50 лет советской физики

ПРЕДИСЛОВИЕ

Советская физика — это обширный комплекс разнообразных научных направлений, каждое из которых имеет весьма существенные достижения.

Рассказ о них, даже короткий, — нелегкая задача, ибо сами ученые, работающие в разных областях современной физики, на наших глазах все более утрачивают способность к взаимопониманию. В этом, вероятно, одна из причин, в силу которых наша литература бедна работами по истории физики. Тем более приятно рекомендовать читателю эту небольшую брошюру, посвященную некоторым крупным достижениям советской физики.

Академик Л. А. АРЦИМОВИЧ

Советская физика очень молода. Она значительно моложе физики многих западных стран. Но успехи, достигнутые ею за столь короткие сроки, убедительно свидетельствуют об огромной научной зрелости и способности решать сложнейшее проблемы современного естествознания.

ФИЗИКА В ЦАРСКОЙ РОССИИ

Чтобы лучше представить себе пройденный нашей физикой путь, познакомимся прежде всего с состоянием физики в дореволюционной России. Царское правительство не понимало роли науки в развитии государства. Оно было совершенно не заинтересовано в сколько-нибудь заметном научном прогрессе, полагая, что «всякое народное знание способствует развитию смуты и беспокойства в народе». Не только физика, но и другие области науки развивались в стране в чрезвычайно тяжелых условиях. Пушкин когда-то писал в своем дневнике: «Черт догадал меня родиться в России с умом и талантом!» Эти же слова с полным основанием мог бы повторять любой талантливый ученый дореволюционной России.

Положение физики было особенно неблагоприятным. С одной стороны, она оставалась еще «чистой» наукой, не сулящей, подобно химии, никаких практических возможностей, способных заинтересовывать русских промышленников, с другой — в отличие от математики она требовала для своего развития лабораторий, оборудования, мастерских и т. п. Русская химия имела уже в те годы ученых, оставивших огромный след в науке: Д. И. Менделеева — создателя Периодической системы элементов, А. М. Бутлерова — творца современных представлений о структуре органических соединений, Н. Н. Зинина — открывшего пути к органическому синтезу. Русская математика имела Н. И. Лобачевского и П. Л. Чебышева, А. М. Ляпунова, В. А. Стеклова, М. В. Остроградского, С. В. Ковалевскую.

В физике же, помимо работ П. Н. Лебедева по изучению светового давления и открытия радо А. С. Поповым, никто не поднимался на такую высоту. И не удивительно. Ведь даже к моменту Великой Октябрьский социалистической революции на всей огромной территории России было 5–6 небольших физических лабораторий при университетских кафедрах физики. Их оборудование было настолько бедным, что ни о каких самостоятельных научных исследованиях обычно и не помышляли.

Лаборатория П. Н. Лебедева в Московском университете с трудом нашла себе место в подвале. Ее «мастерская» состояла из одного токарного станка, а «штат» — из одного механика, поэтому вся уникальная аппаратура, понадобившаяся для доказательства светового давления, была сделана руками П. Н. Лебедева и его практикантов.

Академик А. Ф. Иоффе писал в 1906 г., что преподавание физики в высшей школе шло по линии так называемой измерительной физики — методов измерения как основы точного знания… первый курс отводился описанию измерительных приборов, и только со второго курса излагались законы из области теплоты, электричества, магнетизма, оптики, акустики… Профессора и преподаватели высших школ обладали обширной эрудицией, но мало внимания уделяли творческой деятельности. Научные работы оставленных при университете часто сводились к повторению опубликованных работ.

Правда, и в этих труднейших условиях находились ученые, бравшиеся за сложные физические проблемы и успешно решавшие их. Э. Х. Ленд, A. Г. Столетов, Н. А. Умов, Б. Б. Голицын, А. А. Эйхенвальд — вот неполный список, ученых, имена которых связаны с крупными физическими исследованиями. Однако все они, как правило, были талантливыми одиночками, на свой страх и риск преодолевавшими косность и сопротивление окружающего мира.

В царской России не было ни одной сколько-нибудь значительной физической школы, помимо небольшой группы физиков, объединившихся в Москве вокруг П. Н. Лебедева.

А ведь к этому времени А. Эйнштейн уже создал не только специальную, но и общую теорию относительности. М. Планк развил основные представления теории квант. К. Максвелл, Л. Больцман, М. Смолуховский заложили основы физической статистики. Э. Резерфорд и Н. Бор разработали планетарную модель атома. Физика переживала величайшую революцию в своей истории, а участие русских физиков в этих событиях было весьма и весьма скромным. России оставалась глубокой физической провинцией.

СТАНОВЛЕНИЕ СОВЕТСКОЙ ФИЗИКИ

С первых же дней Советской власти В. И. Ленин и правительство проявляли огромную заботу о развитии науки. Впервые в мировой истории наука была провозглашена важнейшим государственным общенародным делом, основой индустриального, технического и культурного развития государства. В труднейших условиях гражданской войны, интервенции, блокады и хозяйственной разрухи, поразившей все районы страны, Ленин и его соратники проявляли огромное внимание к нуждам молодой советской науки.

Казалось бы, в стране, где разрушена промышленность и транспорт, где сельское хозяйство едва-едва, кормит население впроголодь, руководители государства должны прежде всего заботиться о развитии прикладных научных исследований, немедленно дающих практический выход. Тут уж не до абстрактных наук! Но Ленин отлично понимал, что социализм нельзя построить без активного участия фундаментальных наук, которые только и могут создать условия для бурного развития прикладных исследований. Иначе страна была бы обречена постоянно находиться в кабальной зависимости от иностранной науки. Он знал, что без должного уровня развития математики, физики, механики, химии, биологии и других естественных наук планы строительства социализма останутся всего лишь утопией. Поэтому Ленин мобилизовал и направлял ученых всеми доступными ему средствами на развитие фундаментальных научных исследований и создание крупных современных научных центров.

Вторым очень важным моментом, обеспечивающим бурный рост советской науки, было создание всеобщей системы народного образования, открывшей путь в науку талантливой молодежи.

Уже в 1918 г. в стране началась организация специальных физических институтов и лабораторий. Их организаторами были молодые ученые Москвы и Петрограда. В Москве П. П. Лазарев, ученик умершего П. Н. Лебедева, организовал Институт физики и биофизики, в Петрограде А. Ф. Иоффе создал Физико-технический институт и Д. С. Рождественский — Оптический институт. В этом же году возник и физический журнал «Успехи физических наук».

В последующие годы было создано много новых физических институтов не только в центральных городах, но и в отдаленных районах страны (Институт физики металлов в Свердловске, Сибирский физико-технический институт в Томске и т. п.). Крупные физические научные центры возникли и в союзных республиках.

В настоящее время в стране имеется около сотни специальных физических институтов Академии наук СССР, республиканских академий, а также некоторых министерств. Среди них Физический институт им. П. Н. Лебедева, Институт физических проблем, Институт атомной энергии им. И. В. Курчатова, Объединенный институт ядерных исследовании в г. Дубне, Институт физики высоких давлений, Институт полупроводников, институты физики Украинской, Белорусской, Грузинской и других республиканских академий.

С каждым годом вступают в строй новые физические научные центры. Только в 1966 г. были созданы: Институт космических исследований в Москве, Институты теоретической физики в Черноголовке (вблизи г. Ногинска Московской области) и в Киеве, Институт электроники в Ташкенте.

Советская физика гордится своими замечательными научными школами, давно уже получившими мировое признание.

Прежде всего здесь следует упомянуть школу академика А. Ф. Иоффе. Среди его учеников немало крупнейших советских физиков. В этой школе успешно разрабатываются проблемы физики полупроводников, твердого тела, молекулярной, атомной и ядерной физики.

Другая крупная школа физиков была создана академиком Л. И. Мандельштамом. Основными направлениями исследований этой школы являются радиофизика и нелинейная теория колебания, оптика, квантовая механика и статистическая физика.

Третья всемирно известная школа физиков-теоретиков была создана академиком Л. Д. Ландау. В этой школе разрабатываются проблемы статистической физики, физики низких температур, магнетизма, элементарных частиц и т. д.

Хорошо известны также физические школы, созданные академиками С. И. Вавиловым, Д. С. Рождественским, Н. Н. Боголюбовым.

Фронт советской физики очень велик. В настоящее время вряд ли найдется хотя бы одна мало-мальски существенная область физики, которая не разрабатывалась бы в нашей стране. Помимо традиционных физических направлений, таких, как, например, оптика, магнетизм или акустика, советские физики успешно работают и в многочисленных пограничных областях. Химическая и биологическая физика, физика Земли, атмосферы и Мирового океана, астрофизика и другие смежные области современной науки представлены в нашей стране многими учеными с мировыми именами.

СОВЕТСКАЯ ФИЗИКА В НАШИ ДНИ

Советская физика уверенно занимает ведущее место во многих областях современной физики. К ним принадлежат, например, ядерная физика, физика плазмы и управляемых термоядерных реакций, физика космического пространства, физика низких температур, квантовая электроника, физика высоких давлений. Эти достижения являются результатов бурного развития физики в годы Советской власти. Советские ученые в короткий срок решили проблему ядерного оружия.

Одновременно с созданием ядерного оружия в Советском Союзе были выполнены большие работы, позволившие нам стать пионерами мирною использования атомной энергии.

Первая в мире атомная электростанция, построенная в г. Обнинске, атомный ледокол «Ленин» и ряд других мирных атомных устройств, открыли перед человечеством неиссякаемые возможности атомной энергетики.

Немало трудностей пришлось преодолеть и физикам, участвующим в создания советской ракетной техники, создателям самых могучих и совершенных ракет-носителей и космических кораблей.

В короткие сроки в нашей стране была создана сложнейшая вычислительная техника, различные типы быстродействующих электронных вычислительных машин. И в этом также немалая заслуга советских физиков.

В 1956 г. академик Н. Н. Семенов (совместно с английским ученым Хиншельвудом) получил, за исследования механизма цепных реакций высшую международную научную награду — Нобелевскую премию.

В 1958 г. группа советских физиков — академик И. Е. Тамм, члены-корреспонденты Академии наук СССР И. М. Франк и П. А. Черенков — стали лауреатами Нобелевской премии за открытие и исследование эффекта сверхсветового электрона, или, как его часто именуют, эффекта Черенкова.

В 1962 г. Нобелевская премия за работы по теории конденсированных сред и жидкого гелия была присуждена академику Л. Д. Ландау.

В 1964 г. эта премия была присуждена академиям Н. Г. Басову и A. М. Прохорову (совместно с американским физиком Таунсом). Они подучили ее за создание новой области физики — квантовой электроники.

Многие советские физики являются также лауреатами Ленинских и Государственных премий.

Советские физики выполнили за 50 лет так много фундаментальных научных исследовании, что всякая попытка даже кратко рассказать о каждой из этих работ привела бы к сухому перечню огромного количества отдельных фамилий[1].

Поэтому мы приведем далее лишь несколько примеров отдельных исследований, свидетельствующих о крупных достижениях наших физиков.

РАЗВИТИЕ ОБЩЕЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ

В 1916 г. великий физик Альберт Эйнштейн создал общую теорию относительности. Сегодня мы называем эту теорию теорией пространства, времени и тяготения. Она касается самых сокровенных основ мироздания. В ней впервые в математической форме был поставлен вопрос о том, как устроен мир, в котором мы живем, что представляет собой Вселенная? Эйнштейну удалось найти уравнения, которые описывают состояние Вселенной. Решив их, он получил много удивительных результатов.

Оказалось, например, что столь привычная для нас геометрия Эвклида не пригодна для огромных космических пространств. Геометрия Вселенной — это нёэвклидова геометрия, в которой сумма всех углов треугольника не равна 180 градусам и параллельные линии пересекаются, будучи продолженными достаточно далеко. Свойства пространства, его геометрия, оказались зависящими от находящихся в нем космических тел; гигантские звезды как бы искривляют пространство своими могучими силами тяготения и луч света, проходя вблизи от них, изгибает свою траекторию.

Найденные Эйнштейном решения не зависели от времени. Казалось бы, так и должно быть — ведь Вселенная, говоря словами одного из древнегреческих философов, «не создана никем из богов и никем из людей», она вечна, а это значит, что у нее нет ни конца, ни начала.

Авторитет Эйнштейна был так велик, а созданная им теория так сложна, что никому и в голову не приходило попробовать пойти дальше Эйнштейна по начертанному им пути. Физики и математики всего мира были абсолютно убеждены в том, что данные Эйнштейном стационарные (т. е. не зависящие от времени) решения его знаменитых уравнений гравитационного поля полностью исчерпывают всю проблему. Мир устроен так, как это показал Эйнштейн. Даже крупнейшие ученые, писавшие в те годы статьи и книги по общей теории относительности, стремились лишь к тому, чтобы разъяснить своим читателям неожиданные и парадоксальные следствия из этой теории. Едва успев появиться на свет, она уже стала классической, а ее создатель — бесспорным главой всех физиков мира.

Но в 1922 г. в фундаментальном немецком «Физическом журнале» появилась статья никому на Западе не известного советского физика А. Фридмана о новых решениях уравнений Эйнштейна. В этой работе, названной автором «О кривизне пространства», было показано, что основные уравнения общей теории относительности допускают еще два решения. И, как ни странно, оба они зависят от времени. Эти решения описывали необычную Вселенную, которая когда-то родилась! Фридман доказал, что вся Вселенная когда-то занимала ничтожный объем, в котором заключалась вещество всех известных нам, а также и не доступных нашим телескопам заезд и туманностей. Но вот произошел своеобразный взрыв и образованные им космические тела начали разлетаться в разные стороны, постепенно ускоряя свой бег. И с этого момента родившаяся Вселенная непрерывно как бы распухает, подобно надуваемому мыльному пузырю или воздушному шару.

По первому решению Фридмана это разбухание никогда не прекратится — Вселенная так и будет увеличивать свои размеры, а принадлежащие ей звезды, туманности, галактики будут непрерывно удаляться друг от друга. Впоследствии эту модель Вселенной стали называть «открытой моделью».

Но у Фридмана было и второе решение. Расширившись до определенных пределов, Вселенная начнет замедлять бег своих частей до тех пор, пока они не повернут обратно и не устремятся к первоначальному положению. Эту модель теперь называют «закрытой моделью».

Эти результаты казались настолько невероятными, что ни у кого не хватило смелости в них поверить. А тут еще сам Эйнштейн опубликовал короткую заметку о том, что в работе им обнаружены математические неточности и полученные Фридманом решения в действительности не удовлетворяют требованиям его основного уравнения, а потому лишены какого-либо смысла.

Пожалуй, это была единственная ошибка Альберта Эйнштейна, проникшая в печать. Вскоре он получил от Фридмана через физика Ю. А. Круткова письмо, в котором Фридман показал, где же ошибся Эйнштейн в оценке его работы.

И вот 13 мая 1923 г. Эйнштейн направил в «Физический журнал» письмо, озаглавленное «Заметка о работе А. Фридмана „О кривизне пространства“».

Эйнштейн писал: «В предыдущей заметке я критиковал названную работу. Однако мое возражение основывалось на вычислительной ошибке, — в чем я по совету господина Круткова убедился из письма господина Фридмана. Я считаю результаты господина Фридмана правильными и исчерпывающими. Оказывается, уравнения поля допускают для структуры пространства наряду со статическими решениями и динамические (т. е. изменяющиеся со временем) центрально-симметричные решения».

Так произошла сенсация.

Кто же такой Фридман? Что это за гений, который в голодном Петрограде сумел уйти дальше Эйнштейна в области самой модной и самой трудной физической теории?

Александр Александрович Фридман родился 17 июня 1888 г. в семье петербургского музыканта. В 1910 г. он окончил Петербургский университет а в 1914 г. ушел добровольцем на фронт, был военным летчиком и даже получил награду за отвагу — Георгиевский крест. Но эти полеты имели для А. А. Фридмана особое значение. В воздухе он проверял результаты своих расчетов, касающихся новой молодой науки — физики атмосферы, в которую ему удалось внести весьма существенный вклад. После войны он возглавил обсерваторию и направил свои силы на создание научной метеорологии. В это время метеорологи всего мира почти не пользовались строгими математическими методами и их прогнозы часто напоминали предсказания базарных гадалок. А. А. Фридман является одним из творцов современной теоретической метеорологии, которая использует весьма совершенный математический аппарат. И все это ему удается лишь потому, что по существу он был талантливейшим математиком. Действительно, ведь он — один из лучших учеников великого русского математика Стеклова, страстного поборника внедрения математических методов в различные области науки и техники.

Все лучшие свои работы А. А. Фридман создал в тяжелейшие годы гражданской войны, чудовищной разрухи и голода, в стране, окруженной врагами и отрезанной от остального научного мира. Какой талант, какую преданность науке и гражданское мужество надо было иметь, чтобы в таких невыносимых условиях прокладывать новые пути в науке!

Летом 1925 г. А. А. Фридман уехал на отдых в Крым, заболел там брюшным тифом и умер в возрасте 37 лет.

Дальнейшие события развивались так.

В 1929 г. опыт подтвердил справедливость решений Фридмана. В этом же году американский астроном Хаббл опубликовал результаты своих удивительных наблюдений. Изучая далекие галактики, он установил, что все они удаляются от нас. При этом испускаемый ими свет изменяет свою окраску — цвет его перемещается в красную область спектра тем сильнее, чем быстрее удаляется породившая его галактика. Это явление назвали «красным смещением».

Оказалось также, что чем дальше от нас находится та или иная галактика, тем быстрее она удаляется от наших космических окрестностей. Мир, который мы видим в наши телескопы, непрерывно пухнет, расширяется, увеличивает свои размеры. Например, одна из наиболее далеких галактик, известная астрономам под номером ЗС295, удаляется от нас со скоростью, примерно равной 150 тысячам километров в секунду, а ведь это половина скорости света в пустоте.

Что же касается «конца» Метагалактики, ее гибели, предсказываемой одним из решений Фридмана, то на этот счет существует теперь полная ясность. Недавно два ученика знаменитого советского физика-теоретика академика Л. Д. Ландау — член-корреспондент Академии наук СССР Евгений Михайлович Лифшиц и профессор Исаак Маркович Халатников неопровержимо доказали, что наша Метагалактика никогда не погибнет.

Дело в том, что для решения основных уравнений гравитационного поля Фридману, как и Эйнштейну, пришлось сделать несколько предположений, в частности, что распределение космических масс вещества в среднем однородно во всей Вселенной. В каждом одинаковом объеме космического пространства заключено одинаковое количество материи. В иных условиях задача становилась необычайно трудной.

Эти трудности и удалось преодолеть Е. М. Лифшицу и И. М. Халатникову. Они нашли более точное решение уравнений Эйнштейна, учитывающее реальное распределение космических масс в нашей Метагалактике. Оказалось, что она никогда не «съежится», как воздушный шарик, из которого выпустили воздух, и части ее никогда не вернутся в начальное состояние. Иными словами, мир, в котором мы живем, никогда не умрет. Наша Метагалактика оказалась «открытой» системой.

ПРИРОДА ЯДЕРНЫХ СИЛ

Существование атомных ядер и их огромная прочность возможны лишь потому, что внутри любого ядра действуют ядерные силы. Так как ядра включают в себя одноименно заряженные частицы — протоны, сближенные до расстояний порядка 10−13 см, то, казалось бы, они должны немедленно разрушаться под влиянием громадного электростатического отталкивания протонов друг от друга. Но мы знаем, что этого не происходит. Только очень тяжелые ядра, стоящие в конце Периодической системы Менделеева, оказываются неустойчивыми и это приводит к радиоактивному распаду. Что же придает прочность атомным ядрам?

Атомные ядра существуют только потому, что между всеми входящими в них частицами действуют могучие ядерные силы.

Исследование этих сил позволило выяснить их главные особенности. Эти силы, естественно, являются силами притяжения. Они обладают зарядовой независимостью, т. е. одинаково сильно притягивают любую пару частиц друг к другу — нейтрон к протону, протон к протону или нейтрон к нейтрону. Уже отсюда видно, что они не могут быть электромагнитными силами. Кроме того, ядерные силы — короткодействующие, они проявляются на расстояниях порядка диаметра одной ядерной частицы (~10−13 см). Наконец, они обладают свойством насыщения, т. е. наиболее эффективно удерживают не любые, а строго определенные группы ядерных частиц, например, два протона и два нейтрона.

Современные представления о природе ядерных сил, объясняющие все их основные особенности, были созданы академиком Игорем Евгеньевичем Таммом в 1934 г. Он первый понял, что эти силы могут быть только обменными. В это время уже были созданы основные представления о квантовой природе электромагнитного поля, согласно которым взаимодействие двух заряженных частиц осуществляется посредством квантов, испускаемых и поглощаемых заряженными частицами. Таким образом, взаимодействие есть результат обмена промежуточными частицами, создающими электромагнитное поле.

Физическая сущность обменных сил хорошо видна из следующей грубой механической аналогии. Представьте себе груз, достаточно тяжелый, чтобы его не мог долго нести один человек, и такой, что вдвоем его нести очень неудобно. Для того чтобы перенести такой груз на большое расстояние, необходимы по крайней мере два человека. Они будут нести его, поочередно передавая друг другу. Передача груза делает возможным его перенос, но она же связывает обоих грузчиков, объединяет их.

Академик И. Е. Тамм предположил, что не только электромагнитные, но и ядерные силы носят квантовый характер и осуществляются путем переноса каких-то промежуточных частиц, квантов ядерного поля. Предположив, что нуклоны обмениваются электронами и при этом как бы меняются местами (нейтрон, испустив отрицательный электрон, становится протоном; протон, поглотив отрицательный электрон, становится нейтроном), И. Е. Тамм построил строгую математическую теорию ядерных сил. Однако оказалось, что величина этих сил на много порядков меньше их действительного значения.

Вскоре после этого японский физик Юкава доказал, что если масса обменной частицы будет примерно в 300 раз тяжелее электрона, то теория Тамма хорошо описывает все основные особенности ядерных сил. В дальнейшем физики обнаружили частицы, отвечающие за действие ядерных сил. Ими оказались π-мезоны. Масса π-мезонов и все их свойства находятся в точном соответствии с теорией Тамма-Юкавы.

И. Е. Тамм первым пришел к парадоксальному выводу о том, что у нейтронов должен быть собственный магнитный момент. В 1934 г, он совместно с С. А. Альтшулером не только теоретически предсказал существование магнитного момента у нейтрона, но и правильно оценил знак этого момента.

САМОПРОИЗВОЛЬНОЕ ДЕЛЕНИЕ ЯДЕР УРАНА И ВОЗМОЖНОСТЬ ЦЕПНОГО ПРОЦЕССА

В 1934 г. итальянский физик Энрико Ферми впервые облучил уран только что открытыми нейтронами в надежде увеличить массу исходных ядер и получить элементы с бо́льшим атомным весом, чем уран. Результаты этих опытов оказались столь неожиданными и запутанными, что их удалась понять только в 1939 г., когда было выяснено, что ядра урана раскалываются нейтронами на 2–3 тяжелых осколка.

Вскоре после этого известный советский физик-теоретик Яков Ильич Френкель построил первую теорию деления атомных ядер, рассматривая ядра как капли электрически заряженной жидкости. Эта теория получила название электрокапиллярной. Она вполне удовлетворительно объясняла все основные особенности механизма деления.

Вслед за этим ученики академика Н. Н. Семенова — основателя советской школы исследователей цепных химических реакций, академики Яков Борисович Зельдович и Юлий Борисович Харитон рассчитали условия, необходимые для осуществления цепного процесса деления ядер урана. Они показали, что при небольшом увеличении доли легкого изотопа уран-235 и использовании обыкновенной воды в качестве замедлителя быстрых нейтронов деления до тепловых скоростей можно в определенном количестве урана, большем «критического», получить устойчивый цепной процесс, приводящий к высвобождению громадного количества ядерной энергии.

В 1940 г. молодые ученики академика И. В. Курчатова — Г. Н. Флеров и К. А. Петржак произвели серию очень тонких исследований, показавших наличие самопроизвольного деления ядер урана. Дело в том, что эти ядра настолько сложны, в них так много одноименно заряженных протонов, что они находятся где-то на грани устойчивости. Оказалось, что под влиянием этой неустойчивости то одно, то другое ядро урана само собою делится на осколки. При этом возникают свободные нейтроны, способные вызвать цепной процесс в надлежащих условиях. Правда, самопроизвольное деление протекает крайне медленно, с периодом полураспада порядка 1016 лет. Но и при этом в куске урана весом в 1 кг ежесекундно самопроизвольно делятся несколько ядер и возникают нейтроны, способные вызвать цепной процесс. Вот почему в конструкции атомной бомбы не предусматривают никакого постороннего источника нейтронов, возбуждающих атомный взрыв.

СОВРЕМЕННЫЕ УСКОРИТЕЛИ

В настоящее время между крупнейшими государствами происходит своеобразное соревнование, целью которого является создание все более мощных ускорителей заряженных частиц. Еще недавно самым могучим ускорителем был синхрофазотрон Объединенного института ядерных исследований в Дубне. Он разгоняет протоны до энергии в 10 миллиардов электрон-вольт (Бэв). Вслед за ним в Женеве в Европейское атомном центре (ЦЕРН) вступил в строй ускоритель на 28 Бэв. Затем американцы в Калифорнии построили ускоритель на 33 Бэв. Сейчас мы завершаем строительство гигантского протонного ускорителя на 70 Бэв вблизи Серпухова. Имеются проекты ускорителей на 250 Бэв (США, Калифорния), 350 Бэв (Женева, ЦЕРН) и на 1000 Бэв (СССР).

Чем же вызвано такое соревнование? Дело в том, что ускоритель — это своеобразный ядерный микроскоп. Чем выше энергия ускоренных им частиц, тем короче длина сопряженной с ними волны и тем мельче детали, доступные исследователям. Современная физика не удовлетворяется возможностью детально исследовать атомные ядра. Исследователи намерены проникнуть внутрь элементарных частиц и изучить строение протона, нейтрона и даже электрона. А для этого нужны частицы с длиной волны порядка 10−14–10−15 см. Так как по формуле Де-Бройля

то чем больше v, тем короче длина волны λ. Стремление получить максимально короткие волны и вызывает необходимость строить мощные и дорогие ускорители. Ведь если ваш электронный микроскоп имеет разрешающую способность в 100 А[2], то в него нельзя увидеть объектов, размеры которых оказываются меньше указанной величины.

Но ускоритель способен не только выявлять детали строения исследуемых объектов. Он также способен создавать новые объекты, ранее отсутствовавшие в окружающем нас мире. Чем выше энергия ускоренных частиц, тем больше новых типов элементарных частиц они порождают при взаимодействии, тем глубже мы проникаем в тайны микромира. Продукция ускорителя — мезоны разных типов, гипероны, резонансы и другие представители мира элементарных частиц.

В конце 40-х годов ученым казалось, что ускорители имеют очень жесткие пределы энергии, которую они способны сообщать разгоняемым частицам.

У циклотрона этот предел связан с релятивистским эффектом увеличения массы со скоростью. Так, уже при 100 млн. эв масса ядра тяжелого водорода на 5 % больше его массы покоя. Как известно, условием синхронизма для частиц, ускоряемых в циклотроне, является соотношение

При возрастании массы m частица начинает отставать по фазе от фазы напряжения генератора. В конце концов частица начинает приходить в ускоряющий промежуток между дуантами в момент, когда электрическое поле оказывает не ускоряющее, а тормозящее воздействие.

Казалось бы, что у бетатрона, где релятивистское возрастание массы не влияет на режим ускорения, так как масса не входит в условие стабильности орбиты ускоряемых электронов, нет никакого принципиального предела энергиям ускоряемых частиц. Но как показали советские физики, такой предел имеет и бетатрон. Ведь по законам электродинамики электрон, двигаясь по окружности, находится под действием ускорения и потому обязан излучать энергию. Это «лучистое трение» чрезвычайно возрастает с ростом энергии выше некоторого предела. Оно заставляет электроны быстро сбрасывать всю избыточную энергию. По подсчетам этот предел лежит вблизи 500 Мэв, но уже при энергии порядка 30 Мэв электроны создают яркое голубовато-белое свечение, уносящее значительную долю их энергии.

Выходило так, что нечего и мечтать об ускорителях на энергии в миллиарды электрон-вольт. Но ведь они уже действуют!

Создание современных ускорителей на десятки и сотни миллиардов электрон-вольт стало возможным благодаря работам советского физика академика Владимира Иосифовича Векслера. В 1944 г. он предложил знаменитый принцип «автофазировки» ускоряемых частиц, открывший новые горизонты перед ядерной физикой и физикой элементарных частиц. Им было показано, что при достаточно медленном изменении частоты ускоряющего электрического поля или напряженности удерживающего магнитного поля частицы как бы переходят с одной устойчивой орбиты на другую без нарушения основного синхронизма. Этот принцип позволил создать новые типы ускорителей: фазотроны (с изменением частоты электрического поля), синхротроны (с изменением напряженности магнитного поля) и синхрофазотроны (комбинация обоих принципов).

Другой крупный и важный вклад в создание новых типов ускорителей заряженных частиц был сделан недавно академиком Гершем Ицковичем Будкером.

Во всех ускорителях поток ускоренных частиц направляется на неподвижную мишень. При этом значительная доля энергии бомбардирующих частиц расходуется не на взаимодействие, а на ускорение частиц мишени. Ударяя по камню молотком, мы неизбежно расходуем часть энергии на движение камня. Если массы молотка и камня равны, только половина энергии может быть, использована на разрушение камня. Чем тяжелее молоток и чем легче камень, тем меньше и доля энергии, затрачиваемой на разрушение. Эти потери энергии особенно велики при релятивистских скоростях, когда масса частицы резко возрастает. Протоны, ускоренные до энергии в 1 Бэв, могут использовать на взаимодействие с частицами неподвижной мишени только 0,43 Бэв, а при 100 Бэв эта доля составит лишь 10,5 Бэв. Таким образом, стократное увеличение энергии ускоренных частиц приводит лишь к двадцатикратному увеличению полезной (эффективной) энергии взаимодействия. Так как увеличение энергии частиц резко увеличивает стоимость ускорителя, этот эффект оказывается крайне неприятным обстоятельством. В ускорителях на встречных пучках, впервые построенных под руководством академика Г. И. Будкера в Новосибирске, мишень состоит из встречного потока частиц, движущихся с такой же скоростью, что и бомбардирующие частицы. При этом даже скромные энергии частиц каждого пучка приводят к огромным эффективным энергиям столкновения. Например, в установке на встречных электрон-электронных пучках с энергией всего лишь в 160 Мэв суммарная энергия взаимодействия оказалась равной 100 Бэв. А в ускорителе на встречных электрон-позитронных пучках эффективная энергия соударения достигает 2000 Бэв!

Реализация этой простой идеи наталкивалась на огромные технические трудности, связанные прежде всего с тем, что плотность частиц в ускоренном пучке ничтожно мала и вероятность столкновения частиц встречных пучков значительно меньше вероятности столкновения пуль, выпущенных навстречу друг другу из двух далеких друг от друга пулеметов. Для того чтобы ускоритель на встречных пучках стал действительно полезным экспериментальным устройствам, пришлось создать специальные накопители ускоренных частиц и найти способы резкого уплотнения пучков. Все это позволило нашим ученым создать уникальные ускорители со сравнительно небольшими затратами средств.

За создание ускорителей на встречных пучках академик Г. И. Будкер, член-корреспондент АН СССР А. А. Наумов и трое сотрудников Института ядерной физики Сибирского отделения Академии наук СССР были удостоены Ленинской премии за 1966 г.

ТРАНСУРАНОВЫЕ ЭЛЕМЕНТЫ

Периодическая система природных элементов, как известно, обрывается на 92-м члене. Самым тяжелым природным элементом является уран. Ни на Земле, ни в приходящих из космоса метеоритах никто не находил каких-либо заметных следов более тяжелых элементов. Но почему?

Чем тяжелее элемент, тем больше протонов в его ядрах, тем меньше прочность ядер. Действительно, все элементы конца Периодической системы являются неустойчивыми. Они радиоактивны и превращаются друг в друга в цепочке последовательных α- и β-распадов. Если бы в природе и были элементы более тяжелые, чем уран, то они несомненно распались бы полностью за те несколько миллиардов лет, которые Земля уже успела прожить. Проведенные подсчеты показывают, что среди элементов с Z>92 практически нет таких, которые могли бы сохраниться за столь долгие сроки.

Но нельзя ли искусственно продлить периодическую систему, получить «заурановые» элементы? Оказывается, что это вполне возможно.

Первые трансурановые элементы — нептуний и плутоний — были получены американцами в 1940 г. при бомбардировке урана нейтронами и дейтонами. В дальнейшем основным средством создания трансурановых элементов стал специальный циклотрон, производящий мощные пучки α-частиц и более тяжелых ядер. Первыми построили такой циклотрон американцы. Им удалось продлить Периодическую систему до 101-го элемента, который они назвали менделевием в честь великого русского химика, творца Периодической системы.

Затем в эту работу включились шведы, построившие специальный циклотрон в Нобелевском институте в Стокгольме.

Вскоре за создание трансурановых элементов взялась группа советских физиков во главе с членом-корреспондентом АН СССР Георгием Николаевичем Флеровым. В 1961 г. они ввели в строй в Дубне наиболее совершенный циклотрон для ускорения атомных ядер легких элементов.

К этому времени сначала шведы, а за ними и американцы сообщили о получении первых изотопов 102-го элемента, который решено было назвать нобелием. Правда, вскоре американцы показали, что шведские опыты недостоверны. Но в справедливости американских данных по изотопу 102-го элемента с массой 254 никто не сомневался.

В 1963 г. группа Г. Н. Флерова получила изотоп 102-го элемента с массой 256 и убедилась, что его свойства, предсказанные на основе американских данных об изотопе этого же элемента с массой 254, не соответствуют действительности. Тогда наши ученые совместно с работающими в Дубне чешскими радиохимиками решили проверить все сначала. За три года упорных исследований ими были созданы пять изотопов 102-го элемента. При этом оказалось, что никаких изотопов со свойствами, якобы обнаруженными в работах шведов и американцев, у 102-го элемента нет. Таким образом, этот элемент является первым трансурановым элементом, созданным советскими физиками.

В 1966 г. группа Флерова сумела даже определить химические свойства 102-го элемента, что несомненно является одной из труднейших задач, так как здесь ученые имели дело всего с несколькими атомами, распадающимися в течение нескольких секунд, да к тому же находящимися среди множества атомов соседних элементов с весьма близкими химическими свойствами (они образуют ряд актинидов, стоящий в III группе Периодической системы). Эта задача была блестяще решена с помощью сверхчувствительного экспрессного метода газовой радиохимии, разработанного в Дубне. Советские физики предложили назвать 102-й элемент в честь Фредерика Жолио-Кюри.

Одновременно с этими работами группа Флерова провела блестящие исследования, завершившиеся созданием самого тяжелого из трансурановых элементов — 104-го. (Незадолго перед этим американцы получили 103-й элемент, который они назвали лауренсием в честь создателя циклотрона американского физика Лауренса). Чтобы хоть немного представить себе трудность создания 104-го элемента, достаточно сказать, что в среднем в экспериментах в течение часа возникает всего лишь один его атом, к тому же исчезающий через 0,3 секунды! Тем не менее удалось разными методами детально изучить физические и химические характеристики нового элемента и получить совершенно идентичные данные. По предложению Г. Н. Флерова этот элемент назван курчатовием в честь академика И. В. Курчатова.

За создание двух новых трансурановых элементов группе сотрудников Объединенного института ядерных исследований во главе с Г. Н. Флеровым присуждена Ленинская премия за 1966 г.

Работы по созданию новых элементов имеют большое научное значение. Дело в том, что физики знают сегодня о существовании примерно 1500 устойчивых и радиоактивных изотопов, изучение которых требует создания новых теоретических представлений о систематике изотопов, позволяющей надежно предсказывать их основные характеристики. А это, в свою очередь, углубляет наши знания о строении атомных ядер и природе ядерных сил. Синтез трансуранов является своеобразным «пробным камнем» для различных вариантов теории. Кроме того, некоторые из трансурановых элементов уже нашли полезное практическое применение.

УПРАВЛЯЕМЫЕ ТЕРМОЯДЕРНЫЕ РЕАКЦИИ

Неуправляемые термоядерные реакции происходят при взрывах водородных бомб. Они приводят к высвобождению громадного количества ядерной энергии, сопровождающемуся крайне разрушительным взрывом. Теперь задача ученых — найти пути осуществления контролируемой термоядерной реакции. По-видимому, это одна из величайших научных проблем, поставленных человечеством. Ее решение открывает необозримые энергетические возможности, превращая воду всех морей и океанов в отличное ядерное топливо. Если управляемый термоядерный синтез будет технически реализован в больших масштабах, будущие поколения смогут черпать из океана энергию, запасов которой хватит на громадный срок. Даже самые мрачные из современных мальтузианцев, предсказывающих все более печальное будущее бурно возрастающему населению Земли, вынуждены признать, что существует луч надежды, ведь энергетика — это основа материального благосостояния, а ресурсы ее, с учетом термоядерного топлива, чрезвычайно велики. Но эта энергия может быть получена лишь после того, как мы научимся нагревать до огромных температур довольно большие количества легких ядер и удерживать их в таком необычном состоянии на протяжении заметных интервалов времени.

Энергия, освобождаемая в ходе термоядерной реакции, возникает в результате работы ядерных сил, а они, как мы знаем, чрезвычайно короткодействующие. Для осуществления какого-либо термоядерного синтеза, например реакции

1H2+1H21H3+p+4,0 Мэв,

надо подвести заряженные ядра вплотную друг к другу. Но этому препятствуют силы электростатического отталкивания, на преодоление которых необходимо затратить некоторую энергию (энергию активации). Эта энергия может быть заимствована только у теплового движения ядер.

Даже первые признаки ядерных взаимодействий в нагретом веществе можно надеяться наблюдать лишь при температуре около миллиона градусов. В этих условиях атомы любого вещества распадаются, образуя своеобразный газ из положительно и отрицательно заряженных частиц. Если при этом концентрация частиц достаточно велика, чтобы автоматически (за счет сильных электрических полей) выравнивать всякие зарядовые неоднородности и обеспечивать квазинейтральность всей массы частиц, мы имеем не просто ионизованный газ, а плазму.

Основная и наиболее трудная задача, стоящая на пути к осуществлению интенсивных управляемых термоядерных реакций, заключается даже не в том, чтобы нагреть плазму до гигантских температур, а в том, чтобы изолировать такую плазму от стенок сосуда, в котором она заключена. Эта задача, сама по себе необычайно трудная, облегчается тем, что практически все частицы горячей плазмы электрически заряжены и могут удерживаться специально подобранными комбинациями магнитных сил. Впервые идею о магнитной изоляции горячей плазмы выдвинули академики А. Д. Сахаров и И. Е. Тамм.

Исследования по управляемым термоядерным реакциям находятся еще в стадии разведки различных путей подхода к проблеме. Наиболее детально исследованы разряды в прямых трубах из диэлектриков, тороидальные установки различных конфигураций и магнитные ловушки. Ни один из этих путей не разведан так далеко, чтобы обеспечить решение проблемы.

Плазма оказалась удивительно капризным объектом: она с поразительной легкостью сбрасывает с себя энергию, которую мы с таким трудом сообщаем ей на короткие мгновения. Наличие множества неустойчивостей разных типов приводит к тому, что каждый шаг на пути к заветной цели дается с большим трудом. И все же за сравнительно небольшой срок исследований пройден важный этап. Физики научились успешно ликвидировать наиболее опасные, так называемые гидродинамические неустойчивости, почти мгновенно разрушающие плазму. Теперь предстоит преодолеть новый барьер — научиться подавлять другой тип плазменных неустойчивостей, называемых кинетическими. Эти неустойчивости развиваются значительно медленнее. Как сказал недавно один из руководителей этих исследований в Советском Союзе академик Лев Андреевич Арцимович: «Грубо говоря, мы научились предохранять плазму от инфаркта, но все еще не умеем защищать ее от раковых опухолей».

Исследования управляемых термоядерных реакций почти одновременно были начаты в СССР и США в начале 50-х годов. Первоначально они велись в условиях сугубой секретности. Советский Союз первым в 1956 г. проявил инициативу по ликвидации секретности в этой важной области физики. С тех пор наши исследования в этой области неизменно занимают ведущее место в мире. С первых же шагов и до наших дней их возглавляют академики Л. А. Арцимович и М. А. Леонтович, воспитавшие много талантливой молодежи.

Советские физики первыми наблюдали возникновение нейтронного и жесткого рентгеновского излучения плазмы, причем они сразу же дали правильную оценку этому факту, показав, что возникающие нейтроны не являются, к сожалению, результатом термоядерных реакций. Они первые построили ряд крупных установок для исследования горячей плазмы (Огра-1, Огра-2, Токамак и т. д.). Недавно на установке ПР-5 в Институте атомной энергии им. И. В. Курчатова была получена плазма с рекордными характеристиками. Чтобы лучше уяснить полученные результаты, приведем следующую таблицу.

Характеристики плазмы Температура Концентрация Время жизни, сек
Необходимо для работы термоядерного реактора 108 1015 10
Получено в США, Англии, Швеции 107 109 10−5
Получено в СССР 4·107 1010 10−1

Как видно из этой таблицы, результаты, достигнутые советскими физиками, по всем основным показателям, оказались намного выше (температура в 4 раза, концентрация в 10 раз и время жизни плазмы в 10 000 раз!), чем у физиков других стран, проводящих аналогичные исследования. Особенно важным является резкое увеличение времени жизни горячей плазмы, достигнутое нашими учеными. Однако сравнение этих результатов с данными, необходимыми для работы термоядерного реактора, показывает, что хотя нашим физикам и удалось пройти большой путь, полное решение проблемы потребует еще немало времени и усилий.

Работы советских физиков в области физики атомного ядра и элементарных частиц, о которых мы рассказали в этом кратком обзоре, далеко не исчерпывают всех выполненных фундаментальных исследований. Ограниченные размерами брошюры, мы лишены возможности сколько-нибудь подробно рассказать об открытии ядерной изомерии у искусственных радиоактивных изотопов, сделанном в 1935 г. И. В. Курчатовым, Б. В. Курчатовым, Л. В. Мысовским и Л. И. Русиновым, или о первых наблюдениях ливней космических частиц, произведенных в 1927 г. академиком Д. В. Скобельцыным при помощи камеры Вильсона, находящейся в сильном магнитном поле. Следует также упомянуть о создании Л. В. Мысовским и А. П. Ждановым метода наблюдения элементарных частиц в специальных толстослойных фотоэмульсиях.

Необходимо также отметить ряд крупных теоретических исследований советских физиков в указанной области.

Академики Л. И. Мандельштам и М. А. Леонтович первыми создали теорию прохождения частиц через потенциальный барьер, вскрывшую механизм α-распада радиоактивных ядер.

Академик Л. Д. Ландау выдвинул «принцип комбинированной четности», весьма плодотворной для систематики элементарных частиц.

Академик В. Л. Гинзбург и член-корреспондент АН СССР И. С. Шкловский создали современную теорию происхождения космических лучей.

Академик И. Я. Померанчук создал теорию взаимодействия частиц и античастиц при очень высоких энергиях.

Профессор Д. Д. Иваненко первый предложил протонно-нейтронную модель атомного ядра.

Этот список можно было бы без труда значительно продолжить. Но и того, что уже было сказано, достаточно, чтобы составить представление о большом вкладе советских физиков в один из важнейших разделов современной физики.

ПРОЧНОСТЬ ТВЕРДЫХ ТЕЛ И МЕХАНИЗМ ИХ ДЕФОРМАЦИИ

Огромный вклад в эту чрезвычайно важную область физики внесли работы академика Абрама Федоровича Иоффе и его учеников.

Большинство твердых тел имеет кристаллическую структуру. Долгое время в физике господствовали представления о том, что реальные кристаллические тела мало чем отличаются от идеальных. Общепризнанная теория кристаллической решетки, разработанная Максом Борном, исходила из идеальных представлений о кристалле, где каждый атом находится на своем месте, а какие-либо нарушения структуры (примеси, внутренние дефекты) полностью отсутствуют. Эта теория хорошо описывала многие свойства кристаллических тел (электропроводность, теплопроводность и т. п.). Но как только дело доходило до определения прочности на разрыв, наблюдалось громадное расхождение между теоретическими предсказаниями и экспериментальными результатами. Прочность реальных кристаллов оказывалась в сотни раз ниже теоретической. Например, теория указывает, что каменная соль должна выдерживать напряжения до 200 кг/мм2, а в действительности кристаллы каменной соли разрываются уже при нагрузке в 400 г/мм2.

Академик А. Ф. Иоффе первый понял причину этого громадного расхождения. Дело в том, что реальный кристалл существенно отличается от идеального. Как внутри, так и на поверхности его имеется много различных скрытых дефектов. Например, в каком-нибудь узле кристаллической решетки поваренной соли вместо атома натрия оказался атом хлора или серы, а иногда вообще никакого атома нет. На поверхности кристалла при сильном увеличении можно увидеть разветвленную сеть микроскопических трещин, резко понижающих его прочность.

Чтобы убедиться в этом, А. Ф. Иоффе произвел в 1924 г. поразительно простые опыты, которые с тех пор вошли во все курсы общей физики под названием «эффекта Иоффе». Погружая кристаллы каменной соли в теплую воду, он растворял тонкий поверхностный слой вместе с присущими ему дефектами и показал, что при этом прочность кристаллов возрастала в 10–20 раз.

В другой серии опытов выточенные из кристаллов каменной соли шары медленно охлаждались до температуры жидкого воздуха, а затем быстро погружались в расплавленный свинец. При этом согласно теории внутри шаров должно было возникать внутреннее напряжение (за счет быстрой смены сжатия на расширение) порядка 70 кг/мм2. Но шары не разрывались, свидетельствуя о том, что подлинная внутренняя прочность каменной соли близка к теоретическому пределу.

Идеально упругое кристаллическое тело после прекращения воздействия деформирующей силы должно немедленно возвратиться в исходное недеформируемое[3] состояние. В действительности же всякая деформация оставляет за собой медленно исчезающий след — так называемое упругое последействие. Кроме того, предсказываемый теорией предел упругости, за которым твердое тело начинает течь подобно вязкой жидкости, также значительно выше реально наблюдаемой величины.

А. Ф. Иоффе первым создал метод экспериментального исследования механизма пластической деформации кристаллических тел. Суть этого метода состоит в последовательном наблюдении дифракции рентгеновских лучей, проходящих через кристалл, медленно деформируемый под влиянием внешних сил. Опыты, проделанные с кристаллами каменной соли, показали, что до определенного предела нагрузки никаких изменений на полученных лауэграммах не наблюдается. При достижении предела текучести пятна на рентгенограмме внезапно раздваиваются, затем умножаются и, наконец, вытягиваются в длинные хвосты. Это свидетельствует о том, что за пределом упругости образцы перестают быть правильными монокристаллами; они распадаются на отдельные монокристаллики, которые смещаются и поворачиваются относительно своих соседей. Каждый из них дает свою систему пятен Лауэ, суммирующуюся с пятнами от других монокристалликов. Такое явление было названо астеризмом, а предложенный А. Ф. Иоффе метод стал одним из основных методов исследования механизма деформаций кристаллических тел.

Продолжая эти исследования, А. Ф. Иоффе установил, что пластическая деформация происходит в кристалле не непрерывно, как думали до той поры все физики, а скачкообразно. При непрерывно действующей нагрузке деформация идет скачками, повторяющимися через одинаковые промежутки времени и даже сопровождающимися слабыми щелчками, напоминающими тиканье часов.

Этими, а также и некоторыми другими работали А. Ф. Иоффе заложил фундамент современных представлений о механизме прочности и пластичности реальных твердых тел. Он подал физикам глубокую идею о необходимости изучения различных дефектов кристаллической решетки, чрезвычайно сильно влияющих на многие свойства твердых тел.

Продолжая эти исследования, ученики А. Ф. Иоффе член-корреспондент АН СССР С. Н. Журков и академик А. П. Александров еще в 1933 г. получили бездефектные кварцевые и стеклянные нити, обладающие гигантской прочностью. Недавно в Физико-техническом институте АН СССР им. А. Ф. Иоффе было получено стекло с прочностью, в несколько раз превосходящей прочность стали.

ФИЗИКА ПОЛУПРОВОДНИКОВ

Другой областью физики, в которую академик А. Ф. Иоффе также внес вместе со своими учениками огромный общепризнанный вклад, является физика полупроводников. Сегодня нам трудно представить себе физику без этой весьма актуальной области, но тридцать с лишним лет назад, когда А. Ф. Иоффе занялся систематическим исследованием свойств полупроводников, многие физики весьма критически отнеслись к этому начинанию. В то время казалось, что только металлы и диэлектрики являются материалами, достойными серьезных физических исследований. Проводники и изоляторы — это важно и нужно технике, а полупроводники, хотя к ним относится большинство природных соединений, — бесполезный и бесперспективный материал. Но академик А. Ф. Иоффе гениально предвидел ту огромную революционизирующую роль, которую уже сегодня полупроводники играют в технике.

На первых порах многое приходилось создавать — прежде всего методы получения достаточно чистых полупроводников и способы экспериментального определения их основных физических свойств: концентрации носителей тока, типа проводимости (электронный или дырочный), подвижности носителей и т. п. Многие из этих методов, впервые созданные А. Ф. Иоффе и его учениками, стали впоследствии классическими.

«Школа» Иоффе выполнила целую серию пионерских исследований электрических, гальваномагнитных, термоэлектрическях и фотоэлектрических свойств полупроводников различных типов.

Одним из важнейших результатов, полученных А. Ф. Иоффе и его сотрудниками, было обнаружение огромного влияния примесей на электрические свойства полупроводников. А. Ф. Иоффе показал, что примеси не только меняют в широких пределах проводимость полупроводников, но могут изменять даже знак носителей тока, превращать электронный полупроводник в дырочный и наоборот. Причем роль примеси могут играть не только чужеродные атомы, но и собственные атомы полупроводника при их избытке или недостатке. Например, избыток (против стехиометрического соотношения) атомов свинца в полупроводнике PbS делает этот полупроводник электронным, а избыток серы — дырочным полупроводником.

А. Ф. Иоффе первым сформулировал и экспериментально обосновал современные представления о механизме выпрямляющего действия полупроводников. Он показал, что запирающий слой образуется в результате контакта двух полупроводников с различными носителями тока — электронным и дырочным (по современной терминологии «p—n-переход»). При этом ток может свободно проходить только в том направлении, при котором электроны и дырки движутся навстречу друг другу по направлению к контакту, где они встречаются и рекомбинируют. В противоположном случае электроны и дырки расходятся друг от друга и проводимость контактного слоя резко падает, так как в нем остается крайне мало носителей тока. Эти работы открыли путь к созданию полупроводниковых выпрямителей (диодов).

Изучая полупроводниковые свойства ряда интерметаллических сплавов, принадлежащих так называемым «дальтонидам» (ZnSb, Mg3Sb2, Mg2Sn и т. п.) — типичным циклическим соединениям с валентной связью, А. Ф. Иоффе создал метод получения полупроводников с изменяющимися в широких пределах свойствами.

Особенно большое внимание А. Ф. Иоффе уделял исследованиям термоэлектрических и фотоэлектрических свойств полупроводников. Используя эти свойства, можно создать новые методы прямого преобразования энергии тепла и света в электрическую энергию, более надежные и экономичные.

А. Ф. Иоффе разработал теорию термоэлектрогенераторов и термоэлектрических холодильников (использующих эффект Пельте), открыв для современной техники новую обширную область — полупроводниковую энергетику. Под его руководством были сконструированы десятки новых типов полупроводниковых приборов и энергетических устройств, получивших разнообразные практические применения.

ОТКРЫТИЕ ЭКСИТ

В 1931 г. член-корреспондент АН СССР Яков Ильич Френкель теоретически предсказал весьма интересное физическое явление. Решая задачу о возбуждении атомов в идеальном кристалле, он показал, что возбужденное состояние, возникшее у какого-либо атома такого кристалла, не может быть локализовано там, где находится этот атом, а непременно должно перемещаться по кристаллу в виде своеобразной волны возбуждения. Френкель назвал эту волну экситоном.

Все дело в том, что, как показывают расчеты, энергия кристалла не изменится, если в таком же возбужденном состоянии окажется не первоначальный атом, возбужденный квантом поглощенного света, а любой другой атом кристалла. Состояния, в которых один из атомов кристалла оказывается возбужденным, физически неразличимы. Поэтому энергия возбуждения будет переходить от атома к атому подобно тому, как, согласно квантовой теории металлов, переходит от атома к атому свободный электрон, оказавшийся в зоне проводимости какого-нибудь металла. Ведь в действительности этот электрон не отрывается от атома и атом не ионизуется — свобода электрона состоит в том, что он может переходить от атома к атому без затраты какой-либо энергии ввиду перекрытия электронных оболочек соседних атомов.

Таким же квантовым эффектом является и передача возбужденного состояния в кристалле от атома к атому, составляющая суть движения экситона. Энергия возбуждения будет путешествовать от атома к атому до тех пор, пока один из получивших ее атомов не перейдет в нормальное невозбужденное состояние, испустив полученный им квант. Важно отметить, что перемещение энергии по кристаллу происходит без участия каких-либо прямых носителей, например, электронов или фотонов. Его даже нельзя рассматривать как результат испускания кванта одним атомом и поглощения его другим атомом. Энергия передается здесь особым способом, она переходит от возбужденного атома к соседнему невозбужденному и далее подобно волне возбуждения. Этот особый механизм передачи энергии в кристалле был назван миграцией энергии. Благодаря миграции экситонов поглощение и испускание света происходит в различных атомах, разделенных друг от друга расстоянием, намного превосходящим период кристаллической решетки. Поэтому такое свечение должно быть присуще только телам с кристаллической структурой.

Почти 20 лет никто не вспоминал об экситонах. Сам Я. И. Френкель к этому времени уже умер. Но вот в 1951 г. советские физики В. П. Жузе и С. М. Рывкин показали, что передача энергии поглощенного света фотоэлектронам в кристаллах закиси меди Cu2O происходит так, как если бы в ней участвовали экситоны. В следующем году академик АН УССР С. И. Пекар показал, что спектральный состав света, поглощаемого экситонами, должен быть подобен по своему характеру спектру атома водорода. Этот спектр и был обнаружен членом-корреспондентом АН СССР Е. Ф. Гроссом путем весьма тонких оптических исследований. Оказалось, что он маскируется полосой основного (так называемого фундаментального) поглощения света в кристалле, а интенсивность поглощения света экситонами весьма невелика. Потребовалось немало ухищрений (например, охлаждение кристалла до T=−200 °C), прежде чем удалось обнаружить спектральную серию поглощения света экситонами. Помимо Cu2O Е. Ф. Гросс обнаружил линии экситонного поглощения света также и у кристаллов сернистого кадмия.

Опыты Е. Ф. Гросса являются прямым экспериментальным доказательством существования экситонов. Они позволяют определять энергию, необходимую для образования экситонов, а также эффективную массу электронов в полупроводниковых кристаллах. Все это имеет весьма важное значение для развития наших представлений о природе кристаллов и разыгрывающихся в них процессах поглощения, передачи и излучения энергии.

Так советские физики вписали новую блестящую главу в историю физики твердого тела.

ПАРАМАГНИТНЫЙ РЕЗОНАНС

В 1912 г. русский физик В. К. Аркадьев обнаружил странное явление. Пропуская пучок электромагнитных волн сквозь железные проволочки, он зарегистрировал зависимость поглощения этих волн от частоты. При некоторых частотах электромагнитные волны как бы избирательно поглощались в проволочках, образуя, по словам В. К. Аркадьева, «магнитные спектры». Это поглощение сопровождалось изменением намагничивания проволочек. Однако экспериментальная техника того времени позволяла получить лишь грубое качественное подтверждение таких эффектов, а теория была бессильна их объяснить.

В 1923 г. советский физик Я. Г. Дорфман, анализируя работы В. К. Аркадьева, предсказал возможность существования магнитного резонанса — избирательного поглощения коротковолновых радиоволн в веществе.

Первым, кто открыл парамагнитный резонанс, был академик Евгений Константинович Завойский. Это открытие принадлежит к числу крупнейших достижений атомной физики.

В парамагнитном — веществе атомы обладают неспаренными электронными спинами или некомпенсированными орбитальными магнитными моментами, поэтому суммарный магнитный момент таких атомов не равен нулю. Иными словаки, грубо говоря, атомы парамагнитных веществ являются маленькими магнитиками. Если такое вещество поместить в сильное постоянное магнитное поле, то под его влиянием элементарные атомные магнитики, первоначально расположенные как угодно, будут ориентироваться по направлению приложенного к ним поля. Но непрерывное движение электронов делает атом как бы волчком, поэтому магнитный момент каждого атома будет подобно оси волчка совершать прецессию вокруг направления силовых линий постоянного магнитного поля. Это известная из курса атомной физики Ларморовская прецессия. Если теперь включить второе магнитное поле — слабое переменное (или вращающееся) магнитное поле, перпендикулярное постоянному полю, то на каждый атомный магнитик будет действовать вторая сила, стремящаяся повернуть атомные магнитики и расположить их параллельно плоскости вращения переменного поля. Если частота переменного поля не будет совпадать с частотой собственного вращения атомного магнитного момента вокруг силовых линий постоянного поля, то вызываемые переменным полем отклонения будут в разные моменты времени взаимнопротивоположными, так что в среднем влияние этого поля будет равно нулю.

Совершенно иная картина возникает тогда, когда обе частоты совпадают. При этом атомный магнитик все время будет отклоняться в направлении плоскости вращения переменного поля, удаляясь от положения устойчивого равновесия и увеличивая энергию атома. Эту дополнительную энергию атомы заимствуют у переменного магнитного поля.

Так как атомы парамагнитного вещества постоянно взаимодействуют друг с другом, энергия, приобретенная одним из них, быстро передается соседним атомам и идет на увеличение энергий теплового движения, нагревая парамагнитик.

С квантовой точки зрения парамагнитный резонанс объясняется возникновением квантовых переходов в атомах под влиянием переменного магнитного поля. Такие переходы возможны лишь при условии, что энергия квантов электромагнитного поля совпадает с разностью энергий двух магнитных состояний атома. При напряженности постоянного поля порядка 10 000 эрстед резонанс наблюдается на электромагнитных волнах сантиметрового диапазона, применяемых обычно в радиолокационных устройствах.

В опытах академика Е. К. Завойского частота переменного магнитного поля оставалась неизменной (она задавалась генератором). Изменялась же напряженность постоянного магнитного поля. Так как (постоянное поле создавалось электромагнитом, эти изменения легко осуществлялись при помощи реостата. Меняя величину напряженности постоянного поля, мы автоматически изменяем частоту обращения атомных магнитиков вокруг силовых линий этого поля. В момент совпадения обоих частот возникает резонансное поглощение, регистрируемое осциллографом или гальванометром.

Частота обращения атомных магнитиков вокруг силовых линий постоянного поля зависит также и от природы атома. Кроме того, точно такой же эффект наблюдается и в молекулах. Это позволяет воспользоваться методом парамагнитного резонанса для исследования структуры и химического состава различных веществ.

Парамагнитный резонанс обладает необычайной чувствительностью, позволяя регистрировать уровни энергии, совершенно недоступные для оптических методов. Так как обычно химические активные центры (радикалы), активизирующие течение многих реакций, имеют собственные магнитные моменты, парамагнитный резонанс позволяет легко обнаруживать возникновение радикалов в ходе сложных химических реакций и определять их природу. В последние годы парамагнитный резонанс все шире применяется в биологии для анализа тонких деталей биохимических реакций, протекающих в живых организмах.

Академик Е. К. Завойский открыл также и аналогичное по природе явление ферромагнитного резонанса, теория которого еще в 1935 г. была развита академиком Л. Д. Ландау и членом-корреспондентом АН СССР Е. М. Лифшицем.

ИСКУССТВЕННЫЕ АЛМАЗЫ

Алмаз — редкий и драгоценный минерал. Сколько легенд и загубленных человеческих жизней связано с историей крупных алмазов! Достаточно напомнить, что в 1829 г., после жестокого убийства А. С. Грибоедова в Персии, персидский принц Хосров-Мирза направил русскому царю крупный алмаз «Шах», цена которого, по мнению принца, окупала смерть выдающегося русского писателя и дипломата. Но алмазы нужны не только ювелирам и царям. С каждым годом растет на них промышленный спрос. Около 85 % мировой добычи природных алмазов используется сейчас для различных технических нужд. Алмазные резцы и пилы, буры и шлифовальные круги не имеют равных себе конкурентов.

Советский Союз долгое время не располагал отечественными алмазами и вынужден был ввозить их из-за рубежа. В 1954 г. советские геологи нашли в Якутии первое коренное месторождение природных алмазов — кимберлитовую трубку «Зарница». А к концу 1955 г. было обнаружено около десяти месторождений алмазов, пригодных для промышленной разработки. Однако потребность в алмазах растет год за годом и это делало весьма важной задачу создания искусственных алмазов.

Еще перед второй мировой войной советский физико-химик О. И. Лейпунский рассчитал фазовую диаграмму системы графит — алмаз и показал, что при давлении порядка 60 000 атмосфер и температуре выше 2000° кристаллическая решетка графита может путем уплотнения и сближения атомов перейти в решетку алмаза.

В одной из своих статей О. И. Лейпунский писал в 1946 г.: «Во-первых, надо нагреть графит не меньше, чем до 2000°, чтобы атомы углерода могли переходить с места на место. Во-вторых, его надо при этом сжать чудовищным давлением, не меньшим, чем в 60 000 атмосфер. Тогда он обязательно перейдет в алмаз, подобно тому, как камень, подброшенный рукой, обязательно поднимется с земли в воздух».

Однако практическая реализация этой программы оказалась весьма трудным и небезопасным делом. В Советском Союзе эту проблему успешно решили ученые Института физики высоких давлений АН СССР под руководством академика Леонида Федоровича Верещагина. Они разработали специальные «алмазные» прессы и методы контроля основных физических параметров в камерах, где протекает синтез алмазов.

Первые советские искусственные алмазы имеют размеры порядка 1 мм. Они оказались тверже природных алмазов и с успехом применяются в промышленности. Их используют для обработки сверхтвердых сплавов и для изготовления самых долговечных инструментов, с их помощью режут полупроводниковые материалы, трудно поддающиеся обычным методам обработки. С помощью алмазных пил можно легко получать облицовочные плитки из гранита и мрамора, по толщине и стоимости близкие к керамическим плиткам.

В 1966 г. академик Л. Ф. Верещагин получил искусственные алмазы размером 3–4 мм, пригодные для работы в буровых инструментах. Одновременно был синтезирован еще один сверхтвердый материал — кубический нитрид бора (боразон). По своей твердости он несколько уступает алмазу, но зато является более устойчивым к влиянию высоких температур. Это делает боразон весьма ценным в техническом отношении материалом.

СВЕРХТЕКУЧЕСТЬ ЖИДКОГО ГЕЛИЯ

Советские физики сделали весьма крупный вклад в изучение физики низких температур.

Академик П. Л. Капица создал новый тип машин для производства жидкого воздуха — турбодетандеры, работающие при низких давлениях. Эти машины получили в дальнейшем весьма широкое распространение.

Академик Л. Д. Ландау разработал теорию перехода металлов в сверхпроводящее состояние. Этот переход происходит не мгновенно, а через так называемое промежуточное состояние, являющееся своеобразной смесью сверхпроводящих и несверхпроводящих слоев. Наличие таких слоев в металле в условиях переходного состояния было подтверждено членом-корреспондентом АН СССР А. И. Шальниковым в исключительно тонких экспериментах.

В 1957 г. академик Н. Н. Боголюбов разработал (одновременно с американскими физиками Бардиным, Купером и Щрифером) теорию сверхпроводимости.

Развитая академиками Л. Д. Ландау и В. Л. Гинзбургом и членами-корреспондентами АН СССР А. А. Абрикосовым и Л. П. Горьковым теория сверхпроводящих сплавов (так называемый «метод ГЛАГ») открывает путь к получению сверхпроводников, пригодных для различных практических применений.

В этом разделе мы остановимся подробнее на замечательном открытии, сделанном академиком Петром Леонидовичем Капицей, — сверхтекучести жидкого гелия.

Если охладить гелий до температуры T=4,8° К, он превращается в легкую прозрачную жидкость. Имея крайне малую теплоемкость, эта жидкость непрерывно кипит вследствие небольшого притока тепла даже в условиях специальной тепловой изоляции. Понизив температуру жидкого гелия до 2,19° К, можно убедиться, что кипение мгновенно прекращается. Оказывается, что ниже 2,19° К жидкий гелий приобретает особые свойства — он становится единственной известной нам квантовой жидкостью. Принято говорить, что при этой температуре гелий-I (обычный гелий) переходит в гелий-II. Все жидкости затвердевают задолго до того, как в них начнут проявляться квантовые свойства. Только гелий-II остается жидким даже при температурах, максимально близких к абсолютному нулю.

Голландский физик Кеезом, один из первых исследователей гелия-II, в 1936 г. показал, что теплопроводность гелия-II, измеренная в капиллярах, намного выше теплопроводности меди или серебра — наиболее теплопроводных металлов. Поэтому Кеезом назвал гелий-II сверхтеплопроводным веществом.

В 1937 г. академик П. Л. Капица повторил опыты Кеезома, видоизменив методику измерения, и получил для гелия-II еще более высокое значение теплопроводности. Расчеты показали, что она намного превышает максимальное значение теплопроводности, которую мог бы иметь гелий-II исходя из обычных представлений о механизме передачи тепла этим способом. Тогда П. Л. Капица обратился к другому возможному механизму передачи тепла в жидкости — к конвекции. Более нагретая часть жидкости имеет меньшую плотность и как бы всплывает к поверхности, в то время как менее нагретая и более плотная часть опускается на дно. Очевидно, причиной, вызывающей эти движения, является действие силы тяжести. Подсчеты показали, что если истинной причиной сверхбыстрого распространения тепла в гелии-II является конвекция, то конвекционные потоки в нем должны возникать и распространяться с чрезвычайной легкостью. А это означало бы, что вязкость гелия-II ничтожна. Поставленные опыты подтвердили, что она меньше чем 10−11 пуаза (для сравнения укажем, что вязкость воды при комнатной температуре равна 10−2 пуаза). Таким образом, гелий-II оказался в миллиард раз более текучей жидкостью, чем вода. Это и позволило П. Л. Капице назвать его сверхтекучим.

Продолжая, исследования, П. Л. Капица показал, что обычный механизм конвекции под влиянием силы тяжести к гелию-II неприменим. Этой силы просто недостаточно, чтобы обеспечить столь большую передачу тепла, которая наблюдается в эксперименте. Затем были поставлены опыты, которые, казалось бы, еще более запутали и осложнили ситуацию (забегая несколько вперед, заметим, что именно они и помогли найти правильное решение проблемы).

В одном из опытов в сосуд, где находился гелий-II, помещалась миниатюрная стеклянная колбочка с небольшой нагревательной спиралью. Стоило включить ток и немедленно возникал поток гелия из узкого отверстия колбочки. Струя гелия без труда могла быть обнаружена по отклонению легкого крылышка, подвешенного на ее пути перед отверстием колбочки. Но вот что было странным — гелий интенсивно вытекал из колбочки, а все попытки обнаружить обратный приток ни к чему не приводили!

Многочисленные опыты, поставленные П. Л. Капицей с целью обнаружить обратный приток гелия в колбочку, оказались безуспешными. Думая, что гелий втекает в колбочку по стенкам ее узкой части, П. Л. Капица решил уменьшить ширину отверстия в узкой части настолько, чтобы обратный поток вдоль стенок уже никак не мог бы ускользнуть от регистрации. Но и при ширине щели всего в 0,14 микрона никакого встречного потока заметить не удалось. Выходило так, что гелий непрерывно вытекает из колбочки и не втекает в нее!

Исчерпывающее объяснение этого парадокса было дано академиком Львом Давыдовичем Ландау, построившим теорию сверхтекучести.

Оказалось, что при T=2,19° К часть обычного жидкого гелия-I превращается в необычный гелий-II, полностью лишенный вязкости и поэтому способный свободно перемещаться в гелии-I, совершенно не взаимодействуя с ним.

При дальнейшем понижении температуры доля гелия-II возрастает, но и гелий-I все еще остается в этой удивительной смеси. Он может полностью исчезнуть лишь при абсолютном нуле, которые как известно, недостижим.

Таким образом, при температурах ниже 2,19° жидкий гелии является смесью двух разных сортов — гелия-I, обладающего обычной вязкостью, и гелия-II, совершенно лишенного вязкости и поэтому сверхтекучего.

Посмотрим теперь, как же обстоит дело с последним экспериментом академика П. Л. Капицы. Так как гелий-II не испытывает трения ни о стенки колбочки, ни о гелий-I, находящийся в том же сосуде, он беспрепятственно втекает внутрь колбочки и никакие механические эффекты не могут обнаружить его поступление. Попав в колбу и нагревшись выше 2,19° К, гелий-II превращается в гелий-I и устремляется наружу, оказывая своей струей заметное давление на легкое крылышко, помещенное вблизи отверстия колбочки. Таким образом, через отверстие колбочки одновременно проходят два потока — гелий-II втекает внутрь, гелий-I вытекает наряжу. Они проходят друг сквозь друга совершенно не взаимодействуя, полностью не замечая присутствия другого потока, как если бы его вообще не было.

Свойства гелия-II оказались настолько неожиданными и странными, что в одном из своих докладов П. Л. Капица вынужден был заметить следующее: «Если бы это теоретическое положение не было так полно подкреплено экспериментальными доказательствами, оно звучало бы как идея, которую очень трудно признать разумной». Действительно, вряд ли кто-либо из крупных физиков мог поверить в существование сверхтекучей жидкости до того, как она была открыта.

Теория Л. Д. Ландау предсказала также, что в гелии-II наряду с обычными звуковыми волнами могут распространиться особые тепловые волны с существенно иной скоростью. Эти волны были названы «вторым звуком». Строгая теория «второго звука» была построена членом-корреспондентом АН СССР Е. М. Лифшицем, а вскоре после этого «второй звук» был обнаружен в экспериментах, выполненных профессором В. П. Пешковым.

Ценный вклад в теорию сверхтекучести внесли также работы академика Н. Н. Боголюбова.

Природный гелий имеет два стабильных изотопа: у одного из них масса равна четырем, у другого — трем единицам. Согласно квантовой механике эти два сорта гелия должны подчиняться разным статистическим закономерностям: гелий-IV — статистике Бозе — Эйнштейна, гелий-III — статистике Ферми — Дирака. Последняя запрещает переход гелия-III в сверхтекучее состояние даже при абсолютном нуле. Этим, в частности, можно воспользоваться для весьма эффективного разделения изотопов гелия. Исследования различных изотопических эффектов в жидком гелии были выполнены — академиком АН УССР Б. Г. Лазаревым, профессорами Б. П. Пешковым и И. М. Халатниковым.

РАБОТЫ С. И. ВАВИЛОВА ПО ЛЮМИНЕСЦЕНЦИИ

С первых лет научной деятельности академик Сергей Иванович Вавилов заинтересовался явлением фотолюминесценции, изучение которой он не прекращал до конца своей жизни. Люминесценция (или, как ее иногда не совсем верно называют, холодное свечение тел) состоит в том, что под действием света некоторые твердые, жидкие или газообразные вещества испускают характерное для них излучение, называемое излучением люминесценции. При люминесценции происходит поглощение возбуждающего света и испускание света люминесценции, состав которого отличен от поглощенного. Изменение света свидетельствует о наиболее тесном взаимодействия между светом и веществом, благодаря чему изучение люминесценции позволяет раскрыть наиболее тонкие свойства и света и вещества.

Некоторые виды люминесценции — «холодное» свечение некоторых твердых тел и жидкостей — были открыты очень давно. Но несмотря на это, на протяжении нескольких веков развитие люминесценции не выходило за пределы накопления разрозненных наблюдений и опытных фактов, сопровождаемых всевозможными полуэмпирическими правилами и противоречивыми гипотезами. Достаточно сказать, что в то время, когда С. И. Вавилов начинал свою научную работу, не существовало научного определения самого понятия люминесценции, вследствие чего нельзя было ответить на вопросы о том, что такое люминесценция, каковы ее основные признаки и чем она отличается от других видов излучения.

В результате длительных исследований С. И. Вавилов дал определение люминесценции, которое теперь является общепринятым: люминесценцией называется избыток свечения тела над тепловым излучением того же тела в данной спектральной области и при данной температуре, если этот избыток имеет конечную длительность свечения, т. е. не прекращается сразу же после устранения вызвавшей его причины.

Это определение позволяет по доступным измерению признакам отделить люминесценцию от теплового излучения, рассеяния света и других световых процессов.

Элементарный акт люминесценции состоит из следующих трех частей: 1) поглощения кванта падающего света центром свечения (атомом, молекулой, группой атомов или молекул), 2) пребывания центра свечения в возбужденном состоянии и 3) излучения нового кванта при переходе центра свечения из возбужденного состояния в нормальное. Таким образом, основной особенностью люминесцентных процессов является то, что поглощение и испускание света происходит здесь в двух отдельных актах, между которыми центры свечения (поглощающие и излучающие энергию) находятся в промежуточных возбужденных состояниях. Длительность возбужденных состояний, в зависимости от механизма люминесценции, заключена в пределах от миллиардных долей секунды до многих месяцев и даже лет, т. е. значительно превосходит период одного светового колебания (10−15 сек).

Введенный С. И. Вавиловым критерий длительности, являющейся основным свойством люминесценции, позволил выделить люминесценцию из большого числа различных видов излучения, по внешности весьма сходных с ней (т. е. «холодных», не определяющихся температурой светящихся тел), свечение которых прекращается за время 10−15 сек по прекращении возбуждения.

Люминесценция различных веществ чрезвычайно разнообразна по спектральному составу испускаемого излучения и по другим его свойствам (зависимость от температуры, посторонних примесей и т. д.). Поэтому единственными законами люминесценции, справедливыми для любых люминесцирующих тел независимо от их агрегатных состояний, являются законы спектрального преобразования света.

Однако длительные поиски этих законов привели лишь к установлению некоторых эмпирических правил, которые не охватывали всех основных опытных фактов и допускали значительные исключения. Примером такого правила является «закон» Стокса, согласно которому длина волны излучения люминесценции должна быть больше длины волны возбуждающего света. Так как энергия излучения прямо пропорциональна его частоте ν (и обратно пропорциональна длине волны λ), то увеличение длины волны при люминесценции свидетельствует о том, что некоторая доля энергии, поглощенной люминесцентным веществом, остается в нем, переходя в тепло. Но этот «закон» нередко нарушается на опыте.

Подлинные законы спектрального преобразования света были открыты С. И. Вавиловым в результате длительного экспериментального и теоретического исследования энергетики люминесцентных процессов. Они являются теоретической основой не только для науки о люминесценции, но и для ее технических приложений.

Большая серия работ С. И. Вавилова посвящена изучению поляризованной люминесценции. При освещении люминесцентного раствора линейно поляризованным светом свет люминесценции оказывается частично поляризованным. Изучение этого явления С. И. Вавиловым вместе с его учениками В. Л. Левшиным и членом-корреспондентом АН СССР П. П. Феофиловым проложило новые пути к выявлению природы и свойств элементарных излучателей в сложных молекулах. Исследуя у различных веществ графики зависимости степени поляризации люминесценции от длины волны возбуждающего света (Вавилов назвал их «спектрами поляризации»), можно установить, какие группы атомов в сложных молекулах этих веществ испускают или поглощают свет определенных длин волн. Благодаря этому можно получить ценные сведения о структуре сложных молекул.

Изучение тушения люминесценции растворов, произведенное С. И. Вавиловым и его учениками, привело к открытию нового вида передачи энергии в веществе — миграции энергии. При миграции энергия переносится без рассеяния на большие (сравнительно с размерами атомов и молекул) расстояния в результате особого рода взаимодействия между соседними атомами вещества. Этот вид распространения энергии играет огромную роль в концентрированных растворах органических красителей, в кристаллах, белковом веществе и разнообразных биохимических процессах.

В последние десятилетия люминесценция широко используется в различных областях науки и техники: в радиолокации и телевидении, в медицине, химии, биологии и минералогии, в металлургической промышленности — повсюду она помогает решению многочисленных практических задач. На основе люминесценции разработаны новые методы химического и сортового анализа различных веществ — так называемый люминесцентный анализ. В развитии этих практических применений люминесценции большая заслуга принадлежит С. И. Вавилову. Но особенно большое значение имеют его работы по созданию люминесцентных источников света, открывших новый этап в истории светотехники.

Электрические лампочки накаливания — основной источник света в наши дни — имеют очень крупные недостатки. Их коэффициент полезного действия не превышает 3 %. Более 90 % энергии теряется ими на создание невидимого инфракрасного излучения. Спектральный состав видимого света у этих ламп значительно отличается от солнечного света, к которому наиболее приспособлен человеческий глаз. Температура накала вольфрамовой нити в лампе 2200–2300°. Для получения света, близкого к солнечному, и увеличения светоотдачи пришлось бы поднять ее до 6000°. Однако еще задолго до этого нить лампочки расплавится или распылится.

Недостатки электрических лампочек накаливания побуждают ученых искать новые, более экономичные и удобные источники света. Такими источниками и оказались люминесцентные лампы. Люминесцентные вещества являются световыми трансформаторами. Они могут превращать один вид света в другой, например невидимые ультрафиолетовые, т. е. бесполезные в светотехническом отношении лучи, в видимые, или однородный свет — в широкие спектральные полосы самого различного состава. Трансформация света лежит в основе всех люминесцентных ламп.

С. И. Вавилов первым предложил использовать мощное ультрафиолетовое излучение ртутных ламп для получения видимого света с помощью люминесцентных веществ. Идя по этому пути, он создал люминесцентные «лампы дневного света».

Основной частью люминесцентных ламп Вавилова является газоразрядная трубка, заполненная парами ртути при низком давлении. Электроны, проходя через трубку при разряде, возбуждают ультрафиолетовое излучение ртути. Если наблюдать разряд через прозрачные стенки трубки, то можно заметить, что внутренность ее светится слабым голубым светом. Основная доля излучения ртути сосредоточена в ультрафиолетовой области. Для преобразования ее в видимый свет на внутреннюю стенку трубки наносят слой «светового трансформатора» — кристаллического люминесцентного порошка. Применяя различные порошки, можно получить свет любого цвета. Наибольший практический интерес представляют порошки, свечение которых близко к дневному рассеянному солнечному свету (например, дневному свету при облачном небе). Коэффициент полезного действия и средний срок службы таких ламп значительно больше обычных.

Люминесцентные лампы уже получили широкое распространение. Ими освещают сортировочные и колориметрические цехи текстильных фабрик, которые ранее работали всего по нескольку часов в день при дневном освещении. Они создают превосходные условия для освещения музеев и картинных галерей; благодаря полной взрывобезопасности по отношению к рудничным газам они успешно применяются в наших шахтах. Ими освещены многие станции Московского метрополитена, магазины, учреждения и т. д.

БЫСТРЕЕ СВЕТА

Прекрасным примером практической важности определения люминесценции, данного С. И. Вавиловым, является замечательное открытие эффекта «сверхсветового» электрона. Желая изучить люминесценцию растворов, возникающую под действием отличных от света источников возбуждения, С. И. Вавилов предложил в 1934 г. своему аспиранту П. А. Черенкову (ныне члену-корреспонденту АН СССР) исследовать люминесценцию растворов ураниловых солей, возбуждаемую γ-излучением радиоактивных веществ.

Долгие часы проводил П. А. Черенков в абсолютной темноте, так как свет, испускаемый раствором, был чрезвычайна слабым. Неожиданно ему удалось обнаружить, что, помимо хорошо известного свечения уранила, в растворах возникает слабое видимое синее свечение. Это свечение было настолько слабым, что, заметив его, большинство экспериментаторов не придало бы ему никакого значения. Ведь его возникновение так легко было объяснить побочными эффектами, наличием примесей и т. п. Но удивительно тонкое физическое чутье подсказало С. И. Вавилову и П. А. Черенкову, что здесь что-то не так.

Огромное различие в энергиях между поглощаемым γ-излучением и испускаемым синим светом, казалось, с несомненностью свидетельствовало о том, что это свечение является люминесценцией, вызываемой какими-нибудь побочными причинами. Однако исследовав, как долго сохраняется это свечение после прекращения возбуждения, и установив, что длительность его близка к 10−15 сек, С. И. Вавилов сразу же пришел к выводу, что это не люминесценция, а совершенно новое оптическое явление.

Дальнейшее исследование свойств этого свечения, произведенное П. А. Черенковым, подтвердило правильность заключения С. И. Вавилова. Оказалось, что подобное синее свечение можно наблюдать не только в растворах ураниловых солей, но и в любой прозрачной жидкости (воде, глицерине, серной, кислоте и т. д.) и даже в прозрачных твердых телах, облучаемых узким параллельным пучком γ-лучей. Интенсивность свечения при одинаковых условиях возбуждения практически постоянна у всех этих веществ. Энергия в спектре синего свечения возрастает в сторону коротких волн. Излучение поляризовано так, что направление электрического вектора световых колебаний совпадает с направлением распространения пучка γ-лучей. Свечение распространяется только вперед, в виде конуса, ось которого совпадает с пучком γ-лучей, а интенсивность свечения убывает по направлению к оси.

В первом же сообщении об этом новом свечении С. И. Вавилов и П. А. Черенков правильно указали на то, что оно возникает в результате торможения быстрых электронов, выбиваемых γ-лучами из молекул облучаемого вещества. Это предположение было проверено следующим образом: так как магнитное поле отклоняет электроны, то свечение, если оно возникает при торможении электронов, должно отклоняться магнитным полем. И действительно, при наложении магнитного поля свечение отклонялось в соответствующую сторону.

Полная теория этого явления, названного «эффектом или излучением Черенкова», была построена учеником С. И. Вавилова членом-корреспондентом АН СССР И. М. Франком совместно с академиком И. Е. Таммом.

Она оказалась совершенно неожиданной и удивительно простой. Свет испускают электроны, которые движутся быстрее света! Но ведь теория относительности убедительно свидетельствует о полной невозможности такого движения. И все-таки оказывается, что можно обогнать свет. Все дело в том, что в теории относительности предельной скоростью является скорость света в пустоте, равная 300 000 км/сек. Если же свет распространяется в какой-либо среде, то его скорость оказывается меньше в n раз, где n — показатель преломления среды. Например, в плексигласе она равна примерно 200 000 км/сек. Так как энергия γ-лучей велика, они сообщают выбиваемым ими электронам скорости, близкие к скорости света в пустоте. Поэтому электроны как бы обгоняют испускаемый ими свет, который распространяется в виде конуса, следующего за движущимися электронами. Отсюда происходит и другое название этого явления — эффект «сверхсветового» электрона. Излучение Черенкова оказалось электромагнитным аналогом «головной волны», возникающей, например, при движении в воздухе снаряда или самолета, скорости которых превышают скорость звука.

Впоследствии выяснилось, что это свечение было замечено еще Пьером Кюри и Марией Кюри-Склодовской, но они считали его обычной слабой люминесценцией. Только благодаря применению предложенного Вавиловым критерия длительности удалось выявить и исследовать это удивительное явление.

Сейчас его широко используют в специальных счетчиках быстрых заряженных частиц, так называемых «черенковских» счетчиках. Такой счетчик состоит из чистой жидкости или прозрачного твердого тела, соединенных с фотоумножителем, регистрирующим каждую отдельную «сверхсветовую» частицу. Достоинством черенковского счетчика является то, что он регистрирует не любые заряженные частицы, а лишь те, у которых скорость больше скорости света в данной среде. Кроме того, яркость вспышки зависит от величины заряда частицы. Поэтому подбирая подходящую среду, можно выделять частицы с определенным интервалом энергии или величиной заряда, Такие счетчики регулярно устанавливаются на шутниках я космических ракетах для изучения космических лучей.

Как уже говорилось в введении, за открытие и исследование эффекта сверхсветового электрона члену-корреспонденту АН СССР П. А. Черенкову совместно с академиком И. Е. Таммом и членом-корреспондентом АН СССР И. М. Франком в 1958 г. (академик С. И. Вавилов к этому времени уже умер) была присуждена Нобелевская премия по физике.

МОЛЕКУЛЯРНОЕ РАССЕЯНИЕ СВЕТА

Физика долго не могла дать правильного ответа на такой, казалось бы, простой вопрос: «А почему небо голубое?» Даже Ньютон, посвятивший этой проблеме много лет упорного труда, так и не сумел ее решить. Первым удовлетворительную теорию рассеяния света в атмосфере создал другой английский физик — Рэлей. Предположив, что свет рассеивают молекулы воздуха, он получил хорошее совпадение с результатами наблюдений. Интенсивность рассеянного света по формуле Рэлея убывает пропорционально четвертой степени длины волны. Поэтому среда как бы перераспределяет спектр падающего света, пропуская преимущественно красные лучи и рассеивая преимущественно голубые, как это и происходит в действительности. Кроме того, число молекул в кубическом сантиметре воздуха, рассчитанное по теории Рэлея, оказалось весьма близким к числу Лошмидта, определенному многими другими способами.

Казалось бы, все ясно, проблема полностью решена. И только один физик, академик Леонид Исаакович Мандельштам, не согласился с этой интерпретацией. Он доказал, что в силу весьма большой плотности молекул воздуха они сами по себе не могут служить причиной, ответственной за голубой цвет неба. Истинной причиной, порождающей этот эффект, являются флуктуации плотности, т. е. случайные изменения концентрации молекул в единице объема, происходящие под влиянием теплового движения. Л. И. Мандельштам показал, что формула Рэлея верна, а физическая сущность картины рассеяния света совершенно иная. Эта работа была опубликована еще в 1907 г. Она явилась одной из первых работ по исследованию флуктуаций, породивших статистическую физику.

Л. И. Мандельштам был первым физиком, обратившим внимание на то, что флуктуации давления, температуры, концентрации или ориентации (если молекулы анизотропны) должны накладывать свой отпечаток на падающий свет, как говорят, модулировать его. В работах, начатых еще в 1908 г., он обосновал необходимость рассеяния света на флуктуациях плотности, приводящего к появлению в рассеянном свете, помимо падающей длины волны λ0, еще двух соседних волн λ1 и λ2, смещенных в оба конца спектра на одинаковую величину ∆λ(∆λ=λ1−λ00−λ2). Этот дублет Мандельштама — Бриллюэна[4], весьма близко примыкающий к основной линии, был впервые обнаружен членом-корреспондентом АН СССР Е. Ф. Гроссом.

Триумфом оптических исследований академика Л. И. Мандельштама было открытие совместно с академиком Г. С. Ландсбергом комбинационного рассеяния света.

В 1927 г. ими был поставлен следующий эксперимент.

Монохроматический свет, полученный из ртутной лампы с помощью фильтра, падал на кристалл максимально чистого и однородного кварца. Свет, рассеянный этим кристаллом, анализировался спектрографом. Одна из основных трудностей эксперимента состояла в том, что из общего количества световой энергии, поступающей в вещество, рассеивается всего лишь около одной десятимиллиардной доли. Кроме того, почти весь рассеянный свет является первичным излучением, отраженным от различных дефектов кристалла. Чтобы иметь возможность выделить какие-то новые длины волн в составе рассеянного света, надо было практически полностью избавиться от отраженного света. С этой целью Л. И. Мандельштам и Г. С. Ландсберг пропускали рассеянный свет через пары ртути, которые поглощали отраженный свет с длиной волны такой же, как у падающего на кристалл света.

После чрезвычайно долгой экспозиции им удалось заметить слабые спектральные линии на равных расстояниях от первичной.

Тщательное исследование этих линий показало, что они сопровождают каждую линию первичного света. Разность между частотами этих линий и частотой падающего света совпадает с частотами инфракрасных колебаний молекул рассеивающего вещества. Кроме того, интенсивность линий, смещенных в красную сторону спектра, значительно выше интенсивности линий, смещенных в синюю сторону.

В этом явлении физики впервые встретились с прямым взаимодействием световых колебаний с отдельными молекулами вещества. Недаром Л. И. Мандельштам называл спектры комбинационного рассеяния «языком молекул».

Грубую картину механизма этого взаимодействия можно получить следующим образом. Каждая молекула данного вещества может совершать различные внутренние колебания. Им соответствует определенный набор порций электромагнитной энергии, , которые молекулы способны принимать от окружающей среды и возвращать в нее. Если квант падающего света 0 взаимодействует с невозбужденной молекулой, он отдает ей часть своей энергии, равную . При этом в рассеянном свете появляется «красная» смещенная линия с частотой νk0−ν. Если же квант встречается с возбужденной молекулой, обладающей энергией возбуждения , он может получить эту энергию и тогда родится «синяя» смещенная линия с частотой ν'c0. Нетрудна видеть, что смещенные линии должны располагаться симметрично по обе стороны от основной линии первичного света.

Так как в обычных условиях число невозбужденных молекул значительно больше, интенсивность линий, смещенных в красную сторону спектра, должна быть значительно выше, что соответствует действительности.

В 1928 г. аналогичное открытие было сделано индийскими физиками Раманом и Кришнаном. Они также наблюдали в свете, рассеянном различными жидкостями, возникновение дополнительных спектральных линий. Свое открытие они интерпретировали как оптический аналог эффекта Комптона. Как показал Л. И. Мандельштам, это было совершенно неверно. Тем не менее в 1930 г. Раман получал Нобелевскую премию, а само комбинационное рассеяние света долгое время называлось «эффектом Рамана».

Продолжая свои исследования, Л. И. Мандельштам и Г. С. Ландсберг создали новый метод спектрального анализа молекул, основанный на изучении спектров комбинационного рассеяния. Этот метод получил огромное распространение и широко применяется теперь во всех странах.

КВАНТОВАЯ ЭЛЕКТРОНИКА

Герой романа Алексея Толстого «Гиперболоид инженера Гарина» изобрел прибор, способный создавать узкий параллельный световой пучок, несущие большую энергию и вызывающий серьезные разрушения на значительных расстояниях. Физики не раз убедительно доказывали, что гиперболоид, совершающий такие действия, принципиально невозможен[5]. Но при этом упускали из виду, что невозможность создания такого прибора отнюдь не означает невозможности создания такого луча. Недавно физики получили подобные лучи в свое распоряжение. Их принесла новая область физики — квантовая электроника, возникшая на наших глазах. Однако и у нее уже есть своя небольшая история.

Во всех известных нам до недавних пор источниках света излучающие его атомы работают крайне несогласованно, хаотично. Они испускают различный свет в разное время по любым направлениям. Такой свет, удаляясь от источника даже в виде первоначального пучка (например, луч прожектера), быстро расплывается на все большую и большую площадь, напоминая в сечении контуры веера. Это не позволяет пересылать заметные количества электромагнитной энергии на космические расстояния.

Если бы можно было заставить возбужденные атомы излучать свет одной и той же длины волны одновременно, да еще в строго определенном направлении, мы получила бы принципиально новый источник света. Именно таким источником и является лазер, способный создавать лучи, подобные лучам гиперболоида инженера Гарина.

Чтобы лучше понять глубокое различие между обычными тепловыми источниками света и лазером, приведем следующую аналогию.

Представьте себе огромный хор, где нет дирижера и каждый из участников стоит, как ему захотелось (кто лицом, а кто и спиной к публике), поет свою отличную от других песню, начиная и кончая, когда ему вздумается. Зрители при этом услышат только невообразимый шум. Именно так ведут себя атомы в обычных источниках света.

Но приходит дирижер, и все участники хора поворачиваются лицом к зрителям и одновременно начинают исполнять одну и ту же песню. Такой хор можно услышать на весьма большом расстояний от эстрады. По этому принципу работают атомы в лазере.

Как же удалось заставить атомы работать так согласованно?

Хорошо известно, что любая среда, в которую проникает свет, поглощает и рассеивает его лучи. Если бы Исааку Ньютону оказали, что возможно создать среды, усиливающие пропускаемый ими свет, он бы наверняка в это не поверил.

Классическая теория колебаний утверждает, что диполь, на который воздействует периодически изменяющееся электромагнитное поле, может, в зависимости от соотношения фаз между колебаниями поля и колебаниями самого диполя, либо поглощать энергию поля, либо отдавать ее полю. В первом случае имеет место положительная абсорбция, во втором — отрицательная абсорбция или вынужденное излучение энергии под влиянием электромагнитного поля. Это излучение отлично от обычного спонтанного излучения, происходящего под влиянием внутренней неустойчивости системы, и обычно складывается с ним. Так как вынужденное излучение стимулируется внешним полем, то, в отличие от спонтанного излучения, оно будет строго согласованным во времени.

А. Эйнштейн первым в 1917 г. распространил этот принцип на квантовые системы, указав, что атомы также должны испускать вынужденное излучение под влиянием падающей электромагнитной волны. Только при этом условии ему удалось вывести формулу Планка на основе статистических соображений.

В 1927 г. английский физик П. Дирак обратил внимание на то, что вынужденное излучение атомов должно иметь место лишь при условии совпадения частоты падающего электромагнитного излучения с одной из возможных частот для атомов данного сорта. Иными словами, атомы должны испускать такие же кванты, какие содержатся в падающем излучении.

Заинтересовавшись природой вынужденного излучения, советский физик, профессор В. А. Фабрикант решил подробно разобраться в этом вопросе. В 1939 г. В. А. Фабрикант защитил докторскую диссертацию, в которой впервые теоретически обосновал возможность создания оптических сред, усиливающих проходящий через них свет. В 1951 г. он вместе с М. М. Вудынским и Ф. А. Бутаевой подал авторское свидетельство на эту идею, осуществление которой позволило бы создать принципиально новый способ усиления электромагнитного излучения.

На пути к созданию такой среды, значительная часть атомов которой, в нарушение термодинамического равновесия, длительное время находится в возбужденном состоянии, встретились очень большие трудности. Первыми их преодолели советские физики академики Н. Г. Басов и А. М. Прохоров. В 1952 г. они сообщили на научной конференции о работе по созданию молекулярного усилителя и генератора радиоволн на аммиаке. В этом необычном генераторе все молекулы аммиака согласованно излучали электромагнитные волны одной и той же длины. Постоянство частоты генератора было так велико, что первым его применением оказалась служба времени. Построенные на таком принципе молекулярные часы имеют непревзойденно высокую точность.

Вскоре об аналогичном молекулярном генераторе радиоволн сообщил американский физик Ч. Таунс. Он же предложил называть такие генераторы мазерами.

Так родилась квантовая электроника.

Но всеобщее признание она получила лишь после создания квантовых генераторов оптического диапазона — лазеров. Первый лазер был создан в 1960 г. Немалая доля заслуг в создании лазеров также принадлежит советским физикам академикам Н. Г. Басову и А. М. Прохорову и профессору В. А. Фабриканту.

Вот как, например, выглядит газовый лазер.

Его основная деталь — продолговатая трубка, заполненная смесью двух благородных газов — гелия и неона. За торцами трубки находятся плоские строго параллельные зеркала, способные отражать до 99 % падающего на них света, одно из которых слегка прозрачно.

Возбуждая с помощью электродов газовый разряд в трубке, мы прежде всего сообщаем энергию атомам гелия, а они, в свою очередь, возбуждают путем столкновений атомы неона. Так как атомы неона излучают полученную энергию не мгновенно, а с некоторой задержкой, в газовой смеси возникает большое количество возбужденных атомов неона. Первые же кванты, излученные атомами неона, многократно отражаясь от зеркал, стимулируют путем вынужденного излучения лавинообразный процесс освобождения энергии, приводя к мощной вспышке монохроматического света. Этот процесс можно повторять с большой частотой.

Лазеры имеют много преимуществ перед обычными источниками света. Чтобы получить от нити лампы накаливания такую же яркость светового луча, какую дает лазер, надо нагреть ее до температуры в 10 миллиардов градусов, а это в полтора миллиона раз выше температуры поверхности Солнца.

Плотность энергии в пучке лазерного света так велика, что под влиянием ее расплавляются самые тугоплавкие материалы и прожигаются отверстия в алмазах.

Луч лазера может уходить на огромные космические расстояния от Земли, перенося энергию и информацию. Информационная емкость такого канала связи чрезвычайно велика — по нему одновременно можно передавать тысячи телевизионных программ.

Лазер можно использовать для избирательного возбуждения отдельных компонент в сложных химических смесях, вызывая и стимулируя необычные химические реакции.

Применение лазеров создает принципиально новые возможности осуществления управляемых термоядерных реакций и ускорения элементарных частиц до сверхвысоких энергий.

Лазеры открывают невиданные перспективы перед многими разделами современной оптики. Помимо этого, они уже позволили создать новый ее раздел — нелинейную оптику сверхмощных световых полей.

За фундаментальные исследования в области квантовой электроники академики Н. Г. Басов и А. М. Прохоров вместе с Ч. Таунсом в 1964 г. удостоены Нобелевской премии.

ЗАКЛЮЧЕНИЕ

Заканчивая краткий обзор крупнейших достижений советской физики, прежде всего следует еще раз отметить его крайнюю неполноту. Цель настоящего обзора — на отдельных конкретных примерах показать, каких высот достигла советская физика за короткий срок своего существования. Поэтому в нем было рассказано лишь об отдельных достижениях, не охватывающих даже наиболее крупных работ в той или иной области физики. Так, например, рассказывая о работах С. И. Вавилова и Л. И. Мандельштама в области физической оптики, мы ничего не сообщили о фундаментальных оптических исследованиях, выполненных рядом других советских физиков.

Крупные достижения имеет большой отряд советских радиофизиков, радиотехников и специалистов в области электроники. Создание нелинейной теории колебаний, открытие параметрического резонанса, новые принципы усиления и генерации электромагнитных волн разных диапазонов, радиолокация Луны и далеких планет солнечной системы, сверхдальняя космическая радиосвязь — вот далеко не полный перечень их успехов.

Немало ценных работ сделано советскими физиками в области физики диэлектриков.

Советские физики успешно работают также в области магнетизма, акустики, физики ультразвука, молекулярной физики и других разделах физики наших дней.

Несмотря на известную мозаичность и неполноту картины достижений советских физиков, даже сказанное в этом обзоре убедительно свидетельствует об огромных масштабах проделанной работы. Советская физика уверенно занимает ведущие позиции в мировой науке. Она внесла огромный вклад в сокровищницу лучших достижений человеческого гения. Успешно развиваясь, она принесет нам еще много славных открытий и научно-технических достижений.