхностью элементов и предотвращают попадание на них влаги.
В наиболее простом случае изоляцию, предохраняющую элементы от воздействия внешней среды, создают с помощью оптически прозрачного герметизирующего соединения или заключения в оболочку, которая защищает и межэлементные контакты. В более прочных конструкциях применяют сравнительно сложный и дорогостоящий способ герметизации, при котором межэлементные контакты заключают в оболочку из более жесткого пластика или стеклянного покрытия сразу поверх мягкого материала.
При применении прочных защитных слоев поверх мягкой оболочки предполагается перевернутая конструкция модуля: соединенные друг с другом солнечные элементы вначале прикрепляются к защитным стеклам рабочей поверхностью, затем тыльная сторона солнечных элементов герметизируется и весь модуль устанавливается на любую подходящую подложку.
Тепло, передаваемое подложке элементами, можно использовать в комбинированных фототермических системах для нагрева теплоносителя — воды или воздуха.
Прозрачные покрытия, сделанные из стекла, и подложки, выполненные из металла, более влагостойки, чем подложки и покрытия из пластика. В этом случае требуется соответствующим образом герметизировать края элементов. На рис. 5.7 и 5.8 показаны различные способы решения этих задач.
Высокую влагопроницаемость пластических материалов можно свести к минимуму, используя большое число слоев из различных материалов. Конструкция многослойного модуля позволяет обеспечить более высокую стойкость материалов защитных покрытий к истиранию и удару и снизить уровень повреждений, возникающих в солнечных элементах при внешних механических воздействиях.
Материалами для покрытий могут служить стекла и пластики. Некоторые стекла обладают лучшей по сравнению с другими материалами сопротивляемостью атмосферным воздействиям. Однако стабильность свойств в условиях отрицательных атмосферных воздействий у высококачественных пластиков выше, чем у плохих сортов стекол. В настоящее время к материалам, стойким к воздействию окружающей среды, относятся пластики, изготовленные на основе фторсополимеров и кремнийорганических смол.
Полиэтилентерефталат и поликарбонат имеют среднюю, а полиэтилен, поливинилхлорид, целлюлоза, полистирол, натуральный каучук и нейлон — низкую устойчивость к атмосферным воздействиям. Большинство материалов можно модифицировать, добавляя в них антиозонаты, стабилизаторы для повышения стойкости к ультрафиолетовому излучению и другие добавки, которые могут повысить стойкость материалов к атмосферным воздействиям. Наиболее часто для изготовления защитных покрытий применяют фторсодержащие пленки, кремнийорганические лаки и каучуки, а также акрилаты, несмотря на относительно высокую стоимость этих полимерных материалов, и материалы из различных сортов органического стекла, в целом довольно устойчивые к атмосферным воздействиям, но заметно темнеющие под действием ультрафиолета Солнца. Накопление пыли и грязи на поверхности твердых материалов обычно невелико, и поэтому подобное воздействие мало влияет на светопропускание покрытий. Мягкие же материалы, например кремнийорганические каучуки различных марок, накапливают грязь в больших количествах, в результате чего потери по светопропусканию составляют от 20 до 60 % и их лучше использовать в качестве промежуточных соединительных слоев.
В наиболее эффективно действующих наземных установках мягкие материалы защищены более твердыми. Таким образом обеспечивается надежная и долговечная комбинированная система защитных покрытий, герметизирующая элементы,
Правильный выбор концентрирующей системы столь же благотворно сказывается на экономичности и эффективности работы наземного фотогенератора, как и создание прозрачных и светостойких оптических покрытий и герметизирующих оболочек.
Солнечный свет можно концентрировать, используя эффекты преломления и отражения. Преломление происходит в линзах, а отражение — в зеркалах. Линзы могут быть плосковыпуклые и двояковыпуклые. В последнее время широко используются плоские линзы Френеля (рис. 5.9). Поверхность линз бывает сферической и несферической. Несколько практических схем для собирания света при отражении показано на рис. 5.10.
При преломляющем и отражающем способах собирания света можно использовать действительные или мнимые изображения. Элементы, проектирующие действительное изображение, уменьшают проекцию Солнца на плоскость изображения (фокальную плоскость) в соответствии с законами геометрической оптики. Концентраторы света, использующие мнимое изображение, просто сводят солнечные лучи, не создавая при этом изображения Солнца.
Отражающие и преломляющие компоненты устройств могут быть точечно-фокусирующие и линей-но-фокусирующие, независимо от того, действуют они по оптической схеме с мнимым или действительным изображением. Точечно-фокусирующие концентраторы называют также аксиальными, коаксиальными или трехмерными концентраторами. Линейно-фокусирующие концентраторы делятся на желобочные, линейные двумерные.
Точечно-фокусирующие концентраторы могут быть полностью осесимметричного (кругового) или многоугольного типов. Четырехсторонний тип концентратора часто используют в устройствах, состоящих из нескольких линз Френеля или зеркал квадратной или прямоугольной формы.
Концентраторы можно классифицировать также по числу применяемых ступеней собирания. На рис. 5.11 показаны два концентратора, имеющих две ступени собирания. В одной, известной также как система Кассегрена (названа по системе телескопа аналогичной конструкции), для собирания света используются два зеркала. Третий отражатель, не рассматриваемый как самостоятельная ступень собирания, служит для отведения в сторону размытых пучков, образующихся при отражении от несовершенной части оптической поверхности, например, образовавшихся при неточной установке оптической оси системы в направлении на Солнце. В других двухступенчатых системах используются для отражения одна внешняя и одна внутренняя поверхности. Внутреннее отражение, известное также как полное отражение, происходит, когда луч света пытается выйти из среды с высоким показателем преломления в среду с более низким показателем преломления, причем угол падения света иа границу двух сред достаточно большой.
В концентраторах солнечного света, в которых используется принцип преобразования длин волн, поступающая энергия внутри достаточно широкой полосы спектра Солнца преобразуется в энергию излучения узкого интервала длин волн, соответствующего наиболее высокой спектральной чувствительности солнечного элемента. Этот интервал длин волн, как правило, расположен вблизи красной границы фотоэффекта для данного полупроводникового материала, определяемой шириной его запрещенной зоны.
Преобразование длины волны излучения, падающего на батарею или элементы, может быть обеспечено, например, с помощью селективных излучателей или пленочного люминофора. Поверхность селективных излучателей покрывается материалом, способным испускать излучение в узком диапазоне длин волн, причем нагрев излучателя осуществляется с помощью концентратора солнечного света; диапазон длин волн, испускаемых селективным излучателем, как правило, выбирается вблизи энергии запрещенной зоны полупроводникового материала, из которого изготовлен солнечный элемент.
Активно исследуются фотолюминесцентные солнечные концентраторы, называемые также плоскопараллельными или плоскими концентраторами.
Солнечный свет, который падает на плоскую пластину, покрытую слоем люминофора, поглощается им. В процессе поглощения света падающие фотоны возбуждают молекулы люминофора (в этом качестве могут быть использованы и многие органические красители). При этом возникает новое излучение, но уже с другой длиной волны, характерной для данного люминофора. Переизлученная энергия остается внутри плоской пластины благодаря внутреннему отражению и после многократного отражения от плоских отражающих стенок попадает на солнечные элементы, установленные по периметру плоского прямоугольного концентратора.
Исследование процессов деградации параметров солнечных элементов и методы их стабилизации
Исходные характеристики солнечных элементов могут, к сожалению, заметно ухудшаться в процессе эксплуатации.
Повышение температуры приводит, как правило, к росту фототока и падению ЭДС, выходной мощности и КПД солнечных элементов, причем градиент падения мощности зависит от природы полупроводникового материала — для широкозонных материалов он мал, для узкозонных велик. У кремниевых солнечных элементов с повышением температуры на 100o C мощность, генерируемая ими, падает на 45 %, а у солнечных элементов на основе арсенида галлия — на 25 % (напомним, что ширина запрещенной зоны кремния составляет 1,02 эВ, арсенида галлия — 1,43 эВ).
Увеличение плотности падающего потока излучения в несколько раз может также привести к резкому уменьшению выходной мощности солнечных элементов, если последовательное сопротивление элементов сравнительно велико — около 1 Ом×см2. Последовательное сопротивление обычных солнечных элементов составляет 0,5–0,6 Ом см2, и их можно применять (без ухудшения электрических характеристик) в условиях 5—7-кратного увеличения плотности потока солнечного излучения, характерного для наземных условий средней полосы СССР (обычно 400–800 Вт/м2).
Различные способы уменьшения последовательного сопротивления, например путем создания частой контактной сетки на лицевой поверхности элементов с оптимизированными размерами полос, позволяют не только снизить его, но и более эффективно использовать возрастание плотности потока солнечного излучения, создаваемое чаще всего с помощью концентраторов света разнообразных конструкций. В ряде работ было показано, что значительное увеличение плотности падающего на солнечные элементы потока излучения приводит к росту КПД за счет возникновения полезных тянущих электрических полей в объеме полупроводника (если, конечно, при этом не происходит падения мощности из-за рассеяния тока при прохождении через элементы вследствие их значительного последовательного сопротивления). Экспериментальные исследования подтвердили этот вывод. При снижении последовательного сопротивления солнечных элементов до 0,1 Ом×см2 максимальный КПД преобразования ими солнечной энергии наблюдался при 40—50-кратных потоках солнечного излучения. При снижении последовательного сопротивления до 0,01 и менее удается эффективно преобразовывать в электроэнергию потоки излучения, превышающие однократные солнечные в 500–700 раз.
Следует указать, что отмеченные выше зависимости выходной мощности солнечных элементов от интенсивности падающего света и температуры носят полностью обратимый характер (если, конечно, в процессе работы не произошло значительного перегрева элементов — до температур, превышающих предел работоспособности контактных слоев или покрытий, что обычно составляет 150–200o С).
При эксплуатации как в космосе, так и на Земле солнечные элементы и полупроводниковые материалы, из которых они сделаны, подстерегает также опасность необратимых изменений. Особенно большое снижение выходной мощности солнечных элементов и батарей наблюдается при воздействии корпускулярного облучения — протонами и электронами радиационных поясов Земли, а также при многократном термоциклировании всей конструкции солнечных батарей при заходе в тень Земли и при выходе из нее. Значительные температурные напряжения, возникающие внутри солнечных элементов при термоциклировании из-за разницы в коэффициентах теплового расширения различных полупроводниковых слоев, образующих гетеропереходы, или контактных, просветляющих, защитных и полупроводниковых слоев (в случае как гомо-, так и гетеропереходов), приводят к механическому разрушению солнечных элементов, если величина этих напряжений превышает прочность отдельных слоев элементов или величину сил, удерживающих эти слои вместе.
Значительный опыт накоплен разработчиками разных стран в создании солнечных элементов и батарей, способных успешно противостоять отрицательному воздействию радиации и термоциклировании. В настоящее время удается изготавливать солнечные батареи таких конструкций, которые способны работать в условиях космоса и на Земле десятки лет без значительного снижения мощности.
Решить эту сложную проблему помогло создателям солнечных элементов понимание сложных и тонких физических процессов, происходящих в полупроводниковых материалах и на их границе с другими слоями, входящими в состав солнечных элементов, при деградации их параметров под влиянием различных видов внешнего воздействия. Исследование этих процессов проводится в современных лабораториях с привлечением самых разных способов анализа структуры, состава, примесей и дефектов в материалах: электронной и оптической растровой микроскопии, вторично-ионной спектроскопии, Оже-спектроскопии, масс-спектрометрии, рентгеновского микроанализа, фото-, катодо- и электролюминесценции, емкостной спектроскопии глубоких уровней, инфракрасной спектроскопии и других.
Еще два вида воздействий, приводящих к необратимой деградации солнечных элементов, привлекли внимание исследователей в последние годы. Один из них вызывает деградацию, которая условно может быть названа химико-термической, второй — фотонную.
Химико-термическая деградация возникает, например, из-за влияния остаточной атмосферы космического корабля и выхлопных газов двигателей на параметры солнечных элементов. Не менее опасна для солнечных элементов наземных фотогенераторов и их оптических покрытий загрязненная газообразными щелочными и кислотными отходами атмосфера больших городов. Необычные химические реакции с участием свободных радикалов, происходящие при повышенной температуре на торцевых и свободных от покрытий поверхностях солнечных элементов, вызывают закорачивание электронно-дырочных переходов, коррозию контактов, потемнение покрытий.
Влияние фотонной деградации было не сразу обнаружено, поскольку его довольно трудно отделить от воздействия корпускулярной радиации и химико-термической деградации.
Длительное время считалось, что повреждающее воздействие самого солнечного излучения на солнечные элементы может выразиться лишь в потемнении оптических покрытий. Разработка светостойких многослойных покрытий, в которых верхний слой — стеклопленка с добавлением двуокиси церия — поглощает все ультрафиолетовое излучение с длиной волны короче 0?36 мкм, позволила добиться уменьшения деградации элементов, вызываемой ухудшением оптических свойств покрытий, до весьма малых значений (0,5–2,5 %) даже в условиях непрерывной работы на борту космических аппаратов в течение нескольких лет.
В связи с этим для многих исследователей было неожиданностью обнаруженное явление ухудшения свойств самих элементов непосредственно под действием оптической части солнечного излучения. В ходе первых опытов, когда изучалось совместное воздействие солнечного света, корпускулярного облучения и температуры, выяснились некоторые важные особенности одновременного влияния нескольких повреждающих факторов на свойства полупроводниковых материалов и солнечных элементов. Такие опыты достаточно полно отражают реальные условия эксплуатации солнечных элементов как в космических, так и в наземных условиях.
Было показано, что солнечные элементы с низким содержанием кислорода в исходных пластинах кремния, полученного методом бестигельной зонной плавки, обладают высокой степенью фотонной деградации — снижение тока, вызванное интенсивным освещением этих элементов, может составлять 10–12 %. На основании результатов экспериментов, проведенных без освещения, подобные солнечные элементы считались более радиационно стойкими по сравнению с элементами на основе выращенного методом Чохральского кремния с относительно высоким содержанием кислорода. Возможно, что причина ухудшения свойств солнечных элементов из кристаллов бескислородного кремния связана с большой плотностью дислокаций в них. Интенсивное освещение приводит к освобождению и активации захваченных дислокациями точечных дефектов, в состав которых входит атом бора. Было установлено, что дополнительное введение кислорода и углерода оказывает стабилизирующее действие на поведение солнечных элементов при освещении, особенно если общее содержание атомов углерода и кислорода в кремнии превышает 1017 см-3.
В процессе фотонной деградации при внеатмосферной плотности потока падающего солнечного излучения насыщение наступает, как правило, после освещения в течение 20–40 ч при температуре, близкой к комнатной, а при повышении температуры элементов до 50–60o C и через более короткое время.
При освещении солнечного элемента или приложении к нему высокого напряжения смещения в прямом направлении для элементов
Фотонную деградацию особенно необходимо учитывать при создании эталонных солнечных элементов для настройки имитаторов Солнца, которые должны отличаться высокой стабильностью свойств.
Нет сомнений, что обнаруженные сравнительно недавно новые типы деградации солнечных элементов подвергнутся тщательному и всестороннему изучению, будут найдены способы их предотвращения, и солнечные элементы сохранят за собой справедливое определение одного из самых эффективных, стабильных и надежных источников электроэнергии, полезно преобразующих излучение Солнца в удобную для человека электрическую форму энергии.
ЗАКЛЮЧЕНИЕ
Еще много непредвиденных трудностей, возникающих в ходе создания, усовершенствования и испытаний новых типов солнечных элементов в космосе и на Земле, предстоит преодолеть разработчикам.
Выяснилось, например, что атомарный кислород, существующий в околоземном космическом пространстве, активно разрушает каптоновую полимерную пленку, на которой укрепляются солнечные батареи большинства американских космических аппаратов, а электрические разряды, возникающие вследствие значительной разности потенциалов между накапливающими поверхностный заряд диэлектрическими покрытиями верхней и тыльной сторон элементов, могут привести к выходу из строя части батарей.
Правда, пути решения этих проблем уже намечены: следует, вероятно, заменить полимерную основу несущих панелей на стеклоткань; поверхностные же заряды с диэлектрических покрытий будут удаляться, если в состав полимеров или стекла ввести компоненты, несколько увеличивающие объемную проводимость, а на их внутреннюю и внешнюю стороны предварительно нанести прозрачные проводящие слои оксидов индия, олова или их смеси, причем эти слои должны быть электрически соединены между собой и с корпусом аппарата.
Прозрачные проводящие оксиды индия и олова представляют собой широкозонные полупроводниковые соединения, весьма подходящие для создания фотоактивных оптических окон в солнечных элементах на основе гетероструктур, и их применение в новых конструкциях солнечных элементов из кремния, фосфида индия, аморфного кремния становится все более распространенным. КПД солнечных элементов на основе гетероструктуры, образованной слоем из смеси оксидов олова и индия и монокристаллом фосфида индия, уже сейчас превысил 16 %, причем эти элементы отличает высокая стойкость к радиации и сравнительная простота в изготовлении.
На научных совещаниях советских специалистов, на встрече ученых стран СЭВ в Ашхабаде в сентябре 1986 г. на 17-й и 18-й конференциях по фотоэлектрическому методу преобразования солнечной энергии в США, в статьях, опубликованных в 1985–1987 гг., показано, что в этой новой, активно развивающейся области науки и техники получены значительные теоретические и практические результаты.
Предложены, в частности, солнечные элементы со сверхрешетками, образованные тончайшими чередующимися эпитаксиальными слоями на основе арсенида галлия и твердых растворов алюминий — галлий-мышьяк, галлий — индий — мышьяк и галлий — сурьма — мышьяк. Кроме высокого КПД, предложенные элементы отличает исключительная стойкость к радиации, ибо практически полное собирание неосновных носителей заряда происходит в них, даже если диффузионная длина носителей заряда после воздействия радиации составляет всего 300–500 А.
Получены дешевые солнечные элементы из ленточного кремния и кремния, изготовленного методом литья, с диффузионным переходом и тыльным барьером, созданными путем впекания печатных паст и легирования из растворных композиций. КПД таких элементов достиг 16–17 %.
Разработаны и испытаны самые различные каскадные элементы, в том числе полученные из многослойных тонкопленочных структур на основе аморфного кремния, для которых намечено получить в 1988 г. КПД, равный 18 %.
На практике достигнут КПД 11 %, для тонкопленочных элементов из халькогенидов меди и кадмия. Подобные элементы изготавливаются на основе тонкопленочной структуры CdZnS-GuInSe2, что позволяет использовать для эффективного собирания носителей заряда переменную по глубине ширину запрещенной зоны в первом из этих материалов.
Наиболее интересными результатами научных разработок последних лет несомненно являются новые конструкции солнечных элементов из монокристаллического кремния, ветерана солнечной фотоэнергетики. КПД кремниевых элементов новой конструкции (при измерении в условиях наземного солнечного спектра AM1,5 с плотностью однократного потока 1000 Вт/м2 и при высоких степенях концентрации солнечного потока вплоть до 500) превысил в эксперименте 19 %, а для одной из этих конструкций достиг 22,4 %!
На рисунке показаны три из разработанных недавно конструкций солнечных элементов на основе монокристаллического кремния.
Конструкция
Для конструкции элементов с точечными контактами характерны высокие значения напряжения холостого хода t7xx, составляющие 0,81 В при степени концентрации солнечного излучения, равной 150. Причиной столь высоких для кремния значений
Конструкция
Эти же особенности — высокие значения
Среди усовершенствований, внесенных в ходе исследований последних лет в конструкцию и технологию солнечных элементов, следует отметить и создание с помощью сканирующего по поверхности лазерного луча «бархатных» микрорельефов и различного типа микрогравировок поверхности, а также получение прочно соединенных с полупроводником металлических контактных слоев, образованных лазерным разложением многокомпонентных печатных паст, предварительно нанесенных на верхнюю и тыльную поверхности полупроводника.
У солнечной энергетики светлое будущее. Несомненно, что этот метод преобразования солнечной энергии станет занимать в жизни человечества все более заметное место.
На выставке научно-технических достижений стран СЭВ в области солнечной энергетики, организованной одновременно с конференцией и встречей специалистов в сентябре 1986 г. в Ашхабаде, наши коллеги из Туркмении продемонстрировали успешную работу походного солнечного электролизера. Ток, вырабатываемый портативной солнечной батареей, выделял из воды, залитой в установку из бегущего с гор ручья, газообразный водород, и в стоящей рядом газовой плите весело загорался голубой язычок пламени! Солнечная и водородная энергетики — экологически чистые, удобные, бесшумные, неисчерпаемые — работали вместе так же слажено, как они будут трудиться на благо человечества во все больших масштабах в XXI в.
ПРИЛОЖЕНИЕ
Литература
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
И.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
INFO
ББК 31.63
К 61
УДК 629.7.064.56
Колтун Μ. М.
К. 61. Солнечные элементы. — M.: Наука, 1987.—
192 с., ил. — (Серия «Планета Земля и Вселенная»).
Κ 2302010000-412/054(02)-87-51—87НП
Марк Михайлович Колтун
СОЛНЕЧНЫЕ ЭЛЕМЕНТЫ
Утверждено к печати редколлегией серии
«Научно-популярная литература»
Академии наук СССР
Редактор издательства
A. А. Боровая
Художественный редактор
B. Ю. Кученков
Технический редактор
Т. А. Калинина
Корректоры Н. Б. Габасова, Н. И. Казарина
ИБ № 35363
Сдано в набор 18.06.87
Подписано к печати 29.10.87 Т-20231. Формат 84×1081/32. Бумага книжно-журнальная. Гарнитура обыкновенная новая. Печать высокая.
Усл. печ. л. 10,08. Усл. кр. отт. 10, 4 Уч-изд. л. 11,6.
Тираж 12800 экз. Тип. зак. 792
Цена 45 коп.
Ордена Трудового Красного Знамени издательство «Наука»
117864, ГСП-7, Москва, В-485, Профсоюзная ул., 90
2-я типография издательства «Наука»
121099, Москва, Г-99, Шубинский пер., 6
Скан: AAW
Опубликовано группой
FB2 — mefysto, 2024
От электронных часов и малогабаритных калькуляторов до межпланетных и орбитальных космических аппаратов, автоматических метеостанций находят применение солнечные элементы. Они преобразуют свет Солнца непосредственно в электроэнергию, бесшумно, не загрязняя окружающую среду. В книге профессора Μ. М. Колтуна описаны свойства, конструкции, методы создания и исследования современных эффективных солнечных элементов и батарей.